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The fill factor (FF ) is a critical parameter for solar cell efficiency, yet its analytical description is
challenging due to the interplay between recombination and charge extraction processes. An often
overlooked yet significant factor contributing to FF losses, beyond recombination, is the influence of
charge transport. In most state-of-the-art organic solar cells, the primary limitation of the FF arises
not from recombination but rather from low conductivity, highlighting the need for refined models
to predict the FF accurately. Here, we extend the analytical model for transport resistance to a
more general case. Drawing from a large set of experimental current–voltage and light intensity-
dependent open-circuit voltage data, we systematically incorporate crucial details previously omitted
in the model. Consequently, we introduce a straightforward set of equations to predict the FF
of a solar cell, enabling the differentiation of losses attributed to recombination and transport
resistance. Our study provides valuable insights into strategies for mitigating FF losses based
on the experimentally validated analytical model, guiding the development of more efficient solar
cell designs and optimization strategies.
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1. Introduction

Lately we have witnessed remarkable progress in en-
hancing the efficiency of organic solar cells (OSCs),1,2
paving the way for financially viable upscaling. There-
fore, the research community is shifting its attention to-
wards the critical aspect of stability.3,4 Even state-of-the-
art solar cells can experience parameter losses due to
degradation.5,6 Recent research has revealed that ther-
mal degradation is a contributing factor that leads to a
reduction in the FF of OSCs.7 This reduction is mainly
attributed to increased trapping of charge carriers and
transport resistance. The latter scales linearly with ac-
tive layer thickness,8 making it particularly relevant for
commercial-scale manufacturing.

Among the FF loss mechanisms shown in Figure 1,
transport resistance has been overlooked compared to
the more extensively studied geminate and nongeminate
recombination.9–12 Several studies predicted that, be-
sides recombination, the reduction in FF of OSCs was
attributed to slow charge carrier transport.13,14 In 2014,
Schiefer et al. laid down a theoretical framework to de-
scribe transport resistance in OSCs.8 Similar work was
done before on comparable p-i-n junctions.15 Utilizing
this framework, they determined intrinsic charge carrier
density within the active layer by comparing the exper-
imental current–voltage (j(V )) curve to its resistance-
free counterpart. The latter was approximated by the
suns-Voc curve, i.e. the open-circuit voltage of a solar
cell measured over several orders of magnitude of light
intensities, downshifted by the short-circuit current den-
sity jsc. Mäckel and MacKenzie revisited this method for
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determining charge carrier mobility, applying it to tran-
sient photovoltage and photocurrent techniques.16 Com-
parison with drift-diffusion simulations demonstrated the
method’s accuracy in extracting effective mobility.

Further significant contributions to the model of trans-
port resistance were based on drift-diffusion simulations.
Bartesaghi et al. observed, through both simulation
and experiment, that the FF of OSCs is governed by
the interplay between charge carrier recombination and
extraction.17 Würfel et al. further demonstrated that the
FF in OSCs is limited by slow transport, leading to the
accumulation of charge carriers within the device.18 They
highlighted a substantial difference between the applied
voltage considered in the diode equation and the actual
quasi-Fermi level splitting (QFLS), leading to the gradi-
ent of the QFL in the active layer. Neher et al. unified
two seemingly different approaches,19 elucidating how
the slope of the j(V ) curve around Voc influences the FF

Figure 1. Schematic representation of the impact of main loss
mechanisms on the j(V )-curve of OSC.
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and alters the apparent ideality factor in the diode equa-
tion. The slope was parameterized by the figure of merit
α, a measure of transport-induced series resistance near
Voc. A figure of merit reciprocal to α, the µτ -product,
was related to the FF by Kaienburg et al.,20 and by Xiao
et al.21 with focus on the impact of tail state traps.

The validity of these predictions is now being substan-
tiated by experimental data. Tokmoldin et al. assessed
the µτ -product in various organic fullerene and state-of-
the-art nonfullerene-acceptor (NFA) solar cells.22 While
the solar cell performance was not limited at jsc, FF
losses were influenced by the transport resistance near
Voc. Yang et al. observed improved charge carrier collec-
tion efficiency in doped NFA OSCs, positively affecting
both FF and device stability.23 A link between transport
resistance and stability was established in our study on
thermal degradation in PM6:Y6 solar cells.7 Employing
the suns-Voc method, we identified transport resistance
as the primary factor driving the decrease in photovoltaic
performance after 96 hours of thermal stress at 85 ◦C.
Experimental observations supported by drift-diffusion
simulations indicated increased defect formation in the
active layer as the likely source of elevated transport re-
sistance. The influence of transport resistance on FF
extends beyond OSCs,24,25 for systems that exhibit sig-
nificantly lower mobility compared to crystalline semi-
conductors.

Despite evidence of a detrimental impact on the solar
cell performance, experimental measurements of trans-
port resistance are scarce, leaving the models largely
untested. While transport resistance models provide
qualitative predictions for FF , they have not been suf-
ficiently refined to align with experimental data. Often
these models assume ideal transport and recombination,
neglecting trap states entirely or treating their distribu-
tion as Gaussian. In this paper, we refine the analyti-
cal model for transport resistance based on experimental
data. We extend the diode equation to accommodate
both limited extraction and recombination, allowing for
non-unity ideality factors. We establish a precise method
for evaluating the effective conductivity at open circuit,
through straightforward measurements of j(V ) and the
light intensity-dependent Voc of a solar cell. Our model
allows to understand the contributions of the two charge
carrier types to recombination and transport, and to pre-
dict the FF limitations at both open circuit and the max-
imum power point (MPP). Based on the experimentally
verified analytical model, our study provides insights into
approaches aimed at minimizing FF losses.

