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Abstract

We study the fully dynamic maximum matching problem. In this problem, the goal is
to efficiently maintain an approximate maximum matching of a graph that is subject to edge
insertions and deletions. Our focus is particularly on algorithms that maintain the edges of a
(1− ε)-approximate maximum matching for an arbitrarily small constant ε > 0. Until recently,
the fastest known algorithm for this problem required Θ(n) time per update where n is the
number of vertices. This bound was slightly improved to n/(log∗ n)Ω(1) by Assadi, Behnezhad,

Khanna, and Li [STOC’23] and very recently to n/2Ω(
√
logn) by Liu [ArXiv’24]. Whether this

can be improved to n1−Ω(1) remains a major open problem.

In this paper, we present a new algorithm that maintains a (1 − ε)-approximate maximum
matching. The update-time of our algorithm is parametrized based on the density of a certain
class of graphs that we call Ordered Ruzsa-Szemerédi (ORS) graphs, a generalization of the
well-known Ruzsa-Szemerédi graphs. While determining the density of ORS (or RS) remains
a hard problem in combinatorics, we prove that if the existing constructions of ORS graphs
are optimal, then our algorithm runs in n1/2+O(ε) time for any fixed ε > 0 which would be
significantly faster than existing near-linear in n time algorithms.
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1 Introduction

We study dynamic algorithms for the maximum matching problem, a cornerstone of combinatorial
optimization. Given a graph G = (V,E) a matching M ⊆ E is a collection of vertex-disjoint
edges. A maximum matching is a matching of largest possible size in G. We study the maximum
matching problem in fully dynamic graphs. In this problem, the input graph G changes over time
via a sequence of edge insertions and deletions. The goal is to maintain an (approximate) maximum
matching of G at all times, without spending too much time after each update.

Background on Dynamic Matching: The dynamic matching problem has received a lot of
attention over the last two decades [33, 4, 5, 32, 27, 18, 11, 12, 17, 16, 35, 21, 1, 13, 9, 10, 37,
14, 15, 34, 29, 26, 8, 20, 7, 19]. There is a relatively simple algorithm that maintains a (1 − ε)-
approximate maximum matching, for any fixed ε > 0, in just O(n) time per update (see e.g. [27]).
The update-time can be significantly improved if we worsen the approximation. For instance, a
1/2-approximation can be maintained in poly log n time per update [36, 4, 9], or an (almost) 2/3-
approximation can be maintained in O(

√
n) time [12]. Nonetheless, when it comes to algorithms

with approximation ratio better than 2/3, the update-time stays close to n. A slightly sublinear
algorithm was proposed by Assadi, Behnezhad, Khanna, and Li [3] which runs in n/(log∗ n)Ω(1) time
per update and maintains a (1 − o(1))-approximation. In a very recent paper, Liu [30] improved
this to n/2Ω(

√
logn) via a nice connection to algorithms for the online matrix-vector multiplication

(OMv) problem. Despite this progress, the following remains a major open problem:

Open Problem 1. Is it possible to maintain a (1 − ε)-approximte maximum matching in a fully
dynamic graph, for any fixed ε > 0, in n1−Ω(1) update-time?

We note that there is an orthogonal line of work on fully dynamic algorithms that instead of
maintaining the edges of the matching, maintain only its size [7, 20, 19]. For this easier version of
the problem, Bhattacharya, Kiss, and Saranurak [19] positively resolved the open problem above.
However, their algorithm crucially relies on only estimating the size and does not work for the
problem of maintaining the edges of the matching. We refer interested readers to [7] where the
difference between the two versions of the problem is mentioned.

1.1 Our Contributions

Contribution 1: Dynamic Matching. In this paper, we make progress towards Open Problem 1
by presenting a new algorithm whose update time depends on the density of a certain class of graphs
that we call Ordered Ruzsa-Szemerédi (ORS) graphs, a generalization of the well-known Ruzsa-
Szemerédi (RS) graphs.

Let us start by defining RS graphs.

Definition 1 (Ruzsa-Szemerédi Graphs). An n-vertex graph G = (V,E) is an RSn(r, t) graph if its
edge-set E can be decomposed into t edge-disjoint induced matchings each of size r. We use RSn(r)
to denote the maximum t for which RSn(r, t) graphs exists.

Instead of each matching being an induced matching in the whole graph, the edges of an ORS
graph should be decomposed into an ordered list of matchings such that each matching is induced
only with respect to the previous matchings in the ordering. The following formalizes this.
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Definition 2 (Ordered Ruzsa-Szemerédi Graphs). An n-vertex graph G = (V,E) is an ORSn(r, t)
graph if its edge-set E can be decomposed into an ordered list of t edge-disjoint matchings M1, . . . ,Mt

each of size r such that for every i ∈ [t], matching Mi is an induced matching in M1 ∪ . . . ∪Mi.
We use ORSn(r) to denote the maximum t for which ORSn(r, t) graphs exists.

Note that every RSn(r, t) graph is an ORSn(r, t) graph but the reverse is not necessarily true.

Our main result can now be stated as follows:

Theorem 1. Let ε > 0 be fixed. There is a fully dynamic algorithm that maintains the edges of

a (1− ε)-approximate maximum matching in O
(√

n1+ε ·ORSn(Θ(ε2n)) poly(log n)
)
amortized

update-time. The algorithm is randomized but works against adaptive adversaries.

To understand the update-time in Theorem 1, we need to understand the density of ORS graphs
for linear size matchings. Let 0 < c < 1/5 be a constant. Since ORSn(cn) ≥ RSn(cn) as every
RS graph is also an ORS graph with the same parameters, it is natural to first look into the more
well-studied case of RS graphs. In other words, how dense can RS graphs with linear size matchings
be? We note that this question has been of interest to various communities from property testing
[22] to streaming algorithms [25, 3, 2] to additive combinatorics [24]. Despite this, the value of
RSn(cn) remains widely unknown.

The best lower bound on RSn(cn)— i.e., the densest known construction—is that of [22] from
more than two decades ago which shows RSn(cn) ≥ nΩc(1/ log logn) = no(1). This is indeed the densest
known construction of ORS graphs we are aware of too. If this turns out to be the right bound,
Theorem 1 implies a (1 − ε)-approximation in Õ(n1/2+ε) time, an almost quadratic improvement
over prior near-linear in n algorithms of [3, 30]. In fact, we note that so long as ORSn(cn) is
moderately smaller than n (say ORSn(Θ(ε2n))≪ n1−2ε) Theorem 1 implies a truly sublinear in n
update-time algorithm, positively resolving Open Problem 1.

Finally, we note that there is a long body of work on proving conditional lower bounds for
dynamic problems. For instance, the OMv conjecture can be used to prove that maintaining
an exact maximum matching requires near-linear in n update-time [28]. Adapting these lower
bounds to the (1 − ε)-approximate maximum matching problem has remained open since then.
Our Theorem 1 implies that proving such lower bounds either requires a strong lower bound of
near-linear on ORSn(εn), or requires a conjecture that implies this.

Contribution 2: Better Upper Bounds for ORS and RS: Unfortunately there is a huge
gap between existing lower and upper bounds for RSn(cn) (and as a result also for ORSn(cn)). The
best known upper bound on RSn(cn) for linear size matchings follows from the improved triangle-
removal lemma of Fox [23] which implies RSn(cn) ≤ n/ log(ℓ) for ℓ = O(log(1/c)) where log(x) is the
iterated log function. We note that this result is implicit in [23] and was mentioned in the paper
of [24]. To our knowledge, this upper bound does not carry over to ORS graphs (we briefly discuss
this at the beginning of Section 5). Our second result is a similar upper bound for ORS albeit with
a worse dependence on constant c.

Theorem 2. For any c > 0, it holds that ORSn(cn) = O(n/ log(ℓ) n) for some ℓ = poly(1/c).

Since every RS graph is also an ORS graph with the same parameters, Theorem 2 immediately
implies the same upper bound for RSn(cn). Note that this implication is not a new result, but the
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proof is very different from the abovementioned upper bound.

