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Abstract. Lindblad dynamics and other open-system dynamics provide a promising path towards
efficient Gibbs sampling on quantum computers. In these proposals, the Lindbladian is obtained via
an algorithmic construction akin to designing an artificial thermostat in classical Monte Carlo or
molecular dynamics methods, rather than treated as an approximation to weakly coupled system-
bath unitary dynamics. Recently, Chen, Kastoryano, and Gilyén (arXiv:2311.09207) introduced the
first efficiently implementable Lindbladian satisfying the Kubo–Martin–Schwinger (KMS) detailed
balance condition, which ensures that the Gibbs state is a fixed point of the dynamics and is ap-
plicable to non-commuting Hamiltonians. This Gibbs sampler uses a continuously parameterized
set of jump operators, and the energy resolution required for implementing each jump operator de-
pends only logarithmically on the precision and the mixing time. In this work, we build upon the
structural characterization of KMS detailed balanced Lindbladians by Fagnola and Umanità, and
develop a family of efficient quantum Gibbs samplers that only use a discrete set of jump opera-
tors (the number can be as few as one). Our methodology simplifies the implementation and the
analysis of Lindbladian-based quantum Gibbs samplers, and encompasses the construction of Chen,
Kastoryano, and Gilyén as a special instance.

1. Introduction

For a given quantum Hamiltonian H ∈ CN×N , preparing the associated Gibbs state σβ = e−βH/Zβ

(also called quantum Gibbs sampling) has a wide range of applications in condensed matter physics,
quantum chemistry, and optimization. Here N = 2n is the dimension of the underlying Hilbert space,
β is the inverse temperature, and Zβ = tr(e−βH) is the partition function. We assume efficient
quantum access to the Hamiltonian simulation exp(−itH). The cost of a quantum algorithm is often
dominated by the total Hamiltonian simulation time of H.

The Davies generator [Dav74, Dav76, Dav79], which is in the form of a Lindbladian (or Lindblad
generator) [Lin76, GKS76], satisfies the desirable property that the Gibbs state is a fixed point of the
generated dynamics, and hence can be viewed as a natural candidate for quantum Gibbs samplers. The
Davies generator is typically derived as a simplified representation of weakly interacting system-bath
models, following the Born-Markov-Secular1 approximation route [BP02, Lid19]. Thus its applica-
bility range seems to be constrained by the limitations of these approximations. However, there has
been a recent revival of interest in designing quantum Gibbs samplers based on the Lindblad dynam-
ics [ML20, RWW23, CB21, CKBG23, CKG23, WT23]. These Lindbladians are constructed purely
algorithmically, and may not mimic specific system-bath unitary dynamics in nature.

The key object in these Lindblad dynamics-based approaches is the following frequency-dependent
jump operator

(1.1) Âa
f (ω) :=

∫ ∞

−∞
f(t)e−iωteiHtAae−iHt dt, ω ∈ R ,

which is a f -weighted Fourier transform of the Heisenberg evolution Aa(t) := eiHtAae−iHt of Aa. Here
f : R → C is a filtering function that is central to this work and will be discussed in detail, and {Aa}a∈A
is a set of (frequency-independent) coupling operators provided by the user, which represent the
coupling between the system and the fictitious environment, akin to designing an artificial thermostat

Date: Latest revision: April 26, 2024.
1The secular approximation is also referred to as the rotating wave approximation (RWA).
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in classical Monte Carlo or molecular dynamics methods [FS02]. The choice of {Aa}a∈A can be flexible
and relatively simple (such as Pauli operators). The Lindblad generator for the algorithmic purpose
is then formulated as

(1.2) L†[ρ] = −i[G, ρ] +
∑
a∈A

∫ ∞

−∞
γ(ω)

(
Âa

f (ω)ρ
(
Âa

f (ω)
)†

− 1

2

{(
Âa

f (ω)
)†

Âa
f (ω), ρ

})
dω .

Here −i[G, ·] is called the coherent part of the dynamics, and the simplest choices are G = H (system
Hamiltonian) or G = 0 (no coherent term). The remaining term on the right-hand side of Eq. (1.2) is
referred to as the dissipative part. In particular, the Davies generator corresponds to taking f(t) ≡ 1,
with a carefully chosen function γ : R → R, and a coherent part −i[H, ·] (see Section 2.1).

The Gibbs state is a fixed point of the Lindblad dynamics if L†[σβ ] = 0. A sufficient condition to
ensure this is that the generator L satisfies certain quantum detailed balance conditions (DBC). Here
L and L† are adjoint to each other with respect to the Hilbert–Schmidt inner product. For a given
precision ϵ > 0, we define the mixing time of the dynamics generated by L† as

(1.3) tmix := inf
{
t ≥ 0 ;

∥∥∥etL†
(ρ)− σβ

∥∥∥
1
≤ ϵ, ∀ quantum state ρ

}
,

where ∥·∥1 denotes the trace norm. It is worth mentioning that the quantum DBC is also instrumental
for proving the finite mixing time (if it is the case), and its scaling with respect to β and the system
size [TKR+10, KT13, BCG+23, RFA24]. However, due to the non-commutativity of operators in
quantum mechanics, there is no unique definition of quantum DBC [TKR+10, CM17, CM20].

1.1. Related works. The most widely studied form of quantum DBC is in the sense of Gelfand–
Naimark–Segal (GNS). The seminal result by Alicki [Ali76] states that any Lindblad generator satis-
fying the GNS DBC must choose f(t) ≡ 1 in Eq. (1.2), leading to the same dissipative part as in the
Davies generator. Since this filtering function does not decay in t, the exact implementation of Âa

f (ω)

requires simulating the Heisenberg evolution Aa(t) for an infinitely long period. This implies that in
the frequency space, the energy levels of H have to be distinguished to infinite precision, which cannot
be achieved in general, except for some special systems such as Hamiltonians with commuting terms.
It is possible to select certain decaying filter functions f in (1.2) such that L approximates a Davies
generator, while these approximate generators cannot satisfy the GNS DBC and their fixed points
are not known a priori. Consequently, estimating the deviation of the fixed point of the approximate
dynamics from σβ involves tracking the accumulated error along the dynamic trajectory. In order to
approximate the Gibbs state to precision ϵ, the dynamics should distinguish the energy levels of H
to precision poly(β−1t−1

mixϵ), where tmix is given in Eq. (1.3) [CKBG23, Theorems I.1, I.3]. It means
that the integral in Eq. (1.1) could be truncated to T = poly(βtmixϵ

−1). However, this cost may still
be prohibitively high for practical applications.

Recently, [CKG23] introduced the first algorithm that requires a finite energy resolution in con-
structing Âa

f (ω), where L† in Eq. (1.2) exactly satisfies a less stringent version of DBC called the
Kubo–Martin–Schwinger (KMS) DBC. It involves a nontrivial choice of the coherent term G that is
neither H or 0. Under the KMS DBC, the Gibbs state σβ remains a fixed point of the Lindblad
dynamics, and one no longer needs to keep track of the accumulated deviation from the trajectory
generated by a Davies-like generator. In this setup, to prepare σβ to precision ϵ, the integral in
Eq. (1.1) can be truncated to T = O(β log(tmix/ϵ)) [CKG23, Theorem I.2].

The integral with respect to ω in Eq. (1.2) involves a continuously parameterized set of jump
operators if γ(ω) is a continuous function. Although one can discretize such an integral using a
quadrature scheme, the algorithm must be meticulously designed to efficiently simulate the resulting
Lindblad dynamics [CW17, CKBG23, CKG23]. To the best of our knowledge, high-order Lindblad
simulators designed for a finite number of jump operators, which allow for simpler implementations
[LW23, DLL24], are not suitable for this task.

1.2. Contribution. In parallel to Alicki’s characterization of Lindblad generators satisfying the GNS
DBC, Fagnola, and Umanità [FU07, FU10] have prescribed the necessary and sufficient conditions for
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a quantum Markov semigroup to satisfy the KMS DBC. This leads to a set of conditions on the jump
operators and the Hamiltonian for its corresponding Lindblad generator (also see [AC21]). Building
upon these works, we introduce a family of quantum Gibbs samplers satisfying the KMS DBC. This
includes the construction of [CKG23] as a special instance. In particular, γ(ω) can be chosen to be
a discrete sum of δ functions, leading to a finite number of jump operators. In fact, it is sufficient
to choose γ(ω) = δ(ω), which means a single jump operator if |A| = 1. Our jump operators can be
constructed using the standard linear combination of unitaries (LCU) routine [BCC+14, GSLW19].
As a result, our Lindblad dynamics can be efficiently simulated using any high-order simulation al-
gorithms, including those in [LW23, DLL24]. In addition, we show that this new family of Gibbs
samplers enables the selection of f(t), whose Fourier transform is smooth and compactly supported.
This approach simplifies the error analysis for controlling the discretization error, through the appli-
cation of the Poisson summation formula. Table 1 compares the performance of a number of quantum
Gibbs samplers based on the Lindblad dynamics.

Algorithms Properties Remark
Detailed Truncation Jump Total
balance time # cost

[CB21] ≈ GNS N/A ∞ poly(βϵ−1tmix)
Weak coupling

Refreshable bath

[RWW23, Theorem 1] ≈ GNS Õ(βϵ−2) ∞ Õ(β3tmixϵ
−7) Rounding promise

[CKBG23, Theorem I.1] ≈ GNS Õ(βt2mixϵ
−2) ∞ Õ(βt3mixϵ

−2) Rectangular filter

[CKBG23, Theorem I.3] ≈ GNS Õ(βtmixϵ
−1) ∞ Õ(βt2mixϵ

−1) Gaussian filter

[CKG23, Theorem I.2] KMS Õ(β log(tmix/ϵ)) ∞ Õ(βtmixpolylog(1/ϵ))
Gaussian /

Metropolis filter

This work [Theorem 19] KMS Õ(βlog1+o(1)(tmix/ϵ)) ≥ 1 Õ(β2S · tmixpolylog(1/ϵ)) A family of filters

Table 1. A comparison of quantum Gibbs samplers using techniques related to Lind-
blad dynamics. Here the truncation time T is used to truncate the integral in Eq. (1.1)
to [−T, T ] in simulation. The number of jump operators for the Libladian is denoted
by ∞ if γ(ω) is a continuous function in Eq. (1.2). The total cost refers to the
total Hamiltonian simulation time using the best available Lindblad simulation algo-
rithm. The o(1) factor in the truncation time of this work stems from our choice of
the filtering function and o(1) can be chosen to be arbitrarily small without much
added cost. In this work, the factor β2S scaling in the total cost is due to that our
jump operator allows the Bohr frequency difference to be of size S (see Remark 23).
When S = O(1/β), this recovers the linear dependence on β in the total cost. When
S = O(1), the dependence on β is quadratic. The mixing time tmix is method depen-
dent, and their values are generally difficult to compare with each other in theory.
The weak coupling assumption may be unphysical for large quantum systems. The
rounding promise-based method prepares an ensemble of density operators, and the
total cost for preparing each density operator in the ensemble may be improved to
Õ(tmixβϵ

−2) (see [RWW23, Remark of Theorem 1]).

1.3. Discussion and open questions. There exist a series of algorithms [PW09, CS17, VAGGdW17,
GSLW19, ACL23] that require only quantum access to H without additional information (such as cou-
pling operators). The cost of these algorithms is deterministic and scales as O(

√
N/Zβpoly(β, log ϵ

−1)).
These algorithms can perform efficiently in the high-temperature regime, where β is small and√
N/Zβ ∼ 1 (assuming the smallest eigenvalue of H is zero). However, they become significantly

less efficient in the low-temperature regime, where β is large, and
√

N/Zβ ∼
√
N . Furthermore,
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the factor
√
N/Zβ is explicitly present in the algorithm, and the average-case complexity is not very

different from the worst-case scenario. On the other hand, the computational cost of open-system
quantum dynamics is primarily determined by the mixing time, which can vary significantly across
different systems. Besides the Lindblad dynamics, alternative open-system dynamics formalisms are
also viable [TOV+11, YAG12, SM23, Cub23] for Gibbs state preparation. We may anticipate that for
certain classes of physical Hamiltonians, even at low temperatures, Gibbs sampling could be executed
efficiently. This possibility does not contradict the statement that preparing the ground state of H
(when β = ∞) remains QMA-hard in the worst-case scenario [KSV02, AGIK09].

Although rigorous bounding of the mixing time has been achieved for certain quantum Gibbs
samplers operating on commuting Hamiltonians [KB16, BCG+23], establishing the mixing time for
non-commuting Hamiltonians at moderate or even low temperatures presents a substantial theoreti-
cal challenge. There are two interesting works along this line. The first is that Rouzé et al [RFA24]
established the spectral gap of KMS detailed balanced Lindbladians for certain k-local Hamiltonians
at high temperatures using Lieb-Robinson estimates. The analysis in [RFA24] may be applicable in
our setting and we plan to investigate this in detail in a future work. On the other hand, Bakshi et
al [BLMT24] demonstrated that at the high temperature, the Gibbs State of certain k-local Hamilton-
ian becomes a linear combination of tensor products of stabilizer states, can be prepared in polynomial
time using randomized classical algorithms. This suggests that exploring the relationship between the
complexity of Gibbs states and mixing times could be a fruitful avenue for future research.

It is also noteworthy that introducing a coherent term to any detailed balanced Lindbladian disrupts
the detailed balance condition, but the Gibbs state remains a fixed point. The influence of the coherent
term on the mixing time may be significant and its characterization remains an open question. Finally,
the mixing time tmix may be very different across different quantum Gibbs samplers. Both theoretical
and numerical evidence are needed in order to quantify the mixing time and to compare the efficiency
of quantum Gibbs samplers for physical systems of interest.