2. Results and Discussion

2.1. The diode equation

Transport resistance is an internal resistance within
the active layer resulting from the relatively slow move-

ment of charge carriers, effectively acting as an internal
series resistance. As shown in Figure 2(a), we evaluate
this resistance by comparing a pseudo-j(V ) curve, en-
compassing recombination losses, with the experimental
j(V ) curve under illumination, which encompasses both
recombination and transport resistance losses.

Analytically, both curves can be characterized using
the diode equation. The pseudo-j(V ) curve depends on
the implied voltage Vimp, i.e., the QFLS divided by the
elementary charge e, and accounts solely for recombina-
tion losses (both geminate and nongeminate), excluding
transport resistance.18,19,26

j (Vimp) = jgen

[
exp

(
e (Vimp − Voc)

nidkBT

)
− 1

]
, (1)

where jgen stands for the generation current density, the
sum of the dark saturation current density j0 and the
photocurrent density jphoto, nid stands for the recombi-
nation ideality factor, kB the Boltzmann constant, and
T the temperature. From the latter equation it follows
that one can obtain the pseudo-j(V ) curves experimen-
tally from the suns-Voc measurements using the super-
position principle. In this context, Vimp represents the
open-circuit voltage measured under a specific light in-
tensity Φ. We constructed j(Vimp) by shifting a suns-Voc

curve downward by jgen, a value estimated from the cur-
rent density at −0.5V for a given temperature and light
intensity (see Figure S1).

For infinite charge carrier mobility, an externally ap-
plied voltage Vext equals Vimp, the voltage that charge
carriers feel within the device, and the quasi-Fermi levels
in the bulk are flat. However, in reality, charge carrier
mobility is finite. Slow charge carrier transport leads to
a tilting of the quasi-Fermi levels and gives rise to a dis-
crepancy between Vext and Vimp, as shown in Figure 2(b)
for PM6:Y6. This discrepancy is what we refer to as the
voltage loss due to transport resistance, defined as8,19

∆Vtr = j · L
σ

=
∇EF

e
· L. (2)

Here j is the current density, L the active layer thickness,
σ the conductivity, and ∇EF the gradient of the quasi-
Fermi levels. We determined ∆Vtr from the experimen-
tal data as ∆Vtr(j) = Vext(j) − Vimp(j) − jRext, i.e. the
difference between the experimental j(V ) and the down-
shifted suns-Voc curve at the same current density, while
also factoring in Rext, the series resistance of the circuit.
The latter was estimated from fitting dVext/dj at high
forward bias, where transport resistance is negligible.

The experimental j(V ) curve under illumination is de-
scribed by the diode equation similar to Eq. (1), but it
is expressed in terms of Vext,

j (Vext) = jgen

[
exp

(
e (Vext −∆Vtr − jRext − Voc)

nidkBT

)
− 1

]

= jgen

[
exp

(
e (Vext − Voc)

nappkBT

)
− 1

]
.

(3)
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Figure 2. (a) A pseudo-j(V ) curve, j(Vimp), contains recombination losses, while an experimental j(V ) curve, j(Vext), incorpo-
rates additional losses due to transport resistance. Their slopes at Voc are inversely proportional to nid and napp, respectively.
The shaded areas correspond to the output power at their respective MPPs. (b) The difference between the implied voltage Vimp

and the externally applied voltage Vext arises due to transport resistance, which is more pronounced at higher light intensities.
(c) pFF and FF of a PM6:Y6 solar cell as a function of light intensity Φ. While pFF increases with Φ owning to reduced
disorder, FF decreases due to higher transport resistance. (d) Comparison of pFF and FF in solar cells based on different
donor–acceptor blends. The solid line indicates the FF upper limit (solid line) was determined using Eq. (8) with a = 0.72
and napp = 1. (e) FF losses attributed to recombination and transport resistance, with the latter emerging as the primary loss
across all donor–acceptor systems.

Here napp stands for the apparent ideality factor, which
takes into account the combined influence of recombina-
tion, transport and external series resistance.

At a given current density, Eqs. (1) and (3) can be set
equal, and the apparent ideality factor is expressed as
napp = nid + β, with parameter β defined as

β (Vext) = nid · ∆Vtr

Vimp − Voc
. (4)

The above equation is valid with the assumption that the
influence of Rext in the fourth quadrant of the j(Vext)
curve is much smaller than that of the transport resis-
tance.

Both j(V ) curves, given by Eqs. (1) and (3), can be
evaluated in terms of their fill factor, a key factor in deter-
mining the overall efficiency of a solar cell. Figure 2(c)
presents a comparison of the fill factors obtained from
j(Vimp), determined by the suns-Voc method, and j(Vext)
for a PM6:Y6 solar cell, which were measured over a
broad range of temperatures and light intensities. The
pseudo-fill factor, denoted as pFF , characterises the fill
factor of a solar cell when transport resistance is absent,
and represents its upper limit.7,25,27 It tends to improve
with higher light intensity, which we attribute to reduced

energetic disorder as the QFLS increases.28 In contrast to
pFF , the fill factor of an experimental j(V ) curve tends
to decrease with increasing light intensity, as the trans-
port resistance becomes more significant. Certainly, in
the case of PM6:Y6 solar cells, the losses due to transport
resistance outweigh the losses caused by recombination.
As we demonstrate in Figures 2(d) and 2(e), this trend
is not unique to PM6:Y6 but can also be observed in
various other OSCs, where transport resistance tends to
be the primary contributor to performance losses under
operating conditions.

