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The melting of quasi-long-range superconductivity in two spatial dimensions occurs through the
proliferation and unbinding of vortex-antivortex pairs — a phenomenon known as the Berezinskii-
Kosterlitz-Thouless (BKT) transition. Although signatures of this transition have been observed in
bulk measurements, these experiments are often complicated, ambiguous, and unable to resolve the
rich physics of the vortex unbinding transition. Here we show that local noise magnetometry is a
sensitive, noninvasive probe that can provide direct information about the scale-dependent vortex
dynamics. In particular, by resolving the distance and temperature dependence of the magnetic
noise, it may be possible to experimentally study the renormalization group flow equations of the
vortex gas and track the onset of vortex unbinding in situ. Specifically, we predict i) a nonmonotonic
dependence of the noise on temperature and ii) the local noise is almost independent of the sample-
probe distance at the BKT transition. We also show that noise magnetometry can distinguish
Gaussian superconducting order-parameter fluctuations from topological vortex fluctuations and can
detect the emergence of unbound vortices. The weak distance dependence at the BKT transition can
also be used to distinguish it from quasiparticle background noise. Our predictions may be within

experimental reach for a number of unconventional superconductors.

I. INTRODUCTION

The study of critical phenomena in low-dimensional
systems is rich and complex, in part due to the increased
importance of fluctuations in these systems. This is per-
haps most clearly manifested in the Mermin-Wagner-
Hohenberg theorem [1-3], which shows that spontaneous
breaking of a continuous symmetry group is impossible in
dimensions two and lower due to long-wavelength fluctu-
ations of the order parameter. In particular, long-range
superfluid order, which is characterized by the sponta-
neous breaking of a U(1) symmetry, is therefore impossi-
ble in two-dimensions as a matter of principle. However,
in a series of ground-breaking works by Berezinskii [4]
and Kosterlitz and Thouless [5, 6], it was shown that the
situation is more nuanced.

In particular, while true long-range superfluid order is
indeed impossible in two dimensions, a “quasi-long-range
ordered” (QLRO) phase is possible, and this is sufficient
to enable superfluid transport and macroscopic quan-
tum coherence effects [7]. The key distinction between
the QLRO phase and disordered phase is whether vor-
tices—topological defects in the order parameter which
possess quantized angular momentum—are bound or
free. At low temperatures, vortices and antivortices ex-
perience an attractive force and form tightly-bound inert
pairs. In contrast, at high-temperatures these pairs dis-
associate due to thermal agitation and become unbound
and free to wander, leading to dissipation and phase slips
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which ruin superfluidity. The transition between these
two phases, known as the Berezinskii-Kosterlitz-Thouless
(BKT) transition, is therefore characterized by the na-
ture of the vortex-antivortex interaction and has no lo-
cal order parameter, circumventing the Mermi-Wagner-
Hohenberg theorem [1-3] and leading to its classification
as a “topological phase transition.”

There are a number of striking predictions for the
nature of this transition, including a universal jump in
the renormalized superfluid density p3p,(T") which jumps
from zero for T > Tgkr to pin(TgkT) = %TBKT upon
crossing the transition [8]. Another notable prediction is
the divergence of the correlation length &, (T") upon ap-
proaching the transition from above, which exhibits an
essential singularity as &, (T) ~ exp[b(T/Texr — 1)~/
(with b a constant) diverging faster than any power
law [9]. A number of these predictions have been veri-
fied in a wide range of realizations, including ultracold
quantum gases [10, 11], establishing the validity of the
topological BKT transition [6] across a variety of physi-
cal realizations.

Though originally formulated in the context of neu-
tral superfluids [5], it was quickly shown that the BKT
transition is also relevant for two-dimensional supercon-
ductors [12-14], provided the sample dimensions are suf-
ficiently small compared to the Pearl length [15]. In this
case the BKT transition directly manifests in the bulk
electrical transport properties [13], which has enabled
confirmation of the BKT theory in a number of sam-
ples, including recently to a very high degree of accu-
racy in NbN [16]. Owing to the charged nature of the
condensate, vortices not only carry angular momentum
but also magnetic flux, and therefore directly affect the
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magnetodynamic response of superconductors. As such,
the BKT transition can also manifest in global flux noise
experiments [17-23], which detect the thermal motion of
magnetic vortices and allow one to make inferences about
vortex interactions.

To date however, existing experimental probes of BKT
physics in materials have been limited to probing bulk
long-wavelength properties. As such, these approaches
can only indirectly infer physics on the length-scale of
individual vortices, which is at the heart of the BKT
theory. In addition, it can be challenging to unambigu-
ously identify the BKT transition from global properties
alone, as it can easily be obscured by long-wavelength
disorder, material inhomogeneity [24-26], and heating ef-
fects [16]. Background contributions to the conductivity
from both fermionic quasiparticles [27] and Gaussian su-
perconducting fluctuations [28] can also further obscure
BKT physics.

Meanwhile, it has become increasingly more impor-
tant to understand how BKT physics manifests in two-
dimensional superconductors due to recent advances in
the discovery and design of atomically thin Van der
Waals superconductors. This includes a large number
of unconventional superconductors such as BSCCO [29],
FeSe [30], WTey [31, 32], as well as a number of graphene
allotropes [33-36], including putative fluctuating triplet
superconductivity [37]. Understanding the details of the
BKT transition in these atomically thin and highly tun-
able structures might shed some light onto the micro-
scopic processes that drive superconductivity in these
materials.

In this work, we show that local noise magnetometry
can in principle give access to the full scale-dependent
vortex dynamics across the BKT transition in a non-
invasive way — see Fig. 1. Most notably, we find a max-
imum in the local magnetic noise at the BKT transi-
tion as a function of temperature. This local noise max-
imum is nearly independent of sample-probe distance at
sufficiently low frequencies. At zero frequency this scale-
invariance will persist up to distances which become com-
parable to either the sample size, Pearl length [15], or
other macroscopic cutoff scale [38]. We will show later
that this scale-invariance is crucial, as it enables the dis-
entangling of vortex and quasiparticle effects.

Above, but close to, the transition temperature, we
predict signatures of finite-size crossover effects, which
can be studied locally and in situ; at even higher temper-
atures further from the transition, an additional contri-
bution to the magnetic noise from unbound free vortices
can be discerned and used to study the vortex prolifera-
tion. We also show that the magnetic noise dependence
on the sample-probe distance can be used to distinguish
Gaussian superconducting fluctuations from vortex ef-
fects, further demonstrating the power of local noise mag-
netometry for studying the BKT transition.

This work is motivated in part by recent progress
in the development of atom-like solid-state defects,
nitrogen-vacancy (NV) centers in diamond [39, 40] in
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FIG. 1.

Schematic overview of the proposal. A two-
dimensional superconductor hosts vortices which exhibits a
BKT phase transition. This results in a characteristic scale-
dependent magnetic noise, which can be studied via local
magnetometry, both via 1/71- and 1/T5-like measurements.

particular, that can sense weak magnetic fields at the
nanoscale. To date, NV noise magnetometry has been
experimentally employed to study a variety of many-
body systems, including magnons in ferromagnetic in-
sulators [41], magnon hydrodynamics in a Van der Waals
material [42], Johnson-Nyquist noise of electrons in a
metal [43], the electron-phonon Cherenkov effect in a
driven graphene [44], and fluctuations in antiferromag-
netic topological insulator MnBiyTey [45]. On the theory
side, NVs have been argued to be a useful probe for a far
wider array of phenomena including the study of quasi-
particles [46, 47] and stripes [48] in atomically-thin su-
perconductors, two-dimensional electronic Wigner crys-
tals [49], one- and two-dimensional quantum phases [50,
51], critical magnetic fluctuations [52], semimetals [53],
and correlated magnetic insulators [54, 55]. Additionally,
it has even been proposed that multiple NV centers could
be used to cooperatively probe materials via entangled
qubit states [56]. For a comprehensive overview of the
capabilities of NV sensing see, e.g. Ref. 40.

The remainder of this paper is structured as follows.
In Sec. IT we show how the local magnetic noise can be
used to directly map out the frequency and momentum
dependence of the vortex-antivortex interactions. Then
in Sec. III we present a detailed analysis of this depen-
dence and identify a number of key predictions. In Sec. IV
we compare these predictions against those based on a
Gaussian model of Aslamazov-Larkin type fluctuations.
In Sec. V we survey a number of relevant materials which
may be promising for detecting BKT physics and discuss
possible complications due to quasiparticles. Finally, in
Sec. VI we conclude with a discussion of future directions
and challenges.

II. VORTEX INTERACTIONS AND
MAGNETIC NOISE

In this section, we relate the magnetic field noise at
a distance z away from the superconducting sample (see
Fig. 1) to the vortex correlation functions. To obtain the



noise spectrum we assume the superconductivity is truly
two-dimensional, i.e., i) the sample thickness is much
smaller than the penetration depth and ii) the BKT
transition temperature TggT is much less than the pair-
ing temperature Tpcs — corresponding to the London
limit and allowing us to neglect effects due to quasiparti-
cles [46, 47] (for a more precise discussion see Sec. V A).
Assumption (i) is already realized in a number of conven-
tional and unconventional superconductors and is espe-
cially relevant for Van der Waals materials such as FeSe,
graphene, and NbSey as well as thin-films of NbN and
high-T, cuprates. While it is unclear whether assumption
(ii) can be truly realized, predictions of our theory should
still be relevant in any situation where there is a signifi-
cant separation between TpkT and the three-dimensional
transition temperature, as discussed in Sec. V.

