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Energy cascades lie at the heart of the dynamics of turbulent flows. In a recent study of turbulence
in fluids with odd-viscosity [de Wit et al., Nature 627, 515 (2024)], the two-dimensionalization of
the flow at small scales leads to the arrest of the energy cascade and selection of an intermediate
scale, between the forcing and the viscous scales. To investigate the generality of this phenomenon,
we study a shell model that is carefully constructed to have three-dimensional turbulent dynamics at
small wavenumbers and two-dimensional turbulent dynamics at large wavenumbers. The large scale
separation that we can achieve in our shell model allows us to examine clearly the interplay between
these dynamics, which leads to an arrest of the energy cascade at a transitional wavenumber and an
associated accumulation of energy at the same scale. Such pile-up of energy around the transitional
wavenumber is reminiscent of the formation of condensates in two-dimensional turbulence, but, in
contrast, it occurs at intermediate wavenumbers instead of the smallest wavenumber.

Introduction. Cascade processes are at the origin of
the multiscale nature of turbulent flows. The best-known
example is Richardson’s cascade of kinetic energy in three
dimensions (3D) [1]. Energy is injected into a charac-
teristic wavenumber kf by an external force that drives
the flow. On average, nonlinear interactions transfer the
injected energy to larger wavenumbers k without dis-
sipation. This process persists up to the Kolmogorov
wavenumber, beyond which viscous dissipation domi-
nates. The continuous interplay between energy injection
and viscous dissipation leads to a non-equilibrium statis-
tically stationary state. The direct energy cascade is at
the heart of 3D homogeneous isotropic turbulence [1].
In two-dimensional (2D) turbulence, the direction of the
energy cascade is reversed, and on average energy flows
from kf to smaller values of k; furthermore, the inverse
cascade of energy coexists with a direct cascade of en-
strophy [2, 3]. In general, turbulent cascades of inviscid
invariants, and in particular their directions (whether di-
rect or inverse), are affected by phenomena such as ro-
tation, stratification, spatial confinement, and selective
suppression of Fourier modes of the velocity [4–7].

Dissipative mechanisms inherent to the system, typi-
cally viscous dissipation at large k or frictional dissipa-
tion at small k, naturally arrest or suppress a turbulent
cascade. However, other complex mechanisms can in-
duce such suppression. For example, a recent study [8]
of an instability-mediated forcing in a 2D fluid has shown
the suppression of the inverse energy cascade via the ac-
cumulation of energy at the forcing wavenumbers and,
consequently, the formation of coherent vortices at those
scales. In magnetohydrodynamic (MHD) turbulence, the
energy cascade is suppressed when the flow is subjected
to a large-scale background magnetic field along with a
strong rotation that is not aligned with it [9]. In bacterial
turbulence, the inverse energy cascade gets suppressed
as bacterial activity decreases [10, 11]. Recently, de Wit

et al. [12] have studied the 3D Navier–Stokes equations
(NSE) with an odd-viscosity term that is proportional to
the Laplacian of the velocity and oriented in a fixed direc-
tion. This term leads to a quasi-two-dimensionalization
of the velocity field at large k. Two cases arise. If the
forcing acts at small k, the direct energy cascade is ar-
rested at a critical wavenumber kc. Since odd viscous
terms are not dissipative, the arrest of the cascade re-
sults in an accumulation (or “condensation”) of energy
around kc and thence an emergence of flow structures
of size k−1

c . If the flow is forced at large wavenumbers,
this model displays an inverse energy cascade, which is
arrested by the 3D-type behavior of the flow at small
k and is again accompanied by the formation of spatial
structures of intermediate sizes.