The ideality factor changes the slope of the j(V ) curve,
and thus affects the FF by impacting the ability of the so-
lar cell to operate at its MPP. A less steep slope leads to
a lower FF , indicating reduced efficiency in converting
light into electrical power. The resistance-free pseudo-
j(V ) curve in Figure 2(a) is solely affected by recombi-
nation, and its slope is inversely proportional to nid, as
follows from Eq. (1). The ideality factor of the exper-
imental j(V ) curve, napp, is increased by an additional
term containing both transport and external series resis-
tance. This alteration results in a shallower slope and
causes the operating point to deviate from the theoreti-
cally achievable MPP, leading to a lower FF .



4

2.2. The open circuit. The figure of merit α.

Neher et al. showed that near open circuit napp = 1+α,
where nid = 1 and α was the figure of merit for OSCs
with transport-limited photocurrents.19 In most cases nid

differs from unity, and we find that the apparent ideal-
ity factor becomes nid + α (for derivation please refer
to Section S3 in Supporting Information). This correc-
tion becomes important for the values of α comparable
to nid. Very generally, α is a measure of the competition
between recombination and conductivity at open circuit
conditions

α =
eL

kBT
· jgen
σVoc

, (5)

where recombination current density equals jgen at Voc.
The figure of merit α can be determined experimentally
by using just two data sets – the suns-Voc and the j(V ) of
a solar cell, with jgen estimated from j(V ) at a sufficiently
high reverse bias.

Conductivity can generally be determined from
Eq. (2), although it leads to a discontinuity at Voc, where
∆Vtr = 0.8,16 We overcome this obstacle in a simple way
using a derivative. As both j and σ change as we move
along the j(V ) curve, the derivative d∆Vtr/dj given by
Eq. (S1) has two terms. At Voc, however, only one of
them is non-zero, yielding

σVoc
= L ·

(
d∆Vtr

dj

∣∣∣∣
j=0

)−1

. (6)

The condition of equal electron and hole current densi-
ties in the bulk implies, when applied to Eq. (2), that
σn · ∆Vtr,n = σp · ∆Vtr,p. If the conductivity of one
charge carrier type is lower compared to the other, then
∆Vtr, represented by the gradient of its Fermi level, is in-
evitably higher. As a result, in cases of imbalanced con-
ductivity, the FF is limited by the slower-moving charge
carrier. This also means that the effective conductivity
extracted by our method, Eq. (6), is a harmonic mean of
the electron and hole conductivity.

The conductivity, determined from the slope of ∆Vtr

according to Eq. (6), is depicted in Figure 3(a). As ex-
pected, it increases with higher light intensity and tem-
perature, following the rise in charge carrier density n,
as σ = eµeff · n. The effective mobility µeff generally
improves as the share of mobile charge carriers increases.
Intuitively, we anticipate an improvement in the FF with
increased light intensity, as the traps get filled and trans-
port becomes better (at least this is true for the expo-
nential distribution of trap states). However, contrary
to this expectation, the data in Figure 2(c) shows that
the FF of the PM6:Y6 solar cell decreases with higher
illumination. The figure of merit α can provide an ex-
planation for this observation. As σ in Eq. (5) increases,
so does jgen. Both of these competing processes depend
on light intensity, yet jgen depends on it more strongly

than σ, leading to an increase in α and an overall lower
fill factor.

Disorder. Figure 3(b) presents the α values for a
PM6:Y6 solar cell over a wide range of temperatures and
light intensities, which were calculated from the exper-
imental data using Eq. (5). To understand the exact
parameters affecting α, we are interested in the slopes.
The data shows that α ∝

√
Φ, deviating at lower illumi-

nation intensities. From the definition of α, it is evident
that it is related to Φ through the light intensity de-
pendence of both jgen and σVoc

. When the net current
is zero, the charge carrier generation and recombination
rates are equal and the light intensity is related to Voc

as lnΦ ∝ eVoc/nidkBT . In the models α is typically as-
sumed to be proportional to

√
Φ, because jgen and σVoc

in
the simplest case (considering a Gaussian distribution of
tail states, or ignoring them entirely) scale with ideality
factors of 1 and 2, respectively. However, this assumption
is not accurate for the general case.29–31

Both jgen and σVoc
have additional voltage de-

pendence, and can generally be defined at Voc as
jgen = j00 exp [− (Eg − eVoc) /nidkBT ], and σVoc

=
σ00 exp [− (Eg − eVoc) /nσkBT ], with j00 and σ00 denot-
ing temperature-independent prefactors. The recombi-
nation ideality factor of PM6:Y6 in Figure 3(c) is unity
only in the small range of light intensities close to 1 sun.
Similarly, σ has a transport ideality factor nσ ̸= 2 for
most of the range. Both ideality factors originate from
the trapping and subsequent release of charge carriers
within the active layer, and the precise analytical models
depend on the densities of localized states.28,31,32 To ad-
dress this important detail, we have incorporated ideality
factors into the analytical model of α. This leads to

α =
eL

kBT
· j00
σ00

· exp
[
−Eg − eVoc

kBT

(
1

nid
− 1

nσ

)]

∝ Φ1−nid
nσ .

(7)

The slope in Figure 3(b) corresponds to 1−nid/nσ, as
can be seen from Eq. (7). The value of this slope depends
on which type of charge carrier, electrons or holes, dom-
inates the transport and recombination processes. We
have previously demonstrated that the density of states
(DOS) for electrons and holes in PM6:Y6 can be accu-
rately described as a combination of Gaussian and power-
law distributions, where the latter can be approximated
by an exponential function at a given QFLS.28 Recombi-
nation in PM6:Y6 is primarily driven by mobile charge
carriers from the Gaussian DOS interacting with charge
carriers trapped in the power-law DOS.

