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Quantum algorithms provide a potential strategy for solving computational problems that are
intractable by classical means. Computing the topological invariants of topological matter is one
central problem in research on quantum materials, and a variety of numerical approaches for this
purpose have been developed. However, the complexity of quantum many-body Hamiltonians makes
calculations of topological invariants challenging for interacting systems. Here, we present two quan-
tum circuits for calculating Chern numbers of two-dimensional quantum matter on quantum com-
puters. Both circuits combine a gate-based adiabatic time-evolution over the discretized Brillouin
zone with particular phase estimation techniques. The first algorithm uses many qubits, and we an-
alyze it using a tensor-network simulator of quantum circuits. The second circuit uses fewer qubits,
and we implement it experimentally on a quantum computer based on superconducting qubits. Our
results establish a method for computing topological invariants with quantum circuits, taking a step
towards characterizing interacting topological quantum matter using quantum computers.

I. INTRODUCTION

Classifying topological phases of matter is a central
problem in modern condensed matter physics.1–6 In re-
cent years, it has been realized that topological matter
harbors a range of exotic phenomena, including the exis-
tence of chiral edge states7 and helical modes,8 as well as
fractional excitations and Majorana fermions.9 Topologi-
cal phases of matter may be characterized by topological
invariants, such as the Berry phase in one dimension10,11

and the Chern number in two dimensions, Fig. 1(a).12,13

Ultimately, it is expected that certain topological excita-
tions will make it possible to build a topological quantum
computer that will be protected against the errors that
limit current quantum processors.14–17

Computational methods have been successful in pre-
dicting the topological phases of matter that can be
described by single-particle Hamiltonians.18,19 However,
for strongly-correlated topological matter, where interac-
tions may be important, the required computational re-
sources scale exponentially with the system size, making
it hard to predict their topological phase diagram. Vari-
ational eigensolvers implemented on quantum computers
provide one promising strategy to characterize strongly-
correlated quantum matter.20 As such, quantum circuits
for computing topological invariants of quantum matter
have become a vibrant area of research.21–34

In this work, we present two quantum circuits for cal-
culating the Chern number of two-dimensional quantum
matter.21,24 The first circuit uses the quantum phase es-
timation algorithm to extract the Chern number from
the winding of the Wannier center across the unit cell.
This circuit typically requires many qubits, and we ana-
lyze it using a tensor-network simulator of quantum cir-
cuits. The second circuit exploits that the Chern number
can be calculated by summing up the local Berry fluxes
in momentum space, which can be determined using a
Hadamard test algorithm. This circuit only requires a

FIG. 1. Quantum computations of topological invariants.
(a) Two-dimensional quantum matter can be characterized
by the Chern number C. A non-zero Chern number implies
that edge states exist as indicated by a red line. (b,c) A quan-
tum circuit can be used to calculate the Berry flux and the
Chern number. The two panels show a comparison between
exact results for the Berry flux in the extended Brillouin zone
and actual calculations on the quantum computer Helmi.

single auxiliary qubit, and we implement it using the
quantum computer Helmi.35 As seen in Fig. 1(b,c), we
find good agreement between our quantum computations
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FIG. 2. Quantum circuits for calculating Berry phases and fluxes. (a) The operator Uinit(k) initializes the lowest qubit followed
by consecutive applications of the time-evolution operators, U = U(T, 0) and Ū = Ū(T, 0), defined in connection with Eq. (6).
The first three qubits are used to read out the Berry phase with the quantum phase estimation algorithm. Hadamard gates are
denoted by H, while P (φ) are phase-shift gates. The inverse quantum Fourier transform is denoted as QFT−1. (b) Quantum
circuit with two qubits for reading out the Berry fluxes using a Hadamard test. Here, the adiabatic time-evolution operators
only have to be applied once. The S-gate determines if the Berry flux should be determined using a sine or cosine function.

and exact results for the Berry flux. As such, we show
how quantum circuits make it possible to determine topo-
logical invariants of quantum matter, providing a promis-
ing starting point for characterizing strongly-correlated
quantum matter using quantum computers.

The rest of this paper is organized as follows. In
Sec. II, we introduce the two quantum circuits that we
use to compute the Berry phase and the Chern numbers.
We also describe the quantum computer and the tensor-
network simulator of quantum circuits that we use for
our calculations. In Sec. III, we present our results for
the topological classification of the Qi-Wu-Zhang (QWZ)
model and the Haldane model. Finally, in Sec. IV, we
present our conclusions together with a brief outlook on
possible avenues for future developments.

