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In functionally complex systems, higher-order connectivity is often revealed in the underlying
geometry of networked units. Furthermore, such systems often show signatures of self-organized
criticality, a specific type of non-equilibrium collective behaviour associated with an attractor of
internal dynamics with long-range correlations and scale invariance, which ensures the robust
functioning of complex systems, such as the brain. Here, we highlight the intertwining of features
of higher-order geometry and self-organized critical dynamics as a plausible mechanism for the
emergence of new properties on a larger scale, representing the central paradigm of the physical
notion of complexity. Considering the time scale of the structural evolution with the known
separation of the time scale in self-organized criticality, i.e., internal dynamics and external
driving, we distinguish three classes of geometries that can shape the self-organized dynamics on
them differently. We provide an overview of current trends in the study of collective dynamics
phenomena, such as the synchronization of phase oscillators and discrete spin dynamics with
higher-order couplings embedded in the faces of simplicial complexes. For a representative
example of self-organized critical behaviour induced by higher-order structures, we present a
more detailed analysis of the dynamics of field-driven spin reversal on the hysteresis loops in
simplicial complexes composed of triangles. These numerical results suggest that two fundamental
interactions representing the edge-embedded and triangle-embedded couplings must be taken into
account in theoretical models to describe the influence of higher-order geometry on critical dynamics.

Keywords:

I. GEOMETRY, INTERACTIONS AND EMERGENT BEHAVIOUR IN COMPLEX SYSTEMS

The role of self-organised criticality (SOC) has been increasingly recognised in various complex systems, from
brain functioning to social and geophysical phenomena1 as a mechanism enabling robust functioning and emergent
properties at a larger scale that reside on collective dynamic behaviours; for a recent review of general features of
complex systems, see2–5. These are nonlinear dynamical systems repeatedly driven by environmental forces that
self-organise towards an attractor with a stationary state characterised by avalanches, long-range correlations and
scale invariance. These stationary out-of-equilibrium critical states enable the system’s response to driving forces at
all scales, thus providing robust functioning and stability. Critical dynamics out of equilibrium is currently an active
research field. Two challenging issues are the impact of a dynamically changing environment and underlying complex
geometry1.

Besides numerical simulations, the renormalisation-group (RG) theory with scaling concepts and methodologies
based on quantum and statistical field theory for equilibrium phase transitions are extended to non-equilibrium
dynamics and SOC; see recent reviews6 and7 and references there. The described models with SOC behaviours7

demonstrate the field-theory methodologies as powerful tools to characterise collective fluctuations in stationary states
of complex systems that are driven out of equilibrium. Beyond external and internal noise terms, this methodology
properly considers the dynamical environment, which can critically impact the intrinsic SOC dynamics8. Another
promising way to understand the role of the complex systems’ coupling to the environment can be built by the use
of quantum formalism; a representative example is the study of adaptive complex systems9, where the formal theory
leads to a requirement that the emergent “quantum” potential needs to be effectively balanced by the environmental
coupling. It should be noted that the RG theory is based on continuous field models. For example, studies8,10,11

of SOC are based on continuous versions of the original discrete sandpile automata (SPA) model, incorporating
its essential intrinsic anisotropy of diffusion on otherwise homogeneous space. However, considering more complex
underlying geometries12 within the RG theory13,14, in particular, those enabling geometry-embedded higher-order
interactions15–18, remains a challenging problem. Here, we aim to highlight the interplay of higher-order geometry
and emergent SOC behaviour in complex systems.
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Three types of underlying geometry that can shape the collective dynamics and SOC can be recognised as networks
with fixed, co-evolving, and temporal structures. The dynamical units associated with the network’s nodes interact via
the network-provided connections of different orders. As explained below, this separation is conditional in real-world
systems, relating the time scale of the network’s evolution vs the dynamics of interacting units on it.

Fixed geometry network substrates extend the idea of physics models, e.g., spins at sites of a regular 2D- or 3D-
lattice to a more complex structure described by the network or Simplical complex measures; see more details below.
The dynamical units associated with the network’s nodes and interacting through the local or nonlocal structure may
have identical dynamics, i.e., as phase oscillators19,20 or spins on simplicial complexes21; another option often used
in the agent-based modelling is that each unit has individual dynamics and parameters characteristic of each agent
associated with a given node22. The temporal evolution of each unit is subject to interactions (of different orders),
driving fields, and constraints by the surrounding geometry. It can be described by a set of update rules, as in the
case of cellular automata or spin kinetics or by solving differential equations with identical, for example, in the case
of phase oscillators, or individual forms and parameters, as in the case of agent-based models.