1.2 Perspective: ORS vs RS

Summarizing the above-mentioned bounds, we have

nΩc(1/ log logn)
[22]

≤ RSn(cn) ≤ ORSn(cn)
Theorem 2
≤ O(n/ log(poly(1/c)) n).

While the value of RSn(cn) remains widely unknown, one might argue that RSn(cn) = no(1)

is a plausible outcome, given that the construction of [22] has resisted any improvements for over
two decades despite significant interest. But should we believe that ORSn(cn) is also small in this
case? Unfortunately the authors could not prove any formal relation between the densities of RS
and ORS graphs beyond the upper bound of Theorem 2. In particular, we believe the following is
an extremely interesting question for future work:

Open Problem 2. Does it hold that ORSn(cn) = poly(RSn(O(cn)))?

In the event that the answer to Open Problem 2 is positive and RSn(cn) = no(1) for any fixed
c > 0, we also get that ORSn(cn) = no(1). Therefore Theorem 1 would imply an n1/2+O(ε) time
algorithm in this case.

In the event that the answer to Open Problem 2 is negative, one might wonder whether we
can improve Theorem 1 by parametrizing it based on RS instead of ORS. Put differently, suppose
that ORSn(cn) = n1−o(1) and RSn(cn) = no(1). Can we somehow utilize the sparsity of RS graphs
(instead of ORS graphs) in this case to improve existing dynamic matching algorithms? We start
Section 2 by providing an input construction which informally shows ORS is the right parameter
for Theorem 1 even if RS is much sparser.

2 Our Techniques

Before describing the intuition behind our algorithm of Theorem 1, let us start with a sequence of
updates that, in a sense, explains why existence of dense ORS graphs would make it challenging to
maintain a (1 − ε)-approximate maximum matching in a fully dynamic setting. We then proceed
to show that this input construction is essentially the only instance that we do not know how to
solve fast.

An input construction based on ORS graphs: Consider a fully dynamic input graph G =
(V,E) that is composed of two types of vertices: the ORS vertices VORS ⊆ V which is a subset of n
vertices, and the singleton vertices VS which is a subset of (1− 2ε)n vertices. We start by inserting
an ORS graph in the induced subgraph G[VORS ]. Namely, take an ORSn(εn, t) graph on n vertices.
We make the induced subgraph G[VORS ] isomorphic to this ORS graph by inserting its edges one
by one to G[VORS ]. Let M1, . . . ,Mt be the ordered induced matchings of G[VORS ] as defined in
Definition 2. Then the sequence of updates is as follows:

• For i = t to 1:

– Delete all existing edges of VS .
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– If i 6= t, delete the edges of Mi+1.

– Let Mi be the current induced matching in G[VORS ].

– Insert a perfect matching between the (1− 2ε)n vertices of VORS left unmatched by Mi

and the (1− 2ε)n vertices in VS .

Take the graph after the iteration i of the for loop. Note that there is a perfect matching
in G: match all singleton vertices to the VORS vertices not matched by Mi, and match the rest
of the vertices in VORS through Mi. Importantly, since all matchings Mi+1, . . . ,Mt have already
been deleted from the graph, Mi must be an induced matching of the remaining graph G (the
other matchings M1, . . . ,Mi−1 cannot have any edge with both endpoints matched by Mi due
to Definition 2). Because of this, it can be confirmed that any (1 − ε/2)-approximate maximum
matching of G must include at least half of the edges of Mi. The naive algorithm for finding an
edge of Mi for some vertex v would scan the neighbors of v, which could take Ω(t) time per vertex
(as this is the degrees in the ORS graph) and thus nt time in total after every iteration of the
loop consisting of n updates. Hence, the amortized update-time of this algorithm must be at least
Ω(nt/n) = Ω(ORSn(εn)).

The input construction above implies that to maintain a (1 − ε)-approximation of maximum
matching, either we have to find a way to identify induced matchings of an ORS graph fast (without
scanning the neighbors of each vertex) or have to parameterize our algorithm’s update-time by t,
the density of ORS graphs.

Overview of our algorithm for Theorem 1: Let us for this informal overview of our algorithm
assume that the maximum matching size is at least Ω(n). Having this assumption allows us to find
the matching once, do nothing for the next εn updates, and then repeat without hurting the size
of the approximate matching that we find by more than a 1 +O(ε) factor.

As it is standard by now, to find a (1 − ε)-approximate matching it suffices to design an
algorithm that given a subset U ⊆ V , finds a constant approximate maximum matching in G[U ]. If
this algorithm runs in T time, we can find a (1− ε)-approximate maximum matching of the whole
graph also in Oε(T ) time. Amortized over εn updates, this runs in O(T/n) total time for constant
ε > 0. However, just like the challenging example discussed above, in case the maximum matching
in the induced subgraph G[U ] is an induced matching, we do not know how to find a constant
fraction of its edges without spending Ω(n2) time. However, if we manage to bound the total
number of such hard subsets U for which we spend a lot of time, then we can bound the update-
time of our algorithm. Intuitively, we would like to guarantee that if our algorithm takes Ω(n2)
time to solve an instance G[U ], then the maximum matching in G[U ] must be an induced matching
of the graph G, and charge these heavy computations to ORS which provides an upper bound on
the number of edge-disjoint such induced matchings. However, there are two main problems: (1)
it may be that the maximum matching in G[U ] is not an induced matching of the graph, yet it
is sparse enough that it is hard to find; (2) even if G[U ] forms an induced matching, we have to
ensure that its edges do not belong to previous induced matchings that we have charged, as ORS
only bounds the number of edge-disjoint ordered induced matchings.

For the first problem discussed above, we present an algorithm that runs in (essentially) O(n2/d)
time to find the maximum matching in G[U ]. Here d is a parameter that depends on the structure of
G[U ] that measures how easy it is to find an approximate maximum matching of G[U ]. Intuitively, if
the average degree within G[U ] is d, we can random sample pairs of vertices to add to the matching.
If each vertex is adjacent to d others, we only need O(n/d) samples to match it and the algorithm
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runs in O(n2/d) time. Of course, this can take up to Ω(n2) time if G[U ] is sparse – e.g. when it is
an induced matching. Then instead of charging a matching in G[U ] that is an induced matching,
we charge this matching of average degree at most d inside. Let M1, . . . ,Mt be the matchings that
we charge and let di be the average degree of the i-th matching and suppose that these matchings
are edge-disjoint. We show in our update-time analysis that

∑t
i=1 1/di can be at most ORS(ε2n),

and therefore the total time spent by our algorithm can be upper bounded by n2ORS(ε2n).

For the second problem, or in other words, to ensure that the matchings that we charge are
edge-disjoint, we maintain a set S and add all edges of any matching that we charge to this set.
Thereafter, before solving G[U ], we first go over the edges stored in this set and see whether they
can be used to find a large matching in G[U ]. If they do, we do not run the random sampling
algorithm discussed above. If not, the matching that we find must be edge-disjoint. We have to be
careful that we do not make S too dense though as we spend linear time in the size of S. Our final
algorithm resets S after a certain number of updates.

Overview of our upper bound in Theorem 2: To obtain our upper bound of Theorem 2,
we partition the matchings into two subsets, M and M′, based on their order in the sequence.
A key insight is the following: take a vertex v and suppose that it is matched by some matching
M in M′. If we remove all neighbors of vertex v in M, then it can be proved that no vertex
of matching M is removed because otherwise there must be an edge from M that matches two
vertices of M , violating the inducedness property. Intuitively, this shows that if vertices have large
degrees inM, we can remove a relatively large number of vertices without hurting the matchings
that include this vertex. To derive the upper bound, we carefully select a set of pivots based on the
degrees inM, and remove the neighbors of these pivots. We show that this reduces the number of
vertices significantly enough, and keeps the size of a small (but sufficiently many) of the matchings
unchanged. If the initial number of matchings is so large, we show that we can iteratively applying
this procedure. Because the size of matchings do not change but the number of vertices drops,
we get that the process should eventually stop. This implies the upper bound on the number of
matchings in the starting graph.

