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It has been established for a long time that the long range van der Waals or thermal Casimir inter-
action between two semi-infinite dielectrics separated by a distance H is screened by an intervening
electrolyte. Here we show how this interaction is modified when an electric field of strength E is ap-
plied parallel to the dielectric boundaries, leading to a non-equilibrium steady state with a current.
The presence of the field induces a long range thermal repulsive interaction, scaling just like the
thermal Casimir interaction between dielectrics without the intervening electrolyte, i.e. as 1/H3.
At small E the effect is of order E2 while at large fields it saturates to an E independent value. We
explain the results in terms of a decoupling mechanism between the charge density fluctuations of
cations and anions at large applied fields.

Introduction– Fluctuation induced interactions are ubiq-
uitous both from the fundamental as well as applied point
of view and can arise due to both quantum and ther-
mal fluctuations [1–3]. These interactions can be var-
ied by changing material properties in the case of van
der Waals interactions [1] or by chemical variations of
surface properties in the case of the critical Casimir ef-
fect [4]. Another way to modify these interactions is to
apply external fields, for example electric or magnetic
fields [5, 6]. The application of an electric field generates
a current in systems which can conduct, and the pres-
ence of a current implies that the system is out of equi-
librium. The out of equilibrium nature of the problem
means that standard equilibrium methods, for example
the Lifshitz formulation of van der Waals forces cannot
be applied directly [7], it can however be extended to
compute van der Waals forces between dielectrics held at
different temperatures [8–10]. Out of equilibrium ther-
mal or classical fluctuation induced forces can be studied
via the Langevin dynamics of dipole fields in dielectrics
and/or ionic Brownian dynamics in electrolytes [11–13].
An illuminating model in the theory of the thermal
Casimir effect is the living conductor model where two
plates containing an electrolyte interact across a dielec-
tric gap [12, 25, 29]. In equilibrium this model exhibits
the universal long range attractive Casimir interaction for
free scalar field theories [7]. Recently [5], it was shown
that when an electric field is applied parallel to one plate
this attractive Casimir interaction is reduced by the fact
that the driving electric field destroys or scrambles the
charge-charge correlations which yield the attraction in
the equilibrium case. More recently [6], the force be-
tween two planar dielectrics with an electrolyte in be-
tween, and driven by an electric field has been studied
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FIG. 1. Geometry of the confined electrolyte of dielectric con-
stant ϵ between two dielectric semispaces of dielectric constant
ϵ′, driven by an external electric filed E. H is the separation
between the dielectrics, z is the normal coordinate with the
bottom surface located at z = 0.

as a function of the field strength (see the schematic in
Fig. (1)). Here, it was found that driving the system
leads to an effective long range interaction which can
be attractive or repulsive. This is a particularly inter-
esting result as, in equilibrium, the long range van der
Waals interaction between two dielectric slabs with an
intervening electrolyte is established to be screened, i.e.,
it decays exponentially with the plate separation at dis-
tances larger than the Debye screening length [14, 15].
The Casimir interaction in the presence of a driving elec-
trostatic field was analyzed by using an approximation
scheme for the linearized stochastic density functional
theory (SDFT) that describes the classical charge fluctu-
ations in the system [6]. This leads to an effective theory
reminiscent of statistical field theories where the intro-
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duction of anisotropy (due to the applied field) is mis-
matched with the thermal noise and leads to long-range
correlations [16, 17] which in turn generate a long-range
fluctuation induced interaction [18, 19]. It furthermore
leads to a limiting result at small driving electric field
magnitude E, with the force scaling as E4, while at large
fields it scales as E2. These results are somewhat sur-
prising, first one might expect that the small field force
should scale as E2 unless there is some fine tuning arising
naturally in the problem, secondly it is not clear how a
laterally imposed large electric field could lead to arbi-
trarily large forces.