Co-evolving networks represent structural patterns that appear through the dynamics of interacting units and de-
velop over time. They can be visualised as mathematical graphs, similar to the OSN of users mentioned above, or by
bipartite graphs, for example, in blog data, where indirect interactions among users (as one partition) are effectuated
over another partition as posted subjects of communications; In this case, graph mapping enables advanced graph
theory methods to quantitatively study the structure of these dynamical patterns and how they change over time.
However, the co-evolutionary mechanisms are more subtle, involving collective dynamics with SOC signatures; see,
for example,22 and references there. The geometry emerges from the dynamics of interacting units, meanwhile, the
currently existing structure facilitates the diffusion (of information, knowledge, emotion) to spread further. Unsur-
prisingly, in cooperative users’ activities, such as collective knowledge building23,24, some stable network structures
emerge in the other partition. For example, they represent the network of emergent knowledge (of subjects) in the
case of knowledge-creation dynamics in Mathematics data or a stable “social graph” emerges among users of Ubuntu
Chats that persists over the years, satisfying the social ’weak ties’ hypothesis; see25 and references there. Evolu-
tionary processes, where the respective time scale is system characteristic, comprise one of the fundamental features
of complexity3. In this context, the network mappings of the Brain represent different types of functional patterns
rather than a fixed structure graph; for a recent survey, see26. A more detailed description of the human connectome
is given in IA .

Time-varying geometries represent another category of structures compared to the above-discussed cases; they
exhibit partial or global reconstruction, which is virtually independent of the processes of dynamical units at their
nodes but occurs at the time scale of these processes. The structural changes cause nonlocal effects that can be
examined directly in real and phase space or indirectly by their impact on the dynamics. This issue deserves more
attention, particularly in higher-order networks. In analogy to methods of programable self-assembly of materials27,
local reconstruction due to, for example, built-in defects in the simplicial complexes architecture28 can cause a collapse
of hierarchical structure at a larger scale.

This perspective paper focuses on the interplay of higher-order geometry features and SOC dynamics. In this
context, the time scale of the structural evolution is particularly relevant, given the critical requirement of the time
scale separation between the internal dynamics and driving for the occurrence of SOC. In the following, we describe
the concepts of SOC and higher-order geometry with simplicial complexes and survey current research trends. As
a representative example, a more detailed study is presented considering spin-reversal dynamics on a structure of
geometrically assembled triangles, where the competing pairwise and triangle-embedded interactions lead to emergent
SOC behaviours. The paper ends with a brief discussion with a summary of open questions and research directions.

A. Collective dynamics & Self-organised criticality in Complex Systems

As stated above, the term SOC refers to out-of-equilibrium critical behaviour occurring in a steady state near an
attractor of intrinsic nonlinear dynamics without apparent phase transition. For a more recent review, see29–31 and
references there. Such attractors are reached by the system’s response to repeated driving by external forces when the
driving rate is slow compared to the time scales of the intrinsic dynamics. Self-organised dynamics possess character-
istic self-similarity manifested in avalanching behaviours, temporal correlations and scaling, adequately described by
theoretical concepts8 and numerical methods32.
Ever since Bak and coworkers introduced it and defined the paradigmatic SPA model33,34, the idea of self-organised

dynamics was utilised to understand mechanisms underlying complexity1,35,36. Signatures of SOC are increasingly
found in many complex systems across the scales in physics30—from nano assemblies to rainfalls37, geophysics and
solar activity38, and biology39,40. Furthermore, collective dynamics based on social cooperation represents a specific
type of SOC behaviour evidenced by empirical data analysis, for example, in human activity devoted to collective
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knowledge creation24 but also in schooling fish41. Further examples include bio-social epidemic processes42,43, socio-
technological44,45, and socio-economical systems46. In addition to characteristic avalanches superimposed to cyclical
trends47, monitoring changes in the co-evolving network geometry serves as a “blueprint” of complexity in social
dynamics25.