3 Preliminaries

A fully dynamic graph G = (V,E) is a graph defined on a fixed vertex set V that is subject to edge
insertions and deletions. We assume that each edge update is issued by an adaptive adversary that
can see our algorithm’s previous outputs and can accordingly decide on the next update. We say
an algorithm has amortized update-time U if the total time spent after T updates is U ·T for some
sufficiently large T = poly(n).

Tools from prior work: Here we list some of the tools we use from prior work in our result.

The following proposition, implied by the streaming algorithm of McGregor [31] (see also [19]
for its dynamic adaptation), shows that to find a (1− ε)-approximate matching, it suffices to solve
a certain induced matching problem a constant number of times.

Proposition 3 ([31]). Let G = (V,E) be any (possibly non-bipartite) n-vertex graph. Suppose that
for some parameters ε ∈ (0, 1) we have an algorithm A that provided any vertex subset U ⊆ V with
µ(G[U ]) ≥ εn, finds a matching of size at least εµ(G[U ]) in G[U ]. Then there is an algorithm that
finds a matching of size at least µ(G) − O(εn) in G by making Õε(1) adaptive calls to A where
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preparing the subset U for each call can be done in Õε(n) time.

We also use the following sublinear-time algorithm of Behnezhad [6] for estimating the size of
maximum matching. We note that even though we use this algorithm, we maintain the edges of
the maximum matching explicitly.

Proposition 4 ([6]). Let G = (V,E) be any (possibly non-bipartite) n-vertex graph. For any ε > 0,
there is an algorithm that makes Õ(n poly(1/ε)) adjacency matrix queries to G and provides an
estimate µ̃ of the size of maximum matching µ(G) in G such that with probability 1 − 1/poly(n),
it holds that

0.5µ(G) − εn ≤ µ̃ ≤ µ(G).

Finally, we use the following vertex sparsification idea which was adapted to the dynmaic setting
in the work of Kiss [29].

Definition 5. Let V be a vertex set and denote k ≤ |V |/2 be a parameter. A set P = {P1, . . . , Pℓ}
of ℓ partitionings of V is a (ℓ, k, ε)-vertex sparsifier if the following hold:

1. Each partitioning Pi partitions V into O(k/ε2) subsets.

2. For each subset S ⊆ V of size 2k, there is at least one partitioning Pi such that there are at
least (1− ε)|S| subsets in Pi that have exactly one vertex of S.

Proposition 6 ([29]). Let P include ℓ = ⌈512 log n/ε2⌉ random partitionings P1, . . . , Pℓ of V , where
each Pi partitions V into at least 8k/ε subsets randomly. Then, with probability 1− 1/poly(n), P
is a (ℓ, k, ε)-vertex sparsifier of V .

The notion of graph contraction here refers to the process of simplifying the graph based on
the partitionings provided by the vertex sparsifiers. Each set of partitions effectively represents a
contracted version of the graph, where the vertices within the same subset can be considered as a
single entity for the purpose of matching. This contraction not only reduces the overall size of the
graph but also retains the essential structural properties that influence the size and composition of
maximum matchings.

Definition 7. Denote M be a given matching with 2r vertices in graph G. Let us assume the dv
for a vertex v in the matching is the number of neighbors of v in V (M). we define average degree
of M as

∑
v∈V (M) dv/2r.

4 Dynamic Approximate Matching

We present our dynamic matching algorithm in this section and prove Theorem 1.

Let us start with an overview of how our proposed algorithm is built. We randomly sample
edges from graph G to find a matching with ε-approximation, which is described in Algorithm 1.
We propose that if we need many samples to find this matching then the average degree of this
matching is small in the remaining edges (what we mean by the remaining edges is that, when we
output a matching, the adversary can remove its edges from the graph, while searching for a new
matching we should discard the edges found before), resulting in the matching to be induced in
the remaining graph. In this case, we charge the cost of the algorithm to ORS, with characteristics
similar to the matching we found. Otherwise, we will succeed in finding a matching, relatively fast.
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Note that, in this model, we can argue that if the matching size in the graph is µ then the
matching size will not change after ε2n updates. We will find a matching once in ε2n edge updates
to optimize amortized running time. This motivates us to run Algorithm 1 to find a matching after
ε2n updates. To keep track of the large matchings we already found we introduce Algorithm 2.
This algorithm simplifies our problem where the matching size does not change. If we maintain
this algorithm for different matching sizes, knowing the approximate matching we will know which
maintained algorithm to look at to find the ε-approximate matching.

To boost our approximation to (1 − ε) we use Proposition 3 to output the subsets of U that
we need to search for the matchings of size εµ. We use the subsets in Algorithm 1 which is a
ε-approximation algorithm.

Note that we provide a multiplicative approximation maximum matching algorithm for the
dynamic model, which leads to the fact that we need to handle the cases where the matching size
is not of order n. This adds some layers to the intuition we stated above.

1. If the matching size is n′ we output a matching after ε2n′ updates. This means we need to
handle matching with similar sizes together, we will have log n partition to keep track of the
matchings outputted by Algorithm 1 of almost the same size simultaneously.

2. To handle the graph with small matchings of O(n′) we need to contract the graph to one
with n′ vertices. We build a contracted graph by creating n′ buckets of O(n/n′) vertices,
the vertices are distributed randomly in buckets. Since we want to preserve the edges of the
maximal matching we need to randomly maintain O(log n) such contractions for log n values
of n′.

3. The fact that the edges of the matching found in the earlier steps of Algorithm 2, could be
removed by the adversary leads us to a definition of the degree of matching that only takes
into account the matchings that we will be finding in the next rounds (we do not care about
the edges removed from the graph in the dynamic steps). This concept leads us to define the
set of matchings named ORS, where every matching M is induced in the set of matchings we
observe after M .

4.1 Random Sampling Algorithm

Here we introduce a sampling algorithm that given a graph G, with a matching of size µ can
output a matching of size εµ. We bound the algorithm running time with the average degree of
the outputted matching. The way the algorithm works is that for each vertex we sample b vertices
and check if the edge is in the graph using the adjacency matrix of the graph. We add the edges
to the matching if none of the endpoints have been used previously. Note that by starting with a
small b for the budget, we ensure to find the edges from dense parts of the graph which is easier
to find. As we go further in the algorithm we make the budget larger to find edges in more sparse
parts of the graph. Now, we state the random sampling algorithm and prove its efficiency.

Lemma 8. Given a graph G = (V,E), vertex subset U ⊆ V , and parameters ε ∈ (0, 1), such that
maximal matching of G[U ] is µ ≥ εn, there is an algorithm that finds a matching M ⊆ G[U ] of
size at least εµ. The algorithm runs in time O(n2+ε/d) where d = |E ∩ V 2(M)|/O(n).

Proof. Let us consider Algorithm 1, first we prove that this algorithm will provide a matching Mc

of size a least εµ/2 by sampling vertices with budget b ∈ [2εc·logn, 2ε(c+1)·logn]. Let us assume there
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Algorithm 1: RandomSamplingAlgorithm(G[U ], ε, µ)

Parameters: ε ∈ (0, 1].
1 M ← ∅.
2 M1, ...,M1/(2ε) ← ∅.
3 S ← ∅
4 b← 1.
5 c = 0.
6 while |M | < εµ do
7 if log b > εc · log n then
8 Mc+1 ←M .
9 M ← ∅.

10 c← c+ 1.

11 for vertex v ∈ U \ V (M) in random order do
12 S ← Sample b vertices in U .
13 if ∃u ∈ S such that u ∈ U and u /∈ V (M) and u is a neighbor of v then
14 M ← (v, u) ∪M .