Here we reconsider the problem studied in Ref. [6] in
the limit where the dielectric constant of the surrounding
(outer) dielectrics, ϵ′, is much smaller than the dielectric
constant of the intervening solvent, ϵ. This case can be
solved without any approximation beyond the lineariza-
tion of the SDFT for the electrolyte. We find that an
electric field does indeed induce a long range interaction
and this interaction gives a total, or net, repulsive force
per unit area

ft(H) =
ζ(3)

8πβH3

1− (
1 +

β2q2E2

m2

)− 1
2

 . (1)

as well as exponentially screened terms which are thus
subdominant for large H. In Eq. (1) β = 1/(kBT ) where
kB is Boltzmann’s constant and T is the temperature of
the system (assumed constant), ±q is the charge of the
cations/anions, and m =

√
2ρq2/(ϵkBT ) is the inverse

Debye screening length where ρ is the mean density of
cations/anions. We thus predict that the long range force
in this dielectric set up is always repulsive, scales as E2

for small applied electric fields and saturates for large
applied fields. We also identify the origin of this limiting
form of the repulsion at large electric fields which is due
to the decoupling of the cationic and anionic charge fluc-
tuations, which then become independent of one another
for large fields. For E = 0, we recover the well known re-
sult for the screened thermal Casimir interaction [14, 15],
from our purely dynamical approach.
The model– We consider (see Fig. (1)) two semi-infinite
dielectrics of dielectric constant ϵ′ separated by a slab of
thickness H in the direction z, containing an electrolyte
solution of dielectric constant ϵ and ionic densities ρ of
cations and anions of charges ±q, but with otherwise
identical properties, notably they have the same friction
coefficient γ. These conditions of symmetry can be re-
laxed but the resulting formulas become much more com-
plicated. This symmetric case is sufficient to highlight
the underlying physics of the problem. The over-damped
Langevin equation for the anions and cations (labeled by
the index i) is given by

γ
dxi

dt
= qi(E−∇ϕ(xi)) +

√
2kBTγ ηi(t), (2)

which corresponds to force balance between the frictional
force on the left hand side and the electrical and thermal

noise forces on the right hand side. The first term on the
right is the force due to the applied electric field parallel
to the slabs (taken to be in the direction x) E = Eex,
and the second one is the force due to the electric field
generated by the ions themselves:

ϕ(x) = q

∫
dx′G(x,x′)[ρ+(x

′)− ρ−(x
′)]. (3)

In Eq. (3) ρ±(x) =
∑

i± δ(x− xi) denotes the density of
ions/cations and G(x,x′) is the Green’s function for the
slab geometry where

∇ · ϵ(x)∇G(x,x′) = −δ(x− x′). (4)

Finally, the term ηi(t) denotes a Gaussian white noise of
zero mean with ⟨ηiα(t)ηjβ(t′)⟩ = δijδαβδ(t − t′), where
α and β label the spatial components (x, y, z). Starting
from the Langevin equations we can formally write down
the SDFT for the densities ρ±(x), this non-linear theory
becomes solvable if we expand about a background of
constant density ρ±(x) = ρ+n±(x). Note that when the
electric field is parallel to the bounding surfaces it does
not generate a surface charge and so the expansion of
the density about its average bulk value is justified. The
analysis of the linearized SDFT is simplified by using
the fluctuations of the total density nt(x) = n+(x) +
n−(x) and the fluctuations of the charge density ρc(x) =
q[n+(x)− n−(x)] = qnd(x). One thus finds [20]

∂nt(x)

∂t
= ∇ ·D[∇nt(x)− βqnd(x)E] + ξt(x, t), (5)

∂nd(x)

∂t
= ∇ ·D[∇nd(x)− βqnt(x)E+ 2qβρ∇ϕ(x)]