Understanding Brain functions and mechanisms of Brain disorders in neurology48–50 represent the most challenging
issues in the science of complexity and their applications, in particular, in the era of artificial intelligence51. In this
context, network mapping52 and the complexity of the Brain dynamics as a SOC system of firing neurons are central
questions both in theoretical and experimental research53–55. The whole Brain computational connectomics56 and
imaging techniques monitoring different Brain functions, for example, attention57 and cognition58 or pain processing59,
reveal multiple scales interplay between integration and segregation processes that involve distinct Brain regions and
variable communications among them. Therefore, information about the architecture of these distributed neuronal
processes can be gained by modelling Brain dynamics and identifying temporal variations of local order in the cor-
responding Brain networks; see a recent survey in60. Among phenomenological models, synchronisation processes of
Kuramoto phase oscillators are often studied on Brain networks. In this picture, “the human brain is a complex sys-
tem comprising subregions that dynamically exchange information between its various parts through synchronisation”
persisting in a natural metastable at the edge of synchrony61. These studies gain some importance in quantifying
brain dynamics in various psychiatric illnesses and Brain disorders implicating altered metastability61,62. Mathe-
matically, it was shown63 that the structure of the Brain network does not permit a stable full synchronisation63.
Potential mechanisms to maintain partial synchronisation with co-evolving groups of weakly synchronised nodes are
demonstrated in the human connectome, as illustrated in Fig. 1, considering the core network around Brain bubs64.

FIG. 1: A pattern of phase evolution at negative pairwise coupling with partially synchronised groups of nodes (brain regions)
in human connectome core networks, consisting of simplexes of all orders attached to the eight Brain hubs. Data from64.

B. Higher-Order Connectivity: Dynamics on Simplicial Complexes

In networks mapping functional connections in many complex systems, hidden geometry of higher-order relations
occurs65. They can be revealed by advanced mathematical techniques beyond standard graph theory66, such as
the algebraic topology of graphs67. They are described by aggregates of simplexes (simplicial complexes)68 and
multigraphs. For example, in social graphs17, Human connectome69–72, etc., such structures naturally evolved with
the self-organised dynamics. Meanwhile, in materials design73 such complex structures often emerge from self-assembly
processes, particularly those based on preformatted building blocks, e.g., groups of nanoparticles74. Such higher-order
geometries provide a basis for multiple interactions that play their role in the dynamics and determine the system’s
collective behaviours. Therefore, studies of the impact of higher-order geometries on the dynamics are vital for
understanding the mechanisms underlying dynamic critical behaviours and can be used to estimate the predictability
limits75 in the system’s evolution. The interplay of the dynamics and higher-order structures can be also utilised to
design new methodologies of network control76.
Recently, attention has been devoted to the dynamics of units associated with the nodes in simplicial complexes

with a fixed structure15. Below, we describe some key features of such geometries and embedded higher-order inter-
actions in the case of spin-reversal dynamics and synchronisation among phase oscillators. For this type of study,
an underlying simplicial complex is grown, i.e., using a model; depending on the research aims, several generative
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models of simplicial complexes with different emergent structures are known in the literature28,77–79. Alternatively, a
real-world network, e.g., human connectome64, can be considered, and methods of Q-analysis80 applied to determine
its detailed architecture69.
Here, we briefly describe the model introduced in77, where the rules for the attachment of simplexes are motivated

by the above-mentioned cooperative self-assembly of nanostructured materials74. Specifically, starting with a single
simplex of the size s = qmax + 1, at each growth step tg, a new simplex is added such that it shares one of its faces
of the order q = 0, 1 · · · qmax − 1, i.e., a node, an edge, triangle, etc., with an existing simplex, randomly selected in
the structure; the attaching probability is given by

P (qmax, q; tg) =
cq(tg)e

−ν(qmax−q)∑qmax

q=0 cq(tg)e−ν(qmax−q)
. (1)

where cq(tg) stands for the number of geometrically compatible locations that are found in the existing structure
at the growth step tg. The parameter ν represents the chemical affinity of the existing structure towards adding of
qmax − q new nodes. Thus, simplicial complexes with a sparse architecture are grown when ν < 0, representing a
“tree of cliques” that predominantly share a single node, whereas the structure becomes increasingly more compact
with increasing ν > 0, where sharing larger faces is more probable. When ν = 0, the process is controlled by strictly
geometrical rules. We note that the spectral dimension of the Laplacian operator associated with the adjacency
matrix of the underlying graph, i.e., (1-skeleton) of a simplicial complex is another measure of its architecture that
determines the nature of collective dynamics on it81,82. The graphs of complexes grown at different chemical affinity
is characterised by the spectral dimension that varies from the random-tree dimension at ν < 0 through ds ∼ 2 at
ν = 0, and continuously increasing with ν > 0 and the dimension of simplexes; see detailed analysis in83. The size of
the newly added simplex can be fixed in advance or drawn from a given distribution of sizes; see original reference77

for examples and detailed analysis of the architecture of complexes for different chemical affinity and their Q-analysis.
Note that by construction, the distances between the building simplexes are zero, and then these simplicial complexes
are 1-hyperbolic84; similarly, the size of the largest clique determines the dimension of the simplicial complex; see
detailed discussion in77. For demonstration, an example of self-assembled triangles is shown in Fig. 2. It exhibits
several branches of triangles attached via shared nodes and edges. These branches often appear to belong to topological
communities, here indicated by different colours; they are interconnected through large hub nodes.