When transport resistance is governed by the same mo-
bile charge carrier, the application of the multiple trap-
ping and release model results in nid/nσ = 1/2 (see Sup-
porting Information, Section S4), meaning that α scales
with a square root of light intensity. On the other hand,
if transport is limited by the mobile charge carriers from
the power-law DOS, then nid/nσ = nid−1/2, and α scales
with a power of light intensity. This power is equal to 1/2
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Figure 3. (a) σVoc determined from the slope of ∆Vtr according to Eq. (6). Its increase with light intensity does not have a
positive impact on the FF in Figure 2(c). (b) Light intensity dependence of α for PM6:Y6. The slope at low Φ deviates from
the commonly assumed 1/2. (c) The ideality factors for recombination (nid) and transport (nσ) at 300 K. Deviations from
the values of nid = 1 and nσ = 2, commonly assumed in the models, necessitate the incorporation of these factors into the
analytical expression for α. (d) The ratio of the ideality factors is ≈ 0.5 at higher Φ but increases at lower Φ, explaining the
slope of α(Φ). (e) Temperature dependence of α for different material systems. (f) Comparison of the j(V ) curves at 200 K
and 300 K. Higher α of PM6:o-IDTBR at 200 K severely impacts the FF , leading to a transport-controlled j(V )-curve.

only if nid = 1, in other cases it is lower than 0.5. The
slope in Figure 3(b) is < 0.5 at lower QFLS, aligning
precisely with the ratio of the ideality factors depicted
in Figure 3(d). This alignment indicates that transport
in PM6:Y6 is limited by mobile charge carriers from the
power-law DOS. At a higher QFLS the slope is 0.5, but
the dominance of charge carriers is unclear, as nid is close
to unity. In general, a lower ratio of nid to nσ leads to a
decrease of α and an improvement of the fill factor.

Temperature dependence. Figure 3(e) illustrates
the α values of various solar cells as a function of temper-
ature under 1 sun illumination intensity. The active lay-
ers of the devices were composed of PM6:Y6, PM6:ITIC,
PM6:o-IDTBR and PTB7:PCBM blends. For detailed
information about the fabrication of these solar cells,
please refer to the Section S1, Supporting Information.
Although one might intuitively expect PM6:o-IDTBR to
exhibit a lower α value compared to other solar cells due
to its higher effective bandgap, the data contradicts this
assumption.33 At 300 K, it demonstrates the highest α
among the four, owing to a compensation effect from a
remarkably low value of n−1

id − n−1
σ = 0.27 (whereas the

values for PM6:Y6 and PM6:ITIC are above 0.5). Addi-
tionally, the temperature-independent prefactor j00/σ00

also exhibits the highest value, as inferred from extrapo-
lating the data to 1/T = 0.

At 300K, α ≈ 1 for PM6:Y6, yet the fill factor in Fig-
ure 3(f) falls well below the pFF limit of 84 %. PM6:Y6
at 200 K and PM6:o-IDTBR at 300 K both exhibit
α ≈ 9, coinciding with identical fill factors at these
temperatures. At 200 K, the value of α for PM6:o-
IDTBR surges by a factor of 5, while the fill factor
drops to a mere 31.7 %. Assuming the generation rate
of charge carriers remains temperature-independent (or
weakly temperature-dependent), the temperature depen-
dence of α is primarily dictated by σ. As temperature
rises, the share of mobile charge carriers increases, facili-
tated by their easier thermal release from shallow traps.
Consequently, higher conductivity at the same generation
rate lowers the α value and enhances the FF .

2.3. The maximum power point

Let us now turn our attention to the fill factor and
examine how effectively α accounts for its behaviour.
The analytical expression for the FF requires the def-
inition of the normalized voltage vext.27 Here, it is de-
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Figure 4. (a) The relationship between FF and voc(α) varies depending on the material system. (b) Comparison between
experimental and calculated ∆Vtr for PM6:Y6. The approximation using α (Eq. (10), dashed lines) underestimates the ex-
perimental ∆Vtr (solid lines) at MPP (indicated by black dots). (c) FF vs voc fitted using Eq. (8) with a = 0.72. The fit
applies universally to various solar cells when voc is evaluated using βmpp, which accurately considers the voltage dependence
of transport resistance.

fined as Vext divided by the thermal voltage kBT/e and
napp. One finds, that at MPP, the normalized voltage
vmpp can be approximated34 using the normalized open-
circuit voltage voc, as vmpp ≈ voc − ln (voc + 1) (for de-
tails see Section S6 in Supporting Information). By using
this approximation, the fill factor can be related to voc
via27,34–36

FF =
voc − ln (voc + a)

voc + 1
. (8)

This equation was used for inorganic solar cells to esti-
mate an upper limit of the FF , assuming infinite shunt
and zero series resistance.27,35 To align better with ex-
perimental results, a = 1 under the logarithm was em-
pirically replaced by a = 0.72.27

When applied to OSCs,19 a large set of simulated FF
vs α showed deviations from Eq. (8). A new fit equation
was therefore proposed,

FF =
voc − ln

(
0.66v1.2oc + 0.79

)

voc + 1
, (9)

with voc calculated using napp = nid + α, where nid was
assumed to be unity. This relation was expected to hold
across different material systems characterized by low
charge carrier mobility.