15 b← 2b

16 return M

are no such intervals. This means that for any integer c ∈ [0, 1/(2ε)], running the algorithm for
b in the interval [2εc·logn, 2ε(c+1)·logn] outputs a matching with less than εµ edges. Note that for
each edge e in M1 ∪ · · · ∪M1/(2ε), at most 2 edges in the maximum matching of G[U ] have common
vertices with e. Summing over all the 1/(2ε) intervals we have:

2

1/(2ε)∑

c=1

|Mi| < 2 · 1
2ε
· εµ/2 = µ/2.

The fact that we could not find a matching of size µ/2 is a contradiction with the lemma
statement ensuring that the size of maximum matching is at least µ/2. Note that by exhausting
the algorithm with budget of n, we will go through all the edges and output a maximal matching.
Note that any maximal matching in this graph should be of size at least µ/2.Therefore, we have at
least the size of one of the matchings in{M1, ...,M1/(2ε)} is εµ/2.

Now, we prove the statement of the algorithm. We assume that this algorithm terminates at
b such that 2ε(c−1)·logn ≤ b < 2εc·logn, for a constant δ, we spend n[b + b/2 + .. + 1] < δnb ≤
δn · 2εc logn < δn1+εc time to find the matching Mc such that |Mc| ≥ εµ/2. Note that if it takes
at most n2+ε/d time to find the matching of size εµ/2, then we have n2+ε/d < δn1+εc therefore,

d > n1+ε−εc

δ ≥ n1+ε

δ .

For budget b, we sample vertices for all the vertices, we argue that for the vertices that are not
in M , and after sampling b vertices we could not find their neighbor then the degree of vertices
out of the matching is less than O(n/b). Assuming that the degree of vertex v is dv = c · nb , with
probability (1 − dv

n )b = (1 − c · 1b )b ≈ (1/e)c we sampled a neighbor. Therefore in this case with
a constant probability we already matched v. This implies that if we find the first edge of this

8



matching at a budget of 2b, we get that the degree of any vertex out of the matching we found
until this point is less than c · nb for any constant c. Picking c small enough, the total sum of the

degree of the matching is at most εµc · nb < εµn(1−ε(c−1)) = O(nd).

4.2 The Overall Algorithm via Certificates and Caching Them

In the next step, we aim to use Algorithm 1 efficiently to output an approximate matching in the
dynamic model. First, we prove that given the matching size is equal to O(n′), after ε2n′ updates
the matching size does not change substantially. This means we can output a matching after each
εn′ update and get an ε-approximate matching.

Observation 9. Given a graph G = (V,E) with n vertices, if the maximum matching size is O(µ)
and we provide an ε-approximate matching M ′, after ε2µ updates in the dynamic model, M ′ or one
of its subsets remains an ε-approximate matching for the updated graph.

Proof. We assume that in a graph G the maximal matching size is cµ where c is a constant, after ε2µ
updates in the graph the size of the maximal matching is between (c− ε2)µ, (c+ ε2)µ. This implies
that if we have an algorithm that outputs an εcµ matching, after ε2µ updates, the ε approximate
matching is preserved. This is because we lose at most ε2 fraction of the outputted matching.

Note that to use Algorithm 1 we need to know about the existence of a matching µ, the algorithm
described in Proposition 4, given a graph with n vertices, outputs if there is matching of size O(n).
Using this algorithm alone will not help us with the cases where the matching size is not of order
n. This motivates us to find an algorithm that reduces the number of vertices on the graph while
maintaining the maximum matching size. Proposition 6 will maintain O(log n) contraction on the
graph for an integer k ∈ [1, log n], such that for any matching M with high probability, there is a
contraction preserving a 1− ε approximation of M . After running the reduction on the graph, we
find the contraction that preserves the maximum matching. Let us assume that G′ is the contracted
graph, we run Algorithm 1 on G′ to output the ε approximation matching.

Note that throughout the changes in the dynamic model, both the matching size and the
contracted graph that preserves the maximum matching, change. An edge insertion in G is a
weight addition to an edge in graph G′, and edge deletion is a weight subtraction in G′. In the
following algorithms, when we find a matching in G′, we do not care about the weight of edges, an
edge in G′ exists if its weight is more than 0, otherwise, This edge does not exist in G′.

First, we solve a simplified version of the problem where the matching size does not change
throughout the updates, and a single contracted graph G′ preserves matching edges in the dynamic
model. We prove that there exists an efficient algorithm maintaining a (1 − ε)-approximation
matching in the dynamic model.

We introduce Algorithm 2. We assume that the updates in this algorithm are in the case that
the matching size in O(n′), and G′ preserves the maximum matching of the graph. This algorithm
works in phases, each phase represents the number of updates we want to use the matchings we
found in the last updates.

First, we prove that this algorithm obtains a ε-approximation matching.

Lemma 10. Given a contracted graph G′ with n′ vertices that the maximum matching size in G′

is O(n′) in t updates, Algorithm 2 maintains an (1− ε)-approximate maximum matching for G′ in
the dynamic model.
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Algorithm 2: Algorithm for Dynamic Model in Contracted Graphs

Parameters: ε ∈ (0, 1], t the threshold of the algorithm.
1 G′ ← the contracted graph.
2 S1 ← ∅.
3 S2 ← ∅.
4 while edge updates < t do
5 if There are ε2n′new updates then
6 S1 ← S1∪ Insertions.
7 M ← ∅.
8 while Proposition 3 outputs a subset U that has a matching of size at least µ = εn′

do
9 M ′ ← a maximal matching found by a greedy algorithm on edges of S1 ∪ S2 in

U . For each edge in this set, we check if it exists in the dynamic graph.
10 if |M ′| > εµ then
11 M ←M ′.

12 else
13 MU ← RandomSamplingAlgorithm(G[U \ V (M ′)], ε

1−2ε , (1− 2ε)µ).

14 M ←M ∪MU .

15 S2 ← S2 ∪MU .
16 Output M .

Proof. Note that we proved in Observation 9 that if the maximal matching size is of order n′, then
we do not need to output a matching in ε2n′ updates.

By Algorithm 2, set S1 contains edge insertions, and set S2 contains all the matchings we found
earlier in the algorithm.

Using Proposition 3, we are given constant subsets of vertices that contain matchings of size
at least εn, we can run Algorithm 1 on these subsets to output a ε-approximate matching in given
subset U , if there are no large enough activated matchings in set S2∪S1. Given that we aim to find
edge-disjoint matchings, we need to find a maximal matching in S2 ∪ S1 and remove its endpoints
from U .

After finding a matching M ′ in S2 ∪ S1 of size εµ, we output this matching; otherwise, we
deactivate all the endpoints in M ′. Note that we are certificated by Proposition 3 to have a
matching of size µ in U . Since for maximal matching M ′ in S1 ∪ S2 we have |M ′| < εµ, then the
maximum matching size in S1 ∪S2 is at most of size 2εµ. This certifies the existence of a matching
of size (1 − 2ε)µ in the rest of U . Now, we run Algorithm 1 on graph U with endpoints of M ′

removed with parameter ε/(1 − 2ε). This implies that we get a matching of size εµ. Since we
deactivate vertices of S2 we only add edge-disjoint matchings to set S2.

Note that any vertex in G′ represents a bucket of vertices of G. By maintaining the number of
vertices between two buckets in G, we can observe whether there is an edge between two vertices
in G′. This is how we can certify if a matching M ′ in S2 is in G′.

We proved that Algorithm 2 outputs a ε-approximate matching MU in each subset of U pre-
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sented by Proposition 3. Note that given MU for each subset U , Proposition 3 finds a (1 − ε)-
approximation matching in G′. This is true by the assumption that the maximum matching size
of G′ is O(n′).

Now that we introduced an algorithm for each contraction, we explore how to build and maintain
each contraction. To partition updates to the contraction graphs that we maintain we need to run
Proposition 4 to approximate the matching size, and then use Proposition 6 to figure out the
contracted graph preserving the maximum matching, which we will do after each ε2n′ updates,
given that the last contracted graph had n′ vertices. We introduce Algorithm 3 that given updates
calculates the matching size and finds a suitable contraction for the graph at each state. For
each update, Algorithm 3 calls Algorithm 2 on all the contractions, however, it only outputs the
matching build by the matching preserving contraction.