We extend the investigation of turbulent systems
where 3D-type dynamics, at small k, coexist with 2D-
type dynamics, at large k. To address this problem in
sufficient generality and with enough wavenumber reso-
lution, we construct a shell model that can display the
desired small- and large-k dynamics. Shell models are
a class of dynamical equations, which resemble the NSE
in Fourier space and offer insights into energy-transfer
mechanisms in fully developed turbulence [1, 13–16]. The
interactions between the Fourier modes of the velocity
are restricted; thus, numerical simulations of shell mod-
els reach larger scale separations and better statistical
convergence than those presently achievable with direct
numerical simulations of the NSE [17]. The tractability
of shell models makes them invaluable for studying tur-
bulence. New concepts in turbulence theory that have
been recently developed by using shell models include
hidden scale invariance [18], subgrid closures [19], stir-
ring strategies for optimizing mixing [20], and the ap-
plication of avalanche dynamics in amorphous materials
in the analysis of the temporal behavior of the kinetic
energy [21]. We follow the strategy that was used by
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Boffetta et al. [22] for a shell-model study of thin fluid
layers. By allowing the coefficients of the shell model
to depend suitably on k, the model captured the split-
energy-cascade, in quasi-2D turbulent flows, with direct
and inverse components [23, 24]. We also consider scale-
dependent coefficients but select them so as to obtain
a shell model that is 3D-like at small wavenumbers and
2D-like at large wavenumbers. The transition between
the two cascading regions occurs at a wavenumber ktr;
the forcing is localized at the wavenumber kf . We find
that, irrespective of the ratio of ktr/kf , the reciprocity
between the small- and large-wavenumber dynamics re-
sults in the arrest of the energy cascade (be it forward or
inverse). However, the system dynamics differs depend-
ing on whether ktr/kf is smaller or greater than unity.
The main consequence of the arrest of the cascade is a
strong build-up of energy close to ktr. We show that a
statistically stationary state is nevertheless possible be-
cause of an increase in viscous dissipation near ktr.

Model. We consider the SABRA shell model [25, 26]

dun

dt
= iΦn − (µk−2

n + νk2n)un + fn, 1 ≤ n ≤ N, (1)

where kn = k0λ
n, µ and ν are the hyper-friction and vis-

cosity parameters, respectively, and the external forcing,
fn = ϵf (1 + i)δn,nf

/2u∗
nf

, injects energy at a constant
rate ϵf into the shell nf . The nonlinear term is

Φn = ankn+1un+2u
∗
n+1 + bnknun+1u

∗
n−1

− cnkn−1un−2un−1, (2)

where an, bn, cn are real and the ∗ denotes complex con-
jugation. In addition, u−1 = u0 = uN+1 = uN+2 = 0.
In the inviscid (µ = 0, ν = 0) and unforced (fn = 0)
case, the total energy E(t) = 1

2

∑N
n=1 |un(t)|2 is con-

served provided an−1 + bn + cn+1 = 0. In the origi-
nal SABRA model [25], an = a, bn = b, and cn = c,
and H(t) = 1

2

∑N
n=1 (a/c)

n |un(t)|2 is a second invariant
quantity. Different regimes are observed depending on
the ratio c/a. Here, it is sufficient to recall that there is a
regime of direct energy cascade, which mimics 3D turbu-
lence, for −1 < c/a < 0 [25]. In this regime, H does not
have a definite sign and it can be regarded as a general-
ized helicity. By contrast, H is positive for 0 < c/a < 1,
and in the subrange λ−2/3 < c/a < 1 there is a 2D-
turbulence-like regime, with a simultaneous inverse cas-
cade of E and a direct cascade of H, where H plays the
role of a generalized enstrophy [26].

To introduce a shell-model analog of the domain aspect
ratio in a study of quasi-2D fluid turbulence, Ref. [22]
considered a version of the SABRA model with n-
dependent coefficients: {an, bn, cn} were chosen to gen-
erate an inverse energy cascade for kn < kh and a direct
energy cascade for kn > kh, with k−1

h representing the
depth of a fluid layer.