1.4. Notation. We denote by H a finite-dimensional Hilbert space with dimension N = 2n, and
by B(H) the space of bounded operators. For simplicity, we usually write A ≥ 0 (resp., A > 0)
for a positive semidefinite (resp., definite) operator. The identity element in B(H) is denoted by 1.
Moreover, we denote by D(H) the set of quantum states (i.e., ρ ≥ 0 with tr(ρ) = 1), and D+(H) the
subset of full-rank states. Let X† be the adjoint operator of X. We denote by ⟨·, ·⟩ the Hilbert-Schmidt
inner product on B(H): ⟨X,Y ⟩ := tr(X†Y ). Then, with a slight abuse of notation, the adjoint of
a superoperator Φ : B(H) → B(H) with respect to ⟨·, ·⟩ is also denoted by Φ†. Unless specified
otherwise, ∥X∥ denotes the operator norm for X ∈ B(H), while ∥x∥s := (

∑
j |xj |s)1/s denotes the

s-norm of the vector x ∈ CN (s ≥ 1). The diamond norm of a superoperator E on B(H) is defined by
∥E∥♢ = ∥E ⊗ id∥1, where id is the identity map on B(H).

We adopt the following asymptotic notations beside the usual big O one. We write f = Ω(g)

if g = O(f); f = Θ(g) if f = O(g) and g = O(f). The notations Õ, Ω̃, Θ̃ are used to suppress
subdominant polylogarithmic factors. Specifically, f = Õ(g) if f = O(g polylog(g)); f = Ω̃(g) if
f = Ω(g polylog(g)); f = Θ̃(g) if f = Θ(g polylog(g)). Note that these tilde notations do not remove
or suppress dominant polylogarithmic factors. For instance, if f = O(log g log log g), then we write
f = Õ(log g) instead of f = Õ(1).
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Quantum Computation (CIQC) funded by National Science Foundation (NSF) through grant number
OMA-2016245 (Z.D.), National Science Foundation (NSF) award under grant number DMS-2012286
and CHE-2037263 (B.L.), the Applied Mathematics Program of the US Department of Energy (DOE)
Office of Advanced Scientific Computing Research under contract number DE-AC02-05CH1123, and
a Google Quantum Research Award (L.L.). L.L. is a Simons investigator in Mathematics. We thank
Anthony Chen, Li Gao, Marius Junge and Jianfeng Lu for insightful discussions.
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Note: In completing this work, we became aware of the concurrent research by Chen, Doriguello, and
Gilyén that similarly aims to develop quantum Gibbs samplers with a finite number of jump operators.

2. Structures of detailed balanced Lindbladians

In this section, we present the canonical forms of the Lindbladians with detailed balance conditions
and discuss their feasibility for implementation on a quantum computer.

We first recall that a quantum channel Φ : B(H) → B(H) is a completely positive trace preserv-
ing (CPTP) map, while a quantum Markov semigroup (QMS) (Pt)t≥0 : B(H) → B(H), also called
Lindblad dynamics, is defined as a C0-semigroup of completely positive, unital maps. The generator

L(X) := lim
t→0

t−1(Pt(X)−X)

is usually referred to as the Lindbladian, which has the following GKSL form [Lin76, GKS76].

Lemma 1. For any generator L of a QMS Pt, there exist operators Lj ,K ∈ B(H) such that

L(X) = Ψ(X) +K†X +XK ,(2.1)

where Ψ(·) is completely positive with the Kraus representation:

(2.2) Ψ(X) =
∑
j∈J

L†
jXLj ,

with J being the index set with cardinality |J | ≤ N2.

The operators Lj in (2.2) are called jump operators, which are non-unique for a given Lindbladian.
From L(1) = 0, by (2.1), the operator K can be written as

K = V − iG with V = −1

2

∑
j∈J

L†
jLj ,(2.3)

where V := K†+K
2 and G := K†−K

2i are self-adjoint operators, and then there holds

L(X) = i[G,X] +
∑
j∈J

(
L†
jXLj −

1

2

{
L†
jLj , X

})
,

where i[G,X] and L(X)− i[G,X] are the coherent and dissipative parts of the dynamic, respectively.
For the purpose of quantum state preparation, we are interested in those QMS converging to a

given full-rank state σ > 0, i.e.,

lim
t→∞

P†
t (ρ) = σ , ∀ρ ∈ D(H) ,(2.4)

equivalently, the irreducible QMS P†
t [Wol12, Proposition 7.5]. For the reader’s convenience, we recall

the definition of irreducibility and some further equivalent conditions. We say that a quantum channel
Φ is irreducible if all the orthogonal projections P satisfying Φ(PB(H)P ) ⊂ PB(H)P are trivial, i.e.,
zero or identity. The following results are adapted from [Wol12, ZB23].

Lemma 2. A QMS P†
t = etL

†
is irreducible if and only if one of the following conditions holds:

• P†
t (as a quantum channel) is irreducible for some t0 > 0.

• There exists a unique full-rank invariant state σ, i.e., L†(σ) = 0.
• The multiplicative algebra generated by the jump operators {Lj} and K = − 1

2

∑
j L

†
jLj − iG

gives the whole algebra B(H).
• The operators {Lj} and K have no trivial common invariant subspace.

Lemma 3 ([Wol12, Theorem 7.2]). If the QMS P†
t admits a full-rank invariant state, then

{G,Lj , L
†
j}

′ = ker(L) ,
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where the commutant {G,Lj , L
†
j}′ is defined by all the operators commuting with Lj, L†

j and G. It
follows that in this case, the irreducibility is also equivalent to

(2.5) {G,Lj , L
†
j}

′ = {z1 ; z ∈ C} .

We next discuss the quantum detailed balance condition (DBC), which provides a sufficient criterion
to guarantee the Lindbladian’s steady state. For a given σ ∈ D+(H), we define the modular operator:

∆σ(X) = σXσ−1 : B(H) → B(H) ,

and the weighting operator:

ΓσX = σ
1
2Xσ

1
2 : B(H) → B(H) .

We also let Lσ(X) = σX and Rσ(X) = Xσ be the left and right multiplication operators, respectively.
Then, for any f : (0,∞) → (0,∞) satisfying f(1) = 1 and σ ∈ D+(H), we define the following operator:

Jf
σ := Rσf(∆σ) : B(H) → B(H) ,(2.6)

and the associated inner product:

⟨X,Y ⟩σ,f := ⟨X, Jf
σ (Y )⟩ .(2.7)

In particular, for f = x1−s with s ∈ R, the above inner product gives

⟨X,Y ⟩σ,s := tr(σsX†σ1−sY ) , ∀X,Y ∈ B(H) ,(2.8)

where ⟨·, ·⟩σ,1 and ⟨·, ·⟩σ,1/2 are the Gelfand-Naimark-Segal (GNS) and Kubo-Martin-Schwinger (KMS)
inner products, respectively.

Definition 4. A QMS Pt = etL satisfies the Jf
σ -DBC for some σ ∈ D+(H) if the Lindbladian L is

self-adjoint with respect to the inner product ⟨·, ·⟩σ,f , equivalently,

Jf
σL = L†Jf

σ .

In the cases of f = 1 and x1/2, it is called σ-GNS DBC and σ-KMS DBC, respectively.

By the above definition, we find that if Pt satisfies the Jf
σ -DBC, there holds

0 = ⟨X,L(1)⟩σ,f = ⟨L(X), Jf
σ (1)⟩ = ⟨X,L†(σ)⟩ , ∀X ∈ B(H) ,

which gives L†(σ) = 0, namely, σ is an invariant state of P†
t . The following lemma relates different

concepts of detailed balance conditions; see [CM17, Lemma 2.5 and Theorem 2.9].

Lemma 5. Let σ ∈ D+(H) be a full-rank quantum state and Pt = etL be a QMS. Then,

• If Pt satisfies the σ-GNS DBC, then it satisfies the Jf
σ -DBC for any f and the generator L

commutes with the modular operator ∆σ.
• If Pt satisfies the Jf

σ -DBC for f = x1−s, s ∈ [0, 1]\{ 1
2}, then it also satisfies σ-GNS DBC.

The above lemma means that the quantum DBC for the inner products ⟨·, ·⟩σ,s with s ∈ [0, 1]\{ 1
2}

are all equivalent, and they are stronger notions than σ-KMS DBC (i.e., s = 1
2 ). In fact, one can show

that the class of QMS with σ-KMS DBC is strictly larger than the class of QMS satisfying σ-GNS
DBC [CM17, Appendix B]. These properties underscore the special roles played by the KMS and GNS
detailed balance when analyzing Lindblad dynamics.
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2.1. Davies generator and GNS-detailed balance. Let H be a quantum Hamiltonian on the
Hilbert space H with the eigendecomposition:

H =
∑
i

λiPi ,(2.9)

where Pi is the orthogonal projector to the eigenspace associated with the energy λi. Given an inverse
temperature β > 0, the corresponding Gibbs state σβ is defined by

(2.10) σβ := e−βH/Zβ ,

with Zβ = tr(e−βH) being the normalization constant, called partition function. It is easy to see that
any full-rank quantum state can be written as a Gibbs state σ = e−h with h = − log(σ).

Recall that the main aim of this work is to develop an efficient quantum Gibbs sampler via QMS.
An important class of Lindbladians for this purpose are Davies generators, which describe the weak
coupling limit of a system coupled to a large thermal bath [Dav76, Dav79]. It has natural applications
in thermal state preparations but with inherent difficulties from the energy-time uncertainty principle
[ML20, RWW23, CKBG23]; see Remark 7. We next review the canonical form of Davies semigroups
and show that they essentially characterize the Lindbladians with GNS-DBC [KFGV77].

For the Hamiltonian (2.9), we define the set of Bohr frequencies by

(2.11) BH = {ν = λi − λj ; λi, λj ∈ Spec(H)} ,

which is a sequence of real numbers symmetric with respect to 0. Here, Spec(H) denotes the spectral
set of H. Then, for any bounded operator A ∈ B(H), one can write

A =
∑

λi,λj∈Spec(H)

PiAPj =
∑

ν∈BH

Aν ,(2.12)

where

(2.13) Aν :=
∑

λi−λj=ν

PiAPj , with (Aν)
† = (A†)−ν ,

is an eigenstate of the modular operator ∆σβ
(see Eq. (2.21) below). Such a decomposition (2.12)

naturally relates to the Heisenberg evolution of A:

A(t) := eiHtAe−iHt =
∑

ν∈BH

Aνe
iνt , equivalently, [H,Aν ] = νAν .(2.14)

Following [CKBG23], we introduce the weighted operator Fourier Transform, which is crucial for our
following algorithmic design and its analysis. Given an operator A ∈ B(H) and a filter function
f : R → C with certain regularity (e.g., L1 integrable or tempered distribution), we define

Âf (ω) :=

∫ ∞

−∞
A(t)e−iωtf(t)dt = 2π

∑
ν∈BH

Aν f̂(ω − ν) ,(2.15)

where

f̂(ω) =
1

2π

∫ ∞

−∞
f(t)e−iωtdt

is the Fourier Transform of f(t). In the case of f(t) = 1, we have f̂(ω) = δ(ω) and

(2.16) Âf=1(ω) = 2π
∑
ν∈B

Aνδ(ω − ν) .

The Davies Lindbladian is generally of the form:

Lβ(X) := i[H,X] +
∑
a∈A

∑
ν∈BH

La,ν(X) , X ∈ B(H) ,(2.17)
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where the dissipative generators are given by

La,ν(X) = γa(ν)

(
(Aa

ν)
†XAa

ν − 1

2

{
(Aa

ν)
†Aa

ν , X
})

.(2.18)

Here, the index a ∈ A sums over all the coupling operators Aa ∈ B(H) to the environment that satisfy
{Aa}a∈A = {(Aa)†}a∈A, and γa(·) are the Fourier transforms of the bath correlation functions, which
are nonnegative and bounded. The jump operators {Aa

ν} associated with a coupling Aa ∈ B(H) are
defined by Eqs. (2.12) and (2.13):

(2.19) Aa =
∑

λi,λj∈Spec(H)

PiA
aPj =

∑
ν∈BH

Aa
ν ,

which gives the transitions from the eigenvectors of H with energy E to those with E+ν. In addition,
the following relations hold, for any a ∈ A and ν,

(2.20) γa(−ν) = eβνγa(ν) ,

and

∆σβ
(Aa

ν) = e−βνAa
ν ,(2.21)

that is, Aa
ν is an eigenvector of ∆σβ

with the eigenvalue e−βν . Note that the condition (2.21) holds
by the definition of Aa

ν , while the condition (2.20) is often referred to as KMS condition2 [KFGV77],
which, as we shall see below, ensures the GNS-reversibility of the Lindbladian.

The following canonical form for the QMS that satisfies the σ-GNS DBC is due to Alicki [Ali76].

Lemma 6. For a Lindbladian L satisfying σβ-GNS DBC, there holds

L(X) =
∑
j∈J

(
e−ωj/2L†

j [X,Lj ] + eωj/2[Lj , X]L†
j

)
,(2.22)

with ωj ∈ R and |J | ≤ N2 − 1, where Lj ∈ B(H) satisfies

∆σβ
(Lj) = e−ωjLj , tr(L†

jLk) = cjδj,k , tr(Lj) = 0 ,(2.23)

with normalization constants cj > 0, and for each j, there exists j′ ∈ J such that

L†
j = Lj′ , ωj = −ωj′ .(2.24)

It is easy to see that the Davies semigroup (2.17) is exactly the class of QMS with GNS-DBC, up
to the coherent term i[H, ·]. Indeed, we define ga(ν) := eβν/2γa(ν) and find ga(ν) = ga(−ν) by the
KMS condition (2.20). Then, letting La,ν := ga(ν)

1/2Aa
ν , it follows from (2.17) and (2.18) that

Lβ(X) = i[H,X] +
∑
a∈A

∑
ν∈BH

e−βν/2

(
L†
a,νXLa,ν − 1

2

{
L†
a,νLa,ν , X

})
= i[H,X] +

1

2

∑
a∈A

∑
ν∈BH

e−βν/2L†
a,ν [X,La,ν ] + eβν/2[La,ν , X]L†

a,ν ,

with the dissipative part exactly satisfying the conditions in Lemma 6 by re-indexing j = (a, ν).

Remark 7. The Davies generator Lβ in (2.17) can be viewed as a quantum analog of a classical
Markov chain, and therefore becomes a natural candidate for the Gibbs state preparation [RWW23,
CKBG23]. However, implementing the Davies generator accurately requires being able to resolve and
distinguish between all Bohr frequencies ν, while the gap between two Bohr frequencies ν, ν′ could be
exponentially small as the system size increases in a generic setting. In view of (2.15) and (2.16), by
the energy-time uncertainty principle, this means an impractically long Hamiltonian simulation time
and is a key obstacle in leveraging the Davies semigroup directly as a quantum Gibbs sampler.