FIG. 2: The simplicial complex of triangles self-assembled under chemical affinity and geometric compatibility rules in (1) with
ν = 5; a close-up view with hubs is shown, and colours indicate mesoscopic communities.

A representative structure of the assembled triangles based on geometrical attachment rules is used in this work
in section II. In this case, we have ν = 0, hence the probability of sharing faces of the size s = 1 (nodes) and s = 2
(edges) are governed by strictly geometric compatibility rules; its spectral dimension is ds ≃ 2.1; see83. We note that
about 21% of edges and 33% of single-node faces are shared among two or more triangles in this type of structure.
Moreover, as shown in85, assortative nodes’ correlations are observed and broad distributions of the generalised degree
(number of edges per node and the number of triangles per node, which behave statistically similar in this case). The
degree distribution shows a power-law decay with an exponent γ ≥ 3 for a segment of intermediate degrees, excluding
the nodes with extensive connectivity (hubs). During the assembly process we enumerate each edge {< iI , jI >},
I = 1, 2, · · ·E and each triangle {< iT , jT , kT >}, T = 1, 2, · · ·∆ and make the lists of the nodes that make them; such
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lists comprise the corresponding adjacency tensors for the geometry-embedded interactions among spins, as discussed
in the following section. In the remaining part of this section, we give an insight into how the structure of simplicial
complexes yields the geometry-embedded interactions in the more general cases and how they are taken into account
in numerical simulations of two fundamental processes leading to collective phenomena: phase synchronisation and
spin dynamics.

Spin dynamics on SC: We consider the case where Ising spins Si = ±1 is attached to each node, and interactions
among spins enabled by the simplexes and their faces of different sizes k′ = 2, 3 · · · qmax+1, where qmax is the order of
the simplicial complex in question. Given the pairwise adjacency matrix, as is usually the case with real-world network
data, all simplexes and their faces can be identified by Q-analysis, as stated above. Alternatively, in the self-assembly
model described above, by monitoring all added simplexes, we keep track of the identity of the nodes that make them.
In this way, we can produce a unique list of simplexes of all sizes k′; then, we can write the Hamiltonian with all
possible geometry-embedded interactions in that simplicial complex as follows1

H = −
k∑

k′=2

∑
(i1,···ik′ )∈Lk′

Ji1,i2,···ik′Si1Si2 · · ·Sik′ − h
∑
i

Si . (2)

Here, h is the external magnetic field and Ji1,i2,···ik′ stands for the interaction tensor of the order k′, whose elements
differ from zero when the indexes (i1, i2, · · · ik′) match one of the simplexes in the list Lk′ of simplexes of the size
k′, and zero otherwise. For example, Ji1,i2 is nonzero when the indexes correspond to the nonzero elements of the
network’s adjacency matrix; similarly, the nonzero values of Ji1,i2,j3 correspond to all triangles in the structure, and so
on. As usual in studies of spin systems with pairwise interactions, the sign and strength of interactions and potential
disorder, as well as the presence of given higher-order interactions, are determined considering the physics of the
problem and the study objectives.

Synchronisation on SC: In most studied Kuramoto model that we present here, 1-dimensional phase oscillators θi
are associated with the nodes i = 1, 2 · · ·N of the simplicial complex, and the geometry-embedded interactions are
provided by simplexes of different orders q = 0, 1, · · · qmax; see review in15. For the synchronisation of topological
signals associated with faces of simplexes, see recent work in86 and references there. Then, the evolution of phases of
all nodes is obtained by solving the differential equations interconnected via interaction tensors, as described below.
For this purpose, for each interaction order q, we prepare a unique list Lq

i of the simplexes of the order q that contain
the considered node i. Then, the generalised equation of motion can be written as

dθi
dt

= ωi −
qmax∑
q=1

Kq

qk
(q)
i

∑
(j1,j2···jq)∈Li

q

Bi,j1,j2···jq sin

(
qθi −

q∑
m=1

θjm

)
(3)

where ωi is the node’s internal frequency and the interaction tensor Bi,j1,j2···jq = 1 when the set of indexes
(i, j1, j2 · · · jq) matches one of the entries in the list Lq

