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aHUN-REN Wigner RCP, Konkoly-Thege Miklós út 29-33, 1121 Budapest, Hungary
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Abstract: We revisit and extend Fisher’s argument for a Ginzburg–Landau description

of multicritical Yang–Lee models in terms of a single boson Lagrangian with potential

φ2(iφ)n. We explicitly study the cases of n = 1, 2 by a Truncated Hamiltonian Approach

based on the free massive boson perturbed by PT symmetric deformations, providing clear

evidence of the spontaneous breaking of PT symmetry. For n = 1, the symmetric and

the broken phases are separated by the critical point corresponding to the minimal model

M(2, 5), while for n = 2, they are separated by a critical manifold corresponding to the

minimal model M(2, 5) with M(2, 7) on its boundary. Our numerical analysis strongly

supports our Ginzburg–Landau descriptions for multicritical Yang–Lee models.

Keywords: Field Theories in Lower Dimensions, Renormalization Group, Scale and Con-

formal Symmetries.
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1 Introduction and summary

The study of critical phenomena is crucial for the theoretical understanding of quantum

field theories and the experimental measurements [1]. It is well known that many critical

points are strongly coupled quantum field theories ruled by conformal symmetry. In two

space-time dimensions, the conformal group is enhanced to an infinite symmetry algebra,

namely the Virasoro algebra [2].
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Among the irreducible representations of the Virasoro algebra, it is natural to consider

the minimal models M(p, q), which give rise to an infinite class of two-dimensional confor-

mal field theories. Those models are labelled by two coprime positive integers p and q and

have central charge

c = 1− 6
(p− q)2

pq
. (1.1)

Among the minimal models, the only theories which are unitary are those in the sequence

M(2 + n, 3 + n) n = 1, 2, . . . . In all other cases, unitarity is lost due to a real but

non-positive spectrum of conformal weights which leads to states of negative norm.

Based on the concept of universality, one might expect that some features of strongly

coupled conformal models can be captured through a weakly coupled description. Indeed,

what matters is the symmetry of the problem: a weakly coupled theory respecting the

same symmetry can also describe certain aspects of the same fixed point. This approach

is known as Ginzburg–Landau description [3], and it is well realised by the Ising model,

which is the Wilson-Fisher fixed point in d ≤ 4 [4].

The idea has been further extended to unitary multicritical points in two dimensions.

Indeed, in [5] Zamolodchikov proposed the Ginzburg–Landau description of unitary mini-

mal models with diagonal modular invariants in terms of bosonic Lagrangians:

LM(2+n,3+n) =
1

2
(∂φ)2 + gφ2(n+1) . (1.2)

Besides the above sequence, the general Ginzburg–Landau description of minimal models

is not presently known, despite a handful of exceptions, which are the following:

⋆ The minimal model M(2, 5), also known as Yang–Lee model, can be described by

the Ginzburg–Landau lagrangian [6]

LM(2,5) =
1

2
(∂φ)2 + igφ3 , (1.3)

⋆ The minimal model M(3, 8), also known as the supersymmetric version of the Yang–

Lee model, can be described by the Ginzburg–Landau lagrangian [7]

LM(3,8) =
1

2
(∂φ)2 +

1

2
(∂σ)2 + ig1σφ

2 + ig2σ
3 , (1.4)

in terms of the two bosonic fields φ(x) and σ(x).

⋆ A suggestion for the Ginzburg–Landau description of the minimal model M(3, 10)

was also given in [8] and [7] as two copies of (1.3) i.e. the Yang–Lee theory.

Recently we proposed that the sequence of the non-unitary minimal models M(2, 2n+

3) generalizes the Yang–Lee edge singularity to its multicritical versions [9, 10]. Moreover,

we suggested the existence, and provided numerical evidence in several cases, of the follow-

ing RG flows from unitary multicritical points to the non-unitary Yang–Lee multicritical

CFTs as well as flows between non-unitary the multicritical points:

M(2 + n, 3 + n) → M(2, 2m+ 3) m ≤ n , (1.5)

M(2, 2n+ 3) → M(2, 2m+ 3) , m < n , (1.6)
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This paper focuses on the Ginzburg–Landau description of the series of non-unitary

minimal models M(2, 2n + 3). The central charge c and the effective central ceff of these

models are

c = 1− 3
(1 + 2n)2

2n+ 3
, ceff = c− 24∆min =

2n

2n+ 3
, (1.7)

The n+ 1 Virasoro primary fields ϕk, k = 1, . . . , n+ 1 have conformal weights

∆ϕk
=

(2n+ 3− 2k)2 − (2n+ 1)2

8(2n+ 3)
≤ 0 , (1.8)

n = 1 corresponds to the identity, while the other n fields are the nontrivial relevant fields

of these classes of universality. Motivated by the a combination of the above spectrum of

conformal fields, Fisher’s argument to the Yang–Lee model and Zamolodchikov’s proposal

for the unitary case, in this paper we propose that the Ginzburg–Landau Lagrangian for

the universality classes of this series is given by

LM(2,2n+3) =
1

2
(∂φ)2 + ig1φ+

n−2∑
k=0

gk+2φ
2 (iφ)k + φ2 (iφ)n . (1.9)

This model has n + 1 relevant fields, given by the powers of the elementary scalar field

φ,φ2, . . . , φn+1. The equation of motion makes one of these fields redundant, leading to

the same counting as in M(2, 2n+3). As we show in the sequel, the proposed Lagrangian

(1.9) identifies the class of universality, whose nth multicritical point can be reached by

tuning the couplings gk of the subleading powers. The full phase diagram also contains

submanifolds of lower multicriticality, and the k + 1th multicritical points are conjectured

to form the boundary of the manifold of kth multicritical points.

The flows (1.5) and (1.6), when expressed in terms of the highest power in the field

potential, schematically correspond to the flows

φ3n → φ2(iφ)m , (1.10)

φ2(iφ)n → φ2(iφ)m . (1.11)

We provide arguments supporting this proposal and numerically check it for the first two

cases: the Yang–Lee fixed point and its tricritical version. It is important to notice that

the above Lagrangians are explicit PT symmetric, and this important feature is the key

point which guarantees the reality of the conformal spectra of the associated fixed points.

In addition, the Lagrangians in (1.9) are the field theory generalization of the quantum

mechanical models initially studied in [11], which were the first examples of non-Hermitian,

but PT symmetric model with real spectrum. In this perspective, our proposal is a field-

theoretic generalization of those theories.

The paper is structured as follows: in Section 2 we revisit and extend Fisher’s argument

[6], in favour of our proposal (1.9), then we elaborate on the role of PT symmetry. In

Section 3 we set up the Hamiltonian truncation for the Ginzburg–Landau models, and test

its correct implementation using known results regarding the massive free boson and the

Wilson–Fisher fixed point. We locate the latter fixed point in the Chang dual channel
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and compared the ratio between critical couplings with the expected value, finding good

agreement with the expected results. We then study the scaling region of the first two cases,

which correspond to the leading interaction terms igφ3 and gφ2(iφ)2, and we numerically

confirm the validity of our proposal involving the Ginzburg-Landau lagrangians presented

in equation (1.9) for n = 1 and n = 2. We discuss the results and our conclusions in Section

6.

2 Proposal and arguments

Our proposal (1.9) is the natural generalization of the well-established Yang–Lee result (1.3)

[6, 12, 13]: notice that it contains the necessary number of relevant degrees of freedom, it

respects PT symmetry and is compatible with the RG flows found in [9, 10].

In this section, we revisit and extend Fisher’s argument to support our proposal. Then

we present further arguments in line with the expectations from the bootstrap description

of integrable massive deformations. Finally, we elaborate on the role of PT symmetry and

the general expectation for the phase diagram related to its spontaneous breaking.