The magnetic noise spectrum at a distance z above the
sample and at a frequency w which satisfies the magne-
tostatic condition w < ¢/z can be directly related to the
equilibrium fluctuations of the transverse current — see
Appendix A:

Noalw, 2) = / dt ¢! (B (2, 1) B.(2,0))

~ (4o/2)? / 215 (w,q), (1)

with po the vacuum permeability. For vortex fluctuations
in the superconductor, the correlation function S=*(q,w)
can be related to the vortex structure factor

(@) = / dt ! (n(t, Q)n(0, —q)) @)
via
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Here pop is the bare two-dimensional superfluid density
at low temperatures, and

n(t,q) = Z n; exp (iq - R;(t)) (4)

J

is the two-dimensional vortex density, with n; = £1 and
the overall “neutrality” constraint ;jn; =0 (in analogy
with the Coulomb plasma model). Therefore, by charac-
terizing the local magnetic noise spectrum we can directly
read out the vortex dynamic structure factor as we tune
through the BKT phase transition.

It is convenient to express the noise in terms of the
vortex dielectric function, €,(w,q), which characterizes
the dynamically screened vortex-vortex interactions. We
emphasize that €,(w, q) is the dielectric function for the
effective vortex-vortex Coulomb interaction and is not to
be confused with the physical dielectric function, which
is not relevant for the transverse current fluctuations and
will not be discussed in this paper. As per the stan-
dard relations between charge susceptibility and dielec-
tric function, and employing the fluctuation-dissipation

relation [17, 18], we can write

M) = =2t ] (5)

w v(q) w,q

where v(q) = 47%pap/q? is the bare interaction between
vortex charges. The current noise spectrum is then given
by:

St (w,q) = 2(2@)2Tp2D1m[*71}, (6)
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and the corresponding magnetic noise spectrum reads
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Here we have introduced Té(QT = 5p2p, Which is the

BKT transition temperature obtained by assuming that
the universal superfluid density jump [8] is applicable to
the bare superfluid density psp, obtained say at zero tem-
perature. We have also included the prefactor N, which
corresponds to considering a stack of N equally spaced,
uncoupled layers separated by a distance a < z — hav-
ing several such layers makes the noise larger and, thus,
more feasible experimentally (see Sec. V). Below, we will
present results per single layer allowing us, thus, to drop
the parameter N from our analysis (i.e. N = 1).

We will further focus on the experimentally most rele-
vant case of classical diffusive motion of vortices following
the Bardeen-Stephens model [13, 57], with the vortex mo-
bility p and diffusion constant D = uT'. More elaborate
forms of vortex motion as well as quantum effects are left
to future work. We evaluate the vortex dielectric function
€x(w, q) for this model in the following section.

For future reference, we turn to discuss relevant di-
mensionful parameters that determine the magnetic noise
properties as well as experimental feasibility of our pro-
posal, which we further examine in Sec. V. We first note
that the typical frequency associated with the vortex dy-
namics is expected to scale as w ~ Dg? so that the in-
tegration measure qdq/w ~ 1/D. The reference diffusion
constant D(T) is referenced at the BKT transition tem-
perature (the vortex mobility is roughly temperature in-
dependent):

D(TBKT) = D() = NTBKT~ (8)

The noise scale is then referenced with respect to the
overall scale

IBKT
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Normalizing by Np, we rewrite Eq. (7) as
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Within the theoretical model used here the ratio
TB%T/TBKT = pop/pPsp = €. where €. is the value
of the vortex dielectric constant at zero frequency and
momentum just below the transition temperature; that
is, €. = limy, 40 hmT—>T§KT €y(w,q). We can therefore
rewrite this as

N2 (w,2) o 5 —€,
Nezls2) b [ dgge2amm|——Cfc
No /0 19¢ m[wev(w,q)

We have also ignored any reduction of the superfluid den-
sity due to quasiparticle excitations. Length scales are
referenced with respect to the coherence length £, which
physically corresponds to the size of the vortex core and
serves as an ultraviolet cutoff on the validity of the Lon-
don theory for vortex motion. In our treatment this is
taken as an input to the model which will be approx-
imated by the value of the coherence length in the ab
plane at low temperatures. Using &. we can introduce
the reference frequency

wo = Do&; % = pTekré, . (12)

Since the vortex coherence length £, is the smallest length
scale in the problem, wg will be the largest frequency scale
in the problem.

}. (11)

III. RESULTS AND DISCUSSION

The key question of interest is the behavior of the ef-
fective dielectric function €, (w, ¢). The behavior of this in
certain limits is well known, and in general should behave
similar to a real (charge) dielectric with a corresponding
mapping from vortex parameters to charge parameters.
That is, at low temperatures, €,(w,q) should resemble
the dielectric function of a “vortex dielectric,” while at
high temperatures €, will behave as that of a “vortex
plasma.”

This behavior is quantitatively described by the solu-
tion of the Kosterlitz renormalization group (RG) equa-
tions [9, 58, 59], which yield the effective vortex interac-
tion €, and fugacity y at a particular length scale ¢. In
the limit of small fugacity y < 1, these read

dey (€) 3,2
dlogt ~ Ty (0)
WO () Toxe 1Y, 13b
dlogl T oo )V (1)

In addition, we specify the microscopic value of these
parameters, with €,(§.) = 1 and y(&) = yo =
ceXp(—Té(ET/T) with ¢ = 0.1 used here. Note the ex-
act behavior of the results here are somewhat dependent
on the model for used for the bare vortex fugacity. Due
to screening of vortex interactions the actual transition
temperature is slightly shifted from the bare value TgQT
to TrkT =~ 0.8117T§2T (see Appendix B). This corre-
sponds to a value of ¢, = 1.2320.
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FIG. 2. (a) Vortex fugacity y flow as a function of length scale
¢ for different temperatures. At low temperatures the fugacity
flows to zero, while at high temperatures it diverges to the
non-perturbative regime of y > 1 (shaded area). (b) Static
inverse vortex dielectric constant e, ' flow as as function of £.
Below the transition e, ! remains finite as £ — oo, while at
high tlemperatures this exhibits a crossover before converging
toe, =0.

In Fig. 2 we present the solutions to the RG equa-
tions for (a) the vortex fugacity and (b) the static vor-
tex dielectric constant as a function of length scale ¢
for different values of the temperature 7. At low tem-
peratures (T < TpkT) the vortex fugacity is irrelevant
and thus upon increasing ¢ we see y — 0 while, simul-
taneously the vortex dielectric constant €, ! tends to a
finite value reflecting the finite renormalized phase stiff-
ness pip = pane, L(£ = co) > 0.

At high temperatures (T > Tgkr) the vortex fugac-
ity instead becomes a relevant perturbation and thus
increases with increasing ¢ until it reaches the nonper-
turbative regime of y 2 1. At this point, the RG equa-
tions fail, and we interpret the scale £ = £ at which this
happens as the typical intervortex separation in the free
vortex gas, with areal density ny = 1/(7€2). As it is a
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FIG. 3. Left axis: length scale at which vortices become
unbound, &4(T)/&. This diverges such that log&; ~
1/+/T — Tk, which grows very rapidly upon approaching
the transition from above. Right axis: density of free vortices
above Tgxr obtained as ny = £ /.

plasma, the vortex-vortex interactions become screened,
and the vortex dielectric constant e, ! — 0 captures this.
Since this is related to the renormalized phase stiffness
by pip = pape, b = 0, this is seen to be a normal non-
superconducting phase. The length scale £, (T") is shown
in Fig. 3, along with the corresponding free vortex den-
sity ny, referenced in terms of the coherence length &..
We can see that both exhibit essential singularities at
T = TskT, as expected.

From knowledge of the scale-dependent vortex dielec-
tric constant €, (), it is possible to compute the dynam-
ical dielectric function by essentially integrating the dy-
namical response from pairs over all length scales. Previ-
ous studies have computed the long-wavelength dielectric
function, €,(w, ¢ = 0) using this procedure [60-62]. How-
ever, using NV relaxometry we are now in a position to
probe the full spatial profile of the dielectric response
function €,(w, q). In Appendix C we generalize previous
long-wavelength results to obtain the finite-momentum
and finite frequency vortex dielectric function €,(w,q).
We can write the result succinctly as

S+ de,(0) F(qt/2)

e(w,q) =1 +/ dl —
&e dt 11— 214%

=e¢p(w,q) (bound vortices)

472 popn g
Dq? —iw ’
—_——

=ey(w,q) (free vortices)

(14)

where the filter function F(x) = 2Ji(z)/x is approxi-
mately one for £ < ¢! and decays for £ >> ¢~ !, isolating
the dominant contribution as arising from pairs with sep-
aration less than the wavelength being probed by ¢. For
numerical evaluation, this filter function will be replaced
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FIG. 4. Local magnetic noise as a function of temperature for
various qubit-sample distances z near the BKT transition in
the limit of w — 0. The true transition is shown by the dashed
line.

by a Gaussian F(z) = exp(—z2/8) to remove the nega-
tive oscillations of F'(x) which can cause issues in the nu-
merical integrals. See Appendix C for more information.
i%) as
encoding the diffusive relaxation rate of pairs at length
scale /£ to perturbations at frequency w, while the factor
‘ff; encodes the polarizeability of the pairs at that length
scale. The factor of 14 is known arise from the more care-
ful solution of the dynamics of a bound votex-pair in a

logarithmic potential, as found in Ref. 61.