We will run O(log2 n) parallel versions of Algorithm 2 each for a maintained contracted graphs
that we maintain. More formally we introduce Algorithm 3:

Algorithm 3: Main

Parameters: ε ∈ (0, 1].
1 k ← log n.

2 n1, n2, . . . , nk ← 2, 4, . . . , 2k.
3 t← threshold of algorithm Algorithm 2.
4 (C)← set of maintained O(log n) contracted graphs for each nc ∈ {n1, . . . , nk} using

Proposition 6.
5 P ← set of maintained parallel edges between two contracted sets of vertices after each

update.
6 Run a new phase Algorithm 2 for each contraction after t updates.
7 For each contraction c with cn vertices, run Proposition 4 on c after ε2nc updates to see

whether c preserves the maximum matching in G.
8 Find the contraction c preserving the largest matching of G and use the output of

Algorithm 2 for the corresponding contraction, to output an (1− ε)-approximate
matching.

Now, we prove that this algorithm outputs a (1− ε)-approximation matching.

Lemma 11. Given graph G with n vertices, Algorithm 3 maintains an (1− ε)-approximate maxi-
mum matching for G in the dynamic model.

Proof. In this algorithm, we maintain O(log2 n) contraction of graph G, where G is the updated
graph in the current batch of t updates. If the maximum matching size of G is µ, by Proposition 6,
there exists a contraction c with nc vertices that preserves the maximum matching with 1 − δ
factors and µ = O(nc). Denote δ a parameter sufficiently smaller than ε. We call c a preserving
contraction of G. This means that by Lemma 10, Algorithm 2 outputs a (1 − δ)-approximation
matching for G′, that is (1−ε)-approximation matching for G. Note that, by running Proposition 4
on the maintained reduction, we find the preserving contraction of G.This concludes the (1 − ε)-
approximate.
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4.3 Running Time Analysis

Now, we explore the time per update for Algorithm 2.

Lemma 12. If we set the threshold of Algorithm 2 equal to t = n1+ε/2
√

n log n · ORSn(εµ), then
the time spent on single contraction G′ in both Algorithm 2 is O(

√
n1+ε log n · ORSn(εµ)) per each

update, where µ is the maximum matching size in G′.

Proof. Fix a contracted graph G′ = (V ′, E′) with n vertices. We explore the algorithm running
time for this graph.

First, let us determine the time the algorithm spends finding the size of the certificate matching,
µ, after ε2n updates. Note that we run Proposition 4 after each ε2n vertex update, this algorithm
outputs µ, which is a constant approximation of the maximum matching size of the graph. More-
over, this algorithm certifies the existence of a matching of size µ in the graph, the running time
for which is Õ(n poly(1/ε)).

By Proposition 3, after each ε2n update we spend Õε(n) on finding the appropriate subsets of
vertices such as U , including matching of size at least εn.

Now, we calculate the time Algorithm 2 takes going through the set S1 and S2, after ε
2n updates

to find a matching M ′. Note that, after ε2n updates we go over the set S1 ∪ S2 to find an active
matching. We add an active edge to the matching if none of the endpoints was added before it.
The algorithm outputs a maximal matching this way. The total running time per ε2n updates is
|S1|+ |S2|.

Finally, we explore the running time of Algorithm 1. Let us assume that at the end of a phase
of Algorithm 2 we have S2 = {M1 ∪ · · · ∪Ml}, We prove in Lemma 10 that these matchings are
edge-disjoint. Note that the total edge-disjoint matchings in G′ can be more than l matching,
M1, . . . ,Ml are all the matchings we find during the t edge updates. We assume that the total
edge-disjoint matchings in G′ is lt. We label these matchings as M1, . . . ,Ml,Ml+1, . . . ,Mlt . Let us
assume that for i ∈ {1, . . . , l} we denote di the average degree of matching Mi in the edge set of
{Mi ∪ · · · ∪Mlt}. Denoting by M ′ a maximal matching in S1 ∪ S2 found in Algorithm 2, we prove
that if Algorithm 1 in graph G′ \ V (M ′), takes O(n2+ε/d) to output matching Mi then we have
O(d) = di. Note that by Lemma 8 we know that the average degree of matching Mi in G′ \(S1∪S2)
is O(d). Note that, for matching M1, . . . ,Mi−1, either their edges are removed from the graph or we
deactivate the vertices that made a large matching. This implies that no edges from M1, . . . ,Mi−1

remain in the graph. If we assumed that an edge e was still in the graph with both endpoints
not deactivated, we could add this edge to M ′, this is in contradiction with the fact that M ′ is a
maximal matching. This implies that di = O(d). This results in the conclusion that the running
time of Algorithm 1 is less than n2+ε/di.

This definition of matching average degree motivates us to define ORS graphs. Recall that the
ORS graph is a set of matching M1, . . .Ml that each matching is induced in the set of matching
with higher indices. We then upper bound the running time of our algorithm by the size of ORS
graphs according to Lemma 13.

Now, let us compute the total running time per update. Note that since we add a matching of
size εµ to S2 after ε

2n updates, |S2| < |S1|. Let us assume that we add M1, . . .Ml to S2 by running
Algorithm 1. The total running time per update is:
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|S1|
ε2n
· (|S1|+ |S2|+ Õ(n)) + n2+ε ·∑l

i=1 1/di

t
.

Using Lemma 13 we have the running time as:

|S1|
ε2n · (|S1|+ |S2|+ Õ(n)) + n2+ε ·O(ORSn(εµ)) log n

t
.

Now, if we set the threshold as t = n1+ε/2
√
n log n ·ORSn(εµ) we have:

|S2|, |S1| < t = n1+ε/2
√

n log n ·ORSn(εµ),

This is because we could add a matching of size εµ to S2 after ε2n updates, and the total insertions
are less than the total updates. The total running time per update is:

O(
√

n1+ε log n ·ORSn(εµ)).

Lemma 13. Given a set of matching M1, . . . ,Mt with distinct edges, of size at least r in graph G,
for any index i ∈ [1, t] let us define di as the average degree of V (Mi) in M1 ∪ · · · ∪Mi. For any
α ∈ (0, 1), we have

∑t
i=1 1/di = O(ORSn(r(1− α)) · log n).

Proof. Note that the maximum average degree of a matching M is n − 1, and the minimum is 1.
Therefore, if we partition the input matchings into log n = k groups, the average degree of any
matching in each partition is at most within 2 factors of the minimum average degree.

We first prove that if we have t′ matchings M ′
1, . . . ,M

′
t′ a subset of {M1, . . . ,Mt}, and their

average degree as d′1⋆, . . . , d
′
t′ that for any i ∈ [1, t′], 1/d′i is in a 2 factor of mint

′

i=1 1/d
′
i. For any

α ∈ (0, 1), we have
∑t′

i=1 1/d
′
i = O(ORSn(r(1− α))).

To prove this, we first sample some of the matchings and the edges that are not induced in
proper subsets of matchings. We prove there are plenty number of matchings remaining that are
induced within their corresponding set of matchings.

Let us fix a small variable δ < ε, δ, ε ∈ (0, 1). We set H = M ′
1 ∪ ... ∪M ′

t′ .

• Step 1. Let us define xe for any edge e = (u, v) appearing in matching M ′
αj

as follows

∑

i∈{j,j+1,...,t′};u,v∈V 2(Mαi
)

1

d′αi

.

We define E1 = {e|xe > 1/ε} We remove any matching from H with more than 2εr edges in
E1 Let us call the remaining set of matchings H1.

• Step 2. Let us pick a matching M ′
i ∈ H with probability δ

2d′i
. Let us assume that at this step,

we pick the following k matchings M ′
α1
, . . . ,M ′

αk
. we define this subset of the graph as H2.