2.1 Fisher’s argument revisited

The Ginzburg–Landau description of the Yang–Lee edge singularity is given by

LYang–Lee =
1

2
(∂φ)2 + ig1φ+ φ2(iφ) . (2.1)

Fisher obtained this result in [6], which was later used by Cardy to argue that the Yang–Lee

edge singularity corresponds to the conformal minimal model M(2, 5) [12]. Here we review

and generalise Fisher’s method. This was already attempted in [14], but our recent results

obtained in [9, 10] on the non-unitary models guide us to get the correct generalisation.

Fisher’s idea is to start from the Ginzburg–Landau description of Ising, which is just

a φ4 theory

LM(3,4) =
1

2
(∂φ)2 + g1φ+ g2φ

2 + φ4 . (2.2)

The φ3 term is absent in this Lagrangian due to an appropriate field shift. Following the

argument of Zamolodchikov [5] based on the OPE structure of the Ising fixed point, it

is clear that φ is mapped to the magnetic field σ of the minimal model M(3, 4), while

φ2 is mapped to the energy operator ϵ. This is further supported by a simple symmetry

argument: σ is a Z2 odd field while ϵ is Z2 even.

In [15, 16] Lee and Yang showed that a new critical point, the Yang–Lee edge singular-

ity, arises when the Ising model is deformed with an imaginary magnetic field setting g1 to

ig1. As Fisher showed in [6], this can be implemented in the Ginzburg–Landau description

by the following steps:

1. shifting the field as

φ → φ+ iφ0 , (2.3)

2. setting g2 → 6φ2
0 in order to set the φ2 term equal to zero;
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3. neglecting the constant terms and the φ4 term since this operator becomes irrelevant

in the infrared theory. In this way, we end up with the Lagrangian in (2.1).

4. In particular, the theory of the new critical point is defined by tuning the coupling in

front of φ to set the mass gap to zero. This can be achieved by setting ig1 → −8φ0.

The resulting Lagrangian is a φ3 theory with an imaginary coupling (equal to 4iφ0

).

Now we demonstrate that the same procedure can also be performed starting from the

GL Lagrangian of the tricritical Ising model:

LM(5,6) =
1

2
(∂φ)2 + g1φ+ g2φ

2 + g3φ
3 + g4φ

4 + φ6 . (2.4)

We should follow steps similar to the Yang-Lee case:

1. shifting the field as

φ → φ+ iφ0 . (2.5)

we arrive at the following Lagrangian:

L =
1

2
(∂φ)2 + iγ1φ+ γ2φ

2 + iγ3φ
3 + γ4φ

4 + iγ5φ
5 + φ6 . (2.6)

where the γk depend on the original couplings gn, when we consider imaginary cou-

plings in front of the odd powers of φ, and the shift of the field φ0.

2. setting g1 → −6φ5
0 − 2φ0g2 + 3φ2

0g3 + 4φ3
0g4 we can implement the condition γ1 = 0.

3. setting g2 → −3
(
5φ4

0 − φ0g3 − 2φ2
0g4

)
we can enforce the condition γ2 = 0, reach

in this way the first universality class. This corresponds to the universality class of

the Yang–Lee edge singularity universality since, once we neglect the constant terms

and the higher powers of φ, the Lagrangian has a φ3 potential with an imaginary

coupling in front (specifically i(−20φ3
0 + g3 +4φ0g4)). So, the first conclusion is that

there is a fixed point of the Yang–Lee type in the tricritical Ising model as well; as a

matter of fact, these fixed points form a line.

4. Since the tricritical Ising model has more relevant degrees of freedom than the Ising

model, this circumstance allows us to tune one more coupling. We can adjust g3 →
4
(
5φ3

0 − φ0g4
)
to set the φ3 term equal to zero and reach in this way the second

universality class. The resulting Ginzburg–Landau Lagrangian takes the form

L =
1

2
(∂φ)2 + . . .+ γ4φ

4 , (2.7)

where γ4 = −15φ2
0 + g4.

The naive expectation is that the latter Langragian should describe the tricritical version

of the Yang–Lee fixed point at the end of the line of ordinary Yang–Lee fixed points. It was

shown in [9] that in the PT symmetric sector of the scaling region of the tricritical Ising,
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a manifold of conformal points of the Yang–Lee type ends in a fixed point of a different

universality class, which is a tricritical point proposed to be the tricritical version of the

Yang–Lee edge singularity. The Lagrangian in (2.7) seems naively unitary and to coincide

with the Ginzburg–Landau theory of Ising, at least when γ4 > 0. However, it is known

that there is a PT invariant version of this theory which is obtained for γ4 < 0. Although

at first sight this seems to correspond to an unstable potential, if one adopts a different

quantization condition corresponding to an analytical continuation to complex contours in

the φ plane, the Lagrangian which was written above can be considered as the n = 2 case of

(1.9), as shown to be the case for its 0 + 1-dimensional (quantum mechanical) counterpart

[11]. We return to this line of thought in more detail in Section 2.3.

One might think that implementing one more tuning of the parameters will lead us

to another critical point whose Ginzburg–Landau potential is governed by φ5 with an

imaginary coupling in front. However this is not the case, as it was argued in [9]; indeed,

tuning more parameters to get other critical points is impossible if the ultraviolet fixed

point is the tricritical Ising, i.e. the minimal model M(2, 9) according to [9, 10]. The

argument is as follows: to reach a critical surface (which in this case is expected to be a

line of ordinary critical points) from the tricritical Ising, it is necessary to tune the mass

gap to zero, i.e. to make the ground state and the first excited state meet. The ends of this

critical line are then expected to correspond to a different universality class corresponding

to the non-unitary tricritical point, where the ground state meets simultaneously with

both the first and the second excited states. It is then clear that to stay on the (one-

dimensional) critical line, the field shift φ0, and the couplings g1, g2, g3 and g4 cannot

be varied independently, which prevents the tuning necessary to obtain a critical point

governed by an iφ5 Lagrangian. The latter can only be obtained by starting from a

Lagrangian with more parameters that can be tuned. This the case if we start from the

Lagrangian corresponding to the tetracritical Ising, i.e. with the higher power given by

the monomial φ8: in this case, by shifting the field φ as before, it is possible to tune φ0

and the couplings in front of φ and φ2 to reach the first critical point, corresponding to

the Ginzburg–Landau form of the Yang–Lee singularity with the highest relevant power

iφ3. Tuning the coupling in front of φ3 term, one can then reach the Ginzburg–Landau

theory with the highest term φ2(iφ)2, corresponding to the tricritical version of Yang–Lee,

expected to be M(2, 7). Notice that, in this case, there are enough free parameters that

can be tuned to reach the Ginzburg–Landau theory governed by iφ5, which is expected to

be the Ginzburg–Landau description of the tetracritical Yang–Lee model.

The above argument can be straightforwardly generalised to all higher multicritical

Yang–Lee CFTs M(2, 2n+ 3).

2.2 Argument from integrable massive deformations

A heuristic argument that supports the proposed Ginzburg–Landau description arises by

considering the integrable deformations of the minimal model M(2, 2n + 3). Firstly, the

primary field ϕk satisfy the fusion rules

ϕ2 × ϕk = ϕk−1 + ϕk+1 (2.8)
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with ϕn+2 identified with ϕn+1. This suggests that ϕ2 corresponds to (the renormalised

version of) the elementary GL field φ, while the ϕk+1 to φk. It makes full sense that ϕn+2 is

not an independent field since the power φn+1 can be expressed in terms of the lower powers

from the renormalised equation of motion. Secondly, the above identification becomes even

more plausible by noting that the naive scaling dimensions of all powers φk is zero, and the

exact dimensions (1.8) originate purely as anomalous dimensions from the renormalisation

of the corresponding quantum field theory. Compared to the GL description of unitary

minimal models [5], it is natural to assume that the size of renormalisation corrections

grows with the exponent k. The only difference of this case, compared with to the unitary

series, is that for the models M(2, 2n + 3), all these scaling dimensions are negative,

reflecting the model’s non-unitarity.