2The KMS condition should not be confused with the KMS detailed balance condition. These two terms are
mathematically unrelated.
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It is also worth mentioning that the sum over Bohr frequencies (2.17) is derived from a secular
approximation [BP02], which may be regarded as theoretical evidence that the GNS detailed balance is
an idealized construction and thus is difficult to be exactly implemented in practice.

2.2. KMS-detailed balanced generators. Recalling that the KMS DBC is a weaker property
compared to the GNS one, but can still guarantee the Gibbs state as a fixed point of the dynamic,
one may expect that the KMS-detailed balanced QMS can provide a more efficient class of Gibbs
state preparation algorithms. In this section, we introduce the canonical form of the QMS satisfying
σβ-KMS DBC with a proof sketch, mainly following [FU07, AC21], which are fundamental for the
subsequent discussion on quantum algorithms.

Let H := B(B(H)) be the space of superoperators. We define the subspace HS consisting of Φ ∈ H
of the form: for some X,Y ∈ B(H),

(2.25) Φ(A) = XA+AY ,

and denote by H⊥
S its orthogonal complement. The following useful lemma characterizes the freedom

of X,Y in (2.25)3.

Lemma 8. Let Φ be a superoperator with the representation (2.25). If some X ′, Y ′ ∈ B(H) gives the
same Φ, then X ′ = X + η1 and Y ′ = Y − η1 for some η ∈ C.

Proof. Let Fα with α = (i, j) and 1 ≤ i, j ≤ N be a basis of B(H) satisfying ⟨Fα, Fβ⟩/N = δαβ ,
F(1,1) = 1, and F †

(i,j) = F(j,i), and let Ei,j be another basis defined by Ei,j =
√
N |ui⟩ ⟨uj |, where

{uj} is an orthonormal basis of H. Suppose that Φ(A) = XA+AY for some X,Y . We compute the
coefficients for the expansion of Φ(A) =

∑
α,β(CΦ)α,βF

†
αAFβ :

(CΦ)α,β =
1

N3

N∑
i,j=1

tr
[
(F †

αEi,jFβ)
†Φ(Ei,j)

]
=

1

N2

(
tr[F †

β ] tr[FαX] + tr[Fα] tr[F
†
βY ]

)
=

1

N

(
δβ,(1,1) tr[FαX] + δα,(1,1) tr[F

†
βY ]

)
,

which is zero if α, β ̸= (1, 1). It follows that

Φ(A) = (CΦ)(1,1),(1,1)A+
∑

α̸=(1,1)

(CΦ)α,(1,1)F
†
αA+

∑
β ̸=(1,1)

(CΦ)(1,1),βAFβ .

Therefore, any X ′, Y ′ such that Φ(A) = X ′A+AY ′ satisfy

X ′ =
∑

α ̸=(1,1)

(CΦ)α,(1,1)F
†
α + a1 , Y ′ =

∑
β ̸=(1,1)

(CΦ)(1,1),βFβ + b1 ,

for some a, b ∈ C with a+ b = (CΦ)(1,1),(1,1). The proof is complete. □

We next discuss the structure of QMS satisfying σβ-KMS DBC for some Gibbs state σβ (2.10).

Lemma 9. A Lindbladian L satisfies σβ-KMS DBC if and only if L has the form:

L(X) = Ψ(X) + Φ(X) ,(2.26)

with the CP operator Ψ(·) admitting the Kraus representation (2.2) and the operator

(2.27) Φ(X) := K†X +XK , for some K ∈ B(H) ,

and both Ψ and Φ are self-adjoint with respect to the KMS inner product. In this case, there exist the
jump operators {Lj}j∈J and the operator K in Eq. (2.27) satisfying

(2.28) ∆−1/2
σβ

Lj = L†
j ,

3This result is from [AC21, Lemma 3.10 and Remark 3.11], which include some typos in the arguments. We provide
a short proof here for the reader’s convenience.
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and

(2.29) ∆−1/2
σβ

K = K† .

Proof. It suffices to prove the only if part. Recalling the structure of a Lindbladian in Lemma 1,
without loss of generality, we assume tr(Lj) = 0 by replacing Lj with Lj − tr(Lj)1 and K with
K +

∑
j tr(L

†
j)Lj − 1

2 | tr(Lj)|2. Then, by [AC21, Lemma 3.12], there holds Ψ(·) ∈ H⊥
S . According to

[AC21, Lemma 3.13], the subspaces HS and H⊥
S are invariant under the adjoint with respect to the

KMS inner product. By Φ ∈ HS and Ψ ∈ H⊥
S , it holds that adjoints Φ†

KMS ∈ HS and Ψ†
KMS ∈ HS ,

where Φ†
KMS and Ψ†

KMS are adjoints of Φ and Ψ for the KMS inner product. Thus, the self-adjointness
Ψ†

KMS +Φ†
KMS = Ψ+Φ implies Ψ†

KMS = Ψ and Φ†
KMS = Φ.

Next, since Ψ is a KMS-detailed balanced CP map, (2.28) is implied by the structure result [AC21,
Theorem 4.1]. To show (2.29), by the invariance of Φ = K†X + XK for adding a pure imaginary
ic1 (c ∈ R) to K, without loss of generality, we can assume tr(K) ∈ R, which further implies
tr(∆

−1/2
σβ K) ∈ R. It follows from σβ-KMS DBC of Φ that Γσβ

Φ = Φ†Γσβ
, equivalently,

K†X +XK = (∆−1/2
σβ

K)X +X(∆1/2
σβ

K†) .

Then, by Lemma 8, we derive K† = ∆
−1/2
σβ K + η1 for some η ∈ C, where η must be zero, thanks to

tr(K†) = tr(K) = tr(∆
−1/2
σβ K) ∈ R. The proof is complete. □

We proceed to derive an explicit formula for the operator K. Recalling the decomposition (2.3)
and V = − 1

2

∑
j∈J L†

jLj , it suffices to find an expression for the involved operator G. To do so, we
reformulate the constraint (2.29) above as a Lyapunov equation:

Gσ
1/2
β + σ

1/2
β G = i(σ

1/2
β V − V σ

1/2
β ) .

It can be uniquely solved as

(2.30) G = i

∫ ∞

0

e−tσ
1/2
β (σ

1/2
β V − V σ

1/2
β )e−tσ

1/2
β dt .

To simplify the formula, we note that for any λ, µ > 0,∫ ∞

0

e−tλ1/2

e−tµ1/2

dt =
1

λ1/2 + µ1/2
,

and tanh(log(x1/4)) = x1/2−1
x1/2+1

. Then, by functional calculus and (2.30), there holds

(2.31) G = i
L
1/2
σβ −R

1/2
σβ

L
1/2
σβ +R

1/2
σβ

(V ) = i
∆

1/2
σβ − I

∆
1/2
σβ + I

(V ) = i tanh ◦ log(∆1/4
σβ

)(V ) .

We summarize the above discussion in the following proposition.

Theorem 10. A Lindbladian L satisfies σβ-KMS DBC if and only if there exist linear operators
Lj , G ∈ B(H) such that

L(X) = i[G,X] +
∑
j∈J

(
L†
jXLj −

1

2

{
L†
jLj , X

})
,(2.32)

with Lj satisfying (2.28), and G being self-adjoint and given by

(2.33) G := −i tanh ◦ log(∆1/4
σβ

)

1

2

∑
j∈J

L†
jLj

 .
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We have shown in Lemma 5 that the Lindbladians with σβ-GNS DBC is a subclass of those with
σβ-KMS DBC, but this property cannot be easily seen from the corresponding structural results (cf.
Lemma 6 and Theorem 10), noting that an eigenvector L of the operator ∆σβ

is generally not a
solution to (2.28). To fill this gap, we next show that the canonical form (2.22) of a QMS with GNS
DBC can be indeed reformulated as the one (2.32) for KMS DBC.

Corollary 11. Let L be a Lindbladian with σβ-GNS DBC of the form:

(2.34) L(X) =
∑
j∈J

Lj(X) with Lj(X) = 2e−ωj/2

(
L†
jXLj −

1

2

{
L†
jLj , X

})
,

where the jumps {Lj}j∈J satisfy the conditions in Lemma 6. Then, we can reformulate it in the form
of a KMS detailed balanced Lindbladian (2.32):

L(X) =
∑

j∈J , L†
j=Lj

Lj(X) +
1

2

∑
j∈J , L†

j ̸=Lj

L̃j(X) ,

with
L̃j(X) = L̃†

j,1XL̃j,1 + L̃†
j,2XL̃j,2 −

1

2

{
L̃†
j,1L̃j,1, X

}
− 1

2

{
L̃†
j,2L̃j,2, X

}
,

where

L̃j,1 := e−ωj/4Lj + eωj/4L†
j , L̃j,2 := i(−e−ωj/4Lj + eωj/4L†

j)

satisfy the constraint (2.28).

Proof. If Lj is self-adjoint, there hold ωj = 0 and ∆
−1/2
σβ Lj = Lj = L†

j . By the formula (2.31) of G,
the associated Hamiltonian is given by

Gj := − i

2

∆
1/2
σβ − I

∆
1/2
σβ + I

(L2
j ) = 0 .

Thus, in this case, Lj in (2.34) satisfies the canonical form (2.32) in Theorem 10.
We next consider the case where Lj is not self-adjoint. Let j′ be the adjoint index for j specified

in (2.24). It follows that

Lj(X) + Lj′(X) = 2e−ωj/2

(
L†
jXLj −

1

2

{
L†
jLj , X

})
+ 2eωj/2

(
LjXL†

j −
1

2

{
LjL

†
j , X

})
.

We consider the equation ∆
−1/2
σβ L̃ = L̃† with ansatz L̃ = aLj + bL†

j , a, b ∈ C:

∆−1/2
σβ

(aLj + bL†
j) = aeωj/2Lj + be−ωj/2L†

j = aL†
j + bLj .

It is easy to check that the coefficients (a, b) being real linear combinations of vectors (e−ωj/2, 1) and
(−e−ωj/2i, i) satisfy a = be−ωj/2, and the corresponding L̃ solves ∆

−1/2
σβ L̃ = L̃†. We define

L̃1 = e−ωj/4Lj + eωj/4L†
j , L̃2 = i(−e−ωj/4Lj + eωj/4L†

j) .(2.35)

A direct computation gives, for X ∈ B(H),

L̃†
1XL̃1 + L̃†

2XL̃2 = 2e−ωj/2L†
jXLj + 2eωj/2LjXL†

j ,

and

G = − i

2

∆
1/2
σβ − I

∆
1/2
σβ + I

(
L̃†
1L̃1 + L̃†

2L̃2

)
= −i

∆
1/2
σβ − I

∆
1/2
σβ + I

(
e−ωj/2L†

jLj + eωj/2LjL
†
j

)
= 0 ,
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by noting that L†
jLj and LjL

†
j are eigenvectors of ∆σβ

associated with eigenvalue one. Therefore, for
non-self-adjoint Lj , the Lindbladian Lj+Lj′ also matches with the form (2.32). The proof is complete
by the linearity of Lindbladians. □

3. A family of efficient quantum Gibbs samplers

In this section, we present a general framework for designing efficient quantum Gibbs samplers via
Lindblad dynamics satisfying σβ-KMS DBC.

3.1. Quantum Gibbs samplers via KMS-detailed balanced Lindbladian. Thanks to Theo-
rem 10, the class of KMS detailed balanced Lindbladians can be parameterized by

• a set of jump operators for the Lindbladian {Lj}j∈J satisfying (2.28): ∆
−1/2
σβ Lj = L†

j ;
• a coherent term G defined as in (2.33) via {Lj}j∈J .

Note that the condition (2.28) is equivalent to ∆
−1/4
σβ Lj = ∆

1/4
σβ L†

j , namely, ∆−1/4
σβ Lj is self-adjoint.

Thus, the admissible set of jump operators is

{L ∈ B(H) ; L = ∆1/4
σβ

Ã with Ã = Ã†} .

From the eigendecomposition of H in (2.9), we have

(3.1) L = ∆1/4
σβ

Ã =
∑
i,j

e−β(λi−λj)/4PiÃPj =
∑

ν∈BH

e−βν/4Ãν ,

where Ãν is defined by (2.13) for some self-adjoint Ã.
Suppose that we are given a set of self-adjoint coupling operators {Aa}a∈A. For each a, we choose

a weighting function qa(ν) : R → C, which satisfies:

(3.2) qa(−ν) = qa(ν), f̂a(ν) := qa(ν)e−βν/4 ∈ L1(R) .

Here f̂a(ν) can be viewed as a filtering function in the frequency domain, and its Fourier transform
gives the filtering function in the time domain:

(3.3) fa(t) =
1

2π

∫ ∞

−∞
qa(ν)e−βν/4e−itν dν .

The choice of qa is a key component in our algorithm and will be discussed in detail in Section 3.2.
Moreover, for each pair (Aa, qa), we define an operator Ãa :=

∑
ν∈BH

Ãa
ν with Ãa

ν = qa(ν)Aa
ν , which

can be easily verified to be self-adjoint:

(Ãa)† =
∑

ν∈BH

(Ãa)†ν =
∑

ν∈BH

qa(ν)(Aa
ν)

† =
∑

ν∈BH

qa(−ν)Aa
−ν = Ãa .

Then the jump operator for the Lindbladian, defined by

(3.4) La =
∑

ν∈BH

qa(ν)e−βν/4Aa
ν =

∑
ν∈BH

∫ ∞

−∞
fa(t)Aa

νe
iνt dt =

∫ ∞

−∞
fa(t)Aa(t)dt ,

satisfies the requirement in (2.28). We see that each La is a linear combination of the Heisenberg
evolution Aa(t) = eiHtAae−iHt.