To confirm the validity of Eq. (9), we have assessed the
parameter α experimentally for wide range of tempera-
tures and illumination intensities for four OSCs. Fig-
ure S2 demonstrates experimental confirmation of the
predicted relationship between the FF and the param-
eter α.17,19 This relationship indicates the direction for
any given system for higher illumination intensity and ef-
fective disorder, for example by lowering the temperature
(c.f. Figures 3(b) and (e)) or through degradation within
the device.

To relate α to the fill factor we calculate the normal-
ized open-circuit voltage using napp = nid + α, as orig-
inally suggested,19 but use the measured values of nid

instead of assuming nid = 1. The results are shown in
Figure 4(a). For a particular system, we observe a con-
sistent data alignment across the measured range of tem-
peratures and light intensities. In qualitative terms, the
model is highly effective. When examining the relation
between the experimental FF and α across various solar
cells, we observe that the dependence of FF on α varies
for each material system. Consequently, the fitting equa-
tion for FF (α) is unique to each system, a result that
was unexpected.

The next aspect to unravel is why α can not accurately
predict the FF of all solar cells using a single equation.
As already mentioned, nid + α determines the slope of
the j(Vext) curve at the open circuit conditions, while the
pseudo-j(V ) curve, j(Vimp), has the slope corresponding
to nid. By setting the current density of both j(V ) curves
in Eqs. (1) and (3) equal, we find – extending the work
by Neher et al. – that around Voc

∆Vtr ≈
α

nid
(Vimp − Voc) . (10)

The parameter α remains constant at a given tempera-
ture and light intensity, in other words it does not de-
pend on implied and external voltage. If α were capable
of consistently predicting ∆Vtr across all voltages in the
j(V ) curve, then the change in Vimp should be sufficient
to account for the change in ∆Vtr.

The relationship given by Eq. (10) is depicted in Fig-
ure 4(b) for a PM6:Y6 solar cell, alongside the mea-
sured ∆Vtr. In close proximity to Voc, the approxima-
tion provided by Eq. (10) demonstrates excellent agree-
ment with the data. However, away from Voc the dis-
crepancy between the experimental data and the model
becomes more evident. Particularly, at MPP (marked by
black dots), the model significantly underestimates ∆Vtr.
Hence, an accurate prediction of the FF requires an ad-
ditional factor that accounts for the voltage-dependence
of the transport resistance, as provided by Eq. (S3). The
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apparent ideality factor incorporated into the normalized
voltage must accurately reflect the influence of the trans-
port resistance, thus β must be used instead of α.

In Figure 4(c), we show that Eq. (8) is sufficient with-
out alterations to describe the fill factor of all investigated
solar cells in the temperature range of 200 to 300K. For
the normalized open-circuit voltage, the apparent ideality
factor napp = nid + β is employed, where parameter β is
defined by Eq. (4) and is evaluated at MPP. Remarkably,
Eq. (8) with a = 0.72 universally predicts the fill factor
across values ranging from as low as 29 % up to 75 %. In
Figure S3(a) it is demonstrated to work reasonably well
for fill factors at the upper limit, describing the pseudo-
fill factor in PTB7:PCBM. Interestingly, when Eq. (8) is
employed with a = 1, it fits the fill factors as a function
of normalized voltage when the former is evaluated using
jgen instead of jsc (c.f. Figure S3(b)). This adjustment
aligns with the derivation of Eq. (8), which requires the
use of jgen in the diode equation.

Since the voltage at MPP can be linked to Voc, it allows
the adoption of several useful simplifications when evalu-
ating solar cell parameters. At MPP β can be predicted
just from the values of α, Voc and the ideality factors by
iteration,

βmpp = α · voc · (voc + 1)
nid
nσ

−1

ln (voc + 1)
, (11)

where voc depends on βmpp as eVoc/ (nid + βmpp) kBT
(for detailed derivation refer to Section S7, Support-
ing Information). This fast converging iterative scheme
agrees reasonably well with the measured βmpp values,
as shown in Figure S4. Eq. (11) helps to make predic-
tions about the FF of a solar cell just from the physical
parameters of the active material.

2.4. Strategies to reduce FF losses

The initial step in reducing fill factor losses involves
ensuring that the losses are accurately quantified, which
requires the use of the correct metric. The higher limit
for a solar cell without transport resistance, assuming ex-
ternal series resistance is negligible, is expressed through
pFF . The fill factor tends towards this limit when βmpp
approaches 0. We find, similar to Green,35 that for the
values of the FF lying between 0.4 and 0.9, Eq. (8) can be
approximated by a simple function FF = voc/(voc+4.37),
where voc is defined as eVoc/ (nid + βmpp) kBT . Using
the same approximation for the pFF with β = 0 lets us
estimate the ratio of the fill factors, i.e. the FF yield

ηFF =
FF

pFF
=

eVoc + 4.37nidkBT

eVoc + 4.37 (nid + βmpp) kBT
. (12)

Hence, this metric serves as a measure of the FF loss
due to transport resistance. When transport resistance
is absent, βmpp = 0, and ηFF = 1. However, as transport
resistance increases, ηFF tends to 0. In actual devices,

β is always greater than 0 but can be minimized. The
prediction of FF loss based on Eq. (12) is depicted on
Figure 5(a).

