
Higher order topological defects in a moiré lattice
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Abstract

Topological defects are ubiquitous, they manifest in a wide variety of systems
such as liquid crystals, magnets or superconductors. The recent quest for non-
abelian anyons in condensed matter physics stimulates the interest for topological
defects since they can be hosted in vortices in quantum magnets or topological
superconductors. In addition to these vortex defects, in this study we propose to
investigate edge dislocations in 2D magnets as new building blocks for topological
physics since they can be described as vortices in the structural phase field. Here
we demonstrate the existence of higher order topological dislocations within the
higher order moiré pattern of the van der Waals 2D magnet CrCl3 deposited on
Au(111). Surprizingly, these higher order dislocations arise from ordinary simple
edge dislocations in the atomic lattice of CrCl3. We provide a theoretical frame-
work explaining the higher order dislocations as vortex with a winding Chern
number of 2. We expect that these original defects could stabilize some anyons
either in a 2D quantum magnet or within a 2D superconductor coupled to it.
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1 Introduction

Van der Waals materials are emerging as extremely versatile building blocks for
many fields of research, both at the fundamental and applied level [1, 2]. They
offer tremendous possibilities for fine-tuning spintronics [3, 4], superconducting [5–7],
nanoelectronics [1, 2], optical devices [8, 9]. The toolbox of these heterostructures is
continuously growing with for instance the recent discovery of ferromagnetic order in
the family of chromium trihalides down to the monolayer limit, CrX3 (X = I, Br,
Cl) [10–14]. Due to the absence of magnetic anisotropy in the plane when the CrCl3
monolayer is decoupled from its substrate it behaves as a 2D XY quantum magnet
[14] that can host non-abelian anyons in the center of magnetic vortex cores [15].
Their integration in van der Waals heterostructure is expected to lead to a wealth
of new exotic effects. Stacking chromium trihalides with transition metal dichalco-
genides that exhibits a strong Ising spin-orbit coupling appears as a versatile and
promising route towards the development of hybrid magnetic/superconducting sys-
tems [5, 6]. For instance, topological superconductivity has recently been shown to
appear in CrBr3/NbSe2 heterostructures [5, 6]. The proposed mechanisms leading to
a topological order in these hybrid structures was intimately related to the presence
of a moiré pattern [6]. Several studies have related the observation of a moiré struc-
ture to the mismatch between the CrX3 monolayers and their substrate [6, 14, 16, 17].
The orientational degree of freedom may add a supplementary possibility to tune the
moiré, as observed in twisted CrX3 bilayers [18–20]. The physics of moiré is quite
complex, a same structure might exhibit several moiré patterns of different orders, as
observed in Gr/Ir or Gr/Pt systems [21–27]. Higher order structures appear when, in
a particular direction, n1 lattice periods of layer 1 almost match with n2 periods of
layer 2. Correspondingly, in the reciprocal space, a higher order moiré appears when
a small enough wave vector qmoire = m1q1 −m2q2 can be define with qi being the
Bragg vectors of the two lattices and |qmoire| ≪ Min(|q1|, |q2|). Ordinary moiré cor-
respond to the case where m1 = m2 = 1. Interestingly, the CrX3 compounds have a
unit cell almost twice the one of dense metals, that would naturally lead to a second
order moiré where m1 = 1 and m2 = 2.

In the CrX3 family, till now, the magnetisation was shown to be essentially collinear
[10, 11, 14, 28, 29]. However, in the CrI3 bilayers, some hint of non-collinear magnetism
was found. It has been related to the moiré pattern responsible of a non-negligible
spatial modulation of the magnetic exchange interaction[18, 20, 30–32]. This con-
fers an additional interest for the CrX3 family. Indeed, a non-collinear magnetic
order is predicted to be a major ingredient for inducing a topological order in super-
conducting/magnetic heterostructures [33–37]. Topological superconductors may host
Majorana bound states localized on topological defects such as superconducting vor-
tex cores or spin-orbit vortices [38], but other kind of defects such as dislocations could
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also be of interest since edge dislocations are topological defects analogous to vortices
[39, 40]. Interestingly, a moiré pattern in van der Waals materials seems to be a good
candidate for exploring such physics since in graphene/Ir(111), graphene bilayers and
h-BN/Ru [41–44], simple edge dislocations in the atomic lattice lead to dislocations
in the moiré pattern.