i of simplexes of the order q, and zero otherwise; the num-

ber of such simplexes is the node’s i generalised degree k
(i)
q . Note that the coupling function in (3) satisfies general

conditions for the diffusive-like, non-invasive and natural coupling15. The corresponding interaction constants Kq

are varied to explore the system’s transition to the synchronised states; see for example,87,88, for the case of high-
dimensional simplicial complexes with the pairwise and triangle-embedded interactions. It has been recognised that
higher-order interactions cause new collective dynamics phenomena; for example, triangle-embedded interactions
induce the broadening of the hysteresis loop and an abrupt desynchronisation transition19. Studies82,88 have demon-
strated the relevance of the architecture of simplicial complexes to synchronisation, quantified by varied spectral
dimensions. Moreover, spectral analysis and eigenvector localisation have recently been explored to predict cluster
synchronisation in theoretical20 and experimental studies89,90.

II. HYSTERESIS-LOOP SELF-ORGANISED CRITICALITY WITH TRIANGLE-EMBEDDED
INTERACTIONS

As mentioned above, here we present a more detailed analysis of the spin-reversal dynamics driven by the slow
ramping of the magnetic field along the hysteresis loop, demonstrating the emergence of SOC due to complex geometry.
The spins are situated at nodes of a large complex of self-assembled triangles; cf. Fig. 2. Therefore, we have two types
of geometry-embedded interactions in the Hamiltonian (4), specifically:

H = (κ− 1)
∑

(i,j)∈L2

JijSiSj − κ
∑

(i,j,k)∈L3

JijkSiSjSk − h
∑
i

Si , (4)
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where L2 and L3 stand for unique lists of the network’s edges and triangles, respectively. For this study, we set
Jij = −J2 fixing the antiferromagnetic pairwise interactions among all implicated pairs of spins, and Jijk = J3;
a parameter κ ∈ [0, 1] is added to balance their respective contributions. As shown below, we can differentiate
the ferromagnetic and Jijk = −J3 for antiferromagnetic triangle-embedded interactions; see also85. As usual, the
dimensionless units can apply; thus, we set J2 = 1 and J3 = 1. Moreover, the magnetisation (in Bohr magnetons
µB) is determined as M = (N+ −N−)/N ∈ [−1, 1] by the balance of the respective up and down oriented spins N+

and N− with respect to their number N . The external field (in the units µB) , h ∈ [−hmax,+hmax], where hmax is
related to the maximum number of neighbours of the vertices, is varied in a quasistatic manner, as explained below.

Starting with a uniform state of all spins {Si = −1} and h = −hmax, the spin-reversal process is driven by slow
field ramping h → h+δh along an ascending branch of the hysteresis and then reversing the field to close the loop. As
it is a widely accepted approach in the study of Barkhausen noise in disordered magnetic systems a zero-temperature
dynamics is applied; see, for example,91 and references therein. In particular, the spin Si at the node i flips to align
along the external field which can balance the local field due to the neighbouring spins, i.e., when hloc

i Si < 0. Here,
hloc
i = (κ − 1)

∑
j∈Li

2
JijSj − κ

∑
(j,k)∈Li

3
JijkSjSk − h is the local field acting on the spin at node i at a current

value of the external field h and the summation indicates the corresponding subsets of the edges Li
2 and triangles Li

3

that contain the node i. Thus, the spin-flip at node i causes changes in the local fields of its neighbours, which can
satisfy the condition to flip, and so on, resulting in an avalanche. The avalanche stops when no more spins satisfy the
above condition to flip. The boundary between the domain of flipped and unflipped spins defines the position of the
domain wall at a given value of the external field. When the avalanche stops, the external field is changed again by δh
(adiabatic driving). We note that spin frustration92 with the antiferromagnetic pairwise interaction among spins on a
triangle prevents all three spin pairs from simultaneously ordering with the field; thus, some spins may flip back even
though the above condition is fulfilled. To avoid frequent back-and-forth flips of the same spin at a given field value,
flips with a probability p ≲ 1 are adopted. Moreover, without the magnetic disorder, the field ramping parameter
δh = 1 is the lowest value that may move the domain wall1,85.
In the simulations, a time step t consists of a parallel update of all spins in the network. At each time step during

the spin activity avalanches, we sample the value of the external field ht, the total number of flipped spins nt, and
the number of spins ordered with the field (unnormalised magnetisation) Mt = n+