Fill factor losses are related to the collection efficiency,
ηcol, an important metric for assessing solar cell perfor-
mance, quantified as the ratio of the collected current
density j to the current density generated within the ac-
tive layer of the solar cell jgen. Voltage loss associated
with transport resistance can be linked to the collection
efficiency as

∆Vtr = −αkBT

e
· ηcol (1− ηcol)

−nid/nσ (13)

Everything that does not get extracted recombines,
therefore the complementary metric of ηcol is the recom-
bination efficiency, ηrec = 1−ηcol. Eq. (13) demonstrates
that the voltage loss is in essence indeed competition
between collection and recombination of charge carriers.
Due to the relation between Vmpp and Voc, the collection
efficiency at MPP can simply be expressed as

ηcol,mpp =
voc

voc + 1
, (14)

where voc is again defined as eVoc/ (nid + βmpp) kBT .
The results are shown in Figure 5(b). Assuming that
charge generation is field-independent, the internal quan-
tum efficiency, IQE ∝ ηcol, is determined at MPP mainly
by voc.
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Figure 5. Calculated values of (a) the fill factor yield, ηFF ,
using Eq. (12) with nid = 1, and (b) collection efficiency at
the maximum power point, ηcol,mpp, according to Eq. (14).
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To mitigate FF losses and improve collection efficiency,
it is essential to minimize the apparent ideality factor
nid + βmpp, as evident from Figure 5. Various strategies
can be employed for this purpose. One strategy involves
reducing energetic disorder to attain nid = 1 and de-
creasing trap density to mitigate the rate of trap-assisted
recombination. The ratio nid/nσ affects both the addi-
tional term in Eq. (11), which increases βmpp compared
to α, as well as α itself, Eq. (7). This factor is dependent
on the DOS, with the minimum value of 0.5, as described
in Section S4. The prefactor j00/σ00 plays a crucial role
in reducing α, as demonstrated in Figure 3(e). Assum-
ing the recombination rate constant kr is treated within
the reduced Langevin model, it is proportional to the
mobility of the faster charge carrier.9 Conductivity, on
the other hand, is limited by the slower charge carrier.
Hence, achieving a lower ratio of µfast/µslow, along with
a lower Langevin reduction factor, becomes essential for
decreasing the prefactor, highlighting the importance of
balanced charge carrier mobilities. Finally, transport re-
sistance losses are linearly correlated with the thickness
of the device, which makes them particularly relevant for
industrial scale production of OSCs.

3. Conclusion

In conclusion, our research aimed to understand the
factors influencing the fill factor of organic solar cells and
find ways to improve the models related to transport re-
sistance based on experimental data. We evaluated the
transport resistance in various solution-processed organic
solar cells, employing current–voltage and open-circuit
voltage measurements. We presented a precise method
for determining the effective conductivity at open circuit
conditions, enabling the accurate evaluation of the fig-
ure of merit α, a measure of transport resistance at Voc.
The experimental observations revealed a strong correla-

tion between the fill factor and α, highlighting that the
fill factor losses due to low conductivity in organic so-
lar cells are a common issue and deserve more attention
from the research community. Even in solar cells with
comparatively low transport resistance (α ≈ 1), the fill
factor loss is over 10% compared to the scenarios without
transport resistance.

Based on the extensive experimental data, we have
generalized the analytical model for transport resistance
to account for the voltage dependence of recombination
and transport, by including the corresponding ideality
factors. We extended the diode equation accordingly, al-
lowing for the evaluation of transport resistance at the
maximum power point. The refined analytical model
serves as a powerful tool for predicting the fill factor of a
solar cell, based on its open-circuit voltage. Additionally,
we introduced a metric for quantifying fill factor losses
and collection efficiency at the maximum power point,
along with strategies for mitigating these losses, thus en-
abling the development of more efficient optoelectronic
devices.
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Transport resistance strikes back: unveiling its impact on fill factor losses in organic
solar cells

Maria Saladina1 and Carsten Deibel1
1Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany

S1. EXPERIMENTAL METHODS

A. Device fabrication

The materials PM6, PTB7, ITIC, o-IDTBR, and Y6 were acquired from 1-Material Inc., while PCBM was obtained
from Solenne BV, and used as received. The solutions for the active layer blends were prepared in the following
manner:

1. PM6:Y6, 1:1.2 w/w, 10 mg ml−1 in chloroform with 0.5 vol.-% of 1-chloronaphthalene, stirred overnight at room
temperature;

2. PM6:ITIC, 1:1 w/w, 10 mgml−1 in chloroform with 0.5 vol.-% of 1-chloronaphthalene, stirred overnight at room
temperature;

3. PM6:o-IDTBR, 1:1 w/w, 10 mgml−1 in chloroform with 0.5 vol.-% of 1-chloronaphthalene, stirred overnight at
room temperature;

4. PTB7:PCBM, 1:1.5 w/w, 25 mg ml−1 in chlorobenzene with 3 vol.-% of DIO, stirred overnight at 60 ◦C.

Pre-patterned indium tin oxide (ITO)-coated glass substrates underwent cleaning in an ultrasonic bath with detergent,
acetone, isopropanol, and deionized water. Subsequently, they were exposed to low-pressure oxygen plasma for
5 min. A 35 nm layer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS, Clevios AI 4083,
Heraeus Deutschland GmbH & Co. KG) was spin-coated and annealed at 140 ◦C for 10 min. The active layers of
nonfullerene acceptor solar cells was spin-coated in a nitrogen-filled glovebox from blend solution at 3000 r.p.m.,
while PTB7:PCBM blend was spin-coated at 600 r.p.m. PM6:ITIC and PM6:o-IDTBR were annealed at 100 ◦C for
10 min. The nonfullerene acceptor solar cells were finalized by depositing a 5 nm layer of bathocuproine (Ossila BV)
and 100 nm of thermally evaporated Ag. For PTB7:PCBM, a 2 nm layer of Ca and 150 nm of Al were thermally
evaporated on top of the active layer through a shadow mask with a base pressure below 10−6 mbar.