Here we report that CrCl3 deposited on a Au(111) substrate produces large two-
dimensional islands that exhibit moiré pattern. In this particular case where the CrCl3
lattice period is very close to twice the one of Au(111), the moiré pattern is of order
2. We show that the presence of an edge in the CrCl3 lattice leads to a corresponding
second order edge dislocation in the moiré. We demonstrate that this dislocation is
a topological defect of Chern winding number of 2. These observations are explained
within a unified model. We show that a higher order moiré pattern is a way to access
to topological defects of higher Chern winding number. This unified model can be
used as a predictive tool to build Van der Waals heterostructures in order to engineer
topological defects of the desired Chern winding numbers.

2 Results

2.1 Superstructures in CrCl3 monolayer on Au(111)

Crystalline chromium trichloride (CrCl3) thin films were grown using molecular beam
epitaxy (MBE) on a clean Au(111) substrate. Figure 1.a depicts a large scale STM
topography of 0.6 monolayers (ML) of CrCl3 measured at 4 K. The dashed red line
highlights the presence of 1 ML thick islands of CrCl3. Two distinct types of islands
denoted as CrClα3 and CrClβ3 were observed. Notably, these islands display two different
preferred in-plane crystalline orientations rotated by 30° with respect to each other
(see Supplementary note and figure S1.1 and S1.2) .

Throughout the manuscript, we will exclusively focus on discussing the CrClα3
islands. In these islands, the dense atomic directions of CrCl3 aligns along the dense
atomic directions of the Au substrate, the <11̄0>Au direction. In these islands, our
STM study shows that CrCl3 is restoring the lattice parameter of a free standing CrCl3
monolayer (see Supplementary note S1.1 and Supplementary figure S1.1 and S1.2 ).
Remarkably, upon cooling down the sample to 4K, a superstructure emerges within
these CrClα3 islands, which is not visible at room temperature (see Supplementary
figure S2). Figure 1.b shows an STM image featuring two islands labelled A and
B, which form a twin boundary (see Supplementary figure S4). Both islands exhibit
an hexagonal superstructure with a periodicity of 6.2 nm. Their orientation differ
by an angle of 13° (see green and dark dashed lines). Interestingly, the rotation of
the superstructure does not seem, at first sight, to be correlated with a rotation of
the atomic lattice. Figure 1.c presents the Fourier filtering of the STM topography
of figure 1.b revealing the atomic structure of CrCl3. Fourier filtering is obtained
by selecting the Bragg spots marked in red and green in the fast Fourier transform
(FFT) of Figure 1.c. The white dashed line serves as a visual guide, highlighting the
dense atomic direction of CrCl3 in both islands. At first sight, no misalignment of the
crystal axis is detectable between these two islands. Additionally, within individual
islands, the superstructure can exhibit a distortion, while the atomic lattice seems to
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remain unaffected. This is shown in Figure 1.d and 1.e. Figure 1.d displays an STM
topography acquired inside an island. The pink dashed line is a guide for the eye
showing that the superstructure is not straight but slightly undulate. Figure 1.e shows
the corresponding Fourier filtered image, revealing the atomic lattice of CrCl3. The
white dashed line that follows the dense atomic direction seems to be insensitive to the
change of orientation in the superstructure. Nevertheless, we conducted modelization
of a moiré pattern in this system (see Supplementary note and figure S5) and show that
this superstructure is indeed a moiré effect which shows an unusual high sensitivity
to subtle variations in the atomic lattice orientation. The change of orientation of the
moiré pattern shown in Figure 1.b and d is explained by a deviation angle in the atomic
lattice of less than 1°. This system is rather rich with plenty of different moiré patterns
induced by very little deviations of the CrCl3 lattice with respect to Au(111). It could
be a good plateform to explore the influence of a moiré on the magnetic texture.