t − n−
t . Here, our focus is on

the distributions of avalanches; for three representative values of the parameter κ, in particular, κ = 0, describing
purely antiferromagnetic pairwise −J2 interactions, κ = 1, corresponding to the case where only triangle-embedded
interactions J3 are present, and the case κ = 0.5, where these two interaction types are well balanced. (See ref85 for
the analysis of hysteresis loop shape and temporal correlations of the signals {nt}.)
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FIG. 3: Top panels: Cumulative distributions of the avalanche size (black circles) and duration (red squares) averaged over the
entire hysteresis loop for κ = 0.0, 0.5, and 1.0, as indicated on the panels. For the case κ = 0.5, the distributions for J3 < 0 are
shown; see text for a detailed description of fits. Lower panels: Hysteresis loops corresponding to the values of κ in the panel
above; forward/backward branch shown in black/red; full and dotted lines for κ = 0.5 and κ = 1 are for J3 > 0 and J3 < 0,
respectively.

As this figure shows, the spin-activity avalanches appear in different sizes and durations that can be described by
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a cumulative distribution function having a power-law segment and an exponential cut-off

Pc(X) = AX−τX−1 exp−X/X0 , (5)

where X stands for the size s (the number of spins undergoing dynamics) and the duration T (measured by the
number of time steps from the field rump till the activity stops). In the critical dynamics where the scaling exists, the
corresponding scaling exponents obey the relation γsT = τT−1

τs−1 , where γsT scales the average size of the avalanches
of a given duration T , i.e., < s >T∼ T γsT . In Fig. 3, we show the results for the distributions of size and duration
of the spin-activity avalanches for the case of purely pairwise antiferromagnetic coupling, κ = 0, purely triangular
ferromagnetic coupling,κ = 1, and the intermediate case with balanced pairwise and triangular interactions, κ = 0.5.
The hysteresis loops showing the magnetisation vs external field are given in the corresponding lower panel. As Fig.
3 shows, the distributions of spin-activity avalanches are exhibiting a power-law decay with an exponential cut-off
according to Eq. (5), however, two sets of scaling exponents apply. In particular, when κ = 0, corresponding to
strictly pairwise antiferromagnetic interactions, large avalanches decay with the exponents τs − 1 = 0.526± 0.018 and
τT − 1 = 0.993 ± 0.023, close to the mean-field SOC93. Whereas, the exponents found by fitting the corresponding
curves in the case of κ = 1 are lower, τs−1 = 0.326±0.013 and τT −1 = 0.49±0.021. We note that these exponents are
numerically close to the ones in the universality class of directed percolation cellular automata94. See more discussion
below.
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FIG. 4: The fluctuation function Fq(n) vs time interval length n for q ∈ [−4.5,+4.5] (every second line is shown for better
vision), for the case κ = 0.5 of balanced antiferromagnetic pairwise and positive triangle-based interactions, using the whole
signal up-down loop branch. Inset: the singularity spectrum Ψ(α) vs α for three cases of the balance pairwise antiferromagnetic
and triangle-based ferromagnetic interactions, the parameter κ =0.0, κ =0.5, corresponding to the fluctuation function on the
left, and κ =1.0.

To demonstrate the multifractal properties of these magnetisation reversal processes, we exploit the underlying
scale-invariance of the fluctuation function Fq(n) as a function of the time segment n and determine the spectrum of
generalised Hurst exponents Hq. Here, we analyse the time series of the number of spin flips {nt} along the entire
hysteresis loop. Tmax is the time series length. In particular, following the procedure for the de-trended multifractal

analysis described in95,96, the profile Y (i) =
∑i

t=1(nt − ⟨nt⟩) of the considered time series is determined. The profile
is then divided into 2Ns = 2int(Tmax/n) non-overlapping segments of the length n, starting from the beginning of the
series and then the process is repeated starting from the end. At each segment µ = 1, 2 · · ·Ns, the local trend yµ(i) is

determined, and the standard deviation around it is computed as F (µ, n) =
{

1
n

∑n
i=1[Y ((µ− 1)n+ i)− yµ(i)]

2
}1/2

,

and similarly, F (µ, n) = { 1
n

∑n
i=1[Y (N − (µ −Ns)n + i) − yµ(i)]

2}1/2 for µ = Ns + 1, · · · 2Ns. Then, the r-th order
fluctuation function is for the segment of the length n is obtained and averaged over all such segments as

Fq(n) =

{
1

2Ns

2Ns∑
µ=1

[
F 2(µ, n)