Remark 12. Noting that La in Eq. (3.4) is the same as Âa
fa(ω = 0) in Eq. (1.2), if we let fa = f

for all a, then the dissipative part of Lindbladian constructed via {La}a∈A fits into the ansatz (1.2)
with γ(ω) = δ(ω). This reduces a continuously parameterized set of jump operators to a discrete set.
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We proceed to construct the coherent part via the formula (2.33):

G := −i tanh ◦ log(∆1/4
σβ

)

(
1

2

∑
a∈A

L†
aLa

)
=
∑
a∈A

∑
ν,ν′∈BH

ĝa(ν, ν′) (Aa
ν′)

†
Aa

ν ,

with the coefficient function ĝa in the frequency domain given by

(3.5) ĝa(ν, ν′) =
1

2i
tanh(β(ν′ − ν)/4)e−β(ν+ν′)/4qa(ν)qa(ν′) .

We define ga in the time domain via a two-sided Fourier transform as follows:

(3.6) ga(t, t′) =
1

(2π)2

∫∫
R2

ĝa(ν, ν′)e−i(νt−ν′t′) dν dν′ .

Since |tanh(·)| ≤ 1 and qa(ν)e−βν/4 ∈ L1(R), ga(t, t′) is well defined. Then, it is direct to compute,
by (Aa)† = Aa and (2.14),

G =
∑
a∈A

∑
ν,ν′∈BH

ĝa(ν, ν′) (Aa
ν′)

†
Aa

ν

=
∑
a∈A

∑
ν,ν′∈BH

∫∫
R2

eiνtga(t, t′)e−iν′t′Aa
−ν′Aa

ν dtdt
′

=
∑
a∈A

∫∫
R2

ga(t, t′)Aa(t)Aa(t′) dtdt′ .

(3.7)

Therefore, letting G and {La}a∈A be constructed in (3.7) and (3.4), respectively, the Lindbladian

L(X) = i[G,X] +
∑
a∈A

(
L†
aXLa −

1

2

{
L†
aLa, X

})
,(3.8)

satisfies σβ-KMS DBC by Theorem 10. Then the corresponding Lindblad master equation reads

(3.9) ∂tρ = L†(ρ) = −i[G, ρ] +
∑
a∈A

(
LaρL

†
a −

1

2

{
L†
aLa, ρ

})
.

Remark 13. To ensure that the constructed Lindblad dynamics (3.8) eventually relaxes to the desired
Gibbs state, by Lemma 3, we should carefully choose the coupling operators Aa and weighting functions
qa such that the resulting {La} and G satisfy Eq. (2.5). This is always possible, due to the finite
dimensionality of the system. Moreover, it is known [TKR+10] that for a primitive KMS detailed
balanced QMS, the mixing time (1.3) can be characterized by the spectral gap of the Lindbladian. The
recent work [RFA24] estimated the spectral gap of the efficient quantum Gibbs sampler in [CKG23]
in the high-temperature regime, by mapping the Lindbladian Lβ with KMS DBC to a Hamiltonian
L̃β := σ

−1/4
β Lβ(σ

1/4
β Xσ

1/4
β )σ

−1/4
β and then analyzing its spectral properties with perturbation theory.

The extension of such a mixing time analysis framework to our case with the optimal selection of
{(Aa, qa)}a∈A will be discussed in a forthcoming work.

We have discussed the choice of self-adjoint coupling operators {Aa}a∈A above. In fact, one can
also generally consider a set of couplings such that {Aa}a∈A = {(Aa)†}a∈A, and construct the corre-
sponding jump operators {La}a∈A and the Lindbladian L as in Eqs. (3.4) and (3.8), respectively. It
is easy to see that the Lindblad dynamics defined in this way still satisfies the KMS detailed balance.
Indeed, let La and La,adj be the jumps associated with some Aa and (Aa)† by (3.4) (without loss of
generality, Aa ̸= (Aa)†). We then define self-adjoint operators

Aa
+ =

Aa + (Aa)†√
2

, Aa
− =

Aa − (Aa)†√
2i

,
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such that
√
2Aa = Aa

+ + iAa
− and denote by La,+ and La,− the associated jumps (3.4). A direct

computation by using the time-domain representation (3.4) gives

LaρL
†
a + La,adjρL

†
a,adj =

∫∫
R2

fa(t)fa(t′)
(
Aa(t)ρ(Aa(t′))† + (Aa(t))†ρAa(t′)

)
=

∫∫
R2

fa(t)fa(t′)
(
Aa

+(t)ρA
a
+(t

′) +Aa
−(t)ρA

a
−(t

′)
)

= La,+ρL
†
a,+ + La,−ρL

†
a,− ,

thanks to

Aa(t)ρ(Aa(t′))† + (Aa(t))†ρAa(t′)

=
1

2

(
Aa

+(t) + iAa
−(t)

)
ρ
(
Aa

+(t
′)− iAa

−(t
′)
)
+

1

2

(
Aa

+(t)− iAa
−(t)

)
ρ
(
Aa

+(t
′) + iAa

−(t
′)
)

=Aa
+(t)ρA

a
+(t

′) +Aa
−(t)ρA

a
−(t

′) .

Here fa is defined via (3.3) with qa(ν) satisfies (3.2). Similarly, one can check

{L†
aLa, ρ}+ {L†

a,adjLa,adj, ρ} = {L†
a,+La,+, ρ}+ {L†

a,−La,−, ρ} ,

and hereby our claim holds.

3.2. Choice of the weighting function q(ν). In order to efficiently implement the jump operators
{La}a∈A in (3.4) and the coherent term G in (3.7), we need to approximate the involved integrals
on R and R2 by a numerical quadrature in a finite region. This requires fa(t), ga(t, t′) to be smooth
functions that decay rapidly as |t| , |t′| → ∞. To this end, we assume that qa is a compactly supported
Gevrey function. We first recall the definition of Gevrey functions below [AHR17].

Definition 14 (Gevrey function). Let Ω ⊆ Rd be a domain. A complex-valued C∞ function h : Ω → C
is a Gevrey function of order s ≥ 0, if there exist constants C1, C2 > 0 such that for every d-tuple of
nonnegative integers α = (α1, α2, . . . , αd),

(3.10) ∥∂αh∥L∞(Ω) ≤ C1C
|α|
2 |α||α|s ,

where |α| =
∑d

i=1 |αi|. For fixed constants C1, C2, s, the set of Gevrey functions is denoted by
Gs
C1,C2

(Ω). Furthermore, Gs =
⋃

C1,C2>0 Gs
C1,C2

.

Some useful properties of Gevrey functions are collected in Appendix C. In particular, the product
of two Gevrey functions is a Gevrey function (Lemma 26); Certain compositions of Gevrey functions
are Gevrey functions (Lemma 28). The Fourier transform of compactly supported Gevrey functions
satisfies Paley-Wiener type estimates (Lemma 29).

Assumption 15 (Weighting function). For β > 0, suppose that q(ν) is a weighting function of the
form q(ν) = u(βν)w(ν) with the following conditions:

• (Symmetry) For any ν ∈ R, u(ν) = u(−ν), w(ν) = w(−ν).
• (Compact support) There exists S > 0 such that supp(w) ⊂ [−S, S].
• (Gevrey) There exists Aq, Au, Aw ≥ 1, su, sw ≥ 1 such that

u(ν)e−ν/4 ∈ Gsu
Aq,Au

(R) , w ∈ Gsw
Aq,Aw

(R) .

In addition, we assume d
dν (u(ν)e

−ν/4) ∈ L1(R) and denote

C1,u :=
∥∥∥ d

dν
(u(ν)e−ν/4)

∥∥∥
L1(R)

.

For the weighting function in Assumption 15, there holds (Lemma 26)

(3.11) q(ν) = q(−ν) , supp(q) ⊂ [−S, S] ,
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and

(3.12) q(ν)e−βν/4 ∈ Gs,
A2

q,βAu+Aw
(R) , s := max{su, sw} .

Intuitively, one may expect that the functions u(ν) and w(ν) control the magnitude and support of
the energy transition induced by a jump operator L, respectively. We can prove that the associated
filtering functions f(t) and g(t, t′) in the time domain decay rapidly (Lemma 30). This further allows
us to show that a simple quadrature scheme (trapezoidal rule) can efficiently approximate {La}a∈A
and G with high accuracy. Specifically, given M = 2m−1 with m ∈ N+ and τ > 0, the quadrature
points are given by

(3.13) tm = −Mτ +mτ , 0 ≤ m < 2M .

The quadrature error can be controlled as follows, and its proof is given in Appendix D.

Proposition 16 (Quadrature error). Under Assumption 15, we assume β > 0, ∥Aa∥ ≤ 1 for any
a ∈ A. When τ < 2π

2∥H∥+S and

(3.14) (M − 1)τ = Ω((βAu +Aw) log (βAu +Aw)) ,

Then, it holds that

(3.15)

∥∥∥∥∥La −
2M−1∑
m=0

fa(tm)Aa(tm)τ

∥∥∥∥∥ ≤ Cf exp

(
− s((M − 1)τ)1/s

2(βAu +Aw)1/se

)
,

with

Cf = O
(
A2

qS(βAu +Aw)
1/s
)
,(3.16)

and

(3.17)

∥∥∥∥∥G−
∑
a∈A

2M−1∑
n,m=0

ga(tn, tm)Aa(tn)A
a(tm)τ2

∥∥∥∥∥ ≤ Cg|A| exp
(
− s((M − 1)τ)1/s

2(2βAu + 2Aw + β)1/se

)
,

with

(3.18) Cg = O
(
A4

qS
2(βAu +Aw)

1/s
)
.

Here Ω(·), O(·) absorbs some constant depending on s.

Thanks to Proposition 16, to approximately block encode {La} and G, it suffices to construct
block-encodings for the discretized quantities

2M−1∑
m=0

fa(tm)eiHtmAae−iHtmτ ,

and ∑
a∈A

2M−1∑
n,m=0

ga(tn, tm)eiHtnAae−iH(tn−tm)Aae−iHtmτ2 .

In our algorithm, we construct these two block encodings using LCU (see Appendix B). This utilizes
block encodings of Aa (3.23), controlled Hamiltonian simulation (3.24), and prepare oracles for f
(Eqs. (3.26) and (3.27)) or g (Eqs. (3.29) and (3.30)). The detailed constructions are presented in the
next subsection (see (3.32) and (3.33)).

Remark 17. Bounding the approximation error for {La}a∈A and G in the operator norm is a non-
trivial task. [CKBG23] introduces a “rounding Hamiltonian” technique to bound the quadrature error
in the frequency domain. By choosing weighting functions in Assumption 15, we can use the Pois-
son summation formula to simplify the quadrature error analysis. In particular, we can bound the
quadrature error in the time domain without using the “rounding Hamiltonian” technique.
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According to [AHR17, Corollary 2.8], for any sw > 1, there exists a “bump function” w ∈ Gsw
Cw,Aw

such that supp(w) ⊂ [−1, 1] and w(ν) = 1 when |ν| ≤ 1/2. Here S is an adjustable parameter to
control the support of q. Then w(ν/S) is supported on [−S, S] and w(ν/S) ∈ Gsw

Cw,Aw/S . Now we
provide two specific examples of q satisfying Assumption 15.

• Metropolis-type:

(3.19) q(ν) = e−
√

1+β2ν2/4w(ν/S) with u(ν) = e−
√
1+ν2/4 ,

where u(ν)e−
ν
4 = e−

√
1+ν2+ν

4 ∈ G1
1,7/2 is a Gevrey function of order su = 1 and its derivative

is L1-integrable; see Lemma 28. Therefore s = max{su, sw} = sw. When β ≫ 1, q(ν) in
Eq. (3.19) gives a smoothed version of the Metropolis-type filter (similar to the Glauber-type
filter):

(3.20) f̂(ν) = q(ν)e−βν/4 ≈ min
{
1, e−βν/2

}
, ν ∈ [−S/2, S/2].

• Gaussian-type4:

(3.21) q(ν) = e−(βν)2/8w(ν/S) with u(ν) = e−ν2/8 ,

Here u(ν)e−
ν
4 = e−

(ν+1)2−1
8 is a Gevrey function of order su = 1

2 by [HR19, Proposition B.1]
and the L1-integrability of its derivative is straightforward. So we still have s = max{su, sw} =
sw. Setting S = O(1/β), there holds

(3.22) f̂(ν) = q(ν)e−ν/4 ∝ e−(βν+1)2/8 ,

which is approximately a Gaussian function concentrated at −β−1 with width O(β−1).
A comparison of the shapes of the Metropolis-type and Gaussian-type filtering function f̂(ν) is

shown in Fig. 1. The support size for the Gaussian choice decreases as O(β−1), which can cause
inefficiency because the magnitude of a local move in Monte Carlo simulations stays around order 1,
regardless of the value of β.

Figure 1. Comparison between Metropolis-type and Gaussian-type filtering func-
tions f̂(ν) in the frequency domain with β = 1 (left) and β = 5 (right). For simplicity,
the bump function is chosen to be w(ν/S) = exp

(
− 20

1−(Sν)2

)
, and S = 10. The ap-

proximate support size of f̂(ν) remains O(1) for the Metropolis-type filter as β → ∞,
while it narrows to O(β−1) for the Gaussian-type filter.

4In this case, the Gaussian functions already decay rapidly. The multiplication with a bump function is for purely
technical reasons to ensure f̂(ν) is compactly supported.
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3.3. Efficient simulation of the Lindblad master equation (3.9). In this section, we discuss the
efficient simulation of the Lindblad equation in (3.9). For simplicity, we assume that qa = q, fa = f ,
and ga = g and q satisfies Assumption 15. Our construction uses the block encoding input model and
the linear combination of unitaries (see Appendices A and B). We also assume maxa∈A ∥Aa∥ ≤ 1 to
ensure that efficient block encodings of Aa are available (see Eq. (3.23)).

Thanks to our algorithm’s use of a discrete set of jump operators for the Lindbladian, we can
directly apply efficient Lindblad simulation quantum algorithms, such as those in [CW17, LW23,
CKG23, DLL24], to prepare the Gibbs state, once the efficient constructions of the block encodings
of {La} and G are available, which will be the focus of the rest of this section.

According to Proposition 16, in the following discussion, we set the integer m large enough and
consider the quadrature points {tm}2M−1

m=0 (M = 2m−1) as in Eq. (3.13) such that Eq. (3.14) holds.
Without loss of generality, we assume |A| = 2a with a ∈ N+.