Perturbing by ϕ3 introduces a mass term φ2 and leads to a massive integrable field

theory, with an S-matrix exactly determined by bootstrap [17]. Importantly, the spectrum

supports exactly n particles Ak, which can be obtained as the bound states of the fun-

damental particle A1. This fundamental particle can be associated with the elementary

excitation of the fundamental field φ, and fusing it n+ 1 times leads back to itself, which

is consistent with the presence of the defining φ2(iφ)n term in the Lagrangian (1.9). The

form factor bootstrap built upon this S-matrix is also fully consistent with the spectrum

of primary fields ϕk [18].

2.3 The role of PT symmetry

Crucially, the GL Lagrangians written above, as well as the minimal models M(2, 2n+ 3)

and their perturbations studied in [9, 10] are all explicitly PT symmetric, i.e. the associated

Hamiltonians satisfy

[H,PT ] = 0 . (2.9)

In the context of Ginzburg–Landau theory, the PT transformations are the following:

x → −x , i → −i φ → −φ , (2.10)

implying that Lagrangians of the form

L =
1

2
(∂φ)2 + φ2 (iφ)n , (2.11)

are invariant under PT -transformations for all n ∈ R. In fact, the Lagrangian written

above are the field-theory generalisations of the well-known PT -symmetric quantum me-

chanical systems

HQM = p2 + x2(ix)ϵ ϵ ∈ R , (2.12)

proposed by Bender and Boettcher [11]. For the quantum mechanical case it was shown

that for ϵ > 0, the spectrum of the Hamiltonian in (2.12) is real because of PT symmetry.

Arguments and rigorous proofs for the reality of the spectrum of the theory defined by the

Hamiltonian in (2.12) (when ϵ > 0) are given in [19–21]. This finding demonstrates that

by relaxing the assumption of Hermiticity, one can still end up in quantum field theories

potentially interesting from a physical point of view.

– 7 –



A notable feature of the PT symmetric quantum mechanical systems is that it cannot

be quantized by requiring the wavefunction to vanish as |x| → ∞, in contrast to the

Hermitian case. This observation has important consequences for the field theory extension.

In fact, such a condition is only adequate for the regime 1 ≤ ϵ < 2 (including, therefore,

the Yang–Lee case), but not for ϵ ≥ 2. To obtain a real spectrum, it is necessary to replace

the real x-axis in a contour in the complex plane [11]. For this reason, the theories with

potentials gx4 and gx2(ix)2 (and therefore their field theory counterparts) are intrinsically

different. For a deeper understanding, we refer to [11, 22, 23] and references therein.

Recently, there has been renewed interest in extending the results of PT -symmetric

quantum mechanics to field theories with PT -invariant interaction terms, especially those

of the form φ2(iφ)n in various space-time dimensions, using diverse approaches such as

perturbation theory, expansion in the exponent n and functional renormalisation group

methods [23–28].

Intriguingly, PT -symmetry can be spontaneously broken; in fact, the reality of the

spectrum is only guaranteed when

PT |Ψ⟩ = eiα |Ψ⟩ , α ∈ R , (2.13)

where |Ψ⟩ is an eigenvector of the Hamiltonian. Observe that the condition in equation (2.9)

does not imply (2.13): if both the conditions hold, the theory is in an PT -symmetric phase

and the spectrum is real. When the Hamiltonian commutes with the PT operators but its

eigenstates are not eigenstates of the PT -operators, then the theory is in a spontaneously

broken PT -phase. In the latter phase, the spectrum is generally complex, containing

complex conjugate pairs of energy levels. In the quantum mechanical case PT -breaking

happens when ϵ becomes negative, and the two phases are separated by the Hermitian

harmonic oscillator ϵ = 0 [11].

Recently, PT breaking has attracted attention in the framework of two-dimensional

quantum field theories. In [9], it was proposed that the Yang–Lee edge singularity can be

understood as the critical point separating the PT symmetric phase from the spontaneously

broken PT phase in the PT symmetric deformation of the critical Ising model. This

concept was extended for the tricritical Ising and beyond for the general multicritical case.

Breaking of PT symmetry was also discussed in scaling regions of the minimal models

M(2, 5) and M(2, 7) [10], where evidence of non-critical PT breaking was also found.

Additionally, PT -symmetric scaling regions of the minimal models M(3, 5) and M(3, 7)

were studied in [29], and two-dimensional QCD also presents similar behaviours and PT

breaking (see discussion in 6.3.1 of [30]).

In this paper, we propose that the two-dimensional field theories corresponding to

the quantum mechanical Hamiltonians in equation (2.12) with n ∈ N, play the role of

Ginzburg–Landau descriptions for the non-unitary multicritical models which are related

to transitions between PT symmetric and PT breaking phases.

Irreversibility of PT -symmetric RG flows. The similarities between Hermitian and

PT symmetric models do not stop in the reality of the spectrum. The irreversibility of RG

flows in two spacetime dimensions can be understood as the monotonicity of the c-function
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along the RG flows [31]. This crucial result was generalized for flows with (unbroken)

PT -symmetry [32] by replacing the c-function with effective c-function, ceff, defined in the

critical points as

ceff = c− 24∆min , (2.14)

where ∆min is the lowest among the conformal dimensions of the theory1.

In conclusion, the irreversibility of two-dimensional RG flows in the PT symmetric

phase can be understood as the condition

cUV
eff ≥ cIReff . (2.15)

This condition puts stringent restrictions on potential RG flows linking different fixed

points [7, 9, 10, 29]. For the purposes of this paper, the constraints given by the monotonic

behavior of the ceff function are automatically satisfied since the effective central charge of

the free boson is 1 and all the minimal models have an effective central charge of less than

one.

Expectations for the phase diagram. We are now ready to consider the proposed GL

description (1.9) in light of PT symmetry.

Firstly, we expect to find a critical point in the scaling region of the iφ3 theory cor-

responding to the Yang–Lee edge singularity. Since the Lagrangian is explicitly PT sym-

metric, PT symmetry can be either an actual symmetry of the spectrum or spontaneously

broken. In analogy with [9, 10, 29], it is natural to expect that the critical point separating

the two phases corresponds to the Yang–Lee model.

In the case of the φ2(iφ)2 theory, we expect to find a critical line of the Yang–Lee uni-

versality class, i.e. ruled by the conformal minimal model M(2, 5). This line is expected

to separate between a PT -symmetric phase and a spontaneously broken PT -phase. In

particular, we know that in the iφ3 theory, there is a critical point of the Yang–Lee univer-

sality class. Therefore we expect the critical line described above to extend this Yang–Lee

criticality to nonzero φ4 coupling.

This critical line must end at a critical point corresponding to the tricritical version

of Yang–Lee, i.e., the universality class M(2, 7) [9]. Finally, it is also possible that beyond

the M(2, 7) tricritical endpoint, the PT symmetry is broken without passing through a

critical point, as explained for the case of the scaling region of the minimal model M(2, 9)

in [10]. This picture can be straightforwardly generalized to n > 2.

In the following Sections, we confirm the scenario described above using a numerical

method, starting our analysis with the n = 1 case to warm up and then turning our

attention to the n = 2 case.