One can interpret the dynamical factor (1 -

For T < Tgkr the cutoff length scale £, — oo and the
Drude weight of free vortices vanishes as ny = 0, so the
contribution to the vortex dielectric function is purely
due to bound pairs. However, for T' > Tkt the cutoff
&, becomes finite, as does the finite density of free pairs
with density ny ~ 512. These pairs then contribute as a
Drude-type response which, at small momenta and low
frequencies will become singular and dominant over the
bound contribution. In general, even above the transition,
there will also be a contribution from the bound pairs at
length scales less than £, which may be large and thus
it is important to include contributions from both the
free vortex contribution as well as the bound pairs. Us-
ing the result of Eq. (14) we arrive at the computed NV
qubit noise spectrum AN, as a function of temperature
for different frequency and length scales. The central re-
sult is encapsulated in Fig. 4, which presents the low
frequency w — 0 limit of the magnetic noise spectrum
N, for different NV-sample distances z as a function of
temperature T'. In Fig. 4 the true transition temperature
Tk is indicated by the vertical dashed line.



A. Temperature Dependence

We now comment on the important features of Fig. 4.
Below the transition we see that the magnetic noise varies
essentially as a power law in distance z with a temper-
ature dependent exponent that vanishes at Tgxr. Right
at the transition the magnetic noise is essentially scale
invariant, and independent of qubit distance z (up to log-
arithmic corrections), as might be expected near a phase
transition. A more complete discussion of the magnetic
noise dependence on distance can be found in Sec. II1 B,
but the key result—the scale invariance of the noise at
TskT can be easily understood based on dimensional
analysis. The conductivity due to vortex motion, ob-
tained in Appendix D, is o (w,q) = —22% - Based
on diffusive motion, we expect the characteristic vortex
frequency scale to be related to momentum by iw ~ Dg?
and thus the transverse conductivity should scale at low
frequencies as o= (q) ~ m. In general, the vortex di-

electric function €,(q) exhibits power law dependencies,
but at the critical point we expect it to be essentially
constant, owing to the marginality of the vortices at this
point. Therefore the magnetic noise scales as

o0 oo d
Neow [ dage 10t (@)~ [ He )
0 qmin 4

Therefore this will be approximately scale independent
as z can be absorbed in to dgq/q (see Appendix A for the
magnetic noise as a function of the conductivity). How-
ever, it is seen that for small ¢ this integrand is logarith-
mically divergent and therefore this scale independence is
ultimately cutoff by some infrared cutoff—here denoted
as gmin—which will be set by the minimum of the system
size, Pearl length [15], or diffusive length £,,.

Returning to Fig. 4 we see that above the transition
temperature we see a more complicated dependence, and
in particular we see that the magnetic noise is nonmono-
tonic with temperature at fixed distance z, with the noise
maximum occurring at the BKT transition. As the tem-
perature continues to increase above TgkT the magnetic
noise then decreases—sharply at first—before reaching a
pseudo-plateau occurring at a z-dependent temperature.

The emergence of the pseudo-plateau is relatively easy
to understand; it signals the qubit distance z is large
enough to probe the magnetic noise due to the free vor-
tices, which will onset at lower temperatures for larger
z. The residual temperature dependence in this regime
is mostly due to the temperature dependence of the free
vortex density ns(T).

To understand the intermediate regime, it is important
to note that, while for any temperature 7' > Tkt there
will be a finite density of free vortices at length scales ¢ >
&4, just above the transition this scale is still extremely
large (see Fig. 3). For qubit distances z < &4, actually
the dominant contribution still arises from the bound-
pair contribution to Eq. 7. We note that Ime,(w,q) ~ w
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FIG. 5. Inverse bound-vortex dielectric function e, *(q). For
T > TgkT the egl(q) exhibits a crossover in ¢, vanishing at
¢ = 0 and approaching unity as ¢ — £ 1.

as w — 0 and therefore

1
lim ——Ime, *(w,q) =
w

1 (S d 2 [ de,
2 (q) /5 0 14D (dlogg>F(q€/2)- (16)

v

This can be integrated over ¢ to obtain the magnetic
noise at low frequency which is

I%sz(wvz)/NO =

1 > € £+ de

- dgge %771 < dee Y ) F(qt/2).

i, 4 a3 /5 (dlogﬂ) (t/2)
(17)

Although it depends on the particular details of the func-
tion F', if we use the Gaussian approximation (see Ap-
pendix C), one can show that within this approximation
the static dielectric function obeys

6%(9) I

de,
a— dloggF(qﬁ/Q). (18)

We can therefore show that [63]

1 ~ 16 * —22q dE;l(q)
i%sz(wvz)/NO ~ ﬁecA dge Tq (19)

The integral is dominated by ¢ < 1/(2z) due to the
exponential kernel, and therefore we can qualitatively ex-

. _oggdey ! 1/(2 de, *
pect it to behave as [ dge 22‘1;—&(] ~ s /(22) dq;—bq =
& (g = 1/(22)) — ¢ '(0). For T > Tpxr we have
6;1(0) = 0 and therefore the magnetic noise will essen-

tially follow the same crossover behavior as ¢, ' (g). This



is shown as a function of momentum ¢ for different tem-
peratures T' in Fig. 5, and closely parallels the behavior
of €;1(¢) in Fig. 2(b). Conversely, at fixed z (and hence
q ~ 2z~ 1) it is easy to see that as T increases, the crossover
length scale shrinks and ultimately becomes smaller than
2z at which point the noise rapidly drops to zero (in the
presence of quasiparticles this will drop to a finite back-
ground). In Fig. 4 this rapid drop is observed for temper-
atures right above Tk, but below the pseudo-plateau
temperature set by & (7).

Physically, this local maximum in the noise can also
be understood as a tradeoff between the dissipative and
reactive parts of the vortex motion; at low temperatures
the noise vanishes as the dissipation becomes frozen out
in the superconducting phase. At high temperatures, the
magnetic noise also eventually drops since it originates
from Johnson-Nyquist current fluctuations and therefore
is proportional to the electrical conductance which de-
creases as superfluidity is destroyed.

This shows that by studying the dependence of the low
frequency noise on the qubit-sample distance and tem-
perature, one can probe the finite-size scaling behavior
of the BKT transition directly. We now examine this in
more detail below.

B. Distance Dependence

We now study how the noise behaves in more detail
as a function of the qubit-sample distance z. This is pre-
sented as a function of z in Fig. 6(a),(b) for different tem-
peratures below, and above the transition temperature,
respectively. Both are shown in the zero-frequency limit
(we take w = 1072wy in our numerical calculations).

Below the BKT transition, the low-frequency scaling
behavior seen in Fig. 6(a) is relatively simple and ex-
hibits a continuously-varying power law behavior. This is
expected and is consistent with known results [60] since
for T' < Tk the system is generally characterized by
algebraic correlations.

For T > Tgkr we see the behavior however is more
complicated and is not a simple power law even as w — 0.
To better understand this regime we focus on the contri-
bution to the noise due to the free vortices (i.e. the vortex
Drude weight). This is expected to dominate for z > &,
and low frequencies. If we neglect the frequency and mo-
mentum dependence of €,(¢q, w) we can write

_ &’
(W, q) =€ [1 + m 5 (20)
where €, = €,(¢ = 0,w = 0) is the static renormalized
dielectric contribution due only to the bound pairs, and

_9 2 P2D Ny
=4re==_L 21
¢p 0 o T (21)
is related to the Debye-Huckel screening length, while
(5% = w/D characterizes the diffusion length for the vor-
tices.

In this regime one can find the zero-frequency limit of
the magnetic noise is

e [P e &7
N..(0,2)/JNog = —— dgqe™2 qm.

14€b 0
In particular, this will exhibit the asymptotic behavior
for z > &p of

(22)

€c 1

NZZ(O,Z)/N() ~ EW

(23)

This is what one would expect from local, scale-
independent Johnson-Nyquist noise as predicted in
Ref. 13, and this is reflected in the 272 power law tail
in Fig 4(b) at large z.

We have seen that there are interesting and detailed
signatures of the BKT transition in the magnetic noise,
which manifest in the distance dependence of the mag-
netic noise. However, in general the frequencies probed
by spin-qubit noise magnetometry are not negligibly low,
and this may introduce additional complications into the
predictions, as well as potentially offer novel insights. It
is therefore important to understand the dependence of
the noise also as a function of frequency in order to get
a more complete picture.

C. Frequency Dependence

We now study the full frequency dependence of the
magnetic noise for different temperatures and probe
depths. We start by analyzing the magnetic noise at low
temperatures, below and at the effective BKT transition
as a function of frequency. This is shown in Fig. 7 for
a variety of temperatures below Tpxr for z = 1000&,.,
essentially probing the long-wavelength magnetic noise.

Looking more closely we see that there are two clear
noise regimes. At very low frequencies, the noise is ap-
proximately white noise with no strong frequency de-
pendence, thereby justifying our zero-frequency analy-
sis of Eq. (19). This persists up until a z-dependent fre-
quency w,, above which the noise character changes to
a power law in frequency with an exponent that contin-
uously varies with temperature. This again is similar to
our observations in Fig. 6(a) and essentially recovers the
results of previously performed bulk flux-noise measure-
ments [17-23, 27]. In Fig. 8 we clearly see this crossover
behavior and confirm the scaling of w, ~ 272 as expected
based on diffusion.