2.2 Role of Au(111) on the electronic structure

From our measurements, we deduce that CrCl3 restores its lattice constant as in
monolayer without substrate (see Supplementary note S1.1 and Supplementary figure
S1.2), which is why we need to clarify the role of Au(111) on the electronic structure
of the system. Scanning tunneling microscopy imaging reflects the local density of
states and does not reflect directly the structure of the surfaces. It contains also some
information on the local electronic structure that can eventually be modulated along
the moiré pattern. We have performed tunneling spectroscopy experiments in order
to elucidate the origin of the observed corrugation in the topographic measurements.
Figure 2.a shows scanning tunneling spectroscopy data for different positions above
the moiré pattern of CrCl3/Au(111) (from red, center, to blue, edge of the pattern).
Regardless of the position, the measured conductance shows the same features, that
is, no intensity below 0.2 eV; then there is a small increase at 0.2 eV followed by
a plateau and then a strong increase after 0.3 eV, eventually followed by a plateau
above 1.2 eV. The behavior of the conductance above 1.2 eV is strongly dependent
on the tip position over the moiré pattern. Figure 2.c to f display 4 conductance maps
revealing the spatial variation of the local density of states over the moiré. Figure 2.c,
recorded at 0.2 eV, shows a pattern with a lower density of states in the center of
the protrusion found in the topography sector (Figure 2.a). At 0.9 eV, the contrast is
reversed, the highest density of state being in center of the protrusions (Figure 2.d).
At 1.3 eV the contrast cancels (Figure 2.e), it can be seen in the tunneling spectra
of Figure 2.a that it corresponds to a crossing point where all spectra cross. Above
1.3 eV a second contrast inversion is observed with a lower density of states in center
over the protrusions (Figure 2.f). These measurements show that the moiré pattern
produces quite clear spectroscopic features and thus we expect a strong effect due to
the structural modulation of the moiré on the electronic and magnetic properties of
the CrCl3 layer. This is corroborated by the fact that the moiré pattern is not showing
up in the topographic images at room temperature. We have performed a temperature
ramp from 4 K to 130 K and we observed a gradual decrease of the moiré corrugation
as the temperature is increased. We attribute this to the fact that the moiré seen
in the topography is mainly of spectroscopic origin, i.e. there is no real corrugation
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Fig. 1 Superstructure in CrCl3/Au(111). (a) Large scale STM topography of 0.6 monolayer
of CrCl3 deposited on a Au(111) substrate. (b) Zoom in the yellow frame of (a) showing 2 structural
domains where the superstructure orientation differs by an angle of 13°. The green and dark dashed
lines are guides for the eyes to follow the orientation of the superstructure in the two domains, the
red dashed line shows the separation between the two islands. (c) Fourier filtered image revealing
the atomic lattice of CrCl3 in the two structural domains. The white dashed line is a guide for the
eye to follow the orientation of the atomic lattice. (d) STM topography acquired in the pink frame
of (a) showing that the superstructure is undulating inside a CrCl3 island, while no rotation of the
atomic lattice can be detected in the Fourier filtered image (e). The pink and white dashed lines are
eye-guides to follow the orientation of the superstructure and the atomic lattice inside the island.
For all the STM images, the tunneling parameters are: Bias voltage, U0 = 2 V; Tunneling current,
It = 200 pA

(see Supplementary note and figure S3). The fact that the moiré reflects mainly a
modulation of the local density of states suggests the importance to investigate the
electronic band structure by density functional theory.