For the quantum simulation, we assume access to the following oracles:
• Block encoding UA of the coupling operators {Aa}a∈A:

(3.23) (Ia ⊗ ⟨0b| ⊗ In) · UA · (Ia ⊗ |0b⟩ ⊗ In) =
∑
a

|a⟩ ⟨a| ⊗Aa/ZA .

We assume that the block encoding factor ZA can be chosen to satisfy maxa∈A ∥Aa∥ ≤ ZA ≤ 1.
Here |0b⟩ represents the ancilla qubits utilized in the block-encoding of Aa, Ia is the identity
matrix acts on the index register.

• Controlled Hamiltonian simulations5 for {tm}2M−1
m=0 :

(3.24) UH =

2M−1∑
m=0

|tm⟩⟨tm| ⊗ exp(−itmH) .

• Prepare oracle for a ∈ A, acting on the index register:

(3.25) PrepA = H⊗a : |0a⟩ = 1√
|A|

∑
a∈A

|a⟩ ,

which is used to implement LCU for the sum over a in A appearing in G. Here H⊗a are
Hadamard gates acting the index register and are self-adjoint.

• Prepare oracles for the filtering functions f , acting on the time register:

(3.26) Prepf : |0m⟩ = 1√
Zf

2M−1∑
m=0

√
f(tm)τ |tm⟩ ,

and

(3.27) Prepf : |0m⟩ = 1√
Zf

2M−1∑
m=0

√
f(tm)τ |tm⟩ .

Here the block encoding factor Zf :=
∑2M−1

m=0 |f(tm)|τ is bounded by Lemma 32 with Eq. (D.3):

Zf = O
(
(AqC1,u +A2

qSAw) log(βAu +Aw)
)
.(3.28)

• Prepare oracles for the g function, acting on the frequency register:

(3.29) Prepg : |0m⟩ |0m⟩ = 1√
Zg

2M−1∑
n,m=0

√
g(tn, tm)τ2 |tn⟩ |tm⟩ ,

and

(3.30) Prepg : |0m⟩ |0m⟩ = 1√
Zg

2M−1∑
n,m=0

√
g(tn, tm)τ2 |tn⟩ |tm⟩ ,

5The circuit construction is similar to the controlled Hamiltonian simulations in the standard quantum phase esti-
mation, and the total Hamiltonian simulation time required is O(Mτ).
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with the block encoding factor Zg =
∑2M−1

n,m=0 |g(tn, tm)|τ2 bounded as follows, by Lemma 32
with Eq. (D.4),

Zg = O
(
(A2

qC
2
1,u +A4

qS
2A2

w +A3
qC1,uSAw +A4

qβS) log
2(βAu +Aw)

)
.(3.31)

Using these oracles, according to Proposition 16, we can apply LCU with (3.23), (3.24), (3.26), and
(3.27) to construct a (

ZfZA,m+ b, Cf exp

(
− s((M − 1)τ)1/s

2(βAu +Aw)1/se

))
-block encoding UL of

∑
a |a⟩ ⟨a| ⊗ La:

(3.32) UL =
(
Prep†

f
⊗ Ia+b ⊗ In

)
︸ ︷︷ ︸

LCU prepare oracle

· Ia+b ⊗ U†
H︸ ︷︷ ︸

eiHtm

· (Im ⊗ UA)︸ ︷︷ ︸
|a⟩⟨a|⊗Aa

· Ia+b ⊗ UH︸ ︷︷ ︸
e−iHtm

·
(
Prepf ⊗ Ia+b ⊗ In

)︸ ︷︷ ︸
LCU prepare oracle

.

Here Cf is defined in Proposition 16. The circuit of UL can be found in Fig. 2. In (3.32), the total
Hamiltonian simulation time required by one query to UL is O (Mτ).

Next, applying two layers of LCU (see Appendix B) with (3.23), (3.24), (3.25), (3.29), and (3.30),
we construct the following(

ZgZ
2
A
√
|A|, 2m+ a+ b, Cg|A| exp

(
− s((M − 1)τ)1/s

2(2βAu + 2Aw + β)1/se

))
-block encoding UG of G:
(3.33)
UG =

(
I⊗2
m ⊗ PrepA ⊗ Ib ⊗ In

)† · (Prep†
g ⊗ Ia+b ⊗ In

)
·︸ ︷︷ ︸

Two layers of LCU prepare oracles

Im ⊗ Ia+b ⊗ U†
H︸ ︷︷ ︸

exp(iHtn)

· (I⊗2
m ⊗ UA)︸ ︷︷ ︸

Aa

· Im ⊗ Ia+b ⊗ UH︸ ︷︷ ︸
exp(−iHtn)

· Im ⊗ Ia+b ⊗ U†
H︸ ︷︷ ︸

exp(iHtm)

· (I⊗2
m ⊗ UA)︸ ︷︷ ︸

Aa

· Im ⊗ Ia+b ⊗ UH︸ ︷︷ ︸
exp(−iHtm)

·
(
Prepg ⊗ Ia+b ⊗ In

)
·
(
I⊗2
m ⊗ PrepA ⊗ Ib ⊗ In

)︸ ︷︷ ︸
Two layers of LCU prepare oracles

.

Here Cg is defined in Proposition 16. We note that UH for exp(−iHtm) and exp(−iHtn) are acting on
different time registers. The circuit of UG is given in Fig. 2. In (3.33), one query to UG still requires
O (Mτ) total Hamiltonian simulation time.

After acquiring the block encodings of {La}a∈A and G, we can employ the algorithm proposed in
[LW23] to simulate (3.9). The complexity of this algorithm is recalled below.

Theorem 18 ([LW23, Theorem 11]). Suppose that we are given an (Ag, g, δ)-block encoding UG of G,
and (Af , f, δ)-block encodings {Ua} for the jumps {La}6. Let ∥L∥be := Ag +

1
2A

2
f |A|. For all t, ϵ with

δ ≤ ϵ/t∥L∥be, there exists a quantum algorithm for simulating (3.9) up to time t with an ϵ-diamond
distance using

(3.34) O (t∥L∥be log (t∥L∥be/ϵ))

queries to UG and {Ua}a∈A and

O (log (t∥L∥be/ϵ) (log |A|+ log (t∥L∥be/ϵ)))

additional ancilla qubits.

Now, we are ready to give the simulation cost of our method as follows.

6In [LW23], the authors assume separate access to the block encodings Ua of La. This is slightly different from our
setting assuming the block-encoding UL of |a⟩ ⟨a| ⊗ La.
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(a) Block encoding UL of jump operators
∑

a∈A |a⟩ ⟨a| ⊗ La.

(b) Block encoding UG of the coherent term G.

Figure 2. Quantum circuits for block encodings of {La}a∈A (top) and G (bottom).
The simulation of eiHtn and e−iHtm involved in the block encoding UG of G can be
combined into a single step eiH(tn−tm) via Hamiltonian simulation controlled simul-
taneously by the top two registers.

Theorem 19. Assume access to weighting functions {qa} satisfying Assumption 15 with any s > 1,
block encodings UA in Eq. (3.23), controlled Hamiltonian simulation UH in Eq. (3.24), and prepare
oracles for filtering functions {fa} and {ga} in (3.26)–(3.30). The Lindbladian evolution (3.9) can be
simulated up to time tmix with an ϵ-diamond distance, and the total Hamiltonian simulation time is

Õ
(
Cqtmixβ

2S|A|2 log1+s (1/ϵ)
)
,

where the constant Cq is defined as follows:

Cq := A2
qC

2
1,u/βS +A4

qA
2
wS/β +A3

qC1,uAw/β +A4
q .

In addition, the algorithm requires

Õ
(
log(AqS) + log2(tmix|A|/ϵ) + log2 (CqβS) + logAu

)
.

number of additional ancilla qubits for the prepare oracles and simulation. The Õ absorbs a constant
only depending on s and subdominant polylogarithmic dependencies on parameters tmix, |A|, S, Aq,
Au, Aw, and β.

Remark 20. In the above theorem, the total Hamiltonian simulation time scales quadratically in β, a
complexity seemingly less favorable compared to the one in [CKG23], which is only linearly dependent
in β (see Table 1). We will provide a detailed explanation of this distinction in Section 4. However,
at first glance, we note that if q is chosen as a concentrated filtering function with support width
S = O(1/β), one can readily recover a linear scaling of the total Hamiltonian simulation time in β.
Although this choice offers a better theoretical simulation complexity, it confines energy transitions
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to a narrow range, potentially prolonging the mixing time. Balancing this trade-off by selecting S
appropriately constitutes an intriguing avenue for future research.

Proof. For simplicity, we let

(3.35) Cq,β := A2
qC

2
1,u +A4

qS
2A2

w +A3
qC1,uSAw +A4

qβS .

By Theorem 18 with estimates in Eqs. (3.28) and (3.31), we have

(3.36)
∥L∥be = ZgZ

2
A
√
|A|+ 1

2
Z2
fZ

2
A|A|

= O
(
Cq,β log

2(βAu +Aw)|A|
)
,

Recalling Proposition 16 and Lemma 32, we set a truncation time

(3.37) T = Θ

(
(βAu +Aw) log

s

(
tmix∥L∥be(Cf + Cg|A|)

ϵ

))
,

and the step size

(3.38) τ = Θ
(
1/A4

qT
2S3
)
,

and then choose M = 2m−1 such that (M − 1)τ ≤ T ≤ Mτ . This allows us to control the block-
encoding error as follows:

(Cf + Cg|A|) exp
(
− sT 1/s

2(2βAu + 2Aw + β)1/se

)
≤ ϵ/tmix∥L∥be .

Note that one query to the block encoding of La requires one query to UL, by Theorem 18 and
Eq. (3.36), the simulation requires

O (tmix∥L∥be log (tmix∥L∥be/ϵ) |A|) = Õ (tmix∥L∥be log (1/ϵ) |A|)

= Õ
(
tmixCq,β log

2(βAu +Aw)|A|2 log (1/ϵ)
)

queries to UL. Similarly, we need

Õ
(
tmixCq,β log

2(βAu +Aw)|A| log (1/ϵ)
)

queries to UG. Combining this with the cost O(Mτ) = O(T ) of one query to UG and UL, we can
estimate the total Hamiltonian simulation time as follows:

Õ
(
tmixCq,β(βAu +Aw)|A|2 log1+s (1/ϵ)

)
= Õ

(
Cqtmixβ

2S|A|2 log1+s (1/ϵ)
)
.

Next, we consider the number of extra ancilla qubits, again by Theorem 18. We first note

log(tmix ∥Lbe∥ /ϵ) = Õ (log(tmix|A|/ϵ) + log Cq,β + log logAu)

and hence there holds

O (log (tmix∥L∥be/ϵ) (log |A|+ log (tmix∥L∥be/ϵ)))

=Õ
(
log2(tmix|A|/ϵ) + (log Cq,β + log logAu)

2
)
.

For the preparation oracles, by Eqs. (3.37) and (3.38), we find

M = Θ(A4
qT

3S3) = Θ

(
A4

qS
3(βAu +Aw)

3 log3s
(
tmix∥L∥be(Cf + Cg|A|)

ϵ

))
This, along with Eqs. (3.16) and (3.18), implies that we need

m = O (log(AqS) + log(βAu +Aw) + log (tmix∥L∥be|A|/ϵ))

additional ancilla qubits for the preparation of Prepf , Prepf , Prepg, and Prepg. Finally, PrepA
requires log(|A|) ancilla qubits. Adding these quantities together concludes the proof. □
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Remark 21. In our simulation algorithm, thanks to the finite number of jump operators, we only need
to construct the block encoding of

∑
a∈A |a⟩ ⟨a| ⊗ La for the efficient simulation. When |A| ≫ 1, by

assuming oracle access to a different form of blocking encodings of Aa, we can simultaneously construct
block encodings of all jump operators. Specifically, assuming oracle access to the block encoding of all
coupling operators in the form

∑
a∈A |a⟩ ⟨0a| ⊗ Aa, we can initially utilize [CKBG23, Appendix B.1

Lemma III.1] to construct a block encoding UL,all for
∑

a∈A |a⟩ ⟨0a|⊗La and a block encoding UG for G.
Leveraging UL,all, we can implement the weak-measurement scheme proposed in [CKG23, Section III.1]
to simulate (3.9) to first-order accuracy. Finally, by applying “compression” techniques as outlined in
[CW17] to reduce the number of repetitions, the algorithm proposed in [CKG23, Appendix F] achieves
optimal scaling in the number of uses of UL,all and UG.

4. Recovery of the Gibbs sampler in [CKG23]

In this section, we discuss the connections between our proposed family of efficient quantum Gibbs
samplers with KMS DBC and those constructed in [CKBG23, CKG23] and show that our framework
can recover the one in [CKG23].

We have seen from (2.16) that Davies generator (2.17) without the coherent term (i.e., Lindbladian
with σβ-GNS DBC) corresponds to the algorithmic Lindbladian (1.2) with f̂(ω) = δ(ω)/2π and G = 0.
As emphasized in Remark 7, such a choice of Dirac delta filtering function for the frequency makes it
hard to approximate GNS detailed balanced Lindblad dynamic. Chen et al. [CKBG23, Theorem I.3]
introduced a Gaussian smoothed version by taking f as

(4.1) f(t) ∝
√
σE exp(−t2σ2

E) ,

with σE of order ϵ/β, which guarantees that the Gibbs state is an approximate fixed point. It follows
that the parameter σE has to be small enough so that f̂(ω) ∝ exp(−ω2/4σ2

E)/
√
σE ≈ δ(ω)/2π, to

prepare the Gibbs state accurately. Then [CKG23] carefully constructed coherent term i[G, ·] such
that the resulting dynamics is σβ-KMS detailed balanced and σE could be a moderate constant, which
reduced the computational cost significantly; see Table 1.