+ξd(x, t). (6)

where the spatio-temporal white noise terms are indepen-
dent and have correlation functions ⟨ξµ(x, t)ξν(x′, t′)⟩ =
−4ρDδµνδ(t−t′)∇2δ(x−x′), µ, ν ∈ {t,d}. The termD is
the diffusion constant of the cations and anions, given by
D = kBT/γ. The boundary conditions on the linearized
SDFT are no-flux boundary conditions, so ∇znt(x) = 0
and ∇znd(x)+2qβρ∇zϕ(x) = 0 at the boundaries z = 0
and z = H. No flux boundary conditions are also im-
posed independently on the noise terms, as the noise is
independent of the ionic distribution at the time when it
acts. The second boundary condition (on nd(x)) is non-
local due to the appearance of the electrostatic potential
which depends on the whole charge density in the prob-
lem. This non-locality can be dealt with [21], but here
we consider the simplifying case where we assume that
ϵ′ ≪ ϵ. This means that both the density and the elec-
trostatic potential have the same, Neumann boundary
conditions at the bounding surfaces. Consequently, both
fields, nt(x) and nd(x), as well as the noise fields, can
be expanded in terms of a Fourier cosine expansion [20],
yielding
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nµ(x∥, z, t) =

∫
dk

(2π)2

∞∑
n=0

1√
Nn

ñµn(k, t) exp(ik · x∥) cos(pnz), µ ∈ {t,d}, (7)

where pn = nπ/H enforces the Neumann conditions
at z = 0 and z = H, while Nn normalizes the corre-
sponding eigenfunction, with Nn = H/2 for n ≥ 1 and
N0 = H. The Fourier transform is taken in the plane
x∥ = (x, y) parallel the bounding dielectric surfaces. In

the steady state the resulting Lyapunov equation [20] can
be solved analytically for the equal time correlation func-
tions ⟨ñµm(k, t)ñνn((k

′, t)⟩ = (2π)2δmnδ(k + k′)C̃µνn,
µ, ν ∈ {t,d}, where

C̃ttn(k) = 2ρ
(k2 + p2n)

[
(K2 + p2n)(K

2 + k2 + 2p2n) + 2β2q2E2k2x
]

(K2 + k2 + 2p2n) [(K
2 + p2n)(k

2 + p2n) + β2q2E2k2x]
, (8a)

C̃tdn(k) = −C̃dtn(k) = i2ρ
βqEkxm

2(k2 + p2n)

(K2 + k2 + 2p2n) [(K
2 + p2n)(k

2 + p2n) + β2q2E2k2x]
, (8b)

C̃ddn(k) = 2ρ
(k2 + p2n)

[
(k2 + p2n)(K

2 + k2 + 2p2n) + 2β2q2E2k2x
]

(K2 + k2 + 2p2n) [(K
2 + p2n)(k

2 + p2n) + β2q2E2k2x]
(8c)

with K2 = k2 +m2 and kx = ex · k.
We now turn to the computation of the force between

the two dielectrics. In writing Eq. (4) we have implicitly
assumed that the dipole degrees of freedom in the sys-
tem adjust instantaneously to generate image charges,
and are thus fully equilibrated with respect to a given
configuration of charge density (dynamics of dipoles be-
ing governed by rapid electronic degrees of freedom or-
ders of magnitude faster than the diffusive dynamics of
the ions of the electrolyte). However, in principle, poten-
tially slower dynamics of the dipoles in the dielectrics can
be taken into account [11]. The dipole fluctuations also
generate their own thermal component of the Casimir
force between two dielectrics, which would be present in
the absence of any electrolyte, i.e., when ρ = 0. There is
also an ideal gas component coming from the ions when
they are uncharged or due to the constant non-fluctuating
part of the densities which is by definition also assumed
to be equilibrated. This means that the average total
force per unit area is given by

ft = fvdW + fion + 2 ρ kBT, (9)

where fvdW is the van der Waals interaction between the
two dielectrics in the absence of ions (including contribu-
tions from the zero and non-zero Matsubara frequencies),
which are assumed to be instantaneously equilibrated,
and 2 ρ kBT is the bulk ideal van’t Hoff pressure term,
which is also assumed to be equilibrated as it is not af-
fected by the external field, and will be ignored subse-
quently since it is independent of separation H. The sec-

ond term fion is the contribution due to the ions which
can be deduced by constructing a stress tensor from the
local body force, which can then be written down in terms
of the density fluctuations, and is given by [20, 22]

σαβ(x) =− kBT

4 ρ
δαβ(n

2
t (x) + n2

d(x))+

ϵ(x)(∇αϕ(x)∇βϕ(x)−
1

2
δαβ [∇ϕ(x)]2).