II. METHODS

A. Berry phase calculations

We first show how the Berry phase emerges from a
Bloch Hamiltonian H(k) that depends on the momen-
tum k. For each momentum, the Hamiltonian has a
complete set of eigenstates denoted by {|n(k)⟩} with

H(k) |n(k)⟩ = En(k) |n(k)⟩ . (1)

We now initialize the system in the eigenstate |n(k)⟩ and
let it evolve while changing the momentum in a closed
loop from its initial value k(t = 0) = k to the final value
k(t = T ) = k. Moreover, we change the Hamiltonian
slowly enough that the system remains in its instanta-
neous eigenstate |n(k(t))⟩ at all times, up to an overall

phase factor. We can therefore write

U(T, 0) |n(k)⟩ = ei(ΘB−ΘD) |n(k)⟩ , (2)

where

U(T, 0) = T {e−i
∫ T
0

dtH(k(t))} (3)

is the time-evolution operator. According to the adia-
batic theorem, the total phase that is picked up is given
by the difference between the Berry phase,

ΘB = i

∫ T

0

dt⟨n(k(t))|∂t|n(k(t))⟩, (4)

and the dynamical phase,

ΘD =

∫ T

0

dtEn(k(t)). (5)

If we condition U(T, 0) on an auxiliary qubit, the overall
phase ΘB−ΘD can be measured using a Hadamard test36

or the quantum phase estimation algorithm.37,38

In the following, we wish to determine the Berry
phase ΘB only. To this end, we let the system evolve
through the same closed loop in momentum space one
more time. However, we now let the system evolve
backwards in time and denote the corresponding time-
evolution operator by Ū(T, 0). It is defined as in Eq. (3),
however, with the opposite sign in the exponent. One
may equivalently think of this unitary operator as prop-
agating the system forward in time, but with the oppo-
site sign of the Hamiltonian. We then easily see that
the dynamical phase in Eq. (5) changes sign, since the
eigenvalues change sign, while the Berry phase remains
the same, since the eigenvectors are unchanged. After
having traversed the closed loop twice, we therefore find

Ū(T, 0)U(T, 0) |n(k)⟩ = ei2ΘB |n(k)⟩ , (6)
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which allows us to determine the Berry phase only.
Figure 2 shows the two quantum circuits for determin-

ing the Berry phase. The first circuit extracts the Berry
phase using a quantum phase estimation algorithm. Typ-
ically, this circuit requires many qubits, so in the follow-
ing we only simulate it using the tensor-network simula-
tor that we describe below. The second circuit instead
uses a Hadamard test to extract the Berry phase. This
circuit requires fewer qubits, and we can implement it
experimentally on a current quantum computer. In both
circuits, we realize the time-evolution operators by a se-
quence of small time steps,21 such that

U(T, 0) ≃
N∏
j=1

e−iH(k(j∆t))∆t, (7)

where N is the number of time steps of length ∆t with
N∆t = T , with an equivalent expression for Ū(T, 0).
To check the output of the quantum circuits, we can

also calculate the exact values of the Berry phase us-
ing the conventional Wilson-loop algorithm.39–44 Thus,
we discretize a closed loop in momentum space as
{k1,k2, ...,kN ,k1}, assuming a non-degenerate ground
state, and the Berry phase then reads

ΘB = arg [Mk1,k2
Mk2,k3

...MkN ,k1
] , (8)

where we have defined the overlaps of eigenstates as

Mkα,kβ
= ⟨n(kα)|n(kβ)⟩ . (9)

B. Chern number calculations

In the following, we use the quantum circuits from
above to compute the Chern number of two-dimensional
systems. For the circuit in Fig. 2(a), we use the fact
that the Berry phase directly yields the positions of the
hybrid Wannier centers, defined below, and we can then
determine the Chern number directly from their winding
across the unit cell.39–44 For the circuit in Fig. 2(b), we
extract the Chern number from a direct calculation of
the Berry flux in momentum space.7 For the circuit in
Fig. 2(a), we need the quantum phase estimation algo-
rithm to accurately determine the Berry phase, which is
sizeable. By contrast, the circuit in Fig. 2(b) only relies
on the extraction of small Berry phases in momentum
space, and that can be done using a Hadamard test.