We next prove that our construction in Section 3 can include the one in [CKG23] as a special case.
Let us first recall the construction by Chen, Kastoryano, and Gilyén. Suppose that {Aa}a∈A is a
given set of operators satisfying {Aa}a∈A = {(Aa)†}a∈A. [CKG23, Corollary II.2, Proposition II.4]
defined the Lindbladian of the form (1.2):

(4.2)

L†[ρ] = −i[G, ρ] +
∑
a∈A

∫ ∞

−∞
γ(ω)

(
Âa

f (ω)ρ
(
Âa

f (ω)
)†

− 1

2

{(
Âa

f (ω)
)†

Âa
f (ω), ρ

})
dω

= −i[G, ρ] +
∑
a∈A

∑
ν,ν′∈BH

αν,ν′

(
Aa

νρ (A
a
ν′)

† − 1

2

{
(Aa

ν′)
†
Aa

ν , ρ
})

,

with the Gaussian filtering function (4.1) for Âa
f (ω), the Gaussian-type transition weight function:

(4.3) γ(g)(ω) = exp

(
− (βω + 1)2

2

)
,

or the Metropolis-type one:

(4.4) γ(m)(ω) = exp

(
−βmax

(
ω +

1

2β
, 0

))
,

and the Hamiltonian

(4.5) G :=
∑
a∈A

∑
ν,ν′∈BH

tanh(−β(ν − ν′)/4)

2i
αν,ν′ (Aa

ν′)
†
Aa

ν .

Here, the coefficients αν,ν′ ∈ C are given by

(4.6) αν,ν′ := (2π)2
∫ ∞

−∞
γ(ω)f̂(ω − ν)f̂(ω − ν′) dω .
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We then define the so-called Kossakowski matrix C := (αν,ν′)ν,ν′∈BH
[GKS76], which is a real and

positive semidefinite matrix by choosing f̂(ω), γ(ω) to be non-negative functions. Then [CKG23]
showed that if σE = 1/β, there holds

(4.7) αν,ν′eβ(ν+ν′)/4 = α−ν′,−νe
−β(ν+ν′)/4 ,

which implies the KMS detailed balance of L constructed in (4.2) [CKG23, Theorem I.1].
To proceed, for notational simplicity, we assume |A| = 1, which means that {Aa}a∈A is a single

self-adjoint operator A = A†. We introduce a new coefficient matrix:

(4.8) C̃ ∈ R|BH |×|BH | with C̃ν,ν′ := αν,ν′eβ(ν+ν′)/4 ,

which is real and positive semidefinite and satisfy the centrosymmetry C̃ν,ν′ = C̃−ν′,−ν by (4.7). We
then consider the eigendecomposition of C̃:

C̃ = QDQ† ,(4.9)

where Q is real orthogonal (hencd Q† = Q⊤) and D is real diagonal with elements also indexed by
(ν, ν′) ∈ BH × BH . Moreover, by [CB76, Theorem 2], each eigenvector Q·,ν′ is either symmetric
(namely, Qν,ν′ = Q−ν,ν′) or skew-symmetric (namely, Qν,ν′ = −Q−ν,ν′). For ν′ ∈ BH , we define

(4.10) Lν′ =


√
Dν′,ν′

∑
ν∈BH

Qν,ν′Aν e−βν/4 , if Q·,ν′ is symmetric ,

i
√
Dν′,ν′

∑
ν∈BH

Qν,ν′Aνe
−βν/4 , if Q·,ν′ is skew-symmetric .

Then, Eq. (4.2) can be reformulated as

L† = −i[G, ρ] +
∑

ν∈BH

LνρL
†
ν − 1

2

{
L†
νLν , ρ

}
,

and one can verify that G and {Lν}ν∈BH
satisfy the requirements in Theorem 10.

For this, let us first consider G defined in (4.5). Noting from the construction (4.10) that

log
(
∆1/4

σβ

)( ∑
ν∈BH

L†
νLν

)
=

∑
ν,ν′∈BH

−β(ν − ν′)

4
αν,ν′ (Aa

ν′)
†
Aa

ν ,

we compute, according to (4.5),

(4.11) G =
∑

ν,ν′∈BH

tanh(β(ν′ − ν)/4)

2i
αν,ν′ (Aa

ν′)
†
Aa

ν = − i

2
tanh ◦ log

(
∆

1/4
β

)( ∑
ν∈BH

L†
νLν

)
,

which matches the general form (2.33). We next check the condition (2.28). We start with the case
where Q·,ν′ is symmetric. By (2.21) and (4.10), it holds that

∆−1/2
σβ

(Lν′) =
√
Dν′,ν′

∑
ν∈BH

Qν,ν′Aν e−βν/4eβν/2

=
√
Dν′,ν′

∑
ν∈BH

Qν,ν′(Aν)
† e−βν/4 = L†

ν′ ,
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where we use (Aν)
† = A−ν and Qν,ν′ = Q−ν,ν′ in the second equality. For the case where Q·,ν′ is

skew-symmetric, a similar computation gives

∆−1/2
σβ

(Lν′) =i
√
Dν′,ν′

∑
ν∈BH

Qν,ν′Aν e−βν/4eβν/2

=i
√
Dν′,ν′

∑
ν∈BH

Q−ν,ν′A−ν e−βν/4

= −i
√
Dν′,ν′

∑
ν∈BH

Qν,ν′(Aν)
† e−βν/4 = L†

ν′ ,

where the third equality is by (Aν)
† = A−ν and Qν,ν′ = −Q−ν,ν′ .

Finally, to see that our construction in Section 3.1 recovers the quantum Gibbs sampler in [CKG23],
it suffices to define the weighting function:

(4.12) qν′(ν) =

{√
Dν′,ν′Qν,ν′ , if Q·,ν′ is symmetric ,

i
√
Dν′,ν′Qν,ν′ , if Q·,ν′ is skew-symmetric ,

and find qν′(−ν) = qν′(ν) as required in (3.2) and that the jumps in (4.10) are the same as those in
(3.4) with A and qν′(ν) given above.

Remark 22. Letting f̂(ω) ∝ exp(−ω2/4σ2
E) be given as above, choosing γ(ν) to satisfy the KMS

condition (2.20), in the limit σE → 0, the matrix {αν,ν′} in (4.6) reduces to {γ(ν)δν,ν′} (up to some
constant) and the associated Lindblad dynamic becomes GNS detailed balanced. One can similarly
define the matrix C̃ as in (4.8) with decomposition (4.9). It holds that for each ν ∈ BH , there exists
a symmetric eigenvector Qν,ν′ = 1√

2
(δν′ + δ−ν′) and a skew-symmetric one Qν,ν′ = 1√

2
(δν′ − δ−ν′),

which corresponds to the eigenvalue Dν,ν = D−ν,−ν ∝ γ(ν)eβν/2. In this case, qν′(ν) in (4.12) is
either

√
Dν′,ν′/2(δν′ + δ−ν′) or i

√
Dν′,ν′/2(δν′ − δ−ν′), and the jumps defined in (4.10) are consistent

with those in (2.35).

We now estimate the element distribution of the Kossakowski matrix (αν,ν′)ν,ν′∈BH
, which in

principle determines the KMS detailed balanced Lindbladian, in view of Eqs. (4.2) and (4.5). This
would help us better understand the effects of the choice of q on the energy transition and how
our proposed Gibbs sampler relates to those in [CKBG23, CKG23]. Recall the definition of αν,ν′ in
Eq. (4.6) and note that f̂(ν) was chosen as a Gaussian f̂(ν) ∝

√
β exp(−(βν)2/4). It follows that for

any L∞-bounded γ(ω),

|αν,ν′ | ≤ C ∥γ∥L∞(R) β

∫ ∞

−∞
e−

β2((ω−ν)2+(ω−ν′)2)
4 dω ≤ C ∥γ∥L∞(R) e

− β2(ν−ν′)
8 ,

where C is a uniform constant. This means that for any fixed β > 0,

|αν,ν′ | = Ω(1) only if |ν − ν′| = O
(
1

β

)
,(4.13)

that is, αν,ν′ is concentrated around the diagonal part, which is the case for the Metropolis-type
transition weight (4.4), due to γ(m) ≡ 1 for ω ≤ 1/(2β). When β → ∞, this narrow strip shrinks
rapidly and the matrix αν,ν′ approximately reduces to a diagonal one so that the sampler becomes
GNS detailed balanced (Remark 22). For the case of Gaussian transition weight (4.3), we can see that
the αν,ν′ is actually concentrated around the origin:

αν,ν′ ∝ e−
(βν+βν′+2)2

16 e−
β2(ν−ν′)2

8 = Ω(1) if and only if |ν|, |ν′| = O
(
1

β

)
.

by the explicit computation in [CKG23, Proposition II.3]. In contrast, for our Gibbs sampler con-
structed in Section 3.1, we have

αν,ν′ = e−β(ν+ν′)/4qa(ν)qa(ν′) ,
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which is always supported on [−S, S]2 independent of β by Assumption 15. We refer the readers to
Fig. 3 below for an illustration of the pattern of αν,ν′ for various Gibbs samplers.

Remark 23. Recall Remark 20 and note that in [CKG23], both choices of γ(g) and γ(m) in Eqs. (4.3)
and (4.4) give the linear dependence of the total Hamiltonian simulation time on β. The discrepancy
in complexity between our approach and theirs arises from the difference in the construction of jump
operators and coherent terms. The discussion above shows that when |ν − ν′| = Ω(1/β), αν,ν′ ≪ 1
(see Eq. (4.13)). Consequently, in (4.2), the energy transition ν in Aν is always O(1/β) close to the
energy transition ν′ in (Aa

ν′)†. This property ensures that the norm of the coherent term G in [CKG23]
and the normalization block encoding constant does not increase linearly in β. This differs from our
case, where {αν,ν′} always includes a Ω(1)-sized principal submatrix and the dynamics allows different
energy transition terms Aνρ(A

a
ν′)† even when |ν−ν′| ≫ Ω(1/β). Therefore, our coherent G has much

more cross terms in the expansion, and the normalization constant for the block encoding increases
linearly in β (3.31). This introduces an additional β factor in our complexity result (see Theorem 19).

Figure 3. The matrix element distribution of the Kossakowski matrix (αν,ν′)ν,ν′∈BH

associated with a coupling A for various detailed balanced quantum Gibbs samplers.
The blue shadow region indicates the dominant entries.
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Appendix A. Block encoding

Block encoding (see [LC19, GSLW19]) provides a general framework for encoding a non-unitary
matrix using unitary matrices, which can be implemented on quantum devices.

Definition 24 (Block encoding). Given a matrix A ∈ C2n×2n , if we can find α, ϵ ∈ R+, and a unitary
matrix UA ∈ C2n+m×2n+m

so that

(A.1) ∥A− α (⟨0m| ⊗ In)UA (|0m⟩ ⊗ In) ∥ ≤ ϵ,

then UA is called an (α,m, ϵ)-block-encoding of A. The parameter α is referred to as the block encoding
factor, or the subnormalization factor.

Intuitively, the block encoding matrix UA encodes the rescaled matrix A/α in its upper left block:

UA ≈
(

A/α ∗
∗ ∗

)
.

There have been substantial efforts on implementing the block encoding of certain structured matrices
of practical interest [GSLW19, NKL22, CLVBY24, SCC23]. In this work, we assume that the query
access to the block encoding of relevant matrices is available. We also assume that there is no error in
the block encodings of the input matrices H, Aa, etc. If such errors are present, their impact should
be treated using perturbation theories. Meanwhile, we need to carefully keep track of the error of the
block encodings derived from the input matrices, such as the jump operators La.

Appendix B. Linear combination of unitaries

The linear combination of unitaries (LCU) [CW12] is an important quantum primitive, which allows
matrices expressed as a superposition of unitary matrices to be coherently implemented using block
encoding. Here we follow [GSLW19] and present a general version of the LCU that is applicable to
possibly complex coefficients.

LCU implements a block encoding of
∑J−1

j=0 cjUj , where Uj are unitary operators and cj are complex
numbers. For the coefficients, we assume access to a pair of state preparation oracles (also called
prepare oracles for short) (Prepγl

,Prepγr
) acting as (assume J = 2ℓ)

Prepγl
: |0ℓ⟩ → 1

∥γl∥2

J−1∑
j=0

γl,j |j⟩ ,

Prepγr
: |0ℓ⟩ → 1

∥γr∥2

J−1∑
j=0

γr,j |j⟩ .

Here the coefficients should satisfy γl,jγr,j = cj , 0 ≤ j ≤ J−1. To minimize the block encoding factor,
the optimal choice is |γl,j | = |γr,j | =

∣∣√cj
∣∣, and where

√
z refers to the principal value of the square

root of z. In this case, ∥γl∥2 = ∥γr∥2 =
√
∥c∥1, where ∥c∥1 =

∑
j |cj | is the 1-norm of the vector c.

The unitaries Uj needs to be accessed via a select oracle Select as

Select =

J−1∑
j=0

|j⟩ ⟨j| ⊗ Uj ,

which can be constructed using controlled versions of the block encoding matrices Uj .

Lemma 25 (LCU). Assume J = 2ℓ, ∥γl∥2 = ∥γr∥2 =
√
∥c∥1, then the matrix

W = (Prep†
γl
⊗ I) Select (Prepγr

⊗ I)

is a (∥c∥1 , ℓ, 0)-block-encoding of the linear combination of unitaries
∑J−1

j=0 cjUj.
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Appendix C. Gevrey functions

In this section, we collect a few results for Gevrey functions that are useful for this work. While
similar findings have been previously demonstrated in the literature, notably in [AHR17] and [HR19],
we provide self-contained proofs here with explicit expressions for the constants involved.

Lemma 26 (Product of Gevrey functions). Given h ∈ Gs
C1,C2

(Rd) and h′ ∈ Gs′

C′
1,C

′
2
(Rd), then

h · h′ ∈ Gmax{s,s′}
C1C′

1,C2+C′
2
(Rd) .

Proof. For a index vector α ∈ Nd, a direct application of Leibniz rule gives

∥∂α (h · h′)∥L∞(Rd) ≤
|α|∑
j=0

∑
β≤α,|β|=j

(
α

β

)∥∥∂βh
∥∥
L∞(Rd)

∥∥∂α−βh′∥∥
L∞(Rd)

≤ C1C
′
1

|α|∑
j=0

(C2)
jjjs(C ′

2)
|α|−j(|α| − j)(|α|−j)s′

 ∑
β≤α,|β|=j

(
α

β

)
≤ C1C

′
1

|α|∑
j=0

((
|α|
j

)
(C2)

jjjs(C ′
2)

|α|−j(|α| − j)(|α|−j)s′
)

≤ C1C
′
1 (C2 + C ′

2)
|α| |α||α|max{s,s′} ,

where the third inequality is by
∑

β≤α,|β|=j

(
α
β

)
=
(|α|

j

)
. □

We next show that exp(−
√
1+x2+x

4 ) is a Gevrey function and its derivative is L1-integrable. We
first recall the Faà di Bruno’s formula and the partial Bell polynomial for the chain rule of high-order
derivatives [Com74, p.139].