For frequencies w > w, (i.e. much larger than the
crossover scale identified) we can analytically understand
the power law behavior in frequency. In this case, the
noise can be written as

De. de;' (¢
ILm N..(w, 2) /Ny = *%WZF ;Tog(f) .
m ¢=+/14D/w
(21)
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FIG. 6. (a) Magnetic noise as w — 0 for temperatures below the transition (T' < TsxT). We see the dependence is essentially
a power law which continuously varies with temperature, becoming progressively less sensitive to qubit distance z upon ap-
proaching the transition. (b) Magnetic noise at low frequency as w — 0 for temperatures above the transition (7' > Tgxr). We
see the dependence is more complicated, with at least two distinct regimes depending on whether the qubit distance z is larger

than the temperature dependent inter-vortex distance &4 (7).
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FIG. 7. Magnetic noise at z = 1000¢. as a function of w for
different T" < TsxT. We see two regimes. At very low fre-
quencies the noise is essentially white noise and independent
of frequency. Then, at higher frequencies we see a crossover
to power law behavior with a varying exponent.

This exhibits a leading dependence on distance as 272,

as one would expect based on magnetostatics from local
fluctuations of the sheet-current density. The fact that
this also exhibits a power law in frequency (at fixed z)
is less trivial and originates from the anomalous scaling
behavior of the vortex dielectric function e, !(¢). This
behavior has been previously studied in Ref. 60 in the
q — 0 limit and can be related to the scaling exponent
z(T) which describes the power law correlations in the
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FIG. 8. Magnetic noise at T = 0.95TskT as a function of w
for different z values. Dashed vertical lines are guides to the
eye showing where the crossover frequency w, to power law
behavior occurs. Increasing z by a factor of 10 reduces the
crossover frequency by a factor of 100, confirming the scaling

exponent of w, ~ 272,

QLRO phase. Specifically, we expect
N (w,2) [Ny ~ 27 2(1)/2-1, (25)

The exponent z(T") continously varies with temperature
and near TpkT goes as

I(T)/Q X y/ 1-— T/TBKTa

with a nonuniversal constant as the prefactor [60]. Since
this vanishes as T' — Tkt we see that the noise tends

(26)
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FIG. 9. Magnetic noise at z = 1000¢. as a function of w for
different T ~ TgkT. At low temperatures we see the crossover
from white noise to a power law, but passing through the
transition we note a number of new features including the
emergence of a second plateau in the noise and nonmonotonic
temperature dependence.

to 1/w behavior over a large range of frequency close
to the transition, also reproducing previously known re-
sults [19].

Finally, at very high frequencies with w 2 wg the con-
tinually varying power law behavior gives way to a 1/w?
behavior (this is not shown in the figures for brevity).
This is seen by performing a high-frequency expansion of
Eq. (14).

We now turn out attention to understanding the be-
havior as T varies through the BKT transition. This is
seen in Fig. 9. We first point out that at low frequencies
the magnetic noise is nonmonotonic with temperature,
initially increasing as the transition is approached from
below before dropping again once the temperature sur-
passes TgkT, as seen also in Fig. 4, which is essentially
the w — 0 extrapolation of this dependence.

We also see that for T' > Tgkr a new frequency scale
emerges which again reflects the appearance of the vor-
tex Drude weight (this is only visible provided T is suffi-
ciently large that £ is comparable to the relevant length
scale z). The free vortex contribution to € is modeled in
Eq. (20); rewriting in terms of frequency scale we have

g
v ’ = . 27
o) =t S (27)

where wy = Dg? and

v = 4 papnsp (28)

is the Drude weight of the free vortices. Note v/wy =
8e.(£4/€.)72, and thus v may be many orders of magni-
tude smaller than wy due to the strong dependence of &
on temperature. Below this frequency the magnetic noise
is well reproduced by Eq. (22).

For frequencies above «y there is then another appar-
ent plateau which emerges in the magnetic noise, clearly
seen on the highest temperature curves in Fig. 9. In this
regime the free vortices are no longer resolved for w > =,
and instead we see the remnant of the magnetic noise
due to the bound-pair contribution to €, which are still
important even for T' > Tgkr. This then persists up un-
til a second crossover scale before the noise again drops
at higher frequencies, and ultimately recovers the 1/w?
behavior for w ~ wy.

We now focus on understanding the w and z depen-
dence of the magnetic noise in the high-temperature
regime, which is summarized in Fig. 10(a),(b),(c) for tem-
peratures T/Tpxr = 1.02, 1.04, 1.07 respectively. For
temperatures close to the transition, the dependence still
closely resembles the T' < Tkt dependence at the rele-
vant frequency and length scales, although there is con-
vergence of the curves for low-frequencies as a function
of z owing to the proximity to the scaling collapse which
is expected at the transition itself.

Progressively increasing the temperature causes the
magnetic noise to grow and flatten out at low frequen-
cies as the crossover scale in the bound-pair contribution
grows larger. For the longest length scales, signatures of
the vortex Drude weight also become visible, as seen in
the z = 3000, curve in Fig. 10(b), though the contribu-
tion is hardly visible.

Finally, at even higher temperatures we see the emer-
gence of the vortex Drude weight, indicated by the
dashed line which is a visual guide, roughly correspond-
ing to frequency w = . Below this frequency, the dom-
inant noise source are the free vortices and their diffu-
sion, while above this frequency, the bound-pairs are the
main source of noise. We clearly can see here that this
crossover frequency is not dependent on distance z but
only on temperature 7', which heralds the intrinsic length
scale £, (T) appearing in the problem.

The magnitude of the drop in noise at this frequency is
however z dependent, with larger length scales exhibiting
a more dramatic difference between the free and bound
pairs. This is simply understood as the fact that at larger
length scales the bound pairs become even less important
and the contribution to magnetic noise from these bound
pairs drops more rapidly as z — oo than the contribution

from free vortices does, which only drops as z72.

This in-depth analysis shows that the joint frequency,
distance, and temperature dependence of the magnetic
noise can be used to disentangle and understand the be-
havior of both the bound and free vortices and their dy-
namics above as well as below the BKT transition. All
of this very elegantly follows from the analysis of the
superconducting phase fluctuations in the London limit,
which assumes that the amplitude of the superconduct-
ing order is frozen and the only fluctuations are those of
the phase (except possibly at the vortex core). However,
given the practical nature of the BKT transition in super-
conductors, which are actually formed from Cooper pairs
that are extended objects formed from paired fermions,
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FIG. 10. (a) Magnetic noise at T' = 1.02Tgk for different z as a function of w. (b) Magnetic noise at T' = 1.04Tgk for different
z as a function of w. We see the emergence of white noise for w < 7, which grows out from low-frequencies while also flattening

out in w. (c) Magnetic noise at T' = 1.07Tsxr for different z

as a function of w. The white noise regime is clearly defined

and extends up to higher frequencies. We also see the emergence of the Drude weight for frequencies below the z-independent

dashed line.

it is worthwhile to compare these results to those that
might be expected based on a simpler analysis of Gaus-
sian superconducting fluctuations. We therefore briefly
investigate this aspect in the next section.

IV. ASLAMAZOV-LARKIN FLUCTUATIONS

Up to this point, all of our calculations have been
within the framework of the London limit, which real-
izes the XY model for length scales beyond the coher-
ence length £., and is built upon the assumption that
amplitude fluctuations of the pair condensate, as well
as electronic quasiparticle excitations have been frozen
out at low temperatures. This is however not realistic for
many cases where Tkt ~ Tpcs, the critical tempera-
ture within the BCS framework and, more generally the
temperature at which pairing sets in.

In this case, in addition to vortex fluctuations, Gaus-
sian fluctuations of the order parameter ¢ (r,t) are also
important and may also contribute to the transverse elec-
tromagnetic noise that decoheres the spin qubit. Here
we will briefly compare these fluctuations to the non-
Gaussian vortex fluctuations considered in the primary
part of this paper and argue that they may be distin-
guished from each other based on the behavior of the
qubit noise. In particular, we identify a qualitative dif-
ference in the magnetic noise as a function of distance z
which allow one to discriminate between these two mod-
els of superconducting fluctuations.

We specifically consider order parameter fluctuations
within a time-dependent Ginzburg-Landau framework,
similar to Ref. 7 and 13 and found in great detail in, e.g.
Ref. 28. In order to capture the dynamical noise we use
a Langevin model for the order parameter dynamics of
the form

_OF
oy*(x)

where I'"! = vprqr, is the kinetic coefficient for relax-

P9y (a) = +n(x) (29)

ation, n(x) is a complex noise field which satisfies a fluc-
tuation dissipation relation, and the free energy is given
(near TBCS) by

F=ve [ @r|Gesl Vol + ol + gulult] @0

where chs is a length scale roughly corresponding to
the BCS coherence length at low temperatures, vp is
the density-of-states at the Fermi level and r = (T —
Tgcs)/Tscs- u > 0 is a parameter which reflects the non-
linearity of the condensate. In this work we will focus on
the thermal current fluctuation spectrum at low frequen-
cies as a function of momentum q for T' > Tgcs. In this
case, we will drop the nonlinear term wu|y|* and restrict
to T not too close to T,, though in principle this can be
relaxed using a self-consistent Gaussian approximation
(e.g. as done in Ref. [37] for the case of a spinful order pa-
rameter). We also neglect other contributions which may
arise from the order parameter fluctuations, including the
so-called “density-of-states” and “Maki-Thompson” con-
tributions [28], leaving these to future works.