For the circuit in Fig. 2(a), we first show how the
Chern number can be extracted from the winding num-
ber of a hybrid Wannier function. For a set Bloch func-
tions |n(k)⟩, the Wannier center is defined as

RW = ⟨wn(0)|R |wn(0)⟩ (10)

in terms of the Wannier functions

|wn(R)⟩ = 1

2π

∫
BZ

d2k eik·R |n(k)⟩ (11)

evaluated at R = 0. We can also define hybrid Wannier
functions by keeping one of the momenta fixed and in-
tegrating over the other momentum. The center of the
hybrid Wannier function in the x-coordinate as a func-
tion of ky is then given by

XW (ky) = i

∫ π

−π

dkx ⟨n(k)|∂kx
|n(k)⟩ /2π. (12)

By comparing this expression with Eq. (4), we see
that the Wannier center is equal to the Berry phase,
XW (ky) = ΘB(ky), through a change of variables. Thus,
the hybrid Wannier center can be obtained from the
momentum-dependent Berry phase ΘB(ky) by perform-
ing the adiabatic evolution over kx from −π to π. By
counting the number of times the center XW winds
around the unit cell, we find the Chern number.39–44

For the circuit in Fig. 2(b), we calculate the Chern
number directly by integrating over the Berry flux. The
Chern number is defined as the integral

C =
1

2π

∫
BZ

d2kΩ(k), (13)

where the Berry curvature,

Ω(k) = ∂kx
Aky

− ∂ky
Akx

, (14)

is defined as the curl of the Berry connection

A = i⟨n(k)|∇k|n(k)⟩. (15)

To calculate the Chern number, we decompose the
Brillouin zone into N ×N plaquettes of size (∆k)2, such
that ∆k = 2π/N . The Chern number is then

C ≃ 1

2π

N∑
i,j=1

Ωij , (16)

where Ωij is the Berry flux through the plaquette at po-
sition (i, j) in the Brillouin zone. This flux can be com-
puted as the Berry phase accumulated during an adia-
batic evolution around the plaquette18 given by the loop

(kx, ky) → (kx +∆k, ky) → (kx +∆k, ky +∆k)

→ (kx, ky +∆k) → (kx, ky).
(17)

Repeating this procedure for every plaquette and sum-
ming up the resulting Berry fluxes, we then find the
Chern number according to Eq. (16). For small plaque-
ttes, the associated Berry flux is small enough, typically
below 10−2, that we can apply the Hadamard test algo-
rithm to read out the Berry phase at the end of each adi-
abatic evolution. For this approach, the preparation of
the eigenstate |n(k)⟩ is only required once per plaquette.
For our calculations, we prepare the initial state |n(k)⟩
using the similarity transformation Uinit(k) that diago-
nalizes the Hamiltonian. By contrast, more complicated
systems might require a ground-state preparation based
on a variational quantum eigensolver for instance.45
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FIG. 3. Wannier centers of the QWZ model. Results are shown for different values of the on-site potential, u = −3,−1, 1, 3,
corresponding to different topological phases. (a) Exact calculations of the Wannier centers XW together with the Chern
numbers that are extracted from the winding across the Brillouin zone. (b) Tensor-network simulation of the quantum circuit
in Fig. 2(a) with a maximum bond dimension of χ = 4. (c) Similar simulations with a maximum bond dimension of χ = 60.

C. Quantum computations and tensor-network
simulations

We implement our quantum circuit calculations on the
Helmi quantum computer.35 Helmi is a 5-qubit quantum
computer based on superconducting qubits, which are
connected in a star-shaped topology. Its native quantum
gates are the controlled-Z gate and the one-qubit phased
rotation gate around the x-axis, and it can be steered
with standard Qiskit instructions. Helmi’s T1 and T2

times are 35.7 µs and 17.4 µs with a one- and two-qubit
native gate application time of 120 ns, allowing for a
circuit depth of about 170 native gates before qubit de-
coherence becomes an issue. Typical one- and two-qubit
gate fidelities are 99.6 % and 96.1 %, respectively.46 An
important parameter for our circuit implementations is
the optimization level of the transpilation to the quan-
tum processor. Here we always use the highest possible
level, which is level 3. We also perform noisy simulations
of Helmi with the fake backend FakeAdonis().