We therefore calculate the vacuum density of states (VacDOS) following the Ter-
soff & Hamann model [45–47] to compare and interpret the spectroscopy data. In
Figure 2.b, we see the results for an unsupported CrCl3 monolayer (UML) as the green
shaded area (for further information, see the Methods section and Supplementary note
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and figure S6). Without the Au(111) substrate, we would expect peaks to occur at the
Fermi energy and more significantly below the Fermi energy, where the experimental
data do not show any states. A gap appears in between 0.2 eV and 1.4 eV, which
is absent in the measurement of Fig. 2 (a). When adding Au underneath of CrCl3,
the VacDOS changes drastically, shifting the band gap to the Fermi level and below
(black curve). Note that due to the computational effort within the DFT calculation,
we adapt a perfect registry between CrCl3 and Au(111). Nevertheless, the calculated
VacDOS (Figure 2.b - dark curve) exhibits qualitatively the same trends as in the
measurement (cf. panel (a) and (b)): the band gap and the shoulder/peak structures
at 0.2 eV and 1.7 eV. We attribute the differences between the calculations and the
measurements to the differing structures within the calculations. From this compari-
son, we deduce that Au has an influence on the electronic structure of CrCl3 and that
this system is not solely driven by Van-der Waals forces. This is in accordance with
reference [48], where the authors compared the binding energies and concluded that
for CrCl3/Au(111) these energies lie at the threshold of VdW and ionic bonds.
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Fig. 2 Role of Au(111) on the electronic structure. Comparison between experimentally
measured spectroscopy data and calculated vacuum density of states of CrCl3/Au(111). (a) Scanning
tunneling spectroscopy measurements on different positions of the moiré pattern as indicated in the
inset. (c), (d), (e) and (f) dI/dV mapping of the moiré pattern taken at 4 different energies. (setpoint:
U0 = 2 V, It = 400 pA, these data were recorded using a lock in, a modulation of 20mV rms was
added to the bias voltage, the full spectroscopic map was recorded from 2 V to -1 V) ((b) Density
functional theory calculations of the vacuum density of states 3 Å above the surface of a CrCl3
unsupported monolayer (UML, green area) in comparison with CrCl3/Au(111) (black line). Note that
in the calculations, it is assumed that CrCl3 is in perfect registry with Au(111), that is the moiré is
not taken into account.

6



2.3 Higher order edge dislocations of the moiré pattern

Very peculiar defects have been observed in this moiré pattern. They consist in higher
order edge dislocations. One of those particular defect is shown in Figure 3.a. On the
left side of the dislocation, as indicated by the green arrows, three rows of the moiré
pattern merge into a single row on the right side, resulting in the disappearance of
a pair of rows. Notably, we have observed dislocations with similar characteristics in
multiple locations of the sample. For each dislocation, a pair of rows vanishes, which
represents an inherent characteristic of this particular moiré pattern.

To further characterize the dislocation, we analyze its Burgers vector (Figure 3.b)
and coordination (Figure 3.c). The Burgers vector of the dislocation is found to be
twice the lattice vector of the moiré pattern: bmoiré = −2a1

moiré. The coordination of
the lattice cells surrounding the dislocation is determined to be 5-5-8, i.e. two cells
are five fold coordinated while one is height fold, this is in contrast with ordinary 5-7
dislocations. To gain insight into the atomic structure surrounding the dislocation, we
provide a magnified view around the dislocation in the STM topography (Figure 3.d).
By Fourier filtering the Bragg spots, the atomic lattice of CrCl3 surrounding the
dislocation becomes visible. Remarkably, at the exact position of the dislocation in
the moiré pattern, we also observe an edge dislocation in the atomic lattice of CrCl3.
Specifically, one row of atoms on the left side of the dislocation transforms into two
rows on the right side, as indicated by the green arrows. Prior studies in the literature
has suggested that a dislocation or defect within a moiré pattern faithfully replicates
the corresponding dislocation or defect at the atomic level [42–44, 49]. However, in
this case, the dislocation at the atomic level is characterized by a Burgers vector
bCrCl3 = a1

CrCl3
(as shown by the red arrow in Figure 3.d) and a 5-7 defect. This is in

contrast, with the dislocation in the moiré pattern where the Burgers vector is opposite
to the one in the atomic lattice and 2 times larger than the moiré lattice vector.