First, we compute the sheet current density. This has
contributions from the diamagnetic response of the pairs
as well as the paramagnetic response. In the absence of
an applied field, to quadratic order the diamagnetic term
does not contribute, and furthermore is non-dissipative
and will not show up in the noise response. Therefore,
we can focus on the paramagnetic response only which,
in momentum space is given by

jola 1) = 22e)vréios / Dy sasa(p—asa(t). (31)

From this we can compute the current noise spectral func-
tion S+ (q,w) which is the object of importance. For de-
tails we refer the reader to Appendix E. Then, the current
fluctuations

Su(a,) = / det (8 (q, H7b (-0, 0))  (32)



can be computed by taking advantage of the fact that
the fluctuations are Gaussian.

At w = 0 we find the magnetic noise from Gaussian
pair fluctuations is

NZZ/NOAL =1+ T)Q

00 e*4$z/éBCS 00
X / dp—— / duu
0 T 0

(2 +u® +7) = /[(u+ )2 +r][(u—2)? +7]
(u? + 22 +1r)?

(33)

The normalization constant is

NRL
(epio/m)*T3csTaL/Ebcgs and we have expressed this
as a function of r > 0.

The magnetic noise is depicted in Fig. 11 for temper-
atures above, but near the transition 7. (note here we
indicate the temperature that superconductivity sets in
as T, since it is not a BKT transition in this case, but
it should be regarded as equivalent). In Fig. 11(a) we
present this as a function of temperature (technically r)
for different qubit-sample distances z, which is to be com-
pared to Fig. 4 (though note the different z-axis scales
and ranges). In Fig. 11(b) we present the same data but
as a function of distance z for different temperatures T',
which is to be compared to Fig. 6(b).

From the analytic formula, evaluated at r =0 =T =
Tgcs, we find that the low-frequency magnetic noise is
also varies as log(z/lmax) at the transition point, with
an infrared cutoff ¢,,x = min(L, \/D/w) which is taken
to be the minimum of the sample size L or the diffusive
length ¢, = /D /w. Explicitly, we find

lim N, /NS =log (2) x Eiy(42/lmax).  (34)

w—0,T—=Tgcs

Here Eiy(u) = [’ e™*/sds is the exponential integral
function, which diverges as z — 0 like log(z). However,
we will emphasize that this logarithmic dependence is
only expected to manifest very close to the critical point,
where we anyways expect our non-interacting Gaussian
approximation used here to break down. Further from
the critical point it can be seen that the overall scaling of
the noise at a distance z is dominated at large z by mag-
netostatic scaling from the standard Aslamazov-Larkin
paraconductivity as

N JNQE ~ 272 )(T - To). (35)

This is the power law we are able to see in Fig. 11, which
again is only expected to hold for T" not too close to T.

In order to distinguish between the Aslamazov-Larkin
Gaussian fluctuations and the BKT fluctuations, we turn
to studying the distance dependence for T' > Tgkr. In
this case there is a clear feature in the distance depen-
dence in Fig. 6(b) which can be resolved due to the vortex
Drude weight and associated density ny, in addition to
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the crossover scale that is due to the bound-pairs. In con-
trast, the distance dependence in Fig. 11(b) only has a
single crossover scale, governed by the correlation length
of the superconducting fluctuations. The qualitative dif-
ference in the distance dependence and in particular the
contribution of bound-pairs for smaller probe distances
in the case of the BKT physics is a key signature by
which one may discriminate between the Gaussian fluc-
tuations and the vortex unbinding fluctuations. While we
leave a more detailed study to future works, we can al-
ready see that the ability to probe the magnetic noise
as a function of depth in the vicinity of the transition
may be extremely helpful in disentangling the Gaussian
Aslamazov-Larkin fluctuations from the topological vor-
tex fluctuations which characterize the BKT transition.
Armed with this knowledge, we will now turn to a sur-
vey of potential materials which may realize the BKT
transition in suitable parameter regimes and outline the
strengths and constraints of various candidate systems.

V. EXPERIMENTAL CONSIDERATIONS

In the preceding sections we have theoretically identi-
fied a number of signatures of the BKT transition which
are expected to manifest in the local magnetic noise spec-
trum. Before providing experimental estimates, it is im-
portant to reiterate some of the physical assumptions of
our calculations. In particular, we have assumed (i) that
fermionic quasiparticles are sufficiently gapped out and
don’t contribute to the magnetic noise; this will be briefly
revisited later in Sec. VA. We have also assumed (ii)
that the superfluid density and coherence length don’t
exhibit appreciable temperature dependence and can be
treated as constants within our model. Finally, we have
assumed (iii) a particular model for the bare vortex fugac-
ity of yo(T) = 0.1exp (—TSET/T), which may also lead
to some model dependence of our quantitative results.
Nevertheless, it is worthwhile to consider a few possible
material systems which may realize our theoretical pre-
dictions.

First, to assess the potential viability of NV noise
magnetometry for measuring the phenomena described
in the present work, we estimate the relevant funda-
mental scales which set the parameters of the prob-
lem. These are the coherence length £., the frequency
wo = 21y = Do&2 (which in turn is set by the vortex
mobility), and the magnetic noise scale Ny (Eq. 9). The
following expression is used to estimate the vortex mo-
bility, applicable to dirty superconductors, following the
Bardeen-Stephens model [13, 57]

2 Rg

where R is the normal state resistance per square and
Ry = h/e? ~ 25.8KkQ is the resistance quantum, and
h=kp =1
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FIG. 11. (a) Local magnetic noise at w = 0 as a function of r = T//Tcs —1 > 0 for different distances z due to Aslamazov-Larkin
Gaussian superconducting fluctuations. (b) Local magnetic noise at w = 0 as a function of distance z for different r > 0.

Our estimates, listed in Table I, are made using the
measured TggT. Coherence lengths in the literature re-
ported for these materials are determined based on
the upper critical field (see references in Table I). In
the case of MoSy; and FeSe on SrTiOs, the coherence
length was determined on a different sample from the
one where superfluid density was measured. For 1 UC
BisSroCaCusOgy 5, a representative coherence length was
obtained from measurements on the bulk material [64].

Additionally, it is useful to compare the BKT tran-
sition temperature, TgikT, and the mean-field supercon-
ducting transition temperature (Tcs) where it is known.
The separation between Tkt and Tpcs determines the
range of temperatures where the present theory applies.

Many of the superconductors listed in Table I are pre-
dicted to exhibit magnetic noise intensities, N, that are
within the sensitivity of state-of-the-art 7 relaxometry
experiments. For example, magnetic field noise intensi-
ties of 10s of pT?/Hz have been detected using T} relax-
ometry [70]. In practice the NV-sample distance can be
realistically varied in such an experiment between 10 nm
to 100s of nm [71]. For the 2D superconductors listed in
Table I, such a distance-dependent relaxometry experi-
ment would cover a broad range of length scales relevant
to vortex diffusion (Fig. 6) from distances on the order
of & up to an order of magnitude larger. The frequency
bandwidth of 77 relaxometry is set by the NV level split-
ting, which for the |0) — | — 1) transition, can be tuned
continuously from 2.87 GHz to 0 GHz by varying an ex-
ternal magnetic field from 0-100 mT along the NV axis.
Thus, exploration of frequency scaling of the magnetic
noise (Figs. 7,8,9,10) would also be possible using T re-
laxometry as long as these relatively small applied fields
do not significantly affect BKT vortex dynamics. For a
two-dimensional spin-singlet superconductor this is a rel-
atively safe requirement. For sufficiently thin films the in-
plane fields are limited by the Clogston-Chandrasekhar

limit of H./Tscs = 1.8 TK™! [72, 73] and thus for all
systems considered here we are well below the critical
field since T, 2 1 K.

For many of the superconductors considered in Table I,
the proposed experiment would be challenging but vi-
able. Monolayer high-temperature superconductors are
perhaps the most promising in terms of absolute mag-
netic noise intensity. NbN, however, has the advantage of
having a known separation between the mean-field and
BKT transition temperatures, as well as ease of fabrica-
tion. In this case, the signal could be amplified by layering
NbN films with a thin insulator between them.

We now briefly assess the background magnetic noise
due to Bogoliubov quasiparticles, which is expected to
be one of the largest sources of background noises that
needs to be overcome in order to observe the BK'T physics
successfully.

A. Quasiparticle Effects

Here we briefly discuss the impact of residual
Bogoliubov-de Gennes (BdG) quasiparticles and their
contribution to the magnetic noise near Tgkr. A detailed
analysis of this has already been carried out and can be
found in Ref. [46, 47], however we will discuss this here
for completeness.

In particular, the principle result of Fig. 4 is presented
assuming there are no residual BAG quasiparticles. In
cases where the BKT transition is clearly visible this
assumption is likely valid since if Tgxr < Tpcs there
should already be an appreciable spectral gap. However,
especially in the case of strong disorder or nodal pairings
this assumption can be called in to question.