3 Hamiltonian truncation for Ginzburg–Landau theories

To check the validity of our proposal, we implemented a non-perturbative variational ap-

proach known as the Hamiltonian truncation method. This method is particularly suited

1Note that the monotonic behaviour of the ceff function generalizes the c-function in unitary cases. In

fact, unitarity implies that ∆min = 0, and therefore the ceff is identical to c. However, in the non-unitary

case, conformal dimensions are generally negative.
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y

Figure 1: Space-time cylinder of circumference L.

for studying theories with discrete energy spectrum. First introduced in the context of

perturbed minimal models [33–36], variants of this method were then extended to more

general field theories [37–40] including Ginzburg-Landau models in two [41–44] and higher

dimensions [45], and situations with boundaries [46] and defects [47]. Besides the compu-

tation of energy spectra, truncated Hamiltonian methods are also an efficient tool to study

non-equilibrium dynamics [48–52].

When applying Hamiltonian truncation to the non-Hermitian Ginzburg–Landau La-

grangians (1.9), there is no a priori guarantee that it works. Fortunately, the method

proves stability; more details can be found at the end of Appendix B.

3.1 Implementation and identification of critical points

We start with the Hamiltonian of free massive theory in a finite volume L with periodic

boundary conditions, i.e., on a space-time cylinder of circumference L as shown in Fig. 1.

The massive field φ can be expanded in momentum modes as

φ(x) =
∑
k

1√
2Lωk

(
ake

ikx + a†
ke

−ikx
)
, (3.1)

where ωk =
√
m2 + k2 is the energy of a free particle of massm with momentum k ∈ 2πZ/L.

The annihilation and creation operators obey the usual commutation rules

[ak,ak′ ] = [a†
k,a

†
k′ ] = 0 , [ak,a

†
k′ ] = δkk′ . (3.2)

and generate a Fock space from the vacuum state |0⟩ which satisfies as ak |0⟩ = 0:

|k1, . . . , kn⟩ = a†
k1
. . .a†

kn
|0⟩ . (3.3)

The free Hamiltonian H0 can be written as:

H0 =
∑
k

ωka
†
kak , (3.4)

The interaction term is a polynomial of the field φ expressed as a linear combination of

the operators

Vn =

∫ L

0
: φn : dx , (3.5)
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and for our purposes, we limit ourselves to n ≤ 4. In Appendix A, all these terms are

explicitly written in terms of the creation/annihilation operators (3.1).

The most general Hamiltonian we construct is therefore

H = H0 + ig1V1 + g2V2 + ig3V3 + g4V4 + . . . , (3.6)

where gk ∈ R, and the . . . indicate finite volume corrections discussed later. The choice of

purely imaginary couplings in front of odd powers of φ and purely real couplings in front

of the even powers of φ ensures the PT symmetry of the Hamiltonian in (3.6), since PT

acts as φ → −φ and i → −i.

The key idea of the truncation approach is to construct the Fock space up to a certain

energy cutoff Λ in terms of the eigenvalue of the free field HamiltonianH0. This corresponds

to splitting the Hilbert space (the Fock space) into a low-energy and a high-energy sector:

H = Hl ⊕Hh , (3.7)

and only generate the states in the low-energy sector Hl, defined as:

|k1, . . . kn⟩ ∈ H ,

n∑
i=1

ωki ≤ Λ . (3.8)

In particular, this automatically implies that we only have to consider only a finite number

of momentum modes which satisfy

4π2n2

L2
= k2n ≤ Λ2 −m2 , (3.9)

and so we can identify a maximum kmax and/or a maximum momentum quantum number

nmax. Since we perform our calculations in the zero-momentum subspace, the value of

kmax resp. nmax can be taken as half the value required by (3.9), since the lowest energy

level with zero total momentum and non-zero occupation number for momentum kmax

corresponds to the state |−kmax, kmax⟩.
In the following calculations, we define our Hilbert space by fixing nmax, which has the

advantage that the dimensionality of the space does not grow with the volume L. However,

note that this implies that the energy cutoff Λ decreases when the volume increases. As we

explain later, to locate critical points and determine the conformal dimensions of primary

fields, we need the large-L behaviour of the lowest-lying energy levels. Therefore, the idea

is to maximize precision via the number of states retained after truncation in the case of

large volumes. We then choose our cutoff for lower volumes so that the dimension of the

truncated space is approximately the same for all volumes. In our following calculations, we

use nmax = 10, corresponding to retaining thousands of states when mL = 10. The matrix

elements of the Hamiltonian (3.6) can be obtained utilising the algebra of annihilation and

creation operators, from which the energy levels are extracted by numerical diagonalisation.

The generation of the Fock space and the numerical evaluation of the matrix elements

is conceptually very easy; in Appendix B we briefly describe our implementation. The

interested reader is referred to [41] and [42] for further detailed discussion of the truncation

approach.
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Since the Hamiltonian (3.6) is not Hermitian, its spectrum can be complex in princi-

ple. Nevertheless, the spectrum is real in the case of unbroken PT symmetry. However,

truncation effects alter the spectrum and eigenvectors, so the truncation procedure is not

guaranteed to keep the spectrum real in the PT unbroken phase. Nevertheless, it turns

out that the truncation procedure is safe: for reasonable cutoff values, the low-lying energy

levels turn out to be real in the unbroken phase, and only become complex when PT

symmetry is spontaneously broken. More details on the truncation procedure are given in

Appendix B.

Finite volume corrections. When writing the Hamiltonian (3.6), we have not ac-

counted for the mismatch between infinite volume and finite volume normal ordering. It is

easy to compute the effect of normal ordering both in infinite and finite volume:

: φ2 := φ2 − Z , : φ2 :L= φ2 − ZL , (3.10)

where

Z =

∫
dk

4π

1√
k2 +m2

, ZL =
∑
n

1

2Lωkn

. (3.11)

Although both Z and ZL are ultraviolet divergent, their difference is finite [42]:

z(L) = ZL − Z =
1

π

∫ ∞

0

dx√
m2L2 + x2

(
e
√
m2L2+x2 − 1

)−1
. (3.12)

This implies that due to the presence of g2V2 in the Hamiltonian (3.6), in finite volume

there is an additional term

g2Lz(L)1 . (3.13)

Similarly, the free Hamiltonian contributes with a constant vacuum energy shift [42]

E0(L) = − 1

πL

∫ ∞

0

dx x2√
m2L2 + x2

(
e
√
m2L2+x2 − 1

)−1
. (3.14)

Similar contributions appear for the interaction terms. For the cubic potential V3:

: φ3 := φ3 − 3Zφ , : φ3 :L= φ3 − 3ZLφ , (3.15)

leading to

: φ3 : − : φ3 :L= −3(Z − ZL)φ = 3z(L)φ . (3.16)

For the quartic term, the finite size correction is [42]:

: φ4 : − : φ4 :L= 6z(L) : φ2 :L +3z(L)2 . (3.17)

Putting everything together, we have that the Hamiltonian (3.6) must be corrected by the

additive terms(
E0(L) + g2Lz(L) + 3g4Lz(L)

2
)
1+ 3ig3z(L)V1 + 6g4z(L)V2 . (3.18)

Besides finite volume effects, another general issue of Hamiltonian truncation is dependence

on the cutoff, which can be improved using renormalisation group methods [42, 53, 54];

however, this turns out to be unneeded for our purposes here and so we do not go into

further detail.
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Critical points and conformal dimensions The vicinity of a critical point can be

identified from the finite volume spectrum by searching for a point in the parameter space

where the ground state meets the first excited state. However, at the eventual critical

point, the two levels should approach each other for L → ∞. This requires a fine-tuning

of the coupling; however, due to the presence of truncation, the critical point can only

be located approximately by pushing the point in which the ground state meets the first

excited state to as large a volume as possible; details of this procedure are provided in [55]

and in [9]. Then at sufficiently large values of L we expect to obtain the energy spectrum

of the infrared fixed point CFT, which has the form

Ei ≃
2π

L

(
2∆ir + 2nir − cir

12

)
+ FL , (3.19)

where ir stands for infrared and F is the bulk energy term. Therefore, we consider the

quantities

Ci = L
Ei − E0

4π
∼ ∆ir −∆ir

min + nir , (3.20)

as a function of the volume, which must approach constant values characteristic of the

infrared CFT.