To understand the particularity of this dislocation in the moiré pattern, we mod-
elize our system by introducing a 5-7 defect in the atomic lattice of CrCl3 and
convolute it with a defect-free atomic lattice of Au(111). Figure 3.e illustrates the
result of this simulation, which successfully reproduces the experimental observations
of a dislocation with a Burgers vector bmoiré = −2a1

moiré.

2.4 Analytical description

To understand the physical origin of the observed moiré and its peculiar disloca-
tions, we conducted an analytical description of the moiré pattern. A conventional
approach to describe a moiré pattern involves employing a continuous model [21].
The moiré may be described as the product between two lattice functions, denoted
as f1(x, y) and f2(x, y) which are the superposition of plane waves on top of a con-
stant background with an associated spatial frequency Q1 and Q2 respectively. To
illustrate this with the simplest case, we consider the scenario of waves in each lat-
tice propagating along the x-direction. The product between two lattice functions
f1(x, y) × f2(x, y) = (1 + a cos(Q1x)) × (1 + a cos(Q2x)) can be rewritten as:
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Fig. 3 Higher order edge dislocations. (a) STM topograhy showing a double dislocation in the
moiré pattern. The dashed green lines and arrows are guide for the eyes to follow the dislocation. (U0 =
2 V, It = 200 pA) (b) Drawing of the Burgers circuit around the dislocation, and its coordination
(c). (d) Zoom around the dislocation in the moiré pattern. The STM topography was Fourier filtered
to reveal the atomic lattice. It shows a simple dislocation in the atomic lattice of CrCl3 at the exact
position of the dislocation in the moiré pattern. (e) Numerical simulation of the dislocation in the
moiré pattern.

f1×f2 = 1+
a2

2
(cos[(Q1 + Q2)x] + cos[(Q1 −Q2)x])+2a cos[

(Q1 + Q2)

2
x] cos[

(Q1 −Q2)

2
x]

(1)
We obtain the addition of 3 terms: a constant background, and 2 periodic function.

In the following, to describe the moiré we will consider the first periodic function. It is
a sum of two cosines with one slowly varying term cos[(Q1 −Q2)x] that stems for the
moiré term. The resulting spatial beating frequency, Q1−Q2 corresponds to the spatial
frequency of the moiré, Qmoire. For the case of a moiré formed between two hexagonal
lattices as for CrCl3/Au(111), each lattice needs to be treated as the superposition
of two waves propagating in directions at 120° one from the other. This renders the
mathematical description in the real space heavy. A simpler way to describe a moiré is
to treat the problem in the reciprocal space where the moiré wave vector is expressed
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as the difference between the wave vectors of each atomic lattice. We employed the
intelligible model described by Zeller et al. and Le Ster et al. [21, 50]. Within this
framework, not only the 1st order, but also the higher order Fourier component of the
moiré need to be considered.

The general reciprocal vectors for both the Au and CrCl3 atomic lattices, Qi,j
Au

and Qk,l
CrCl3

are expressed as linear combinations of the primitive reciprocal lattice

vectors, namely Q1,0
Au, Q0,1

Au, Q1,0
CrCl3

, Q0,1
CrCl3

:

Qi,j
Au = iQ1,0

Au + jQ0,1
Au (2)

Qk,l
CrCl3

= kQ1,0
CrCl3

+ lQ0,1
CrCl3

. (3)

(1,0)

QCrCl3Qau

(1,0)

(1,0)

1,0QCrCl3  - =>
1,0Q  Au  1,0,1,0L =0.55 nm  MOIRE

(a)

(0,1)

(0,1)

1,02QCrCl3  - =>
1,0Q  Au  1,0,2,0L =6.2 nm  MOIRE

(1,0)

(2,0)

(1,1)(1,1)
QCrCl3Qau (0,1)

(0,1)

(b)

Fig. 4 Reciprocal lattice of CrCl3/Au(111). The blue dots corresponds to the 1st (a) and 2nd
(b) order moiré spots.