In order to address this, we will consider the impact
on the transverse conductivity, the real part of which is
responsible for magnetic noise. In Appendix D we show
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Material \TBKT (K) Tscs (K) & (nm) Rp () ‘1/0 (GHz) No (pT?/Hz) No (Hz)‘
1 UC FeSe on SrTiO3 [65, 66] [ 20.3 - 2-3 500-600] 33-40 4000 - 11000 3 -9
1 UC Bi2Sr2CaCuz0s45 [29, 64]|  84.2 - 3.1% 1000 270 10000 8
gated MoS, film [67, 68] 9.5 - 8 750 23 220 0.2
3.5 nm NbN film [69)] 4.5 5.75 6.7 4100 100 45 0.04
MATTG [33] 2.3 - 12.5 3000 22 5.4 0.0042

TABLE I. Estimate of scales relevant to two-dimensional superconductors. The frequency scale vy = wo/(27) is typically many
orders of magnitude larger than the relevant experimental frequencies of the qubit probe (see Sec. III C). Magnetic noise is
presented in both pT?/Hz and an equivalent NV relaxation rate in Hz, which is estimated by multiplying the magnetic noise by
the NV center’s gyromagnetic ratio squared (0.028 Hz/ pT)z. *representative coherence length obtained from the bulk material.

that the vortex contribution to the frequency and mo-
mentum dependent conductivity is

P2D

iwey(w, q) (37)

oy (w,q) =
If we take the quasiparticle conductivity to contribute
as a momentum independent background (assumed valid
for length scales longer than the quasiparticle mean-free-
path) we can model the total conductivity o = o +04
as

P2D

7iwev(w,q) JrUQP(w)' (38)

ot (w,q) =
Here o4p is the frequency-dependent normal fluid con-
ductivity due to residual quasiparticles. In the case of a
dirty s-wave conventional superconductor this is found
from the standard Mattis-Bardeen result [74].

It is easiest to distinguish the effects of vortices at low
frequencies. We therefore aim to understand the behav-
ior of o4, at low frequency. For T > Tgcs we will use
ogp(w) = 0,, where o, is the normal-state conductivity,
assuming frequency dependence is captured effectively by
w — 0 limit in this regime. For T' < Tpcs we must keep
the frequency dependence. From Ref. 74 we find that

Re[ogp(w)/on] =

~ 4B E(E +w) + A?

Z/A j[f(E)—f(E—&-LU)] \/E2—A2\/(E+w)2—A2
w JE E E(E —w)+ A?

0w > 28) [ el | e

In this expression, there is also a temperature dependence
of A(T') which we capture using a BCS interpolation for-
mula

A(T)/TBCS = 1.76tanh(1.74\/ TBCS/T - ].) (40)

Using this conductivity we can compute the magnetic
flux noise including both the vortex and quasiparticle
channels as

1
N = iTﬂg/

e 2%4Re |:_‘02D
q

iwey(w, q) +oap(w)

(41)

This involves the vortex-generated magnetic noise de-
rived in Eq. (7), as well as a background term A9 which,
when normalized by Ny gives

7T2 T —2zq
T / e PRe o). (42)

NNy =

We recall that, within the Bardeen-Stephens model, y =
4¢2 /o, using 0, = 1/Rp in natural units. Crucially, we
expect that the quasiparticle conductivity will largely be
local for the relevant length scales pertinent to vortex dy-
namics. Therefore we expect a quasiparticle background
contribution to the noise (normalized to the same scale
as the vortex signal), which scales as z~2 for all temper-
atures as
w7 T &
sz /NO o 2 TBKT 42’2
In order to make a direct connection with the vortex
noise, we need an estimate for the ratio of Tgcg to Tk,
which controls the quasiparticle gap onset relative to the
vortex ordering temperature. In principle these can be
completely unrelated, so for our purposes here we will
consider the “worst case scenario” of Tgcs ~ Tk [75].
This corresponds to the case where the two tempera-
ture scales are not well-separated, and the quasiparti-
cle coherence peak in the noise can easily be confused
with the noise maximum due to vortex motion. We also
comment that since the superfluid density necessarily
drops to zero upon approach Tgcs and the physical
KT transition temperature is determined by the rela-
fon pip(Tekr) = 2TpkT/™, it Will always be the case

Tkt < TBCS.

e also must in principle compare the characteristic
vortex noise scale wg to the relevant quasiparticle fre-
quency scale, which within the Mattis-Bardeen model is
referenced with respect to Tcs (or alternatively the zero-
temperature gap Apcg(0)). For the sake of simplicity, we
will assume that w < wy such that we can use the low-
frequency vortex noise result. However, it is known that
within the Mattis-Bardeen model Re(oqp(w)) ~ logw at
low frequencies and therefore we cannot take the w — 0
limit in the background. For the superconductors we are
focused on, we can expect Tpcg to correspond to fre-
quencies of order 1THz (1THz~50K), and therefore fre-
quencies of order 10~°Tgcg correspond to 10’s of MHz,

Re [oqp(w)/om] . (43)
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FIG. 12. Total magnetic noise at low frequencies including
both the vortex and quasiparticle background as a function
of temperature for different distances z. The dashed gray line
is the modeled BKT transition temperature whereas the dot-
ted purple line is the modeled BCS temperature Tscs, which
we also take to coincide with the unrenormalized BKT tem-
perature ngT.

which is within the frequency range we are interested in
probing. Therefore, we will evaluate the background at
frequencies of order 10™°Thsg.

In Fig. 12 we present the total magnetic noise including
both the vortex noise and the quasiparticle background
(using the parameters stated above). We see that even in
this case, which was not particularly favorable in terms of
Tscs/T, é(QT, there are still clear signatures of the BKT
transition in the magnetic noise for all but the closest
distances or lowest temperatures.

This can be understood as due to two fortuitous facts.
The first is that the temperature dependence of the quasi-
particle background conductivity is slowly varying on
the scale of the relevant temperature range where BKT
physics is important, so that it is essentially just a con-
stant. The second is that on the length scales relevant
to vortex physics, the quasiparticle response is expected
to be local (and therefore momentum independent). The
quasiparticle noise will therefore fall off with distance
much faster than the vortex noise which becomes scale
invariant at the transition. We conclude by remarking
that in the case of cleaner superconductors, especially
such as Van der Waals systems or other low-density
clean two-dimensional superconductors, the quasiparticle
background noise is not described by the Mattis-Bardeen
model, and may potentially be further suppressed.

VI. CONCLUSION

We have shown that local spin-qubit magnetometry
may be a promising probe for detecting the BKT transi-
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tion in thin films and two-dimensional superconductors.
In particular, the local magnetic noise gives access to the
vortex-antivortex dielectric function €, (w, ¢), resolved in
both frequency and momentum, thereby enabling one to
directly study the transition in terms of the dynamic
and scale-dependent vortex interactions. By analyzing
this magnetic noise as a function of temperature, probe
frequency, and qubit-sample distance we can identify a
number of distinct features of the BKT transition.

Specifically, we observe that the low-frequency mag-
netic noise is non-monotonic as a function of tempera-
ture. The noise maximum, at Tkt exhibits a scaling
collapse as a function of the sample-probe distance z.
While the magnetic noise obeys a power-law behavior in
z below TgkT, above the transition temperature we find
a more complicated dependence. This culminates in a
plateau structure in the magnetic noise which allows for
probing the finite-size crossover effects directly in situ.
Finally, above the transition it is possible to additionally
probe the Drude weight of the free vortices in parallel to
the noise from bound-pairs.

The level of detail offered by noise magnetometry can
also help address fundamental challenges in identification
of BKT physics. By probing at short length scales of the
order of 10-100nm, it seems possible to i) disentangle
long range disorder effects and ii) use the lateral scanning
capability of qubit sensors to study how such disorder
affects both the local and global transition properties [25,
26].

We have also explicitly computed the magnetic noise
due to Gaussian Aslamazov-Larkin superconducting fluc-
tuations, and shown that there is a clear qualitative and
quantitative difference between these fluctuations and
fluctuations due to vortex unbinding. While both types
of fluctuations manifest similarly in transport quantities
and lead to broadening of the superconducting transition,
we have shown they contribute differently to the scaling
of the magnetic noise with distance. As a result it may
be possible to disentangle these two sources of fluctua-
tions using noise magnetometry. In addition to the can-
didate systems listed in Sec. V, recently the possibility of
some two-dimensional materials exhibiting triplet super-
conductivity has been suggested, in which case the combi-
nation of intertwined spin and charge fluctuations [37, 76]
may exhibit signatures in the local noise magnetometry
spectrum.

We also modeled a potential source of background
noise due to quasiparticles within the dirty limit using
the Mattis-Bardeen model. Even though this background
can potentially be sizeable if Tgcs ~ Tpkr (i.e. the BKT
temperature and pairing temperature are not well sep-
arated), we have shown that it should still be possi-
ble to clearly observe vortex noise. This is because the
quasiparticle background has a slower-varying tempera-
ture dependence and more rapid fall-off with distance (as
1/2?) than the vortex noise does. This points to another
key capability—the ability to probe across different dis-
tances—that spin-qubits such as NV centers offer.



More broadly, while our results are only relevant for
superconducting BKT physics, it may also be possible to
identify BKT physics in two-dimensional magnetic sys-
tems. In this case, the relation between the magnetic
noise and the corresponding vortex dielectric function
may be different; however, it still stands that the in-
creased detail and sensitivity may enable further study
of BKT physics in a variety of platforms. Recently, a
number of two-dimensional magnets have been shown to
exhibit BKT like phase transitions [77-83] which may be
amenable to study by noise magnetometry in a similar
fashion. Interesting features have also recently been seen
in the high-symmetry two-dimensional magnetic material
CrCls using NV noise magnetometry [42].