The inevitable deviation from the critical prediction can be accounted for using an

effective field theory (EFT) constructed out of the least irrelevant deformations of the

expected infrared CFT fixed point [13, 55]; however, this turned out to be unnecessary in

our present investigations.

3.2 Testing the implementation

3.2.1 Quadratic perturbation

The first non-trivial test for the Hamiltonian truncation implemented as described in the

previous Section is provided by including a purely quadratic interaction:

H2 = H0 + g2V2 + (E0(L) + g2Lz(L))1 , (3.21)

leading to a free theory with mass

M2 = m2 + 2g2 . (3.22)

where m is the mass of the unperturbed theory described by H0. We can compare the

energies resulting from the Hamiltonian truncation applied to (3.21) to the energies of the

free theory with mass M . For a full comparison, it is necessary to include a ground-state

energy shift. In fact, the expected ground-state energy is

E0(L) = E0(L,M) + LΛ , Λ =
1

8π

(
M2

(
1− log

M2

m2

)
−m2

)
, (3.23)

where E0(L,M) is given in equation (3.14), which can be computed using a Bogoliubov

transformation [42]. We present results for the parameters m = 1, M =
√
2, g = 1/2 in

Fig. 2, where we plot the ground state at different values of the volumes compared to

the analytical prediction in (3.23), as well as the energies of a few excited states. Clearly,

truncation errors increase with volume L. To better gauge the quality of the approximation,

we include a numerical comparison L = 1 and L = 5 in Table 1.
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Figure 2: (a) The ground state energy computed with Hamiltonian truncation (red dots)

at different volumes compared to the analytical expression (dashed line). (b) Excited state

energy levels from Hamiltonian truncation (red dots) compared to exact results (dashed

line).

Volume Energy level Hamiltonian Truncation Exact

L = 1
E0 -0.16959. . . -0.16961. . .

E1 1.24462. . . 1.24460. . .

E2 2.65883. . . 2.65882. . .

E3 4.07304. . . 4.07303. . .

E4 5.48726. . . 5.48724. . .

L = 5
E0 -0.07647. . . -0.07704. . .

E1 1.33792. . . 1.33717. . .

E2 2.75215. . . 2.75139. . .

E3 3.70771. . . 3.70668. . .

E4 4.16662. . . 4.16560. . .

Table 1: Numerical comparison of the energy levels obtained from the Hamiltonian trun-

cation to the exact values.

3.2.2 The Ising transition and Chang duality

The Ginzburg–Landau Lagrangian corresponding to the Ising fixed point is given by

L =
1

2
(∂φ)2 + λφ4 . (3.24)

The existence of an Ising fixed point was verified using Hamiltonian truncation in [42, 43].

We revisit this case to test our numerical implementation of the Hamiltonian truncation.

We implemented the Hamiltonian

H4 = H0 + (g2 + 6g4z(L))V2 + g4V4 + (E0(L) + g2Lz(L) + 3g4Lz(L)
2)1 . (3.25)
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Since the only effect of g2 is to shift the mass, we can choose g2 = 0, so a single coupling

parameterises the scaling region. It is known that a direct search for the critical point is

hard to perform directly [42, 43]. Therefore, we make use of the Chang duality of the φ4

theory in two dimensions, which is a weak-strong duality of the theory allowing us to check

the presence of the Ising fixed point for weak coupling; the price to pay is the appearance

of a negative mass for the field φ.

Chang duality As proposed in [56] and numerically verified by Hamiltonian truncation

in [43], the following two Lagrangians

L =:
1

2
(∂φ)2 +

1

2
m2φ2 + gφ4 :m (3.26)

and

L′ =:
1

2
(∂φ)2 − 1

4
M2φ2 + gφ4 + Λ :M (3.27)

are physically equivalent provided

1

2
m2 +

6g

4π
log

m2

M2
= −1

4
M2 , (3.28)

and

Λ =
1

8π

(
M2 −m2

)
+

m2

8π
log

m2

M2
+

3g

64π2
log2

m2

M2
. (3.29)

Here : . . . :m and : . . . :M indicate the normal ordering with respect to mass m and mass

M , respectively. The proof can be found in [56] and reviewed in detail in [43], presenting a

detailed numerical check of the duality itself. As a result, for some value of g and a negative

value of the squared mass, there is a critical point corresponding to the Ising universality

class, i.e. ruled by the minimal model M(3, 4).

Since the Ising model is characterized by three Virasoro primaries σ, ϵ and 1 of con-

formal weights
(

1
16 ,

1
16

)
,
(
1
2 ,

1
2

)
and (0, 0), we expect to have the following values for the Ci

defined in (3.20) for the first three excited energy levels:

σ : C1 =
1

16
, (3.30)

ϵ : C2 =
1

2
, (3.31)

L−1L−1σ : C3 =
17

16
. (3.32)

We found that the critical point is located at

g2 ∼ −0.79 , g4 ∼ 0.3 , , (3.33)

where we used units in which m = 1.

Fig. 3 shows the energy levels resulting from Hamiltonian truncation close to the

critical point (Fig.3a), while the corresponding Ci are shown in Fig. 3b. It is clear that the

Hamiltonian truncation results are compatible with the expectation from the Ising model.

To our knowledge, the Ising fixed point in the Chang dual description (3.27) has never

been directly tested before. However, the existence of critical point in the m2 > 0 region
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Figure 3: (a) Energy levels close to the critical point from Hamiltonian truncation. (b)

differences between conformal dimensions defined in (3.20) near the fixed point compared

to the prediction from the minimal model M(3, 4), i.e. the Ising fixed point.

(3.26) was tested with different methods [42, 57–61]. The critical values of the coupling

was determined by various method (see Table 1 of [42]): the best value was obtained using

RG-improved Hamiltonian method as g4/m
2 ∼ 2.97. Using Chang duality, this predicts

a critical point for the Chang dual description (3.27) at g4/M
2 ∼ 0.26 [43]. The value

we found is g4/M
2 ∼ 0.258 which is in excellent agreement with the expected value. We

note that a more precise analysis would be required to examine the cutoff dependence of

the critical coupling. We leave this to further studies since our aim here is restricted to

verifying the correctness of our implementation.

4 Scaling region of the iφ3 theory

4.1 General considerations

The iφ3 theory is the Ginzburg–Landau description of the Yang–Lee fixed point [6, 12],

and it corresponds to the n = 1 case of the family (1.9). The upper critical dimension of

the potential φ3 is 6, and the critical exponents be studied using ϵ-expansion in d = 6− ϵ

[6, 62, 63]. While d = 2 (i.e. ϵ = 4) is outside of the range of validity of the ϵ-expansion

itself, resummation techniques give a reasonable agreement with the CFT results for d = 2

(i.e. ϵ = 4) using [64]. This approach also proves successful for the supersymmetric

extension M(3, 8) [7].