Here, |Q1,0
Au| = |Q0,1

Au| = 2π/aAu and |Q1,0
CrCl3

| = |Q0,1
CrCl3

| = 2π/aCrCl3 , where
aAu = 0.288 nm and aCrCl3 = 0.604 nm corresponds to the lattice parameters of
Au and CrCl3, respectively. The possible Fourier components of the moiré pattern’s
reciprocal vectors are expressed as the difference between the corresponding reciprocal
vectors of Au and CrCl3, leading to:

Qi,j,k,l
moiré = Qi,j

Au −Qk,l
CrCl3

. (4)

When the dense atomic directions of CrCl3 align with the <11̄0>Au directions, Q1,0
Au is

colinear with Q1,0
CrCl3

, as depicted in Figure 4.a. Let us illustrate why one should here
consider higher order moiré by first showing that a usual first order moiré is doesn’t
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correspond to our observation. The first order moiré wave vector formed between the
(1,0) Bragg spots of Au and CrCl3 is expressed as:

Q1,0,1,0
moiré = Q1,0

Au −Q1,0
CrCl3

(5)

This results in a moiré period in real space:

L1,0,1,0
moiré = 2π/|Qmoiré1,0,1,0 | = 0.55 nm. (6)

This period is notably smaller than 0.604 nm, the lattice parameter of CrCl3. As a
result, a moiré pattern between the (1,0) Bragg spots of Au and CrCl3 is meaningless.
This emanates from the fact that aCrCl3 exceeds the lattice parameter of Au by more
than a factor two. Noteworthy, CrCl3/Au(111) is the paragon case where higher order
moiré is popping up. Extending the reciprocal lattice of CrCl3 to the second order (as
depicted in Figure 4.b) reveals that the shortest moiré wave vector is formed between
the (1,0) Bragg spot of Au and the (2,0) Bragg spot of CrCl3, expressed as:

Q1,0,2,0
moiré = Q1,0

Au −Q2,0
CrCl3

. (7)

In the real space, this yields a moiré pattern period:

L1,0,2,0
moiré = 2π/|Qmoiré1,0,2,0 | = 6.2 nm, (8)

which corresponds exactly to the period we measure in our experiments.
We will now explain the emergence of the peculiar dislocations (Figure 3). As a

dislocation is a punctual defect that cannot be modeled easily in reciprocal space,
the problem needs to be partially treated in real space. In order to avoid a heavy
mathematical description and maintain conceptual clarity, we will consider only a
dislocation in a simple planar wave that can be modeled by the expression cos[(Q1x+
∆φ(x, y)], with ∆φ(x, y) being a Berry phase associated to the defect. If one considers
a dislocation located at the origin, ∆φ(x, y) can just be taken as the angle of the
position vector r = (x, y) to the abscissa, i.e. ∆φ(x, y) = arg(x + iy). The resulting
dislocation pattern is shown in Figure 5.a.

Consider now two lattices forming a first order moiré, with a dislocation in one
of the lattices. It naturally results in a dislocation in the moiré pattern, as shown in
Figure 5.b. This can easily be explained using eq.1. The moiré term is cos[((Q1−Q2)x+
∆φ(x, y)] which also exhibits a Berry phase that naturally gives a dislocation in the
moiré pattern. The question that immediately arises is what about our higher order
moiré? The second order moiré is a beating between cos(2Q1x) and cos(Q2x), however,
in the presence of a dislocation the phase Q1x has to be replaced by (Q1x+∆φ(x, y)).
This results in a beating between cos[2(Q1x+ ∆φ(x, y))] and cos(Q2x) that leads to a
moiré term cos[(2Q1 −Q2)x+ 2∆φ(x, y)]. As we can see, the resulting Berry phase is
now 2∆φ(x, y), the double of the Berry phase in the primary defect. Figure 5.c,d shows
the resulting dislocation patterns in the second order lattice and its moiré pattern.