(10)

The first term on the right hand side is generated by
the density fluctuations, while the second term is the
contribution from the standard Maxwell stress tensor.
Furthermore, in the limit ϵ′ ≪ ϵ only the part of the
stress tensor inside the electrolyte slab yields a non-zero
contribution to the force.
The outward acting surface force density due to the

ions at z = 0 is given by fion = −∑
β⟨σz β(0, 0, 0

+) −
σz β(0, 0, 0

−)⟩ (by translational invariance in the (x, y)
plane). The average is taken over the spatio-temporal
noise, the minus sign comes from the downward normal
and z = 0± denotes the position just above and just
below the bounding surface at z = 0, respectively. In the
limit ϵ′ ≪ ϵ the stress tensor is diagonal and we find

fion =
kBT

4ρ
⟨n2

t (0) + n2
d(0)⟩+

ϵ

2
⟨∇∥ϕ(0)⟩2, (11)

where ∇∥ denotes the gradient in the (x, y) plane. One
can explicitly extract the terms which give the total H
dependent force (including the contribution from the di-
electric slabs fvdW in Eq. (9)) [20], these are
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ft(H) = − 1

β

∫
dk

(2π)2

∑
n

1

2Nn

K2(k2 + p2n)
2(K2 + k2 + 2p2n) + β2q2E2k2x

[
2k2(k2 + p2n) +m2(k2 + 2p2n)

]
(k2 + p2n)(K

2 + k2 + 2p2n) [(k
2 + p2n)(K

2 + p2n) + β2q2E2k2x]
. (12)

5 10
H̄

−0.5

0.0

0.5

1.0

f̄t (a)

g = 0

g = 1

g = 10

g →∞

0 10 20
g

−0.5

0.0

0.5

1.0

f̄t (b)

H̄ = 1

H̄ = 2

H̄ = 4

H̄ large

FIG. 2. Dependence of the interaction force f̄t =
ft/[ζ(3)/8πβH3] on (a) the separation H̄ = Hm with fixed
coupling constant g = βqE/m and (b) g with fixed H̄. The
asymptotic large H̄ and g results are shown as the dashed
lines f̄t = 1.

For E = 0, the above equation yields the well known
equilibrium result for the screened thermal Casimir in-
teraction which can be written in the same limit ϵ′ ≪ ϵ
as [14]

ft(H) = − 1

4πβH3

∫ ∞

mH

dKK2 (cothK − 1) (13)

which is rather remarkable viewed in the context of the
formalism adopted here. The charge fluctuations of the
electrolyte obviously produce a repulsive thermal Casimir
interaction which cancels exactly the attractive ther-
mal Casimir interaction between the two bounding di-
electrics. This effect was already pointed out explicitly
for an equilibrium system in [25] and was also discussed
previously by a number of other authors [26, 27]. In the
E = 0 limiting case this attractive interaction is

fvdW(H) = − ζ(3)

8πβH3
. (14)

The residual interaction after this cancellation then turns
out to be attractive and screened.

The integral and sum in Eq. (12) can be evaluated an-
alytically [20] but the result is rather unwieldy and does
not have an intuitive interpretation. However, the large
distance behavior of the interaction, more precisely in the
limit where Hm ≫ 1, can be simply extracted from the
small k and pn components in Eq. (12). This then gives
for large H the particularly simple formula in Eq. (1) for
the dominant large distance component of ft(H), which
is exact up to terms which decay as exp(−2mH). We em-
phasize that the long distance repulsion is only present
for non zero E and is a purely non-equilibrium effect. For

small E the force behaves as ft(H) = ζ(3)
16πβH3

β2E2q2

m2 . On
the other hand, for strong electric field driving as E → ∞
in the same limit of ϵ′ ≪ ϵ, we find

ft(H)=
ζ(3)

8πβH3
− 2

4πβH3

∫ ∞

mH√
2

dKK2(cothK − 1) . (15)