Our approach, based on Hamiltonian truncation, does not rely on the ϵ-expansion

and works directly in d = 2 by implementing the theory in a finite volume L with the

Hamiltonian

H = H0 + i (g1 + 3g3z(L))V1 + g2V2 + ig3V3 + (E0(L) + g2Lz(L))1 , (4.1)

as discussed in the previous Section. The explicit PT symmetry or this Hamiltonian can

be either realised by the eigenstates leading to a real spectrum is real, or spontaneously
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Figure 4: (a) Spectrum of the theory described by the Hamiltonian in (4.1) in the PT

symmetric phase (g1 ∼ −0.3, g2 = 0, g3 ∼ 0.3) the spectrum is real. (b) The spectrum of

the theory described by the Hamiltonian in (4.1) in the spontaneously broken PT phase

(g1 ∼ −0.45, g2 = 0, g3 ∼ 0.3), where complex conjugate pairs of energies appear. Solid

lines correspond to the real, while black dots display the imaginary parts. In both cases,

units are specified by setting m = 1.

broken, in which case complex conjugate pairs of energies appear in the spectrum. These

two cases are shown in Figs. 4a and 4b, respectively.

The two phases are expected to be separated by a critical point controlled by the

minimal model M(2, 5). In principle, the relevant parameter space is one-dimensional.

Once the quadratic coupling g2 is eliminated by a suitable shift of the field φ, the scaling

region is expected to be parameterised by a single relevant coupling. However, when

searching for a critical point, it is best to consider both couplings g1 and g3 due to quantum

effects that result in operator mixing.

4.2 The fixed point: Yang–Lee theory

The fixed point can be found by finding the line in the space of (g1, g3) where the ground

state and the first excited state degenerate into a complex conjugate pair. This results

in a line, along which further tuning must be made to push the meeting point to a large

enough volume (in our case mL > 10) to extract the asymptotic large volume behaviour

of the energies, or more precisely, the Ci coefficients defined in (3.20).

This procedure resulted in the following estimate of the critical point:

g1 ∼ −0.405 , g2 = 0 , g3 ∼ 0.4 , (initial mass : m = 1) . (4.2)

The finite volume at this point is shown (up to volume mL = 10) in Fig. 5a, while the

Cis computed from the spectrum are compared to the predictions ofthe minimal model

M(2, 5) In Fig. 5b. This CFT has a single Virasoro primary field (beyond the identity),
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Figure 5: (a) Spectrum of the theory described by the Hamiltonian in (4.1) near the fixed

point. The spectrum is real in the presented volume range. (b) Differences between confor-

mal dimensions defined in (3.20) near the fixed point compared to the M(2, 5) prediction.

whose conformal weights are
(
−1

5 ,−1
5

)
, leading to the predictions:

1 : C1 = 0−
(
−1

5

)
=

1

5
,

L−1L−1ϕ : C2 = −1

5
+ 1−

(
−1

5

)
= 1 . (4.3)

The prediction for C1 agrees well with the TCSA results of Fig. (5b). However,

the result for C2 seems to deviate significantly from the predicted value. This is due to an

artefact of the truncation, which results in the second and the third excited states becoming

a complex conjugate pair close to the Yang–Lee critical point. The two levels split into two

real energy levels only at a very high cutoff. We refer the interested reader to Appendix B

of [9] for a description of the phenomena and also for a comparison.

As expected, the fixed point separating between the PT symmetric phase and the

spontaneously broken PT phase is in the Yang–Lee universality class, confirming that iφ3 is

the correct Ginzburg–Landau description for the Yang–Lee fixed point. The correspondence

between the primary fields of the Yang–Lee model and the fields of the Ginzburg–Landau

description are given in Table 2.

It is possible to improve the present results by applying an effective field theory (EFT)

description to match the EFT, constructed by deforming the Yang–Lee fixed point by

irrelevant operators [13, 55]. However, to have reliable results on the Wilson coefficients of

the EFT, it is necessary to improve and optimise the Hamiltonian truncation implemented

in this work further, which is left for future studies.
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Primary Weights GL field PT

1 (0,0) 1 even

ϕ (-1/5,-1/5) φ odd

Table 2: Primary fields in the Lee–Yang CFT M(2, 5) with their conformal weights,

identification in the Ginzburg–Landau description and parity under PT symmetry.
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Figure 6: (a) Spectrum of the theory described by the Hamiltonian in (5.1) in the PT

symmetric phase (g1 ∼ −0.1, g2 ∼ −0.4, g3 = 0, g4 ∼ 0.3 where the initial mass is m = 1):

the spectrum is real. (b) Spectrum of the theory described by the Hamiltonian in (4.1) in

the spontaneously broken PT phase (g1 ∼ −0.1, g2 ∼ −0.52, g3 = 0, g4 ∼ 0.3 where the

initial mass is m = 1): in the spectrum complex conjugate pairs of energies appear, the

real parts are denoted by solid and the imaginary parts with dashed lines.

5 Scaling region of the φ2(iφ)2 theory

5.1 A first look at the spectrum

Turning now to the n = 2 case of (1.9), the corresponding finite volume Hamiltonian is

H = H0 + i(g1 + 3g3z(L))V1 + (g2 + 6g4z(L))V2 + ig3V3 + g4V4+

+
(
E0(L) + g2Lz(L) + 3g4Lz(L)

2
)
1 , (5.1)

with gi ∈ R.
Similarly to the iφ3 case discussed in Section 4, we expect phases with unbroken and

spontaneously broken PT symmetry, separated by a critical line in the universality class

of the Yang–Lee model. According to the main proposal of this paper, the critical line is

expected to end in the tricritical version of Yang–Lee singularity, which was found to be

the minimal model M(2, 7) [10]. Moreover, in analogy with [10], we expect non-critical

PT symmetry breaking beyond the critical line’s tricritical Yang–Lee endpoint. Fig. 6

presents examples of the spectrum in the two phases.
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Figure 7: A cartoon of the scaling region in the physical couplings g̃1 and g̃2 (where the

tilde refers to the couplings obtained after a proper shift the field φ that eliminates the

coupling in front φ3 for a suitably fixed value of g4). The red line is the line of critical points

of the Yang–Lee type (an example of which is shown in Fig. 8), which ends in a tricritical

version of the Yang–Lee singularity (shown in Fig. 9). The dashed line corresponds to

non-critical PT breaking (an example of which is shown in Fig. 10).

In contrast to the iφ3 case, the φ2(iφ)2 case has not been studied with epsilon expan-

sion. In principle, this requires an expansion for d = 4 − ϵ, extending the classical work

of Wilson and Fisher [4] to the non-Hermitian case. However, this is a rather non-trivial

task since the non-Hermitian theory requires drastically different quantization conditions

for the scalar field are different, as discussed in Section 2.3. Additionally, getting to ϵ = 2

requires reaching a sufficiently high order in the expansion to make a sufficiently accurate

resummation possible. As a result, the Hamiltonian truncation approach used here is much

more efficient, and it is possible to establish the existence and the class of universality of

the critical points as we proceed to demonstrate.

Generalising the φ3 case where a single coupling parameterised the scaling region, the

scaling region of φ2(iφ)2 is spanned by two couplings. However, to reduce the problem to

two independent couplings requires a shift in the field φ, which is nontrivial to parameterise

since the appropriate shift depends on the couplings and the operators’ mixing plays a

crucial role. Therefore it is hard to construct explicit phase diagrams in a two-dimensional

space. Nonetheless, the scaling region is expected to be analogous to Fig. 2 of [10], and we

present in Fig. 7 a cartoon illustrating the expected scaling region in the space of the two

independent couplings.

5.2 The Yang–Lee critical line

It is eventually rather easy to hit the line of Yang-Lee critical points by looking for the

critical point separating the PT symmetric phase from the spontaneously broken PT

phase. Alternatively, one can start from the case g4 = 0 and (4.2), then by varying g4 and

accordingly adjusting the other couplings, one can find the critical line. The predictions

for the conformal spectrum are provided in equations (4.3).