The circuit in Fig. 2(a) produces large Berry phases,
and we therefore need to use the quantum phase esti-
mation algorithm, instead of a Hadamard test. For this
reason, the circuit requires more qubits, and it cannot be
implemented on the Helmi quantum computer currently.
Instead, we simulate this quantum circuit using matrix
product states, which are a subclass of tensor networks.47

Using matrix product states, a generic quantum state

|Ψ⟩ =
∑
σ

Γs|s⟩ (18)

can be represented by the tensor train

Γs =
∑
s

[A1]
s1
χ1
[A2]

s2
χ1χ2

...[AN ]sNχN−1
, (19)

where {|s⟩} are the computational basis states. The size
of each tensor, Ai, is controlled by the bond dimension
χi. Thus, by adjusting the maximum bond dimension,
an upper bound on the entanglement in a quantum state
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FIG. 4. Berry flux of the QWZ model. The extended Brillouin zone is divided into 15× 15 plaquettes, while the first Brillouin
zone is indicated by a dashed square. From left to right, we show exact results, results from noisy simulations, and results from
Helmi. The rows correspond to different on-site potentials u. These results are used to find the Chern numbers in Fig. 5.
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FIG. 5. Chern number of the QWZ model. The Chern num-
ber is shown as a function of the on-site potential u. Results
from Helmi are compared with exact results and simulations.

can be imposed. As such, we can simulate the generic
loss of entanglement in a quantum computer by reducing
the bond dimension.48–54 Here, our tensor-network sim-
ulations are performed using the ITensors package,55

interfaced to our publicly available quantum circuit sim-
ulation package called Quantunity.56

III. RESULTS

A. Qi-Wu-Zhang model

The Qi-Wu-Zhang (QWZ) model describes a two-
dimensional topological insulator with a non-vanishing
Chern number.57 The bulk Hamiltonian reads

HQWZ(k) = sin(kx)σx + sin(ky)σy

+ [u+ cos(kx) + cos(ky)]σz,
(20)

where the on-site potential u controls the topological
phase of the system. Indeed, the energy spectrum splits
into two bands with gap-closings at u = 2, 0,−2. Be-
tween the gap-closings, one finds non-trivial topological
phases with C = −1 for −2 < u < 0 and C = 1 for
0 < u < 2, and C = 0 otherwise.4

In Fig. 3, we show the hybrid Wannier center of the
QWZ model for different on-site potentials together with
the Chern numbers that we extract. Figure 3(a) shows
the exact results that we obtain using the Wilson-loop
algorithm in Eq. (8). In Figs. 3(b,c), we show results ob-
tained with our tensor-network simulations of the quan-
tum circuit in Fig. 2(a) with a 10-qubit quantum phase
estimation algorithm. We show the probability density
of the hybrid Wannier center P (XW ) obtained from the
quantum phase estimation algorithm,58 using different
bond dimensions in the two panels. In both cases, we
find good agreement with the exact results in Figs. 3(a),

and the Chern number can accurately be extracted from
the winding of the Berry phase across the Brillouin zone.
We find that the results do not depend strongly on the
bond dimension, indicating that the algorithm may not
be very susceptible to the loss of entanglement.
In Fig. 4, we show calculations of the Berry flux us-

ing the quantum circuit in Fig. 2(b). For this circuit,
quantum calculations are performed using Helmi. For
the sake of comparison, we also show exact results from
the Wilson-loop algorithm as well as simulations of Helmi
using the FakeAdonis() backend. To calculate the Berry
flux, we discretize the Brillouin zone into a grid of 15×15
plaquettes. Employing two evolution steps per link,
meaning an adiabatic transformation by 2π/30 degrees
per time-evolution step, we obtain a circuit depth of 6
elementary single-site and 2 two-site gates per plaque-
tte at the transpilation level 3. The results are then
read out with 8192 shots. Figure 4 shows the Berry flux
across the extended Brillouin zone, with the first Bril-
louin zone, [−π, π]× [−π, π], highlighted by the dashed
squares. Exact results are shown in the left column, while
noisy simulations of the quantum circuit are presented in
the middle column. In the right column, we show the
results obtained experimentally with the Helmi quantum
computer. Each row corresponds to different values of
the on-site potential, which determines the topological
phase of the system. Generally, we observe a good agree-
ment between the calculations based on Helmi and both
the exact results and those based on noisy simulations
of Helmi. Importantly, from these calculations, we can
extract the corresponding Chern numbers.
Figure 5 shows the Chern number obtained by inte-

grating the Berry fluxes in Fig. 4 over the unit cell. The
results from Helmi are averaged over two runs, and the
error bars indicate the difference between the largest and
the smallest values. We also show the exact results as
well as results obtained from noisy simulations of Helmi.
The results from Helmi clearly allow us to distinguish
the different topological phases of the system. However,
the results from Helmi and the noisy simulations are of-
ten smaller than the exact Chern number, which is an
integer. However, we see that this issue can be resolved
by increasing the number of measurements for the noisy
simulations. This observation is consistent with the fact
that the Hadamard test is very sensitive to the measure-
ment precision, since the measurement frequencies enter
into an inverse trigonometric function.
To summarize, we find that both circuits in Fig. 2 make

it possible to determine the Chern numbers of the QWZ
model with error margins that generally are small.