Lemma 27 (Faà di Bruno’s formula and partial Bell polynomial). Let h, g be smooth function from
C to C, and f(x) := h(g(x)). Then the k-th order derivative of f is given by

f (k)(x) =
∑ k!

q1!(1!)q1q2!(2!)q2 · · · qk!(k!)qk
h(

∑
qi)(g(x))

k∏
i=1

(
g(i)(x)

)qi
where the sum is over all k-tuples of nonnegative integers (q1, q2, · · · , qk) satisfying

∑
iqi = k. The

above formula can also be rewritten as

f (k)(x) =

k∑
j=1

h(j)(g(x))Bk,j

(
g(1)(x), g(2)(x), . . . , g(k−j+1)(s)

)
,

where Bk,j is the partial Bell polynomial:

Bk,j =
∑

1≤i≤k , qi∈N∑k
i=1 iqi=k∑k
i=1 qi=j

k!

q1!q2! · · · qk−j+1!

k−j+1∏
i=1

(xi

i!

)qi
.

Using Faà di Bruno’s formula, we can calculate the high order derivatives of exp(−
√
1+x2+x

4 ) and
verify that it belongs to a Gevrey class.

Lemma 28. It holds that

e−
√

1+x2+x
4 ∈ G1

1, 72
,

(
e−

√
1+x2+x

4

)(1)

∈ L1(R) .
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Proof. We first use the second formula of Lemma 27 and some properties of the partial Bell polynomials
Bn,k to calculate k-th order derivative for

√
1 + x2. For k ≥ 2, we have (define

(
j

k−j

)
= 0 if k > 2j)(√

1 + x2
)(k)

=

k∑
j=1

(−1)j+1(2j − 3)!!

2j(1 + x2)j−1/2
Bk,j(2x, 2, 0, . . . , 0) =

k∑
j=1

(−1)j+12j(2j − 3)!!

2j(1 + x2)j−1/2
Bk,j(x, 1, 0, . . . , 0)

=

k∑
j=1

(−1)j+12j(2j − 3)!!

2j(1 + x2)j−1/2

1

2k−j

k!

j!

(
j

k − j

)
x2j−k =

k!

2k

k∑
j=1

(−1)j+12j(2j − 3)!!

j!

(
j

k − j

)
x2j−k

(1 + x2)j−1/2
.

Using the fact that
∣∣∣ x2j−k

(1+x2)j−1/2

∣∣∣ ≤ 1, (2j − 3)!! ≤ 2jj!, and (1 + 22)k =
∑k

j=0

(
k

k−j

)
22j , we have∣∣∣∣(√1 + x2

)(k)∣∣∣∣ ≤ k!

2k

k∑
j=0

2j(2j − 3)!!

j!

(
j

k − j

)
≤ k!

2k

k∑
j=0

4j
(

k

k − j

)
≤ (5/2)

k
k! .

Next, by Faà di Bruno’s formula for exp(−
√
1+x2+x

4 ), we obtain

(C.1)

(
e−

√
1+x2+x

4

)(k)

=
∑ k!

q1!(1!)q1q2!(2!)q2 · · · qk!(k!)qk

(
−1

4

)k

e−
√

1+x2+x
4

k∏
j=1

((√
1 + x2

)(j)
+ x(j)

)qj

.

Plugging the upper bound
∣∣∣(√1 + x2

)(j)∣∣∣ gives∣∣∣∣∣
(
e−

√
1+x2+x

4

)(k)
∣∣∣∣∣ <∑ k!

q1!(1!)q1q2!(2!)q2 · · · qk!(k!)qk

(
1

4

)k k∏
j=1

(7/2)jqj (j!)qj

=
∑ k!

q1!q2! · · · qk!

(
1

4

)k k∏
j=1

(7/2)jqj =
∑ (7/8)kk!

q1!q2! · · · qk!
≤ (7/8)kk!

∑
1 ≤ (7/2)kk! ,

where we use the fact that the number of k-tuples of nonnegative integers (q1, q2, · · · , qk) satisfying∑
jqj = k is less than

(
2k
k

)
≤ 22k. This concludes exp(−

√
1+x2+x

4 ) ∈ G1
1, 72

. The L1-integrablity of

(exp(−
√
1+x2+x

4 ))(1) is a simple consequence of Eq. (C.1). □

Finally, we show that the Fourier transform of the Gevrey class with compact support decays
rapidly, by a Paley-Wiener type estimate.

Lemma 29. Given h ∈ Gs
C1,C2

(Rd) with compact support Ω = supp(h) and s ≥ 1, define

H(y) =
1

(2π)d

∫
Rd

h(x)e−ix·y dx .

Then, for any y ∈ Rd, there holds

|H(y)| ≤ C1|Ω|
(2π)d

e
esd
2 − s

C
1/s
2 e

∥y∥1/s
2

,

where |Ω| =
∫
Ω
1 dx is the volume of Ω and ∥y∥2 is the 2-norm of the vector y.

Proof. By Definition 14, we have, for every d-tuple of nonnegative integers α with |α| =
∑

i |αi|,

∥∂αh∥L∞(Rd) ≤ C1C
|α|
2 |α||α|s .

It follows that

|yα| |H(y)| = |yαH(y)| =
∣∣∣∣ 1

(2π)d

∫
Ω

∂αh(x)e−ix·y dx

∣∣∣∣ ≤ C1|Ω|
(2π)d

C
|α|
2 |α||α|s ,
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where yα := Πd
i=1y

αi
i . Recall from [AHR17, Proposition 3.1] that

inf
m∈Z≥0

{( s

ae

)ms mms

|t|m

}
≤ ees/2e−a|t|1/s , for any a, s, t > 0 .

Letting a := s/(C
1/s
2 e) and using the above inequality, we obtain

|H(y)| ≤ C1|Ω|
(2π)d

inf
α∈Nd

C
|α|
2 |α||α|s

|yα|
≤C1|Ω|
(2π)d

∏
i

inf
αi∈Z≥0

∣∣∣∣Cαi
2 |αi|αis

|yi|αi

∣∣∣∣
≤C1|Ω|
(2π)d

eesd/2e−a
∑d

i=1 |yi|1/s

≤C1|Ω|
(2π)d

eesd/2e−a∥y∥1/s
2 . □

Appendix D. Quadrature error analysis

In this section, for notational simplicity, sometimes we absorb the generic constant Cs depending
on the parameter s of the filtering function q(ν) in Eq. (3.12) into O. We first study the decaying and
integrable property of the functions f and g(t, t′).

Lemma 30. Let f(t) and g(t, t′) be the functions defined in (3.3) and (3.6) with a weighting function
q(ν) satisfying Assumption 15. Then, it holds that

(D.1) |f(t)| ≤
A2

qS

π
exp

(
es

2
− s

(βAu +Aw)1/se
|t|1/s

)
,

and

(D.2) |g(t, t′)| ≤
A4

qS
2

2π2
exp

(
es− s

(2βAu + 2Aw + β)1/se

(√
t2 + (t′)2

)1/s)
.

The integrals of f and g have the following asymptotics:

(D.3)
∫
R
|f(t)|dt = O

(
(AqC1,u +A2

qSAw) log(βAu +Aw)
)
,

and

(D.4)
∫∫

R2

|g(t, t′)|dtdt′ = O
(
(A2

qC
2
1,u +A4

qS
2A2

w +A3
qC1,uSAw +A4

qβS) log
2(βAu +Aw + β)

)
.

Proof. We recall the definitions of f(t) and g(t, t′):

(D.5) f(t) =
1

2π

∫
R
u(βν)w(ν)e−βν/4e−itν dν ,

and

(D.6) g(t, t′) =
1

(2π)2

∫∫
R2

tanh(β(ν′ − ν)/4)e−β(ν+ν′)/4

2i
u(βν)w(ν)u(βν′)w(ν′)e−i(νt−ν′t′) dν dν′ .

Exponential decay of f . Thanks to Lemma 26 with Assumption 15, we have

f̂(ν) = u(βν)w(ν)e−βν/4 ∈ Gs
A2

q,βAu+Aw
(R) with supp

(
f̂
)
∈ [−S, S] .

Then, Lemma 29 with d = 1 and |Ω| = 2S yields the estimate for f :

(D.7) |f(t)| ≤
A2

qS

π
exp

(
es

2
− s|t|1/s

(βAu +Aw)1/se

)
.

Exponential decay of g. By using [Boy07, Eq. (3.3)], we first have∥∥∥tanh(N)(x)
∥∥∥
L∞(R)

≤ 2N
N∑

k=0

k!

(
N

k

)
≤ 4NN ! ,
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which implies

(D.8) tanh((ν′ − ν)/4) ∈ G1
1,1(R2) .

It follows from Lemma 26 with

(2i)ĝ(ν, ν′) = tanh(β(ν′ − ν)/4)e−β(ν+ν′)/4u(βν)w(ν)u(βν′)w(ν′)

that

(2i)ĝ(ν, ν′) ∈ Gs
A4

q,2βAu+2Aw+β with supp
(
ĝ
)
∈ [−S, S]2 .

Again, applying Lemma 29 with d = 2 and |Ω| = 4S2 gives

(D.9) |g(t, t′)| ≤
A4

qS
2

2π2
exp

(
es− s

(2βAu + 2Aw + β)1/se

(√
t2 + (t′)2

)1/s)
,

which concludes the proof for the decay of g.

Estimate the integral of f . We note from Assumption 15 that the derivative of u(βν)w(ν)e−βν/4

is L1-integrable. It follows that

itf(t) =
1

2π

∫
R

d

dν

(
u(βν)w(ν)e−βν/4

)
e−itν dν ,

and then

2π ∥tf(t)∥L∞(R) ≤
∥∥∥(u(βν)e−βν/4)(1)

∥∥∥
L1(R)

∥w∥L∞(R) +
∥∥∥u(βν)e−βν/4

∥∥∥
L∞(R)

∥∥∥w(1)
∥∥∥
L1(R)

≤ AqC1,u + 2SA2
qAw ,

by the invariance of
∥∥(u(βν)e−βν/4)(1)

∥∥
L1(R) in β. Here, we use w ∈ Gs

Aq,Aω
and supp(w) = [−S, S]

to obtain
∥∥w(1)

∥∥
L1(R) ≤ 2SAqAω. In addition, because

∥∥u(βν)e−βν/4
∥∥
L∞(R) ≤ Aq, there holds

∥f∥L∞(R) ≤
1

2π

∫
[−S,S]

∣∣∣u(βν)w(ν)e−βν/4
∣∣∣ dν ≤ 1

π
A2

qS .

Thus, we readily have, for any T > 1,

(D.10)

∫ T

−T

|f(t)|dt ≤ 2

π
A2

qS + 2

∫ T

1

|f(t)|dt

≤ 2

π
A2

qS + 2
AqC1,u + 2SA2

qAw

2π
log T = O

(
(AqC1,u + SA2

qAw) log T
)
.

Next, by Eq. (D.1), a direct computation via change of variable t1/s = u gives

(D.11)
∫ ∞

T

|f(t)| dt = O
(
A2

qS

∫ ∞

T 1/s

us−1 exp

(
− s

(βAu +Aw)1/se
u

)
du

)
, T > 0 .

We define the constant Tf by

Tf (Au, Aw) := inf

{
T > 0 ; us−1 ≤ exp

(
s

2(βAu +Aw)1/se
u

)
for any u ≥ T 1/s

}
,(D.12)

which satisfies the following asymptotics: as βAu +Aw → ∞,

Tf (Au, Aw)/ log(Tf (Au, Aw)) = Θ (βAu +Aw) .

Note that x/ log x is decreasing on (1, e] and increasing on [e,+∞) with global minimum e at x = e.
For any y ≥ e, the equation x/ log x = y has a unique solution y ≤ x ≤ y2, which readily gives
y log y ≤ x = y log x ≤ 2y log y and thus, by (D.12),

Tf (Au, Aw) = Θ ((βAu +Aw) log (βAu +Aw)) .(D.13)
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We can then estimate the integral by Eqs. (D.10) and (D.11), as well as Eq. (D.13),

(D.14)

∫
R
|f(t)| dt =

∫ Tk
f

−Tk
f

|f(t)| dt+O

(
A2

qS

∫ ∞

T
k/s
f

exp

(
− s

2(βAu +Aw)1/se
u

)
du

)

= O

(AqC1,u +A2
qSAw) log Tf +A2

qS (βAu +Aw)
1/s exp

(
− s

2(βAu +Aw)1/se
T

k/s
f

)
︸ ︷︷ ︸

o(1) as βAu + Aw → ∞


= O

(
(AqC1,u +A2

qSAw) log(βAu +Aw)
)
,

for any positive k > 1. This gives Eq. (D.3).

Estimate the integral of g. Similarly, by Eq. (D.6) with Assumption 15 and | tanh((ν′−ν)/4)| ≤ 1,
we have ∥g(t, t′)∥L∞(R2) ≤

1
2π2A

4
qS

2. A direct computation gives, for a fixed ν′ ∈ R,

d

dν
tanh((ν′ − ν)/4) =

1

4
(tanh2((ν′ − ν)/4)− 1) ∈ L1(R)

⋂
L∞(R)

with its L1 and L∞ norms independent of ν′ ∈ R. This implies

∂ν′ (tanh((ν′ − ν)/4)) ∂ν

(
e−ν/4u(ν)

)
∈ L1(R2) .