The analysis of the spectrum of low-lying levels is presented in Fig. 8, where the actual
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Figure 8: (a) Spectrum of the theory described by the Hamiltonian in (5.1) near a critical

fixed point. (b) Differences between conformal dimensions defined in (3.20) near the same

fixed point compared to the M(2, 5) prediction.

point on the critical line corresponds to the couplings

g1 ∼ −0.1 , g2 ∼ −0.48 , g3 = 0 , g4 ∼ 0.3 (initial mass : m = 1) .

(5.2)

The truncation approach’s numerical results clearly match the minimal model’s conformal

spectrum M(2, 5).

5.3 The endpoint: tricritical version of Yang–Lee singularity

Once a point on the critical line is found, it can be followed by tuning the couplings to find

its boundary where a new critical point of a different class of universality must appear,

which is expected to correspond to the minimal model M(2, 7). Performing this procedure

leads to the following estimate for the position of the endpoint of the critical line:

g1 ∼ −0.115 , g2 ∼ −0.528 , g3 = −0.24 , g4 ∼ 0.29 . (5.3)

where we use units in which m = 1.

It may seem surprising that the critical point is at a positive value of the quartic

coupling g4. However, since the other couplings are nonzero, to determine the effective

quartic coupling, one must apply the generalisation of Fisher’s argument from Subsection

2.1. Even though the couplings in the Lagrangian (2.7) and the one in (5.3) are not on

the same footing since the Lagrangian couplings are bare (classical), while the couplings

computed numerically are the renormalised ones, one can nevertheless insert the values

(5.3) into the argument of Subsection 2.1 to estimate γ4 in (2.7). First, we extract φ0

from the numerical value of the critical couplings (5.3) obtaining2 φ0 ∼ −0.3. Using the

relation γ4 = −15φ2
0 + g4 gives γ4 ∼ −1.15. This is consistent with the fact that the

2One must discard possible complex solution since it was assumed that φ0 is a real number.
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(a) Energy levels near the tricritical fixed point
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Figure 9: (a) Spectrum of the theory described by the Hamiltonian in (5.1) near the

non-unitary tricritical fixed point. (b) Differences between conformal dimensions defined

in (3.20) near the non-unitary tricritical fixed point compared to the M(2, 7) prediction.

universality class of this fixed point is different from the critical Ising (which corresponds

to a positive quartic coupling), and it also confirms that the fixed point corresponds to a

PT invariant theory as discussed in Subsection 2.3, with the negative sign accounting for

its non-unitarity. We also comment that the positive quartic coupling in (5.3) is important

to keep the truncated Hamiltonian spectrum stable; the presence of the imaginary linear

and cubic term can be interpreted as the manifestation of the nontrivial PT -symmetric

quantisation condition known from the quantum mechanical studies.

To identify the fixed point, recall that the minimal model M(2, 7) has three primary

fields: the identity 1 of weights (0, 0), and two nontrivial fields ϕ1 and ϕ2 whose conformal

weights are
(
−2

7 ,−2
7

)
and

(
−3

7 ,−3
7

)
. Therefore we expect to find

ϕ1 : C1 = −2

7
−
(
−3

7

)
=

1

7
, (5.4)

1 : C2 = 0−
(
−3

7

)
=

3

7
, (5.5)

L−1L−1ϕ2 : C3 = −3

7
+ 1−

(
−3

7

)
= 1 . (5.6)

Those predictions can be compared with numerical results obtained from the Hamil-

tonian truncation at the point (5.3). In Fig. 9, we compare these predictions with the

numerical values resulting from the Hamiltonian truncation. The resulting match confirms

the presence of a critical point in the universality class of the minimal model M(2, 7).

The identification between the primary fields of M(2, 7) and the Ginzburg–Landau

fields can be fixed using their transformation properties under the PT symmetry and is

presented in Table 3.
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Primary Weights GL field PT

1 (0,0) 1 even

ϕ1 (-2/7,-2/7) φ odd

ϕ2 (-3/7,-3/7) : φ2 : even

Table 3: Primary fields in the Lee Yang model M(2, 7), listing their conformal weights,

their identification in the Ginzburg–Landau description and their transformation property

under PT symmetry.

5.4 Non-critical PT breaking

As pointed out in [10], the absence of an order parameter for the PT symmetry breaking

opens the possibility for a non-critical symmetry breaking [10]. The possible options for

the phenomenology of PT symmetry breaking are the following:

⋆ The ground state meets the first excited state, forming a complex conjugate pair,

which is just the critical PT breaking scenario.

⋆ The second possibility is that the ground state simultaneously meets the first and

second excited states, which happens at the tricritical point. Note that, in princi-

ple, it is possible to have more lines meeting simultaneously with the ground state,

which corresponds to higher multicritical points, but the φ2(iφ)2 model does not have

enough tunable parameters to tune to reach a tetracritical point3.

⋆ The last possibility is that the first excited state meets the second excited state

forming a complex conjugate pair before meeting the ground state. Since PT is

spontaneously broken without closing the gap, this corresponds to a non-critical

transition.

Indeed, continuing beyond the endpoint of the critical line, we find a non-critical

transition separating the PT symmetric and symmetry-breaking regimes. An example of

such a transition point in the scaling region defined by the Hamiltonian (5.1) is shown in

Fig. 10. It is an interesting open problem to understand this phenomenon that recently

appeared in other models as well [29, 30].

6 Conclusions and outlook

In this work, we proposed a Ginzburg–Landau description for the non-unitary sequence of

minimal models M(2, 2n + 3). The corresponding GL Lagrangians are the field-theoretic

generalisations of the PT symmetric quantum mechanical Hamiltonians proposed origi-

nally in [11], which have real spectra despite their non-Hermitian nature.

According to our proposal, the Ginzburg–Landau description for the minimal model

M(2, 2n + 3) is a single-scalar boson Lagrangian where potential has the leading term

3To reach such a tetracritical point it is necessary to add a term of the form φ2(iφ)3 in accordance with

the proposal (1.9).
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Figure 10: An example of a point in the parameter space (g1 ∼ −0.13, g2 ∼ −0.54,

g3 = −0.25, g4 ∼ 0.2 where the initial mass is m = 1) in which PT symmetry is broken

non-critically.

φ2(iφ)n. We supported our conjecture by adopting Fisher’s construction for the Yang–Lee

model [6] and using information from integrable off-critical deformations, plus known facts

related to PT symmetry.

We also performed a numerical analysis based on Hamiltonian truncation for the sim-

plest cases n = 1 and n = 2, which correspond to the minimal models M(2, 5) and M(2, 7).

After testing the implementation, which included a non-trivial identification of the Ising

fixed point in the Chang dual channel, we located the critical points with the appropriate

universality classes in the iφ3 and φ2(iφ)2 theories, confirming their nature by a numerical

analysis of their spectra.

Note that PT symmetry was central to our discussion. In fact, the critical points we

found always separate a PT symmetric phase from a spontaneously broken PT phase.

Furthermore, we provided numerical evidence for non-critical PT breaking in the scaling

region of φ2(iφ)2 theory. Interestingly the same type of phenomenology emerges in other

two-dimensional models [9, 29, 30], which makes it interesting to understand the underlying

physics in more detail.

In fact, PT symmetric models have been proposed to describe actual physical phenom-

ena [65], and experimental measurements of the Yang–Lee zeros were also proposed [66–69].