• Step 3. Now, we prone any matching M ′
i chosen in H1 and has less than (1 − δ)cn edges

induced in (M ′
1 ∪ · · · ∪M ′

i) ∩ (H2). Let us call the remaining graph H3.
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To see that the claim is true, first, we need to prove that in Step 1 we remove at most ε fraction
of the edges in H. Second, we prove that H2 is large enough.

Let us assume that after Step 1 we remove more than εrt of the edges in H from the total rt′

edges. Therefore, we have ∑

e∈E1

xe > rt′.

To compute
∑

e∈H xe, we notice how much a matching M ′
αi

contributes to the total sum. Note that
since the average degree of M ′

αi
in {M ′

α1
, . . . ,M ′

αi
} is at most d′αi

therefore, the total contribution
of matching M ′

αi
is r · d′αi

· 1
d′αi

. In conclusion, the total sum of xe for any edge e ∈ H is at most

∑

i∈{1,...,t′}
d′αi
· r/d′αi

= rt′,

which is a contradiction suggesting that we remove at most εrt′ edges.

Now that we only removed at most ε fraction of the edges, note that H1 contains at least half
of the matchings in H. This is because if more than |H|/2 matchings had more than 2εr edges
removed, then the total number of edges in E1 would be more than εrt′ which is a contradiction.

We aim to prove that H3 contains δ|H1|/2 matchings. Let us fix a matching M ∈ H1. Note
that for any remaining edge e in M , we have xe < 1/ε. Therefore, the probability that e belongs
to another matching is less than δ/2ε since we picked each matching M ′

i with probability δ/2d′i.
This implies that the expected number of edges in E(′) ∩ E(H3) is more than (1− 2ε)(1− δ/2ε)r.
Now, by applying Markov’s inequality to the random variable r(1− 2ε)− |E(M)∩E(H3)|, here we
assume that the maximum number of edges is r(1− 2ε), and we get the following.

Pr[r(1−2ε)−|E(M)∩E(H3)| ≥ (1−2ε)(δ/ε)r|M ∈ H2] ≤
E[r(1− 2ε) − |E(M) ∩ E(H3)|M ∈ H2]

(1− 2ε)(δ/ε)r
.

Since E[r(1− 2ε)− |E(M) ∩ E(H3)||M ∈ H2] ≤ ((1− 2ε)δ/2ε)r we have

Pr[r(1− 2ε) − |E(M) ∩ E(H3)| ≥ (1− 2ε)(δ/ε)r|M ∈ H2] ≤
(δ/2ε)r

(δ/ε)r
= 1/2.

Therefore, we have

Pr[r(1− 2ε)− |E(M) ∩E(H3)| ≤ (1− 2ε)(δ/ε)r|M ∈ H2] > 1/2,

which means
Pr[|E(M) ∩ E(H3)| ≥ (1− 2ε)(1 − δ/ε)r|M ∈ H2] > 1/2.

Multiplying with the probability that M ∈ H2, we get that the probability of matching to have
more than (1− 2ε)(1 − δ/ε)r edges and be selected is more than δ/(4εd′i).

Now, summing over all matchings in H1 we get

E[|H3|] ≥ (δ/(4ε))
∑

i,M ′

i∈H1

1/d′i.
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Since H3 is an ORS graph we get

(4ε)ORSn((1− 2ε)(1 − δ/ε)r)/δ ≥
∑

i,M ′

i∈H1

1/d′i.

Now, using that for any j ∈ {1, .., t′} we have 1/d′j ≤ 2mint
′

i=1 1/d
′
i, for any i, j ∈ {1, ..., t′} we

get 1/d′i ≤ 2/d′j .Therefore,

∑

i,M ′

i∈H1

1/d′i ≥




∑

j,M ′

j∈H\H1

1/d′j


 /2.

Now, we give an upper bound for
∑

i,Mi∈H 1/d′i =
∑

i,M ′

i∈H1
1/d′i +

∑
j,M ′

j∈H\H1
1/d′j . We have

the following.

(12ε)ORSn((1− 2ε)(1 − δ/ε)r)/δ ≥ 3
∑

i,M ′

i∈H1

1/d′i ≥
∑

i,M ′

i∈H1

1/d′i +
∑

j,M ′

j∈H\H1

1/d′j .

Setting δ = ε/2, ε = 4α/13 we have:

∑

i,M ′

i∈H
1/d′i = O(ORSn((1− α)r)).

Note that we showed an upper bound for the sum of the inverse average degree of each matching
in one partition. Summing up the inverse average degree for all the partitions we get:

t∑

i=1

1/di = O(ORSn((1 − α)r) · log n.

Lemma 14. If we set the threshold of Algorithm 3 equal to t = n1+ε/2
√

n log n · ORSn(Θ(ε2n),
then the total time per update is O(poly log n) ·

√
n1+ε log n ·ORSn(Θ(ε2n)).

Proof. We run the O(log2 n) parallel version of Algorithm 2, and maintaining the contracted graphs
takes poly log n time. We will maintain the number of parallel edges in G′ between any two
contracted vertex in poly log n time. Denote the set of contractions as C in one phase of the
algorithm.

Note that if the size of a contraction c is nc, and the maximum matching in G is of order nc

we run the algorithm for this contraction. Using Proposition 6 there is a reduction that preserves
that matching in G with a factor of 1− ε. Now, integrating over the contractions in C we find the
corresponding contraction by running Proposition 4. If the maximum matching in contraction c is
Mc, this algorithm certifies the existence of a matching of size |Mc|/2 < µ ≤ |Mc| in at least one
contraction with nc vertices. On the other hand, Proposition 3 outputs subsets with a matching of
size at least εnc. This means that the ε-approximation matching found on each subset determined
by Proposition 3 is at least of size ε2n.

Now, since we run Algorithm 2 on all contractions, nevertheless they contain the maximum
matching or not, assuming nc is the number of vertices in c, we have the total running time as:

∑

c∈C

√
n1+ε
c log nc · ORSnc(Θ(ε2nc)) ≤ O(poly log n) ·

√
n1+ε log n ·ORSn(Θ(ε2n)).

15



Now, using Lemma 11 and Lemma 14 the proof of Theorem 1 is complete.

5 Bounding Density of (Ordered) Ruzsa-Szemerédi Graphs

In this section we prove upper bounds on the density of ORS graphs. Our main result of this section
is a proof of Theorem 2 which we present in Section 5.1. We then show that a much stronger upper
bound can be proved if matchings cover more than half of vertices in Section 5.2.

Before presenting our proof, let us first briefly discuss how the triangle removal lemma is useful
for upper bounding density of RS graphs and why it does not seem to help for upper bounding
ORS. The triangle removal lemma states that so long as the number of triangles in a graph are
o(n3), then we can make the graph triangle free by removing o(n2) of its edges. Suppose we have a
bipartite RS graph with induced matchings M1, . . . ,Mk. Add k vertices v1, . . . , vk to this graph and
connect each vi to all the vertices matched by Mi. Now, crucially, because each Mi is an induced
matching, each vi is part of exactly |Mi| triangles, one for each edge of Mi. As such, the total
number of triangles can be upper bounded by O(kn) = O(n2) which is well within the regime that
one can apply triangle removal lemma. However, because the matchings in ORS are not induced
matchings of the whole graph, the number of triangles cannot simply be upper bounded by O(n2)
after adding the auxiliary vertices. In fact, our upper bound completely deviates from this approach
and does not rely on the triangle removal lemma.

5.1 Linear Matchings

The following lemma, which is one of our main tools in proving Theorem 2, shows that so long as
vertex degrees are larger than a threshold, we can reduce the number of vertices rather significantly
without hurting the size of a relatively large number of induced matchings. Our proof of Lemma 15
builds on the techniques developed for upper bounding RS graphs with matchings of size very close
to n/4 in [24] that we extend to ORS graphs with balanced degrees.

Lemma 15. Let G be an ORSn(r, t) graph with r = cn with even t. Let M1, . . . ,Mt be the t
matchings in G as defined in Definition 2. Let us partition these matchings into two subsets

M = {M1, . . . ,Mt/2} and M′ = {Mt/2+1, . . . ,Mt}.