]q/2}1/q

∼ nHq (6)
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For varying the parameter q ∈ [−4.5, 4.5], we explore the scale-invariant parts of the fluctuation function Fq(n)
against n, where the segment length is varied in the range n ∈ [2, int(Tmax/4)], cf. Fig. 4. In this way, the segments
of the signal representing small and large fluctuations, respectively, are enhanced in different ways to maintain the
self-similarity of the whole time series. Here, a generalised Hurst exponent Hq depends on the amplification factor
q, as shown in the inset of Fig. 4. Intuitively, this means that the small fluctuations (amplified when q < 0) along
the signal have different scaling properties than the large fluctuations ( q> 0). In contrast, Hq = H2 for all q,
where H2 is the standard Hurst exponent for the monofractal signals. Having the spectrum of the generalised Hurst
exponents Hq, we determine other multifractal measures; see, for example,95. Specifically, we obtain τq = qHq − 1,
which is related to the standard (box probability) measure, and the singularity spectrum Ψ(α) = qα − τq, where
α = dτ/dq; in this context, different α values indicate variations in the power-law singularities along the considered
time series. In the inset to Fig. 4, we show how the shape of the singularity spectrum changes when the balance
between antiferromagnetic pairwise and triangle-embedded interactions is varied via the parameter κ.

III. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we have given a survey of recent research activities aiming at understanding the role of higher-order
connectivity in functional complex systems. Our leading idea concerns the intricate interdependences of the higher-
order structures and the out-of-equilibrium self-organised critical dynamics as a plausible mechanism for emerging
new properties at a larger scale, the central paradigm of physical complexity. Having briefly described both issues, we
have mentioned an increasing number of studies that evidence the occurrence of higher-order (hidden) structures and
signatures of SOC in many complex systems across the scales. We have highlighted the most striking example, mapping
the brain structure and its dynamics, which has considerable influence on the science of complexity theory and practice,
as well as the applications in artificial intelligence. Furthermore, we highlighted the relevance of different time scales in
the light of the structure–dynamics interdependences. In this context, the time-scale separation between the intrinsic
dynamics and driving is required for the nonlinear systems to evolve towards SOC attractors. In addition, we stress
the relevance of the time scale of changes in the underlying geometry evolution as compared to the SOC dynamics;
they can be characterised by the appropriate graph or simplicial complex measures. In this regard, we differentiate
two limiting cases, particularly structures co-evolving with the intrinsic dynamics and the quenched structure, whose
evolution time exceeds both time scales relevant to the SOC. We referred to several pertinent examples of both
groups of systems studied in the literature. Another interesting, much less understood case concerns the underlying
geometry reconstruction at an intermediate time scale between the intrinsic dynamics and driving. It can occur
virtually independent from the dynamics of the actual units comprising the system, for example, reconstructions via
built-in temporal defects, or can have a hidden connection with the driving forces. We have briefly described two
currently most studied dynamic models—synchronisation of phase oscillators and zero-temperature spin dynamics on
simplicial complexes of a fixed architecture, which provides geometry-embedded higher-order interactions. A more
detailed study of the spin-reversal dynamics with the competing geometry-embedded interactions leading to SOC
behaviour is given as an illustrative example.

In the studied example with Ising spins on an assembly of triangles, we have shown that the spin reversal zero-
temperature dynamics with competing interactions of different orders when driven by avalanches-adapted field changes
lead to self-organised critical dynamics on the hysteresis loop. We observe two different universality classes of SOC
that are associated with the order of the primary spin interactions. Here, we emphasise that the system with triangle-
embedded interactions without background pairwise couplings evolves towards the SOC state in a new universality
class, compared to the one induced by the pairwise interactions. Specifically, for κ = 1 where only triangle-based
interactions are present, the exponents found by fitting the corresponding curves are τs − 1 = 0.326 ± 0.013, and
τT − 1 = 0.49± 0.021, which are close to the exact exponents of SOC in the directed sandpile automata τs = 4/3 and
τT = 3/2, derived in94. In contrast, numerically determined exponents τs−1 = 0.526±0.018 and τT −1 = 0.993±0.023
close to the mean-field SOC93, i.e., τs = 3/2 and τT = 2, are found in the limit κ = 0, where only the antiferromagnetic
pairwise interactions are present.