Finally, it would be interesting to study the quantum
corrections to vortex motion and how they manifest in
the local magnetic noise. In particular, in the presence of
strong Coulomb interaction effects the ground-state of a
two-dimensional superconducting system should undergo
a phase transition between a Mott insulator of Cooper
pairs and a superconducting condensate of Cooper pairs.
This transition can also be described in terms a “dual”
picture based on superconducting vortices, such that a
superfluid of vortices corresponds to a Mott insulator
of pairs and vice versa, in a conjecture known as the
“particle-vortex duality” [84-86]. As we have shown here,
it is possible to directly probe the motion of vortices using
noise magnetometry; this raises the interesting possibil-
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ity of directly probing the nature of the particle-vortex
duality using spin-qubits.
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Appendix A: Magnetostatics

In this section, we derive the relation between the mag-
netic field noise at a distance z from the superconducting
sample in terms of the vortex correlation functions. We
assume the superconductivity is truly two-dimensional,
i.e. the sample thickness is much smaller than the pene-
tration depth.

In this case, and in the magnetostatic limit (valid for
frequencies w < ¢/z which is manifestly realized here),
Ampere’s law relates the magnetic field B to the current-
density j via
We have assumed the sample to be modeled as an infinite
sheet in the z = 0 plane. In this case, we can characterize
the current in terms of a sheet current density via

i =0in. (A2)
We perform a Fourier transform on the in-plane coordi-
nates, writing in terms of the two-dimensional in-plane
momentum gq. We can use Gauss’ law of magnetism and
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take the curl of this to derive the equation for the z-
component of the magnetic field which obeys

[—02 + q°] B.(a,t) = pod(2)e. -iq x jo(a,t). (A3)

This is solved in terms of exponentially decaying solu-
tions as

BZ(Zaqv t) = BZ(anv t)eiq‘z" (A4)
Integrating the singularity across z = 0 we obtain
ezl ) .
B.(z,q,t) = po 5g & 1% jo(a, t). (A5)

The local magnetic noise in all components can be re-
constructed from knowledge of B, in conjunction with
Maxwell’s equations which yields the full vector field as

B(z,q,t) = [ez - Z:]l] B.(z,q,t). (A6)

From this we can compute the magnetic noise tensor at
z >0 as

N(z,w) = /q/dtei“’t (e, —iq) ® (e, + iq)

(B:(z,9,t)B.(2,—q,0)),

with @ = q/q. This gives, in terms of the current-current
correlation function

(A7)

N =5 [ (ciase) e Gase)
e 22184 (q,w), (A8)
where
S*H(a,w) = (lid (@, w)|?) (A9)

is the noise spectral density for the fluctuations of
Jj&(g,w), the transverse part of the current fluctuations.
In particular, we will focus on the zz component which
is

12
N..(z,w) = Io/e_quSJ‘(q,w).

q

(A10)

In order to proceed further we now specifically consider
the case of vortex fluctuations. In the London-limit, in
two-dimensions the supercurrent must be a purely longi-
tudinal response, except in the presence of vortices which
introduce topological defects in the phase of the super-
current. In the presence of these vortices, we may express

this curl as
(V X js)= = (2€)2mpand(2)n(r, ), (A11)

where 2e is the Cooper pair electric charge, pop is the
bare two-dimensional superfluid density, and

n(r,t) = Z n;0%(r — R, (1)) (A12)
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is the two-dimensional vortex density, with n; = £1 and
the overall “neutrality” constraint ;n;=0 (in analogy

with the Coulomb plasma model). We therefore find

W
Sir(a,w) = (26)2(2WP2D)2X(32 ),

(A13)

given directly in terms of the vorticity-charge correlation
function

x(q,w) = /dtew%n(q7 t)n(—q,0)). (A14)
This yields
N..(z,w) = (QWpQDeuo)Q/efzzq%. (A15)
a

We now also consider the possibility of a set of N inde-
pendent 2D superconductor layers equally spaced a dis-
tance a apart. Provided that the coupling between the
layers is sufficiently weak (so that it can be ignored over
the length scale Na), and that the total thickness is still
less than the penetration depth, we will see that stacking
the layers like this effectively boosts the size of the noise
signal, while leaving the other critical physics intact. To
see this, we simply appeal to the linearity of Maxwell’s
equations, and superpose the single-layer results to get
the total result of

N=1 —qlz+jal

B.(z,q,t) = Z —

j=0

,U/Ojél_(z = _ja7 q, t) (A]'G)

Here we have used coordinates such that the first layer
is located at z = 0 and then the remaining ones are at
z = —a,—2a,...,—(N — 1)a, with layer j having a fluc-
tuating vorticity density of n;(q,t). Our assumption is
that the coupling between the layers is sufficiently weak
that these are essentially independently fluctuating quan-
tities. We then find the total noise spectrum simply adds
in quadrature to give

N-1

Noalesw) = (o2 [ 3 e 2eias(q,w). (A7)

q ;=0

This makes use of (j ;(q,w)jd . (—q, —w)) o d;1. Now,
let us further approximate this sum by

N-1 1 7672qNa

g P A —
1—e2qa

J=0

(A18)

This will, in principle smear out the clarity of the scaling
with z due to the fact that a number of depths rang-
ing over [z,z + Na] effectively contribute to the noise
simultaneously. While this is not necessarily detrimental,
critical physics will be more straightforwardly observable
if the interval is small compared to the overall scale being
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probed, so that Na < z. In this case, we can approximate
the summation by

1— e—2qNa

~ N+ O(a/z) (A19)

1 — e 2qa
using ¢ ~ 1/z. This then establishes that in this regime
of parameters, we have a way of boosting the signal in
principle, so that

N (z,w) = N(Qﬂpgpeuo)z/e_zqu. (A20)

2
a q

Appendix B: Extraction of Transition Temperature

It is known that it is difficult to extract the exact BKT
transition temperature in the thermodynamic limit due
to the strong influence of finite size effects. In order to
isolate the true transition we first numerically integrate
the renormalization group equations (13), terminating
the flow once the fugacity reaches unity. This defines the
&, length scale by

y(€+) =1 (B1)

Near the BKT transition it is known that & exhibits a
divergence as

b
&+ = alcexp <m> ) (B2)

where a,b > 0 are nonuniversal constants and Tk can
be interpretted as the true transition temperature. Nu-
merically, we always truncate our integral at a system-
sized infrared cutoff scale of £,.x ~ 1012&,, such that in
fact the RG flow is truncated at min({;, {imax) in prac-
tice. We then perform a linear fit of 1/ log® (&, /&.) versus
temperature; the true transition temperature can then be
inferred from the z-intercept of this fit.

This is shown in Fig. 13, from which we extract the true
BKT transition temperature in the thermodynamic limit

is TgkT = O.8117T]§2T based on our model, along with

an uncertainty of ATgkt = O.OOGTé%)T. It can be seen
by eye that the linear fit is excellent in a large temper-
ature regime provided &y < fax; specifically, the good-
ness of fit for this is over .9998, provided we omit the
low-temperature points where £, 2 fiax.

Appendix C: Finite Momentum Scale-Dependent
Dielectric

Here we derive the finite-momentum scale-depepdent
vortex dielectric function, €,(q). We consider first T' <
TskT, and compute the bound vorticity density induced
by the application of a scalar vorticity potential ¢ (here
we will not subscript with v to indicate vortex quanti-
ties and it will be understood). In the weakly interacting
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FIG. 13. Plot of 1/log?(¢+ /€.) versus temperature T /T k.
We perform a linear fit based on points with temperature
greater than the dotted dashed orange line, which has not
yet saturated the finite size cutoff scale. From this we can
extract the true transition temperature TsxT (gray dashed
line) as the extrapolated z-intercept, along with uncertainty
estimates (gray dotted lines as lo interval). We find Texr =
0.8117T )., with uncertainty ATgxr = 0.0067\ 0y with an
excellent goodness of fit.

regime, the vortices are described well by an ensemble
distribution function P(R,r) which gives the probability
density for a pair to have center-of-mass R and radial
separation r. In terms of the free energy this is

Zn).

- (cy)

P o exp (—

In addition to the interaction, which is characterized by a
running scale-dependent dielectric constant, we also have
the local potential, which couples via

Fpot = —epap [p(R +1/2) —p(R—1/2)],  (C2)
where we have introduced a fictitious charge e = 27 for
the vortices. We compute the induced charge density,
which is given by the divergence of the bound polar-
ization density. This is given, up to linear order in the
perturbing potential by

PR) = 62’% / d*rPy(R,r)r [p(R +1/2) — ¢(R —1/2)].

(C3)
We go to momentum space by writing ¢(r) =
2-q €% ¢(q). This yields

PR) = Z (b(q)eiq'Re'.% /dero(R, r)r2isin(q-r/2).

q

(C4)
If we assume the equilibrium distribution doesn’t depend
on center-of-mass coordinate R we can then express this
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in momentum space using P(R) = 3 ' 9IRP(q) to get

Pla) = 222 [ #rpymr2isin(a:r/2)] 6@, ()

The induced charge is in turn given by

62 . I‘
o = —iq-P(q) = 2% /dQTPo(r)rqsin(qTM(q)
(C6)

We can now obtain from this the full momentum-
dependent compressibility as k = dpp/d¢, giving

2
€7 P2D

rlq) = 2222 / d%PMr)r-qsin(%). (C7)

This in turn, through RPA, gives the dielectric constant

via

_ ., k(a)
e(q) =1+ @

(C8)

In the given expression, we actually have contributions
from pairs of all length scales r, and the ultimate result
is obtained by summing up all of these contributions.
We break the total result in to a differential contribution
from the shell of pairs between r ~ ¢ and r ~ bf. This
gives the differential contribution to the dielectric of

2 . .
de(q) = 25222 rqy / dHPo(r)rqqsin(%).