As we discussed, the theories described by Lagrangians of the form of equation (1.9)

require specific quantisation conditions [11], which restrict the usefulness of mean-field

approaches and ϵ-expansions, in contrast to the unitary case. A notable exception is the

iφ3 case, where the quantisation conditions of the theory coincide with the usual ones,

and indeed our results are in perfect agreement with ϵ-expansions. On the contrary, in

the φ2(iφ)2 case, where the quantisation conditions are expected to differ from the usual,

we can still establish the existence of critical points to which the usual ϵ-expansion is

completely blind.
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To avoid the problem of the quantisation condition, an expansion of the potential

φ2(iφ)n in n was proposed in [19, 22, 24]. It would be interesting to understand if there

is a way to modify the usual procedure of the ϵ-expansion to recover the critical behaviour

found here.

The Yang–Lee universality class was also extended to higher dimensions, and similar

attempts were made in the case of the universality class of the minimal model M(3, 8)

[7, 70]. A natural question is whether the multi-critical Yang–Lee universality classes,

described by the minimal models M(2, 2n + 3) (for n > 1) in two dimensions, can be

extended to higher dimensions.

Another interesting direction is to generalise the numerical approach of this paper to

the case of multi-field Hamiltonians, which is in principle, possible. This is interesting in

the light of related results [7, 71], and may also lead to new Ginzburg–Landau theories for

other non-unitary minimal models.

An open question is to find a proper generalisation of Zamolodchikov’s OPE-based

argument for the Ginzburg–Landau descriptions of unitary minimal models [5] to the case

of non-unitary models, which is not clear at this time, despite an attempt given in Appendix

A of [9]).

Acknowledgments

It is a pleasure to thank D. Szász-Schagrin for very useful discussions. AM have bene-

fited from the German Research Foundation DFG under Germany’s Excellence Strategy

– EXC 2121 Quantum Universe – 390833306. GM acknowledges the grants PNRR MUR

Project PE0000023- NQSTI and PRO3 Quantum Pathfinder. GT was partially supported

by the Ministry of Culture and Innovation and the National Research, Development and

Innovation Office (NKFIH) through the OTKA Grant K 138606 and also under Grant

Nr. TKP2021-NVA-02. This collaboration was partly supported by the CNR/MTA Italy-

Hungary 2023-2025 Joint Project “Effects of strong correlations in interacting many-body

systems and quantum circuits”. ML was partially supported by the Ministry of Culture

and Innovation and the National Research, Development and Innovation Office (NKFIH)

through the OTKA Grant K 134946 and the New National Excellence Program under the
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A Explicit interaction terms for Hamiltonian truncation

To implement the Hamiltonian truncation, it is necessary to write explicit expressions for

the terms in the potential in terms of the annihilation and creation operators of the field

φ, given in equation (3.1). Since we are interested in powers of the field φ up to φ4, we

write below explicitly the terms that define the Hamiltonian in (3.6).

V1 =

∫ L

0
φ dx =

∑
k

√
L

2ωk

(
ak + a†

k

)
, (A.1)
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V2 =

∫ L

0
: φ2 :L dx =

∑
k

1

2ωk

(
aka−k + a†

ka
†
−k + 2a†

kak

)
, (A.2)

V3 =

∫ L

0
: φ3 :L dx =

∑
k1,k2

ak1ak2a−k1−k2 + a†
k1
a†
k2
a†
−k1−k2

2
√
2L

√
ωk1ωk2ω−k1−k2

+
∑
k1,k2

a†
k1+k2

ak1ak1 + a†
k1
a†
k2
ak1+k2√

2L
√
ωk1ωk2ωk1+k2

, (A.3)

V4 =

∫ L

0
: φ4 :L dx =

∑
k1,k2,k3

ak1ak2ak3a−k1−k2−k3 + a†
k1
a†
k2
a†
k3
a†
−k1−k2−k3

4L
√
ωk1ωk2ωk3ω−k1−k2−k3

+
∑

k1,k2,k3

a†
k1+k2+k3

ak1ak2ak3 + a†
k1
a†
k2
a†
k3
ak1+k2+k3

L
√
ωk1ωk2ωk3ωk1+k2+k3

+

+ 3
∑

k1,k2,k3

a†
k1
a†
k2
ak3ak1+k2−k3

2L
√
ωk1ωk2ωk3ωk1+k2−k3

. (A.4)

B Implementation of the Hamiltonian truncation

Here, we give some details on the implementation with suggestions for its optimisation.

Basis generation: The first step is to generate the basis of the truncated Fock space

of the free massive theory. We first generate all the possible single-particle states below

the chosen energy cutoff and then construct all the combinations of those single-particle

states with only positive momenta, which satisfy the energy cutoff, providing a basis for

right-movers; left movers can be obtained by flipping all particle momenta negative. Then

we construct a zero-momentum subspace by taking all possible combinations of the right-

mover states below the imposed energy cutoff. Finally, the full basis is constructed by

adding zero momentum particles so that the resulting states stay below the energy cutoff.

Matrix element computation: Due to the creation/annihilation operators’ action, the

interaction terms Vn matrices are very sparse. The generation of the matrix elements can

be optimised by running over all the states in a single loop and determining the list of

vectors in the truncated basis produced from each basis vector by the action of Vn. Then

we compute the matrix element with the initial basis vector for each such vector, thereby

obtaining the matrix elements in a form suitable for sparse matrix storage.

Hamiltonian construction: note that the generation of the truncated basis and the

matrix elements of the interaction operators Vn must be run only once for each volume

value since these data are independent of the coupling. Therefore, the eventual Hamiltonian

can be computed by a linear combination of these matrices weighted with the desired values

of the couplings.
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100 states
E0 1.15627

E1 4.10923

E2 6.08481 + 2409.48i

E3 6.08481− 2409.48i

5000 states
E0 1.15627

E1 4.10923

E2 7.56227

E3 11.3144 + 10−10i

Table 4: Lower energy levels of the quantum mechanical model described by the Hamilto-

nian (B.1) for different cutoffs. The imaginary part is omitted when it is of order O(10−11).

Non-hermiticity, PT symmetry and stability of truncation : For the PT sym-

metric non-Hermitian Hamiltonians considered in this paper, the reality of the spectrum is

guaranteed in PT symmetric phase. However, Hamiltonian truncation generally spoils the

reality of the spectrum. Indeed, preliminary studies of the quantum mechanical Hamilto-

nian

H = p2 + ix3 (B.1)

using a simple Hamiltonian truncation explained in chapter 25 of [1], show that while the

first few eigenvalues are real, to extend the reality of the spectrum for higher eigenstates

requires a relatively high energy cutoff and, therefore, a large number of states. To show

this, we implemented the Hamiltonian truncation keeping 100 states and 5000 states (the

latter is the order of magnitude of the number of states used in the field theoretical coun-

terpart implemented in this paper), and we only show the first four energy levels (see Tab.

4). Note that the third and fourth states are complex when the number of states is 100

but become real when the cutoff increases.

Fortunately, it turns out that the field-theoretic version does not suffer additional

problems. We tested that the reality of the spectrum is stable under the truncation by

explicitly computing the imaginary part of the energies. We give the relative imaginary

parts of the energies, i.e.

δEi =
ImEi

|Ei|
, (B.2)

in Table 5 for the choice of the couplings of Fig. 4a and Fig. 6a, where the exact spectrum

is expected to be real. Since δEi depends on the volume, we give its maximum value for

the volume range considered. It is clear that the reality of the spectrum holds with a very

high numerical precision.
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φ3 δE0 3 · 10−11

δE1 1 · 10−10

δE2 −2 · 10−10

φ2(iφ)2
δE0 6 · 10−14

δE1 9 · 10−15

δE2 1 · 10−14

Table 5: Imaginary part of the energy divided by its absolute value for PT unbroken

phases of the iφ3 and φ2(iφ)2 GL models. The choice of the couplings is the same as in

Figs. 4a and 6a, respectively.
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