To understand the nature of these dynamic critical states, we refer to the theoretical concepts regarding the
equivalence between the zero-temperature Ising spin dynamics and the directed percolation cellular automata99.
Furthermore, we recall that spin-reversal avalanches triggered by the external field change propagate as a directed
branching process, where the actual architecture of triangles determines the underlying branching tree. In particular,
for fractal networks, where the average branching number saturates for significant distances, the study97 utilising
spanning trees based on the betweenness centrality of edges reveals that the probability of cluster size s (mass when
the box length ℓB → ∞) scales with the exponent τs = γ/(γ−1); the exponent γ is related to the degree distribution,
i.e., the number of edges per node). Then we can compute the corresponding duration exponent τT from the scaling
relation98 τs = 2− 1/τT , which gives τT = (γ − 1)/(γ − 2). We note that the generalised degree distribution for the
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network of finite size, considered in the above numerical simulations, has an intermediate scale-free segment compatible
with the exponent γ ∼ 3.8± 0.4, excluding the hub nodes; meanwhile, s smaller exponent applies for the low-degree
nodes. It is relevant to mention that, in this particular case, the number of triangles per node scales similarly to the
number of edges. Apart from the structure of potential branches, a crucial difference regarding the nature of avalanche
branching occurs due to the spin frustration effects in the limit κ = 0. In this case, each triangle contains at least
one frustrated spin, which prevents propagation of the local order set by the current value of the external field. The
situation corresponds to a critical branching process, where the average branching number remains constant, which
leads to the mean-field SOC according to the original work in93. On the other side, for triangle-based interactions
only (κ = 1), no spin frustration occurs. Multiplicative branching processes are enabled by the network’s fractality,
leading to the exponents as above, but now the structure is related to the architecture of triangles85. Given the
well-known equivalence of the (zero-temperature) Ising model dynamics with the Domany-Kinzel cellular automata
for directed percolation99, as well as the related directed sandpile automata with probabilistic toppling98, we note that
the numerical values of the exponents, in this case, are close to the ones of the directed percolation, which are known
with more significant numerical precision, i.e., τs + 1.32059, τt = 1.47244, and the anisotropy exponent ζ = 0.63261);
see98 and references there.

In conclusion, the presented survey and the numerically studied example of the hysteresis-loop criticality in a sim-
plicial complex with geometry-embedded interactions highlight the relevance of self-organised dynamics in functional
complex systems and the critical role of geometry in the emergence of this type of collective behaviour. In this regard,
our results suggest that triangle-embedded interactions play the primary role in critical dynamics beyond standard
pairwise interactions in systems with higher-order geometry. These studies call for more theoretical investigations,
i.e., by the renormalisation-group methodology, to confirm the existence of different fixed points representing the
classes of emergent nonequilibrium critical dynamics and their stability. To this end, equivalent continuous models
that consider features of complex geometry (at the local-to-mesoscopic scale) that are relevant to emergent critical
dynamics need to be developed, which creates a challenging theoretical problem. We mention some ideas from the
physics of hierarchical spin glasses100,101, mapping directed cellular automata onto zero-temperature Ising model99,
SOC models with quenched disorder noise with specific correlations8,11, topological defects and the use of tropical
geometry102 that may serve as an inspiring point in this direction. Another interesting open problem regards the
potentials of quantum formalism, such as in reference9, to elucidate the interplay of geometry and time-varying driving
forces in the occurrence of self-organised critical states. On the other side, several open questions remain accessible
to numerical modelling and empirical data analysis using the theoretical concept of self-organised critical behaviour1.
Some examples include the geometry reconstruction associated with the avalanche driving rate, the role of extended
defects, and the occurrence of different types of SOC in systems with “meaningful” interactions among social subjects
in contrast to the physics laboratory systems and others.

One of the critical ingredients of the developed framework that we highlighted and detailed here is the interplay
between self-organized critical dynamics and higher-order connectivity networks. Not only does it reveal new lines
of theoretical research, but it also offers a fresh perspective for data analysis based on these scientific concepts.
Namely, self-organized criticality as an active mechanism in the evolution of a complex system manifests itself in
characteristic patterns of spatiotemporal correlations that a perceptive analysis of data can reveal and thus enable
the use of appropriate theory for further predictions (in contrast to considering an ever-increasing amount of data as
uncorrelated sets). Such a combined analysis would allow a deeper understanding of the functional characteristics of
many complex systems, for example, the brain, which may allow a more critical approach in designing AI algorithms
that utilize brain functions and various medical implications.
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21 Tadić. B., Andjelković, M.,Šuvakov, M., Rodgers, G.J.. Magnetisation processes in geometrically frustrated spin networks

with self-assembled cliques. Entropy 22(3), 336 (2020)
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23 Mitrović Dankulov, M., Melnik, R., Tadić, B. The dynamics of meaningful social interactions and the emergence of collective

knowledge. Scientific Reports textbf5(1), 12197 (2015)
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