Run N nf ntr ν µ δt

A0 28 1 ∞ 5× 10−7 0 1× 10−4

A1 28 1 25 5× 10−7 0 1× 10−4

A2 28 1 20 5× 10−7 0 1× 10−4

A3 28 1 18 5× 10−7 0 1× 10−4

A4 28 1 15 5× 10−7 0 1× 10−4

A5 28 1 12 5× 10−7 0 1× 10−4

A6 28 1 10 5× 10−7 0 5× 10−5

B1 28 1 15 1× 10−7 0 1× 10−4

B2 28 1 15 1× 10−8 0 1× 10−5

B3 28 1 15 5× 10−9 0 1× 10−5

C1 34 3 5 1× 10−10 1× 10−3 1× 10−4

C2 34 3 7 1× 10−10 1× 10−3 1× 10−4

C3 34 3 9 1× 10−10 1× 10−3 1× 10−4

D1 34 25 0 1× 10−10 5× 10−4 1× 10−5

D2 34 25 15 1× 10−10 5× 10−4 1× 10−6

D3 34 25 17 1× 10−10 5× 10−4 1× 10−6

D4 34 25 18 1× 10−10 5× 10−4 1× 10−6

D5 34 25 20 1× 10−10 5× 10−4 1× 10−6

TABLE I. Parameters of the shell-model simulations. In
addition, λ = 2, k0 = 1/16, and ϵf = 5× 10−3 for all runs.

We also consider a shell model with n-dependent coef-
ficients but reverse the directions of the energy cascades
by taking

an = 1, bn = −0.5, cn = −0.5, 1 ≤ n < ntr , (3)
an = 1, bn = −1.7, cn = −0.5, n = ntr , (4)
an = 1, bn = −1.7, cn = 0.7, ntr < n ≤ N . (5)

Clearly, for modes n < ntr (n > ntr) the coefficients
{an, bn, cn} lead to a 3D (2D) turbulent-like regime. Note
that cn changes value at ntr+1 to respect energy conser-
vation in the inviscid limit. We investigate the interplay
between the small- and large-kn modes in this model
for the cases (a) ktr/kf > 1 and (b) ktr/kf < 1, with
ktr = k0λ

ntr the transitional wavenumber. We integrate
Eq. (1) by using an Adams-Bashforth scheme [27].

(a) Small-wavenumber forcing. We first consider the
case kf < ktr (Table I, runs A and B, in which µ = 0). In
the limit ktr/kf → ∞, we recover the SABRA model with
constant 3D-like coefficients; therefore, in this limit, our
model displays a direct cascade of E [25]; and the energy
flux [⟨·⟩ is the time average]

ΠE(kn) =

〈 N∑
j=n

ℜ
{
Φju

∗
j

}〉
(6)

is constant and equal to ϵf for kf ≪ kn ≪ kν , where
kν = (ϵf/ν

3)1/4 is the Kolmogorov wavenumber. In the
same range, the energy spectrum E(kn) =

〈
|un|2/kn

〉
shows a scaling range that is consistent with k

−5/3
n , the
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FIG. 1. Plot of the energy-autocorrelation decay time τc,
scaled by the Kolmogorov time τν =

√
ν/ϵf , as a function of

ktr/kν . Inset: the time series of the total energy for different
values of ntr (runs A0, A3, A4, A5, and A6).

Kolmogorov (1941) form [1]. For kn ≪ kf , E(kn) ∼ k−1
n ,

which indicates energy equipartition [5]. Now consider
1 < ktr/kf ≪ ∞. If ktr ≳ kν , E(t) does not show signifi-
cant deviations from the limiting case ktr/kf → ∞ [inset
of Fig. 1]. However, when ktr < kν we find that, with de-
creasing ktr (and fixed kf ), E(t) takes longer to reach the
stationary state, and its stationary value increases [inset
of Fig. 1]. To characterize the temporal energy fluctua-
tions E′(t) = E(t)− ⟨E(t)⟩ for different ktr, we calculate
the time scale τc from the exponential decay of the au-
tocorrelation function C(τ) = ⟨E′(t + τ)E′(t)⟩/⟨E′2(t)⟩.
Figure 1 shows that τc is nearly independent of ktr, for
ktr ≥ kν , but it grows rapidly as ktr is decreased be-
low kν . These trends are reminiscent of the formation
of large-scale condensates in 2D turbulent flows [2, 28],
where, in the absence of friction, condensate formation
is associated with very long saturation times and strong
deviations of the energy spectrum from its inertial-range
scaling [compare Fig. 2 of Ref. [28] with our Fig. 1].
Therefore, we examine the dependence of energy spectra
and flux on ktr. In Fig. 2(a), we plot ΠE(kn) [Eq.(6)]
for different values of ktr. As long as ktr > kν , this flux
is indistinguishable from that of the ktr/kf → ∞ case.
However, if ktr < kν , ΠE(kn) ≃ ϵf only for kf < kn < ktr,
and it vanishes rapidly beyond ktr. Thus, the direct en-
ergy cascade persists up until ktr, but is then arrested by
the 2D-like dynamics for kn > ktr. The consequence of
this arrest is a sharp build-up of energy around ktr, as
seen in Fig. 2(b), where we plot the compensated energy
spectra k