Suppose that for every vertex v, it holds that degM′(v) ≥ δct for some δ > 0. Then there exists an
ORSn′(cn, t′) graph H on n′ < (1− δc2/2)n vertices where t′ ≥ δc2t/(8 · 2x) and x = 4n/ct.

Let us start with an observation that is extremely helpful in proving Lemma 15.

Observation 16. Take a matching M ′ ∈ M′ and take any vertex v matched by M ′. Let NM(v)
be the set of neighbors of v in M. That is, u ∈ NM(v) iff there is M ∈ M such that (v, u) ∈ M .
Then no vertex in NM(v) can be matched in M ′.

Proof. Suppose there is u ∈ NM(v) that is matched by M ′. Let (u,w) ∈ M ′ be the matching
edge involving u. Also take the edge (v, y) ∈ M ′ that involves v (which exists by definition of
v). Note that since the matchings M1, . . . ,Mt are edge-disjoint by Definition 2, v and u cannot be
matched together in M ′ (as v and u must be matched in some other matching inM by definition of
NM(v)). Now since (u,w), (v, y) ∈M ′ but (v, u) belongs to some matching inM that comes before
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M ′ in the ordering, matching M ′ cannot be an induced matching among its previous matchings,
contradicting Definition 2 for ORS graphs.

We are now ready to prove Lemma 15.

Proof of Lemma 15. We explain the proof in a few steps.

Step 1: The pivots. We iteratively take a vertex of highest remaining degree inM, and remove
its neighbors inM from the graph. More formally, take the graph G0 = (V0, E0) where V0 = V (G)
and E0 is the union of the matchings in M. At step i, we choose vi in Vi−1 with the maximum
degree in Gi−1. Let us define Ni as the neighbors of vi in Gi−1. We then remove vi and its neighbors
in Gi−1 to define Gi = (Vi, Ei). Namely, Vi = Vi−1 \ ({vi} ∪Ni) and Ei includes all edges in Ei−1

except those that have at least one endpoint that does not belong to Vi.

Let k be the maximum integer such that |Nk| > n/x. We define P = {v1, . . . , vk} to be the set
of pivots. Note that since N1, . . . , Nk are disjoint sets, we get that n ≥ ∑k

i=1 |Ni| ≥ kn/x which
implies that

|P | ≤ x. (1)

Moreover, note that when removing vi, we remove |Ni| vertices from the graph and each of those
vertices has remaining degree at most |Ni| (as we choose vi to be the vertex of highest remaining
degree). In other words, we remove at most |Ni|2 from the graph after removing vi and its remaining
neighbors. On the other hand, after removing v1, . . . , vk and their neighbors, the maximum degree
in the graph is at most n/x (by definition of k), and so there are at most n2/x edges in the graph.
This implies that:

|E0| −
k∑

i=1

|Ni|2 ≤ n2/x.

Given that E0 includes t/2 edge disjoint matchings of size cn, we get that |E0| ≥ tcn/2. Plugged
into the inequality above, this implies that

k∑

i=1

|Ni|2 ≥ |E0| − n2/x ≥ tcn/2− n2/x. (2)

Step 2: Vertex reduction. Take a matching M ∈ M′. Let SM be the set of pivots matched
by M , i.e., SM = P ∩ V (M). Let us define YM := V \ ∪vi∈SNi. From Observation 16, we get that
all edges of M must have both endpoints still in YM . Suppose for now that M ∈ M′ is chosen
uniformly at random. We first argue that the expected size of |YM | is relatively small (despite it
preserving all edges of M completely). We have

EM∼M′ [|YM |] = n−
k∑

i=1

Pr[vi ∈ V (M)] · |Ni|

= n−
k∑

i=1

degM′(vi)

|M′| · |Ni|

(As M is chosen uniformly fromM′ and vi is matched in degM′(vi) of matchings inM′.)

= n−
k∑

i=1

2 degM′(vi)

t
· |Ni| (Since |M′| = t/2.)
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≤ n−
k∑

i=1

2δct

t
· |Ni| (Since degM′(vi) ≥ δct as assumed in Lemma 15.)

≤ n−
k∑

i=1

4δc

t
· |Ni|2. (Since |Ni| ≤ t/2 asM is the union of t/2 matchings.)

≤ n− 4δc

t
· (tcn/2− n2/x) (By (2).)

= n− 2δc2n+
4δcn2

tx

≤ n− 2δc2n+
4δcn2

(4n/cx)x
(Since t = 4n/cx by definition of x in Lemma 15.)

= n− 2δc2n+ δc2n

= (1− δc2)n. (3)

Instead of the expected value of YM , we need some (weak) concentration. Take ε = δc2/2 and
note from (3) that (1 + ε)E[|YM |] < (1 + ε)(1 − δc2)n < (1− δc2/2)n. We have

Pr
M∼M′

[
|YM | < (1 + ε)E[|YM |] < (1− δc2/2)n

]
= 1− Pr

M∼M′

[
|YM | > (1 + ε)E[|YM |]

]

≥ 1− 1

1 + ε
(By Markov’s inequality.)

≥ ε/2 = δc2/4. (4)

We call a matching M ∈ M′ a good matching if |YM | < (1− δc2/2)n. From (4) we get that at
least (δc2/4)|M′| = δc2t/8 matchings are good.

Step 3: Grouping good matchings. Now, we partition the good matchings inM′ into 2|P | ≤
2x classes depending on which subset of the pivots they match. Since there are at least δc2t/8 good

matchings, at least δc2t
8·2x of them must belong to the same class C. Let Y = YM for some M ∈ C.

Note also that Y = YM ′ for any other matching M ′ ∈ C as well since they all match the same
subset of pivots. Moreover, we have |Y | < (1 − δc2/2)n since M is good, and all matchings in C
only match vertices in Y as discussed earlier (as a consequence of Observation 16). This implies
that the graph H on vertex set Y and edge-set C (i.e., including all edges of all matchings in C) is
an ORSn′(cn, t′) graph for n′ < (1− δc2/2)n and t′ ≥ δc2t/(8 · 2x) as desired.

The next lemma follows by applying Lemma 15 after carefully pruning vertices of low degree in
M′. Intuitively, Lemma 17 significantly reduces the number of vertices and shows that a relatively
large number of matchings will have a lot of edges in the remaining graph.

Lemma 17. Let G be an ORSn(cn, t) graph for even t. Then for some κ ≥ c3/160, there exist
ORSn′(c′n′, t′) graphs such that n′ ≤ n, c′ ≥ (1 + κ)c and t′ ≥ t/2O(n/ct).

Proof. Let M and M′ be defined for G as in Lemma 15. We would like to apply Lemma 15
iteratively to prove Lemma 17. However, Lemma 15 requires a lower bound on the degrees inM′

which might not necessarily hold for our graph G. Therefore to be able to use it, we first have to
prune vertices of small degrees.

18



Let G′
0 be the subgraph of G only including the edges of the matchings inM′. Let δ = 1/4. We

iteratively remove vertices of low degree. Formally, in step i, if there is a vertex vi with degree less
than 2δct in G′

i−1, we define the graph G′
i of the next step to be graph obtained after removing vi

and its edges from G′
i−1. Let G

′
k be the final graph that does not have any vertex of degree smaller

than 2δct.

Suppose that k = αn; that is, we remove αn vertices in the process above. We consider two
cases depending on the value of α.