In Figure 5 one can see that the additional rows in the moiré pattern and the
primary lattice are on the same side (bottom part of the images). This is at odds
with what we observe in our experiments as shown in Figure 3.a,d. There, the addi-
tional rows in the atomic and moiré lattices are located at the opposite sides of the
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(a) (b)

(c) (d)

cos[Q₁x+Δφ(x,y)] cos[(Q₁-Q₂)x+Δφ(x,y)]

cos[2Q₁x+2Δφ(x,y)] cos[(2Q₁-Q₂)x+2Δφ(x,y)]

Fig. 5 Analytical description of the dislocation in the moiré pattern. (a) First order periodic
lattice simulated by a simple plane wave in which a dislocation has been introduced in the form of
phase difference which correspond to a Berry phase: ∆φ(x, y). (b) First order moiré pattern when a
simple dislocation exists in one of the two periodic lattices: a simple dislocation appears in the moiré.
The dislocation in the moiré pattern exhibits the same Berry phase as in the primary lattice. (c)
Second order primary lattice: the Berry phase of the dislocation is doubled (2∆φ(x, y)) with respect
to the first order shown in (a). (d) The resulting second order moiré pattern shows an additional
double row with a Berry phase (2∆φ(x, y)) .

dislocation. This peculiarity is explained in Figure 6. Let us first assume that the addi-
tional row in the primary lattice is located at the bottom of the image as shown in
Figure 5.a,c. To first order, it corresponds to a term cos(Q1x + ∆φ(x, y)). Then, the
second order moiré pattern is given by the expression cos((2Q1 −Q2)x + 2∆φ(x, y)).
In Figure 6 we show that depending on the sign of (2Q1 −Q2), the dislocation in the
moiré pattern can appear either on the same side of the dislocation in the primary lat-
tice (2Q1−Q2 > 0, Figure 6.a), either in the opposite side (2Q1−Q2 < 0, Figure 6.b).
To demonstrate this, let us consider the phase term (2Q1 − Q2)x + 2∆φ(x, y) over
a circuit surrounding the dislocation (see Figure 6.a,b). In the case where 2Q1 > Q2

(Figure 6.a), along the blue arc, from A to B, the optical path difference ∆θ is the sum
of two positive contributions ∆θ1 = (2Q1−Q2)∆x+ 2π, while for the green arc, from
B to A, the optical path difference is the sum of a negative term and a positive one
∆θ2 = −(2Q1 −Q2)∆x + 2π. Hence, |∆θ1| − |∆θ2| = 4π, which means that the blue
arc encompass two additional fringes as compared to the green arc. Now, in the case
where 2Q1 < Q2 (Figure 6.b), the situation is just reversed. On the blue circuit the
two phase shifts are opposite while on the green arc they add, this lead to the appear-
ance of two additional rows in the top part of Figure 6.b, while the in the primary
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lattice the dislocation is still located at the bottom (Figure 5). The situation depicted
in Figure 5.b is in perfect agreement with what we observe in Figure 5.a, d and is con-
sistent with the fact that 2QCrCl3 < QAu. The double dislocation in CrCl3/Au(111)
is carrying a Berry phase of −4π, which correspond to a Chern winding number of 2,
which is equivalent to a double vortex.

BA

6π

-10π

=>-4πBA

10π

-6π

=>4π

0-2Q1 2Q1Q2-Q2

Qmoire

0-2Q1 2Q1Q2-Q2

Qmoire

(a) (b)

Fig. 6 Dislocation’s Berry phase. Dislocation in the 2nd order moiré when 2Q1 > Q2 (a) and
2Q1 < Q2 (b)