The first term is a repulsive thermal Casimir force of ex-
actly the same absolute magnitude as the equilibrium at-
traction between two dielectrics with no intervening elec-
trolyte. This result can be understood as a correlation
decoupling between the cations and anions due to the
strong external electric field [20], indicated by Eq. (8b).
If only the cationic type was present then the effect of
the electric field would be to drive all the cations at the
same average velocity v = βDqE. In the rest frame of the
cations the system would then be in an effective equilib-
rium. Charge fluctuations in this equilibrium state would
then generate a repulsive thermal Casimir interaction as
given by Eq. (15). However, the same argument is equally
valid for the anions that move with velocity v = −βDqE.
The crucial point is that due to the external electrostatic
field driving the dynamics of the cations and anions be-
comes decoupled in the limit of E → ∞, and so they both
generate a repulsive force of the form in Eq. (15), sub-
tracting off the attractive thermal Casimir interaction of
the dielectrics then giving the net repulsive force Eq. (15).
Notice that the E dependence in the decouplimg effect
occurs via a coupling constant g = βEq/m which can
be written as g = v/v∗, where v∗ = Dm is an intrinsic
velocity scale for the non-driven electrolyte system, cor-
responding exactly to the same non-equilibrium parame-
ter found in Ref. [5] for the Casimir interaction between
two plates containing Brownian electrolytes, where one
is driven by an electric field.

The second term in Eq. (15), which again exhibits a
form of the screened thermal Casimir force, is also con-
sistent with the above interpretation in terms of the cor-
relation decoupling [20]. In fact the inverse screening
length of m/

√
2 indicates that the ions of either type

are screening independently. Since in the rest frame of
the anions/cations they are in an effective equilibrium at
half the total density (see above), the Casimir interaction
is exactly twice (explicit factor 2 in the second term of
Eq. (15)) the screened Casimir force at m/

√
2 screening

length, giving the strong electric field driving limiting law
a consistent intuitive interpretation.

One can express the full interaction ft at arbitrary sep-
aration H and external electric field strength E in terms
of integrals which need to be evaluated numerically. In
Fig. (2) we have shown ft as functions of H̄ = Hm (i.e.
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with H measured in units of the Debye length) and g,
where ft are normalized by the absolute value of van der
Waals attraction in Eq. (14). In Fig. (2a) we see the
behavior of ft at fixed values of g as H̄ is varied. The
lowest curve corresponds to g = 0 the screened thermal
Casimir force given in Eq. (13) which is always attrac-
tive. The cases g = 1, 10 and g → ∞ are also shown,
at short distances all these forces are attractive but on
increasing H̄ they become repulsive, the crossover value
of H̄ from attraction to repulsion decreases on increasing
g. The large g limits agree with the asymptotic result
Eq. (15). In Fig (2b) we show ft at fixed values of H̄ as
a function of g. At all separations increasing g increases
the repulsive component of the force, at short distances
the force remains net attractive but at large distances
it eventually becomes net repulsive. The large H̄ limits
agree with the asymptotic result Eq. (1). ft saturates to
the repulsion ζ(3)/(8πβH3) at either large separation H
or large coupling g.

Conclusions– Using non-equilibrium SDFT for an elec-
trolyte confined between two dielectrics in an external
driving electric field, we first of all recover the well known
result for the screened thermal Casimir interaction from
a purely dynamical approach. For asymptotically large
separations we find a quadratic scaling of the repulsive
Casimir interaction for small electric fields, and show
that for large electric field it saturates. The exponen-
tially screened terms correspond to the standard screened
thermal Casimir force with the Debye screening length for
vanishing electric field, and to a Debye screening length
at half the ion density for large electric fields, this effect
being due to decoupled ionic correlations in the presence
of strong external driving. The non-equilibrium effects
predicted here could be tested either in the surface force
apparatus [30] or colloidal probe atomic force microscopy
interaction geometry [31].
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S. Dean, Stresses in non-equilibrium fluids: Exact for-
mulation and coarse-grained theory, J. Chem. Phys. 148,
084503 (2018).
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