B. Haldane model

As our second application, we consider the topological
classification of the Haldane model. The Haldane model
describes a two-dimensional Chern insulator on a honey-
comb lattice. As illustrated in the inset of Fig. 6(a),
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FIG. 6. Topological classification of the Haldane
model. (a) Chern number as a function of the phase with zero
mass. Results obtained from Helmi are compared with the ex-
act results and noisy simulations. (b) Full topological phase
diagram obtained by noisy simulations of Helmi. The dashed
lines indicate the exact phase boundaries given by Eq. (23).

the model involves nearest-neighbor and next-nearest-
neighbor hopping with amplitudes t1 and t2e

iφ, where φ
is a tunable phase. The bulk Hamiltonian reads

H(k) = d(k) · σ, (21)

where the vector σ contains the Pauli matrices. The
three components of the vector d(k) are

dx(k) =t1[cos(k · a1) + cos(k · a2) + 1],

dy(k) =t1[sin(k · a1) + sin(k · a2)],

dz(k) =m+ 2t2 sin(φ)[sin(k · a1)− sin(k · a2)

− sin(k · (a1 − a2))],

(22)

where the last term in dz(k) breaks time-reversal sym-
metry. The unit cell is spanned by the vectors a1 =

(
√
3/2, 1/2) and a2 = (

√
3/2,−1/2), and the topo-

logical phase is controlled by the values of m and φ. In
the following, we focus on the case t1 = t2 = 1, where
the system exhibits two topologically nontrivial phases.
Specifically, the expected Chern numbers are

C = −1, |m| < 3
√
3| sin(φ)|, −π < φ < 0,

C = +1, |m| < 3
√
3| sin(φ)|, 0 < φ < π,

C = 0, otherwise (for m ̸= 0).

(23)

In Fig. 6, we show the topological phase diagram of
the Haldane model computed with the quantum circuit
in Fig. 2(b) using a 15 × 15 grid in the Brillouin zone.
In Fig. 6(a) we show the Chern numbers obtained with
Helmi as a function of the tunable phase and a zero mass.
For the sake of comparison, we also show the exact results
as well as noisy simulations. Also in this case, we observe
a good qualitative agreement between the quantum com-
putations and the exact results. Still, the quantum com-
putations yield results that are somewhat smaller than
the expected integer values of the Chern number. Nev-
ertheless, by rounding off to the closest integer, the re-
sults clearly allow us to distinguish between the topolog-
ically trivial and non-trivial phases. Finally, in Fig. 6(b),
we show the complete topological phase diagram of the
Haldane model obtained with a noisy simulation. Here,
we also observe a good agreement with the exact phase
boundaries given by Eq. (23), shown with dashed lines.

IV. CONCLUSIONS

We have presented quantum computations of Chern
numbers for two-dimensional quantum matter. To this
end, we have described two quantum circuits that are
based on the adiabatic evolution of a quantum state in
momentum space. The first circuit uses the quantum
phase estimation algorithm to determine the Berry phase.
We can thereby extract the winding of the corresponding
Wannier center across the unit cell, which directly yields
the Chern number. This circuit requires many qubits to
reach a high precision, and we have therefore simulated it
using our tensor-network simulator of quantum circuits.
The second circuit, by contrast, relies on calculations of
the Berry flux through a grid of plaquettes in the Bril-
louin zone. The Berry flux associated with each plaquette
is small enough that it can be read out using a Hadamard
test. For this reason, the number of qubits in this cir-
cuit is small enough that it can be implemented on the
quantum computer Helmi. As specific applications, we
have considered the topological classification of the Qi-
Wu-Zhang (QWZ) model and the Haldane model. For
the QWZ model, we made use of both quantum circuits
and found that the first circuit, based on the quantum
phase estimation algorithm, can be implemented with a
modest level of entanglement. With the second circuit,
we found that the topological phases can be correctly
identified using Helmi. The same conclusion was reached
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when calculating the topological phase diagram of the
Haldane model using Helmi. For the second circuit, we
found that it works well with a small number of evolution
steps per link. The quantum circuit is therefore rather
shallow and requires fewer qubits than the first circuit.
Our approach can be generalized to other topological in-
variants and may be applied to other systems such as
Z2 topological insulators or topological semimetals. Ul-
timately, the circuits may be implemented for interacting
many-body Hamiltonians, where the many-body ground
state is obtained via a variational eigensolver. As such,
they provide a way forward towards classifying strongly
interacting quantum matter using quantum computers.
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