B. Current-voltage measurements

The samples were excited using a continuous wave laser Omicron LDM A350, operating at a wavelength of 515 nm.
The laser’s output power, alongside Thorlabs neutral density filters controlled by Standa motorized filter wheels,
allowed for modulation of illumination intensity. Throughout the measurement, a silicon photodiode continuously
monitored the illumination intensity. The current output was measured with a Keithley 2634b source measure unit.
Throughout the experiment, the sample was maintained within a Linkam Scientific LTS420 cryostat. This cryostat
ensured low temperatures via a constant flow of liquid nitrogen using a Linkam Scientific LNP96-S liquid nitrogen
pump and Linkam Scientific T96-S temperature controller.
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S2. GENERATION CURRENT DENSITY
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Figure S1. Generation current density jgen as a function of temperature for (a) PM6:Y6, (b) PM6:ITIC, (c) PM6:o-IDTBR,
and (d) PTB7:PCBM. Above 200 K, indicated by the dashed line, jgen remains relatively constant. Data below 200 K was
excluded from the analysis.

S3. APPARENT IDEALITY FACTOR AT Voc

As described in the main text, apparent ideality factor is defined as napp = nid+β. At Voc, parameter β is indetermi-
nate because both ∆Vtr = jL/σ and Vimp−Voc are equal to 0. To evaluate β in the limit of j → 0, we use L’Hopital’s
rule

lim
j→0

β = nid · d∆Vtr

dj

[
d (Vimp − Voc)

dj

]−1

The derivative of ∆Vtr is taken using Eq. (2) in the main text. Generally

d∆Vtr

dj
= L

(
σ−1 + j · d

(
σ−1

)

dj

)
. (S1)

The derivative of Vimp − Voc can be found using Eq. (1) in the main text, resulting in

d (Vimp − Voc)

dj
=

nidkBT

e
· 1

j + jgen
.
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At open circuit conditions j = 0, and d∆Vtr/dj reduces to just one term, yielding L/σVoc . The above equation is also
simplified, leading to

lim
j→0

β = nid · L

σVoc

·
[
nidkBT

e
· 1

jgen

]−1

=
eL

kBT
· jgen
σVoc

= α.

This result yields napp|j=0 = nid + α.

S4. THE RATIO OF THE IDEALITY FACTORS DESCRIBING THE VOLTAGE DEPENDENCE OF
RECOMBINATION AND TRANSPORT

Earlier we have shown that recombination in PM6:Y6 is dominated by mobile charge carriers from the gaussian DOS
recombining with the trapped ones from the power-law DOS.1 The latter was approximated by an exponential DOS
at a given energy, and therefore the apparent characteristic energy EU was also energy dependent. The recombination
ideality factor was analytically described as

nid (E) =
EU (E) + kBT

2kBT
.

The transport ideality factor, nσ, which describes the voltage dependence of conductivity, can be derived using the
multiple-trapping-and-release (MTR) model. Conductivity of electrons n and holes p is defines as

σn = eµeff,n · n = eµ0,n · θn · n,
σp = eµeff,p · p = eµ0,p · θp · p,

where µeff denotes the effective (charge carrier density dependent) mobility, θ is the trapping factor, i.e. the share of
mobile charge carriers, and µ0 is their mobility.

At open circuit conditions the densities of electrons and holes are equal, and can be expressed analytically at a given
quasi-Fermi level splitting as1,2

n = p = ni · exp
(

eVoc

EU (E) + kT

)
,

where ni is the intrinsic charge carrier concentration.

The trapping factor generally depends on the density of states. To simplify derivation we assign the the Gaussian
DOS to electrons and the power-law DOS to holes. The results will have no loss of generality. With this assumption,
the trapping factors are given by1,2

θn = exp

(
− s2

2(kBT )2

)
,

θp = N
1−λ(E)
0 · pλ(E)−1.

Here s is the standard deviation of the Gaussian distribution, N0 is the total density of states, and λ(E) is defined as
EU (E)/kBT .
Using the above two equations, the conductivity of electrons and holes becomes

σn = eµ0,n · exp
(
− s2

2(kBT )2

)
· n ∝ exp

(
eVoc

kBT
· kBT

EU (E) + kBT

)
,

σp = eµ0,p ·N1−λ(E)
0 · pλ(E) ∝ exp

(
eVoc

kBT
· EU (E)

EU (E) + kBT

)
.

It follows that depending on the density of states, the voltage dependence of conductivity is expressed differently.
As already mentioned, recombination in PM6:Y6 is governed by mobile charge carriers from the Gaussian DOS. If
transport resistance is dominated by the same mobile charge carrier, the ratio of the ideality factors is

nid

nσ
=

1

2
.
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However, if transport resistance is governed by the mobile charge carrier of the opposite type, then the ratio has
different expression

nid

nσ
=

EU (E)

2kBT
= nid − 1

2
.

The difference between the ratios of the ideality factors helps to distinguish which density of states limits the fill
factor. Only in the special case of nid = 1 the latter equation yields the same result 1/2, and the dominance can not
be determined.