L ; (C9)

Referencing the momentum from angle with q we find

2
€~ p2D TQdTiP()(’I") Ji(gr/2) ]

de(q) = 4w T & o

(C10)

One factor of 1/£2 is simply the areal density available for
the center-of-mass distribution. We note the appearance
of the Bessel function Ji(z) due to the angular integral
J d6 cos @ sin(x cos 0). Let us introduce the filter function
F(z) =2J(x)/x. (C11)
This function satisfies F(0) = 1 and decays sufficiently
rapid for x > 2. However, this precise form of the blur-
ring function has issues since it is not positive semi-
definite, which can lead to problems when evaluating in-
tegrals involving this function numerically. We therefore
will in practice use a similar function which has the same
asymptotic behaviors but is non-negative, such as
F(z) = exp(—2?/a), (C12)
which has the same behaviors at x = 0, co, while remain-
ing positive and has a smooth maximum at x = 0. We will
fix the free constant a by matching the series expansions
at x = 0 to quadratic order. F(x) = 2J;(z)/x ~ 1 —2%/8
so we set a = 8. The comparison between these two func-
tions is shown in Fig. 14.
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FIG. 14. Comparison between true filter function F(z) =
2J1(z)/z (black curve) and approximation used here (dashed
red curve) of F(x) = exp(—x?/8). The approximation is cho-
sen to match the true function up to third order in expansion
aroudn x = 0. However, the approximation does not the ex-
hibit oscillations which would lead to numerical issues.

In terms of this, we have

2
1 -
ﬂ'wr?dr—PO(T)F(qr/Q).

de(q) = T &

(C13)

We can therefore understand this as simply the same
scaling equation as the one for the homogeneous scale-
dependent dielectric original derived by Kosterlitz and
Thouless, weighted by the scale-dependent function
F(g¢/2) which determines how much the momentum q
ends up contributing. We therefore find the simple result

© (deY - (lalf

e () (1)

Now, we must handle the possibility of free vortices
above TpkT. This, however, is essentially already known.
Above TpkT a new length scale £, < co emerges, which
signifies the length scale beyond which the fugacity y ~
1 and the perturbative renormalization group fails. The
standard approximation made at this point is to treat
all longer length scales as having a finite density of free
vortices ny = 1/(w&3 ), which are unbound and respond
as free particles to the potential. This means that for
T > TgkT we should have

&+ de\ - (lal¢ 472 pop ng

We recognize this as simply the RPA approximation in-
cluding (i) the contribution from the bound pairs at
length scales less than &4 and (ii) the free vortices with
compressibility K = ny/T which is expected for a classi-
cal Debye fluid.

In order to capture the dynamic response we will as-
sume that the standard formula involving w holds for the

(C14)
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bound pairs so that below Tk

e de\ = (|al¢ 14D¢~2
=1 A\ = F|— | ——5—
flw.a) =1+ /6 <d€) ( > ) T4Di? — i’
(C16)
where D = uT is the vortex diffusion constant, in terms

of the mobility p. Above Tk we will also have to modify
the Drude response to take the form

&+ de\ = (|ql¢ 14D¢2
e(w, q) —1+/§C de (dg) F (2) 14D0-2 — i
47T2P2an/~t
_ 1
+ DL — i (C17)

Here we have used that Dk = uny for the Debye fluid
since kK = ny/T and D = pT. We again recall the factor
of 14, which while strange, arises from a more precise so-
lution to the bound vortex-pair dynamics in a logarithmic
potential [61].

Appendix D: Relation to Conductivity

Here we relate the BKT vorticity correlation function
to the in-plane transverse conductivity and show how this
relates to the standard quantities which figure in to the
reflection coefficients, which is an alternative formulation
for the noise spectrum. The current is given by (in units
with 2e = 1)

J, = pop(VO — A). (D1)

Let us define V6 = v,. The conductivity is found from

ovs(w, q)}
6A(w,q)

P2p

ojk(w, Q) =~ {—5jk+

q;4 q;9
:a”(w,q);—;—&-al(w,q) <5j - ;;) (D2)

We will focus on the transverse part of the conduc-
tivity as this is what contributes to magnetic noise. For
results on the longitudinal conductivity see, e.g. Ref. [7].
To obtain the transverse conductivity, we use the Kubo
formula for linear response to obtain

L Ajk(w, ) (D3)

§RUj'.lc(("}» q) = ﬁ

with Az (w,q) the current-current correlation function

Ajk(wv q) = <J‘57(OJ, q)‘]sk(_wa _q)>

We can separate the current response into longitudinal
and transverse parts via

(D4)

. 27
+ (i % ez)j%n(w,q). (D5)



We then find for the longitudinal and transverse correla-
tions

AM(w, ) = pipa’(|6(w, q)*), (D6)
and
A (w,q) = 4n2p2, <|n(C:QQ)|2> (D7)
and thus the conductivities
Ro' (w0, ) = 5mpApa? (16, @) ) (DSa)
Rot(w,q) = 2;4%2[)3[)“71(@:2(1)2). (D8b)

To obtain the transverse conductivity we relate the
dielectric constant to the vortex-charge response function
via

472 pop 1
1—xy(w,q = .
o0 @)= ev(w; q)
Using the fluctuation dissipation theorem for y, we fi-
nally obtain

(DY)

P2D 1

Ro+ =-—==T : D10
o (w,q) - va(Mq) (D10)
We analytically continue this to
n P2D 1
= —— . D11
=T s (D11)

This can be understood by taking the zero-temperature
result for the transverse response, which is the bare ki-
netic inductance of o+ = —pop /iw and renormalizing the
superfluid stiffness to

P2D
€v(w, q)

Below Tpkr this can essentially be replaced by the
static, long-wavelength dielectric constant so that we sim-
ply find the renormalized kinetic inductance of pin, =
pap /& (T), with €,(0) = &,(T) obtained by solving
the scaling equations. Above Tk, the dielectric con-
stant obtains a singular contribution from the Drude
weight of the vortices, so that we can approximate by
€v(w,q) ~ & (Tzkr) +1v/w at long wavelengths. As a re-
sult, o (w) ~ pon/(iwe,(w)) = pa/ (7 — iwpip (Txcr))
reflects the onset of a finite resistance in the sample, with
conductivity paop /7.

pap(w,q) = (D12)

Appendix E: Comparison to Aslamazov-Larkin
fluctuations

Here we present the details of the calculation of the
current fluctuations due to the Azlamazov-Larkin super-
conducting fluctuations. We require the correlation func-
tion

Sun(q,w) = / dt (o (q, )t~ 0)),  (B1)

22

where the sheet current densities are given by Eq. (31) in
the main text. This can be computed by taking advantage
of the fact that the fluctuations are Gaussian. We find via
Wick’s theorem

Sap(q,w) = / dte™”! / (22¢)vr€2)” pams
<wp*Q/2<t)Ep—q/2<0)><$p+q/2(t)’(/}p+q/2(0)>' (EZ)

These correlation functions simply decay in time with the
rates

Ik = vpl [CK* +7], (E3)

and thus we have

Sab(q7w) — (26)2/ 2Fp(q)

w? +T'p(q)?
(E4)
where we have defined the total rate

Fp(‘l) = I‘p+01/2 + I‘p—q/?' (E5)

We can compute the equilibrium occupations ny =
{|1(0)|?) using the equipartition result

T

=5 (E6)

Nk

In particular, we find the low-frequency transverse fluc-
tuations depend on the probe momentum q via

St (a) = (2¢)? / 2712 (2wr€2)” p? sin® 0
p I'pta/2l'p—q/2 [Fp+q/2 + quﬂ(]};)?

where 6 is the angle of the momentum p as referenced
from the external momentum q. Explicitly, we find the
result (using I' = vi'751)

AT?7qL [*7 d6 >

L 2 GL ) 3

=(2 — 0 d

San(q) = (2e) o /0 o sin /0 uL
1

[u? + 22 + 1] [(x2 + u2 + 7)2 — (2zucos6)?]’

(E8)

with = ¢£./2 the unitless probe momentum in terms
of the microscopic coherence length.
We are confronted with the integral

27 2

do sin“ 0
I(a,b) = _— E
(a,) /0 21 a? — % cos? 6’ (E9)

where a = Va2 +u?2+r and b = 2zu. We note that
a? —b*cos? 0 € [(x — u)? + 7, (x + u)? + r] and therefore
will be nonzero for » > 0. This can be evaluated using
the residue theorem; the result is

I(a,b) = = [1 - a:_ﬂ . (E10)

b2

2
(2VF§C2-) PaPbTp—q/2Mp+q/2



We then arrive at

2T2TGL

Skula) = (2055

VI(u+2)? + ] [(u—2)? +71]

o] 2 2 _
></ duu(x tuitr)
0

(u? + 22 +7r)?

23

The magnetic noise at a distance z is then given by

2
2T TGL

N e

* @+ 1) = V2P =2 7]
></O duu 02+ 22 4 1)

(E12)

It will be convenient to normalize this by an overall noise
scale of

1
N(¢L = (eﬂo/ﬂ)QTfTGL

o (E13)

This gives

T

@t u? ) = V(ut2)? + ] [(u—2)? +1]
></0 duu 02 122 4 1)

sz(q)/NOAL == (1 +T)2/O dI674z/£czl

3

(E14)

where we have used the definitions that = ¢£./2 and

(E1D) p = 7/Tpes — 1.
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