Case 1: α ≥ δc3/10. Since we remove at most δct edges in every step, the total number of
removed edges is at most δαctn over the k = αn steps of constructing G′

k. Say a matching M ∈ M′

is damaged if a total of at least 3δαcn of its edges have been removed. In other words, M is
damaged if less than |M | − 3δαcn = (1− 3δα)cn of its edges belong to G′

k. Since the total number
of edges removed is at most δαctn and each damaged matching has at least 3δαcn of its edges
removed, the total number of damaged matchings can be upper bounded by δαctn/3δαcn = t/3.
Since |M′| = t/2, at least t/6 matchings inM′ are not damaged, and have size at least (1−3δα)cn.
These matchings themselves form an ORSn′(c′n′, t/6) graph with parameters

n′ = (1− α)n ≤ (1− δc3/10)n
(δ=1/4)
= (1− c3/40)n,

and

c′n′ ≥ (1− 3δα)cn = (1− 3δα)c
n′

1 − α

(δ=1/4)
=

(
1− 3

4
α

)
c

n′

1− α
≥

(
1 +

1

4
α

)
cn′ ≥ (1+ c3/160)cn′,

which implies that c′ ≥ (1 + c3/160)c. Taking κ = c3/160 proves the lemma in this case.

Case 2 – α < δc3/10: Let Gk be the graph G after removing vertices v1, . . . , vk (the difference
between Gk and G′

k is that G′
k only includes the edges of M′ but Gk includes both edges of M′

andM that do not have any endpoint removed). Since we remove a total of αn vertices from G to
obtain Gk, each matching inM′ andM loses at most αn edges. Therefore, Gk is an ORSn′′(c′′n′′, t′′)
graph with parameters

n′′ = (1− α)n, c′′ ≥ cn− αn

n′′ =
(c− α)n

(1− α)n
≥ c− α ≥ (1− δc2/10)c, t′′ = t. (5)

Additionally, by the construction of G′
k, all vertices v in Gk satisfy

degM′(v) ≥ 2δct ≥ δc′′t′′

(Since t′′ = t and c′′ ≤ cn
n′′ =

cn
(1−α)n ≤ 2c where the last inequality follows from α < 1/2.)

This now satisfies the requirements of Lemma 15. Applying it on graphGk, we obtain an ORSn′(c′n′, t′)
graph where the number of vertices satisfies

n′ < (1− δc′′2/2)n′′, (6)

the number of matchings satisfies

t′ ≥ δc′′2t′′/(8 · 24n′′/c′′t′′) = δc · t/2O(n/ct) = t/2O(n/ct),

and finally since Lemma 15 does not change the size of matchings, we get

c′n′ = c′′n′′
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≥ c′′n′

(1− δc′′2/2)
(By (6).)

≥ (1 + δc′′2/2)c′′n′

≥
(
1 + δ

(
(1− δc2/10)c

)2
/2
)(

(1− δc2/10)c
)
n′,

(Since the RHS is minimized when c′′ is minimized, thus we can replace c′′ with its LB from (5).)

≥
(
1 + 0.4δc2

)(
(1− δc2/10)c

)
n′ (Since δ

(
(1− δc2/10)c

)2
/2 ≥ δ(0.9c)2/2 > 0.4δc2)

> (1 + 0.07c2)cn′.

Dividing both sides of the inequality by n′ implies c′ ≥ (1 + 0.07c2)c. Taking κ = 0.07c2 ≥ c3/160
implies the lemma.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We prove that for some d = poly(1/c), there does not exist any ORSn(cn, t)

graph G with t ≥ n/ log
(d)
b n where b = 2β/c for some large enough constant β ≥ 1. Note that

the base of the iterated log is different from the statement of the theorem, but since log
(x)
b z =

log(Θ(x log∗ b)) z, this implies the theorem as well by letting ℓ = Θ(d · log∗ b) = poly(1/c).

Suppose for the sake of contradiction that that there exists an ORSn(cn, t) graph G with t ≥
n/ log

(d)
b n. Let κ be as in Lemma 17. We iteratively apply Lemma 17 for k = log2(1/c)/κ = poly(c)

steps to obtain a sequence of graphs G0, G1, G2, G3, . . . , Gk where G0 = G is the original graph, G1

is obtained by applying Lemma 17 on G0, G2 is obtained by applying Lemma 17 on G1, and so on
so forth.

Let us now analyze the ORS properties of graph Gk, starting with the parameter ck. Since
every application of Lemma 17 multiplies the parameter ci by a factor of at least (1 + κ), we have

ck ≥ (1 + κ)kc

= (1 + κ)log2(1/c)/kc

≥ 2log2(1/c)c (Since (1 + κ)1/κ ≥ 2 for all 0 < κ ≤ 1)

≥ 1.

This implies that in graph Gk, there must be tk edge-disjoint matchings of size cknk ≥ nk, but
each matching in a graph on nk vertices can have size at most nk/2. In other words, we must have
tk = 0. We will obtain a contradiction by proving that tk ≥ 1.

We prove by induction that for every i ∈ [d],

ti ≥
n

log
(d−i)
b n

.

For the base case i = 0 this holds as assumed at the beginning of the proof. By choosing
appropriately large β, we know by Lemma 17 that,

ti ≥ ti−1/2
0.5β(ni−1/ci−1ti−1)

≥ ti−1/2
0.5β(n/cti−1) (Since ni−1 ≤ n and ci−1 ≥ c as we iteratively apply Lemma 17.)

= ti−1/b
0.5(n/ti−1) (Since we defined b = 2β/c.)
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≥ n

log
(d−i+1)
b n

· b
−0.5

(

n/ n

log
(d−i+1)
b

n

)

(By the induction hypothesis ti−1 ≥ n

log
(d−i+1)
b

n
.)

=
n

log
(d−i+1)
b n

· b−0.5 log
(d−i+1)
b

n

=
n

log
(d−i+1)
b n ·

√
log

(d−i)
b n

≥ n

log
(d−i)
b n

,

concluding the proof.

Now let d > k = poly(1/c). From the above, we get that tk ≥ n/(log
(d−k)
b ) ≥ 1, which as

discussed is a contradiction.

5.2 When Matchings are (Very) Large

The goal of this section is to prove that the number of matching of an ORS graph with r > n/4 is
bounded by a constant value. More precisely we prove Theorem 3. An equivalent of this theorem
was already known for RS graphs (see [24]), and we show that almost the same proof carries over
to ORS graphs as well.

Theorem 3. For any c > 1/4 + ε, ORSn(cn, t) ≤ 1/ε+ 1.

First, we argue that the number of common vertices of any two matching in ORS is at most r,
using this we can prove that a constant value bounds the number of matching since the number of
subsets of length 2r with at most r common vertices between any two sets.

Lemma 18. Suppose G is an ORS(r, t) graph on n vertices and let M1, . . . ,Mt be the corresponding
ordered list of matchings as in Definition 2. Then for any i 6= j in [t], we have |V (Mi)∩V (Mj)| ≤ r.

Proof. Let us assume w.l.o.g. that i < j and suppose that |V (Mi) ∩ V (Mj)| ≥ r + 1. By the
pigeonhole principle, this means that there must be an edge inMi whose both endpoints are matched
in Mj , contradicting the fact from Definition 2 that Mj is an induced matching in M1∪. . .∪Mj.

Now, we use a similar approach as [24] to prove that t < 1/ε. This theorem only uses the fact
that the number of common vertices of two matchings is at most r.

Proof of Theorem 3. Using Lemma 18 we have that the distance between sets of vertices of any two
matchings is at most r, this implies a constant upper bound for the size of ORS using bounds from
coding theory. To improve the upper bound we set vi ∈ {0, 1}n, a vector that represents vertices
in V (Mi). Let us use ai to denote the number of vectors vj with 0 in their i-th coordinate and let
bi be the number of vectors with 1 in their i-th coordinate. If we set v0 a vector of all zeros. Note
that we have ai + bi = t+ 1. Now, by double counting we have:

2r

(
t+ 1

2

)
≤

∑

0≤i<j≤t

dist(vi, vj) =

n∑

i=1

aibi. (7)
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By dist(vi, vj) we mean the Hamming distance which satisfies the following inequality:

dist(vi, vj) = |Vi|+ |Vj | − 2|Vi ∩ Vj | ≥ 2r.

Note that in (7), aibi maximizes when we have ai = bi = (t+1)/2 for odd t and ai = (t+2)/2, bi =
t/2 for even t. This concludes that t < 1/ε+ 1
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