3 Conclusion & Outlook

We have observed a higher order moiré pattern in a monolayer of CrCl3 on a Au(111)
surface that is driven by a large lattice mismatch: two periods of Au(111) matching
almost one period of CrCl3. The moiré is revealed in STM topography images but it
originates mainly from an electronic structure modulation due to a strong coupling to
the substrate which is not expected in such a van der Waals material. This interaction
with the substrate was ascertained by DFT calculations that reveal a substantial
shift of the chemical potential in CrCl3 as compared to a free standing monolayer.
The in situ grown samples exhibit single edge dislocations in the CrCl3 monolayer
that manifest as a double dislocations in the moiré pattern. This doubling effect is a
direct consequence of the second order moiré. The dislocations in the moiré pattern
are structural topological defects which can be described, in the continuous limit,
as double vortices carrying Berry phases of 4π. Our model can be used with many
different systems and may serve to identify interesting ones that might host topological
defects with a well controlled Chern number.

Due to the substantial coupling to a substrate with a strong Rashba spin-orbit
coupling, this system could be an interesting platform for the stabilization of exotic
non-collinear magnetic textures induced by the periodic potential of the moiré. The
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dislocations/vortices observed in the moiré pattern could be potentially interesting
to pin topological spin textures that may host non conventional excitations such as
non abelian anyons. It has been recently proposed in CrBr3/NbSe2, that the moiré
was responsible of the appearance of topological superconductivity in NbSe2 [6]. We
may therefore expect that the topological defects in the moiré pattern of CrBr3 could
stabilize Majorana bound states.

4 Method

4.1 Experimental Section

The experiments were performed under ultra high vacuum. The Au(111) single crystal
was cleaned by cycles of argon-ion sputtering and annealing to 450°C. Starting from
an anhydrous powder CrCl3 was carefully degazed before being evaporated using a
Knudsen cell on the clean Au(111) substrate at room temperature. To obtain flat
CrCl3 islands, the sample was post annealed to about 150°C for few minutes. STM
experiments were realized in a home built low temperature STM and on a LT omicron
commercial STM. Experiments were performed at 4K.

4.2 Density functional theory calculations

The vacuum LDOS calculations in Figure 2.b have been done using the FLAPW
method implemented in the code FLEUR [51]. Shown are the two VacDOS calculations
of a unsupported CrCl3 monolayer (UML) and the CrCl3 monolayer on top of a
Au(111) surface. The presented VacDOS is calculated approximately 3 Å above the
surface. Since the unit cell of the moiré pattern with its substrate is too large for
being feasible in first principles calculations, the atomic positions of both Cr and Cl
atoms are placed in a perfect hexagonal structure where, a lattice constant in between
Au bulk and CrCl3 has been applied (tests have shown negligible dependence of the
VacDOS vs. small variations of the lattice parameter, distances and atomic positions of
the van der Waals material). The lattice parameters and distances used are presented
in Tab. 1

Table 1 Lattice parameters in Å used for vacuum LDOS in
Figure 2.b. ain-plane denotes the in-plane lattice constant of the
hexagonal lattice, ∆dCl-Cr is the vertical distance between the Cl
layers and the Cr layer, ∆dCrCl3-Au(111) denotes the vertical distance
between CrCl3 and the Au(111) surface.

System ain-plane (Å) ∆dCl-Cr (Å) ∆dCrCl3-Au(111) (Å)

CrCl3 UML 5.909 1.289 −
CrCl3/Au(111) 5.909 1.336 4.233

Supplementary information. The online version contains supplementary material
available at
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provided by the Consortium d’Équipements de Calcul Intensif (FRS-FNRS Belgium
GA 2.5020.11) and the LUMI CECI/Belgium for awarding this project access to
the LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by
CSC (Finland) and the LUMI consortium through LUMI CECI/Belgium, ULiege-
NANOMAT-SKYRM-1. Sebastian Meyer is a Postdoctoral Researcher [CR] of the
Fonds de la Recherche Scientifique – FNRS. Bertrand Dupé is a Research Associate
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[26] Merino, P., Švec, M., Pinardi, A.L., Otero, G., Mart́ın-Gago, J.A.: Strain-Driven
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