5/3
n E(kn) versus kn/ktr, for different values of

ktr. Energy starts accumulating around ktr for ktr < kν ;
this accumulation increases as ktr approaches kf . We
also remark that the suppression of high-frequency fluc-

tuations in E(t), with decreasing ktr, is associated with
the arrest of the energy cascade at kn ≈ ktr. Despite
the build up of energy at a scale smaller than kν , our
model reaches a statistically stationary state, albeit at
times that increase as ktr decreases. To understand this
intriguing behavior, we examine the energy budget in the
statistically stationary state:

T (kn) +Dµ(kn) +Dν(kn) + F (kn) = 0 ; (7)

T (kn) = ⟨ℜ{Φnu
∗
n}⟩, F (kn) = ⟨ℜ{fnu∗

n}⟩, Dν(kn) =
⟨2νk2n|un|2⟩, and Dµ(kn) = ⟨2µk−2

n |un|2⟩, are the nonlin-
ear, forcing, viscous, and friction contributions, respec-
tively, which we plot in the inset of Fig. 2(c) for ntr = 10.

Since friction is absent, the forcing term is balanced
by the transfer term at kn = kf , and, in the cascade
range kn < ktr, the contribution from the transfer term
is negligible, so the statistical properties are like those
in the pure 3D direct cascade (ktr/kf → ∞). Devia-
tions from this 3D cascade arise when we account for the
dissipation term. The maximum of |Dν(kn)| shifts from
kn ≃ kν to kn ≃ ktr, thus compensating for the accumu-
lation of energy at the same wavenumbers, as we show in
the inset of Fig. 2(c), where T (kn) is balanced by Dν(kn)
at kn ≃ ktr. Moreover, as ktr decreases, the maximum
of |Dν(kn)| shifts to smaller values of kn and its magni-
tude increases to compensate for the stronger build-up of
energy [Fig. 2(c)].

In the range kn > ktr, the coefficients in Eq. (3) lead
to 2D-like dynamics; hence, H(t) is both positive defi-
nite and conserved locally. By analogy with the inverse-
cascade regime in 2D fluid turbulence, we expect that the
energy that accumulates at kn ≃ ktr acts as a source for
the direct cascade of H in the range ktr ≪ kn ≪ kν . To
confirm this, we plot, in Fig. 3(a), the flux of H:

ΠH(kn) =

〈 N∑
j=n

ℜ
{
kβnΦju

∗
j

}〉
, (8)

where β = logλ(a/c). Clearly, as ktr is decreased, the
flux increases and tends to flatten for ktr ≪ kn ≪ kν ,
suggesting a direct cascade of H. However, the lack of
significant separation between ktr and kν makes it diffi-
cult to identify a range where ΠH(kn) remains constant.
In the inset of Fig. 3(a), we plot ΠH(kn) for fixed ktr
and different values of ν to observe indeed that, for small
viscosities, ΠH(kn) tends to flatten for ktr ≪ kn ≪ kν .

As further confirmation of the direct cascade of H,
we show in Fig. 3(b) that, by moving ktr close to k1,
we achieve a large range of constant ΠH(kn), in which
E(kn) ∼ k−γ

n with γ = 2[1 + β]/3 + 1 [inset of Fig. 3(b)],
as is expected in the direct-cascade regime of H [26].

(b) Large-wavenumber forcing. We now address the
case kf > ktr [Table I, runs D; µ ̸= 0 helps the system
to reach a statistically stationary state]. For ktr = 0

and with our choice of parameters, E(kn) ∼ k
−5/3
n , in
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(a) (b) (c)

FIG. 2. (a) Log-linear plot of the scaled energy flux versus kn/kν for different values of ntr (runs A0 to A6); the plots for
ntr = 20, 25 are indistinguishable from the ntr = ∞ curve. (b) Log-log plots of the compensated energy spectra versus kn/ktr
for the values of ntr in (a) [ktr = k0λ

ntr ]; inset: the value of the peak ζ of the compensated spectrum versus ktr/kν . (c)
Log-linear plot of Dν(kn) versus kn/kν for different values of ntr (runs A); the plots for ntr = 20, 25 are indistinguishable from
the ntr = ∞ curve; inset: log-linear plots of T (kn), Dν(kn), and F (kn) versus kn/kν for the representative value ntr = 10. The
color coding for ntr is the same in (a)-(c).

the range between the friction-dominated wavenumbers
and kf [26]. In this range, ΠE(kn) < 0 remains constant
and equals the rate of hyper-friction energy dissipation
ϵµ =

∑N
n=1 Dµ(kn).