S5. THE RELATIONSHIP BETWEEN THE FIGURE OF MERIT α AND THE FILL FACTOR

0.8

0.7

0.6

0.5

0.4

0.3

F
F

 [1
]

0.1
2 4 6 8

1
2 4 6 8

10
2

α [1]

PM6:Y6

300250200

T [K]

(a)
0.8

0.7

0.6

0.5

0.4

0.3

F
F

 [1
]

1
2 3 4 5 6

10
2 3 4 5 6

100

α [1]

PM6:ITIC

(b)

0.8

0.7

0.6

0.5

0.4

0.3

F
F

 [1
]

1
2 3 4 5 6

10
2 3 4 5 6

100

α [1]

PM6:o-IDTBR

(c)
0.8

0.7

0.6

0.5

0.4

0.3

F
F

 [1
]

0.1
2 4 6 8

1
2 4 6 8

10
2

α [1]

PTB7:PCBM

(d)

Figure S2. Fill factor as a function of α for (a) PM6:Y6, (b) PM6:ITIC, (c) PM6:o-IDTBR, and (d) PTB7:PCBM. The results
validate the anticipated relationship between FF and lnα as proposed by Neher et al.3
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S6. ANALYTICAL APPROXIMATION FOR THE FILL FACTOR

The diode equation given by Eq. (3) in the main text, can be rewritten using the normalized voltage vi,4 as

j = jgen (exp (vext − voc)− 1) , where vi =
eVi

nappkBT
(S2)

At the maximum power point, the derivative of the jVext product with respect to voltage is zero

0 = j + Vext ·
dj

dVext
≈ j + vext ·

dj

dvext
.

The latter expression can be verified using the chain rule, and it holds if napp changes little with voltage near the
maximum power point. It leads to

exp voc = exp vmpp · (vmpp + 1) .

Using approximation of the Lambert W-function,5 one finds that

vmpp ≈ voc − ln (voc + 1) .

Applying this result to Eq. (S2) for the current density yields

jmpp ≈ jgen · voc
voc + 1

.

Note that in the latter expression jmpp is positive, therefore the minus sign is omitted. Finally, the fill factor is
obtained using the last two equations, yielding Eq. (8) in the main text.6
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Figure S3. The fill factor approximation given by Eq. (8) is applied to (a) FF and pFF of a PTB7:PCBM solar cell. The
pseudo-fill factor pFF represents the upper limit of FF obtained from the pseudo-j(V ) curve with zero transport resistance,
therefore voc is determined by setting βmpp = 0. In (b), FF ∗ is calculated using jgen instead of jsc. Eq. (8) approximates the
data in (a) with a = 0.72, and in (b) with a = 1.

If the fill factor is calculated using jgen instead of jsc, here denoted as FF ∗, parameter a = 1. We validate this
approximation in Figure S3(b), where FF ∗ was obtained using jgen, which was estimated from the current density at
−0.5V. Green found empirically that setting a = 0.72 greatly improves approximation of the fill factor.4 Indeed, for
the real fill factor calculated using jsc, we find that Eq. (8) with a = 0.72 works better, as shown in Figure S3(a) and
Figure 4(c) in the main text.
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S7. VOLTAGE LOSS DUE TO TRANSPORT RESISTANCE

Current density is expressed via implied voltage Vimp using Eq. (1) in the main text. Conductivity can be similarly
expressed as a function of Vimp

σ(Vimp) = σVoc
· exp

(
eVimp − eVoc

nσkBT

)
.

Derivation of ∆Vtr is done in a similar way as in Neher et al.3 Substituting the above equation and Eq. (1) into Eq. (2)
in the main text allows to obtain the general expression for the voltage loss due to transport resistance, ∆Vtr

∆Vtr(Vimp) =
L · j(Vimp)

σ(Vimp)

=
kBT

e
α

[
exp

((
1− nid

nσ

)
eVimp − eVoc

nidkBT

)
− exp

(
−nid

nσ
· eVimp − eVoc

nidkBT

)]
.

(S3)

A. ∆Vtr at open circuit conditions

Near the open circuit ∆Vtr can be approximated using the Taylor expansion

∆Vtr(Vimp) ≈ (Vimp − Voc) ·
d∆Vtr

dVimp

∣∣∣∣
Vimp=Voc

= (Vimp − Voc) ·
α

nid
.

Consequently, α is a good measure of the transport resistance at these conditions. Away from Voc the exponential
terms become sufficiently large, and the approximation deviates from the real value of ∆Vtr. The figure of merit α is
not sufficient at the maximum power point to fully encompass ∆Vtr, and therefore β has to be used.

B. ∆Vtr at the maximum power point

Using Eqs. (1) and (3) in the main text, we can replace Vimp with Vext in Eq. (S3). We get

∆Vtr =
kBT

e
α

[
exp

((
1− nid

nσ

)
eVext − eVoc

(nid + β) kBT

)
− exp

(
−nid

nσ
· eVext − eVoc

(nid + β) kBT

)]

Or, in terms of the normalized voltage

∆Vtr =
kBT

e
α

[
exp

((
1− nid

nσ

)
· (vext − voc)

)
− exp

(
−nid

nσ
· (vext − voc)

)]

At the maximum power point, vext = vmpp, and vmpp − voc ≈ − ln (voc + 1). With this approximation, the voltage
loss due to transport resistance at the maximum power point becomes

∆Vtr|mpp ≈ kBT

e
α

[
exp

((
1− nid

nσ

)
· ln
(

1

voc + 1

))
− exp

(
−nid

nσ
· ln
(

1

voc + 1

))]

=
kBT

e
α
[
(voc + 1)(

nid
nσ

−1) − (voc + 1)
nid
nσ

]

= −kBT

e
α · voc · (voc + 1)

nid
nσ

−1

Inserting this result into Eq. (4) in the main text yields Eq. (11) for β at the maximum power point. The result of
the iteration using Eq. (11) is plotted in Figure S4.
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Figure S4. The parameter β at the maximum power point determined through iteration using Eq. (11) in the main text, and
compared to measured β for (a) PM6:Y6, (b) PM6:ITIC, (c) PM6:o-IDTBR, and (d) PTB7:PCBM. The dashed line indicates
the equality between the iterated and actual values.
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