In addition, we have the second-order partial derivative:

∂ν′ν tanh((ν
′ − ν)/4) =

1

8
tanh((ν′ − ν)/4)(1− tanh2((ν′ − ν)/4)) ∈ L1(R2) ,

which is L1-integrable in ν (for fixed ν′). Then, we can estimate

∥t′tg(t, t′)∥L∞(R2) = O
(∫∫

R2

|∂ν′ν ĝ(ν, ν
′)| dν dν′

)
= O

(
A2

qC
2
1,u +A4

qS
2A2

w +A3
qC1,uSAw +A4

qβS
)
.

by a straightforward computation:

∂ν′ν

(
tanh(β(ν′ − ν)/4)e−β(ν+ν′)/4u(βν)w(ν)u(βν′)w(ν′)

)
= ∂ν′ν

(
tanh(β(ν′ − ν)/4)

)
w(ν′)︸ ︷︷ ︸

∥·∥
L1=O(AqSβ)

e−βν/4u(βν)w(ν)u(βν′)e−βν′/4︸ ︷︷ ︸
∥·∥L∞≤A3

q

+ ∂ν′
(
tanh(β(ν′ − ν)/4)

)
∂ν

(
e−βν/4u(βν)

)
︸ ︷︷ ︸

∥·∥
L1=O(C1,u)

w(ν)u(βν′)e−βν′/4w(ν′)︸ ︷︷ ︸
∥·∥L∞≤A3

q

+ ∂ν

(
tanh(β(ν′ − ν)/4)

)
∂ν′

(
u(βν′)e−βν′/4

)
︸ ︷︷ ︸

∥·∥
L1=O(C1,u)

e−βν/4u(βν)w(ν)w(ν′)︸ ︷︷ ︸
∥·∥L∞≤A3

q

+
(
tanh(β(ν′ − ν)/4)

)︸ ︷︷ ︸
∥·∥L∞=O(1)

∂ν

(
e−βν/4u(βν)

)
∂ν′

(
u(βν′)e−βν′/4

)
︸ ︷︷ ︸

∥·∥
L1≤C2

1,u

w(ν)w(ν′)︸ ︷︷ ︸
∥·∥L∞≤A2

q

+ ∂ν

(
tanh(β(ν′ − ν)/4)e−βν/4u(βν)u(βν′)e−βν′/4

)
∂ν′

(
w(ν′)

)
︸ ︷︷ ︸

∥·∥
L1=O(C1,uA2

qAωS+A3
qAωS)

w(ν)︸ ︷︷ ︸
∥·∥L∞≤Aq

+ ∂ν′

(
tanh(β(ν′ − ν)/4)u(βν′)e−βν′/4u(βν)e−βν/4

)
(∂νw(ν))︸ ︷︷ ︸

∥·∥
L1=O(C1,uA2

qAωS+A3
qAωS)

w(ν′)︸ ︷︷ ︸
∥·∥L∞≤Aq

+ tanh(β(ν′ − ν)/4)u(βν′)e−βν′/4u(βν)e−βν/4︸ ︷︷ ︸
∥·∥L∞≤A2

q

(∂νw(ν))∂ν′

(
w(ν′)

)
︸ ︷︷ ︸

∥·∥
L1≤A2

qA
2
ωS2

.
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In the same manner as Eq. (D.10), we have

(D.15)
∫ T

−T

∫ T

−T

|g(t, t′)|dtdt′ = O(A2
qC

2
1,u +A4

qS
2A2

w +A3
qC1,uSAw +A4

qβS) log
2(T ) , T > 1 .

We now consider the truncation time as in (D.12):

Tg(Au, Aw) := inf

{
T > 0 ; u2s−1 ≤ exp

(
s

2(2βAu + 2Aw + β)1/se
u

)
for any u ≥ T 1/s

}
,(D.16)

which satisfy, as 2βAu + 2Aw + β → ∞,

Tg(Au, Aw) = Θ ((2βAu + 2Aw + β) log (2βAu + 2Aw + β)) .

It follows from Eqs. (D.2) and (D.15) and some similar estimates as in Eq. (D.14) that∫∫
R2

|g(t, t′)|dt dt′ =
∫ Tg

−Tg

∫ Tg

−Tg

|g(t, t′)| dtdt′ +O

(
A4

qS
2

∫ ∞

Tg

exp

(
− s

(2βAu + 2Aw + β)1/se
r1/s

)
r dr

)

=

∫ Tg

−Tg

∫ Tg

−Tg

|g(t, t′)| dtdt′ +O

(
A4

qS
2

∫ ∞

T
1/s
g

exp

(
− s

(2βAu + 2Aw + β)1/se
u

)
u2s−1 du

)
= O

(
(A2

qC
2
1,u +A4

qS
2A2

w +A3
qC1,uSAw +A4

qβS) log
2(βAu +Aw + β)

)
.

The proof is complete. □

We next prove Proposition 16. We shall employ the Poisson summation formula recalled in the
following lemma [Pin08, Theorem 4.4.2].

Lemma 31 (Poisson summation formula). Given any h ∈ L1(Rd) with inverse Fourier transform:

ĥ(y) =

∫
Rd

h(x)eix·y dx ,

for any y ∈ Rd and τ > 0, there holds∑
n∈Zd

ĥ

(
y +

2πn
τ

)
=
∑
n∈Zd

τdh (nτ) eiy·nτ .

We are now ready to show Proposition 16.

Proof of Proposition 16. In the proof, we shall consider an infinite time grid defined by {mτ}m∈Z.
The grid {tm}2M−1

m=0 is given by the subset {mτ}M−1
m=−M as in the statement of Proposition 16. We

omit the upper index a in fa and ga.

Estimate for the jump La. Thanks to Lemma 30, there holds

(D.17)

∥∥∥∥∥
∞∑

m=−∞
f(mτ)Aa(mτ)τ −

2M−1∑
m=0

f(tm)Aa(tm)τ

∥∥∥∥∥ ≤ ∥Aa∥
∑

|m|≥M

|f(mτ)|τ

≤
∑

|m|≥M

A2
qS

π
exp

(
es

2
− s

(βAu +Aw)1/se
|mτ |1/s

)
τ .

By the monotonicity of the exponential function, we have

(D.18)

∑
|m|≥M

exp

(
− s

(βAu +Aw)1/se
|mτ |1/s

)
τ

≤2

∫ ∞

(M−1)τ

exp

(
− s

(βAu +Aw)1/se
|t|1/s

)
dt

≤2s

∫ ∞

((M−1)τ)1/s
us−1 exp

(
− s

(βAu +Aw)1/se
u

)
du .
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Let Tf (Au, Aw) be the constant defined as in Eq. (D.12). Then, when (M − 1)τ ≥ Tf (Au, Aw), we
can compute, by (D.18),∑

|m|≥M

exp

(
− s

(βAu +Aw)1/se
|mτ |1/s

)
τ ≤ 2s

∫ ∞

((M−1)τ)1/s
exp

(
− s

2(βAu +Aw)1/se
u

)
du

≤ 4s
(βAu +Aw)

1/se

s
exp

(
− s((M − 1)τ)1/s

2(βAu +Aw)1/se

)
.

Combining this with Eq. (D.17), we find

(D.19)

∥∥∥∥∥
∞∑

m=−∞
f(mτ)Aa(mτ)τ −

2M−1∑
m=0

f(tm)Aa(tm)τ

∥∥∥∥∥
≤
∑

|m|≥M

A2
qS

π
exp

(
es

2
− s

(βAu +Aw)1/se
|mτ |1/s

)
τ

≤CsA
2
qS(βAu +Aw)

1/s exp

(
− s((M − 1)τ)1/s

2(βAu +Aw)1/se

)
.

Then, by the triangle inequality, we readily have

(D.20)

∥∥∥∥∥La −
2M−1∑
m=0

f(tm)Aa(tm)τ

∥∥∥∥∥
≤

∥∥∥∥∥
∫ ∞

−∞
f(t)Aa(t) dt−

∞∑
m=−∞

f(mτ)Aa(mτ)τ

∥∥∥∥∥+
∥∥∥∥∥

∞∑
m=−∞

f(mτ)Aa(mτ)τ −
2M−1∑
m=0

f(tm)Aa(tm)τ

∥∥∥∥∥
≤

∥∥∥∥∥
∫ ∞

−∞
f(t)Aa(t) dt−

∞∑
m=−∞

f(mτ)Aa(mτ)τ

∥∥∥∥∥+ Cf exp

(
− s((M − 1)τ)1/s

2(βAu +Aw)1/se

)
,

with constant

Cf = O
(
A2

qS(βAu +Aw)
1/s
)
.

Note from (3.4) that
∫∞
−∞ f(t)Aa(t) dt =

∑
i,j f̂(λi − λj)PiA

aPj , and from Assumption 15 that

|λi − λj | ≤ 2∥H∥ for any λi, λj ∈ Spec(H) and supp(f̂) ⊂ [−S, S] .

For τ < 2π
2∥H∥+S , by Poisson summation formula in Lemma 31, we have

f̂(λi − λj) =

∞∑
m=−∞

f̂

(
λi − λj +

2πm

τ

)
=

∞∑
m=−∞

f(mτ)ei(λi−λj)mττ .

Plugging the above formula into the first term of (D.20), there holds∫ ∞

−∞
f(t)Aa(t) dt−

∞∑
m=−∞

f(mτ)Aa(mτ)τ

=
∑
i,j

(
f̂(λi − λj)−

∞∑
m=−∞

f(mτ)ei(λi−λj)mττ

)
PiA

aPj = 0 ,

which then implies∥∥∥∥∥La −
2M−1∑
m=0

f(tm)Aa(tm)τ

∥∥∥∥∥ ≤ Cf exp

(
− s((M − 1)τ)1/s

2(βAu +Aw)1/se

)
.

and concludes the proof of (3.15).
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Estimate for the coherent term G. Again by Lemma 30 with similar estimates as in (D.19) for
La, we obtain, when (M − 1)τ > Tg(Au, Aw),∥∥∥∥∥

∞∑
n,m=−∞

g(nτ,mτ)Aa(nτ)Aa(mτ)τ2 −
2M−1∑
n,m=0

g(tn, tm)Aa(tn)A
a(tm)τ2

∥∥∥∥∥
≤∥Aa∥2

∑
|n|,|m|≥M

|g(nτ,mτ)| τ2 ≤ Cg exp

(
− s((M − 1)τ)1/s

2(2βAu + 2Aw + β)1/se

)
,

where the constant Tg(Au, Aw) is given in Eq. (D.16) and

Cg = O
(
A4

qS
2(2βAu + 2Aw + β)1/s

)
.

It follows that

(D.21)

∥∥∥∥∥
∫∫

R2

g(t, t′)Aa(t)Aa(t′) dtdt′ −
2M−1∑
n,m=0

g(tn, tm)Aa(tn)A
a(tm)τ2

∥∥∥∥∥
≤

∥∥∥∥∥
∫∫

R2

g(t, t′)Aa(t)Aa(t′) dtdt′ −
∞∑

n,m=−∞
g(nτ,mτ)Aa(nτ)Aa(mτ)τ2

∥∥∥∥∥
+ Cg exp

(
− s((M − 1)τ)1/s

2(2βAu + 2Aw + β)1/se

)
.

Similarly, Poisson summation formula with supp(ĝ) ⊂ [−S, S]× [−S, S] gives

ĝ(ν, ν′) =

∞∑
n,m=−∞

ĝ

(
ν +

2πn

τ
, ν′ +

2πm

τ

)
=

∞∑
n,m=−∞

g(nτ,mτ)einντe−imν′ττ2 ,

for τ < 2π
2∥H∥+S and (ν, ν′) ∈ BH × BH , thanks to |ν|, |ν′| ≤ 2∥H∥. It follows that the first term of

(D.21) is zero. By definition (3.7) of G and above estimates, it holds that∥∥∥∥∥G−
∑
a∈A

2M−1∑
n,m=0

g(tn, tm)Aa(tn)A
a(tm)τ2

∥∥∥∥∥
≤
∑
a∈A

∥∥∥∥∥
∫∫

R2

g(t, t′)Aa(t)Aa(t′) dtdt′ −
2M−1∑
n,m=0

g(tn, tm)Aa(tn)A
a(tm)τ2

∥∥∥∥∥
≤Cg|A| exp

(
− s((M − 1)τ)1/s

2(2βAu + 2Aw + β)1/se

)
.

The proof is complete. □

Finally, the simulation of the algorithm requires the preparation of oracles (3.26)-(3.30), where
the normalization factors Zf and Zg affect the algorithm complexity. In the following theorem, we
demonstrate that the discretization normalization constant can be bounded by the L1 norm of f and
g when the discretization step τ is sufficiently small.

Lemma 32. Under Assumption 15, for any given T > 0, there exists small τ = Θ
(
1/A4

qT
2S3
)

such
that for any integer M with Mτ ≤ T ,

(D.22)
M∑

m=−M

|f(mτ)| τ ≤ ∥f∥L1(R) + 1 ,

and

(D.23)
M∑

m=−M

M∑
m′=−M

|g(mτ,m′τ)| τ2 ≤ ∥g∥L1(R2) + 1 .
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Proof. We note

|f ′(t)| =
∣∣∣∣ 12π

∫
R
u(βν)w(ν)e−βν/4νe−itν dν

∣∣∣∣ ≤ Aq

2π

∫
R
|νw(ν)|dν = O(A2

qS
2) .

Similarly, one can obtain

|∂tg(t, t′)| = O(A4
qS

3) , |∂t′g(t, t′)| = O(A4
qS

3) .

Then, it follows from the mean-value theorem that∣∣∣∣∣
M∑

m=−M

|f(mτ)| τ −
∫ (M+1)τ

−Mτ

|f(t)| dt

∣∣∣∣∣ = O
(
A2

qS
2Mτ2

)
,

which implies
M∑

m=−M

|f(mτ)| τ ≤ ∥f∥L1(R) +O
(
A2

qS
2Mτ2

)
.

Then Eq. (D.22) follows. For the estimate of g, similarly, by the mean-value theorem, we find∣∣∣∣∣
M∑

m=−M

M∑
m′=−M

|g(mτ,m′τ)| τ2 −
∫ (M+1)τ

−Mτ

∫ (M+1)τ

−Mτ

|g(t, t′)| dtdt′
∣∣∣∣∣ = O

(
A4

qS
3M2τ3

)
,

which means
M∑

m=−M

M∑
m′=−M

|g(mτ,m′τ)| τ2 ≤ ∥g∥L1(R2) +O
(
A4

qS
3M2τ3

)
.

This concludes the proof of Eq. (D.23). □
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