We now consider kf > ktr > 0. Small values of ktr
have a negligible effects on energy spectra and fluxes,
because at small kn the inverse energy cascade is already
stopped by hyper-friction; so we focus on intermediate
values of ktr between k1 and kf , where the energy flux
[Fig. 4(a)] indicates that the inverse energy cascade is
arrested at kn ≃ ktr and it is accompanied by energy
build-up around ktr [Fig. 4(b)].

We see the following two scaling forms on each side
of ktr: For k1 ≪ kn ≪ ktr, E(kn) ∼ k−1

n , which indi-
cates equipartition [Fig. 4(b)]; and for ktr ≪ kn ≪ kf ,
E(kn) ∼ k

−5/3
n , as we expect in the range of the inverse

energy cascade [inset of Fig. 4(b)]. Clearly, the latter
range decreases as ktr approaches kf . The energy trans-
fer that leads to a statistically stationary state is similar
to that observed in case (a): the accumulation of en-
ergy at scales comparable to ktr is compensated by an
increased viscous dissipation at similar scales. Indeed, in
Fig. 4(a) we see, together with a peak of dissipation at
kf , a second peak at ktr [29].

Our study sheds new light on a general energy-transfer
mechanism for the non-dissipative arrest of energy cas-
cades (inverse or direct) when 3D turbulent dynamics, at
small k, coexists with 2D turbulent dynamics, at large k.
The shell-model approach we employ allows us to cover a
large range of wavenumbers; this is crucial for uncovering
the subtle interplay between the nonlinear and viscous
terms. Specifically, we find that, when ktr/kf > 1, the
direct energy cascade for kn < ktr is arrested by the 2D-
like dynamics at kn > ktr. In contrast, when ktr/kf < 1,
the inverse energy cascade for kn > ktr is arrested by the
3D-like dynamics at kn < ktr. In both cases, the arrest

(a)

(b)

FIG. 3. Log-linear plots of (a) ΠH(kn) versus kn/ktr for runs
A1-A6 and, in the inset, for runs A6, B1, B2 and B3, and (b)
for runs C1-C3. Inset of (b): log-log plots of compensated
energy spectra versus kn/ktr.
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(a)

(b)

FIG. 4. Plots for runs D1-D5: (a) Log-log plot of the com-
pensated spectra knE(kn) versus kn/ktr and in the inset the
compensated spectra k

5/3
n E(kn) versus kn/ktr. (b) Log-linear

plots of Π(kn) versus kn/kν and in the inset Dν(kn) versus
kn/kν .

of the cascade, close to ktr, results in energy accumula-
tion around ktr. In a spatially extended system, such an
accumulation of energy would lead to the emergence of
spatial structures, or condensates, of size k−1

tr . A statis-
tically stationary state stems from an increased viscous
dissipation, at wavenumbers close to ktr, which compen-
sates for the energy accumulation. This is reminiscent
of condensates in 2D turbulence. Furthermore, we show
that, when ktr/kf > 1, the energy that accumulates near
to ktr generates a direct cascade of generalized enstrophy
for kn > ktr, whereas, when ktr/kf < 1, the modes with
kn < ktr are in statistical equilibrium.

Our modifications to the shell model with scale-
dependent coefficients is not restricted to a given physical
system [30]. Although the details of the dependence of
the transitional scale may vary with the parameters of
specific models, the energy-transfer mechanisms that we
have identified are general, so they should appear in any

turbulent system that has a 2D-like large-k dynamics and
3D-like small-k dynamics. Thus, our results will stimu-
late the study of new physical systems with such cascade
arrests that lead to intermediate-scale condensates.
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