
Straight to zigzag transition of foam pseudo Plateau borders on
textured surfaces

Alexis Commereuc1, Sandrine Mariot1, Emmanuelle Rio1, and François Boulogne1

1Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.

April 10, 2024

Abstract

The structure of liquid foams follows simple geometric rules formulated by Plateau 150 years ago. By placing
such foam on a microtextured hydrophilic surface, we show that the bubble footprint exhibits a morphological
transition. This transition concerns the liquid channels, also called pseudo Plateau borders, which are straight
between vertices on a smooth surface. We demonstrate experimentally that for a sufficiently large roughness size
compared to the width of the liquid channels, the footprint adopts a zigzag shape. This transition is associated
with the absence of a wetting film between the pillars caused by capillary suction of the foam, observed by confocal
microscopy. We rationalize the number of zigzag segments by a geometric distribution describing the observations
made with the footprint perimeter and the mesh size of the asperities.

1 Introduction

The structure of dry liquid foams adheres to rules orig-
inally formulated by Plateau [1] and subsequently for-
mally proven by Taylor [2]. These rules can be verified
under the assumption that the material is at equilibrium
and that the system’s energy is proportional to the sur-
face area of the liquid films. Three fundamental laws
govern the behavior of such foams [3, 4]. Firstly, the
constant curvature of a soap film arises as a result of
the difference in Laplace pressures between the two ad-
jacent bubbles it separates. Secondly, soap films come to-
gether in groups of three, forming a liquid channel called
Plateau border. Lastly, four Plateau borders converge to
a single point referred to as a vertex.

Experimental observations in the bulk of dry foams
confirmed these laws and evidenced that bubbles have
between 11 and 17 faces [5]. Recently, Plateau’s laws
have been altered by the addition of elastic ribbons in the
foam [6]. Alternatively, departure from Plateau’s laws
is observed for foams made with an emulsion bringing
elasticity to the continuous phase [7].

When a foam is placed in contact with a hydrophilic
surface, the foam structure must comply with this bound-
ary condition. The foam films establish connections with
the surface through straight liquid channels formed by
two menisci. These channels are called pseudo Plateau
borders (PPBs). Therefore, bubble footprints are poly-
hedral with straight edges between vertices. Surface bub-
bles predominantly exhibit a hexagonal shape, although
bubbles with five and seven segments are also frequently
observed in 3D-foams [5] as well as in 2D-foams [8, 9].

Considering that the structure of foam on a surface

is influenced by its wetting properties, it is reasonable
to anticipate that the surface features can impact the
bubble footprints. Among the various methods avail-
able to manipulate surface properties, the introduction
of textures has proven to have a significant effect on drop
spreading behavior [10, 11]. While drops on a smooth,
homogeneous surface exhibit a circular footprint, sur-
faces decorated with regularly spaced pillars cause dis-
tortion of the contact line along the predominant ori-
entations of the textures, leading to polyhedral shapes
[12, 13, 14, 15].

Extensive research has been conducted on the dynam-
ics of drops and contact lines in relation to such surface
features [16, 17, 18, 19, 20]. However, understanding the
impact of surface textures on a more complex entity like
foams necessitates further investigation [21]. In this Let-
ter, we aim to explore experimentally the role of surface
textures on the static footprint of a monodisperse foam.

2 Experimental methods

We prepare a soap solution by diluting a commercial sur-
factant (Fairy with a concentration in surfactant: 5–15
%) at a concentration of 10 wt.% in pure water. The
surface tension is γ = 24.5 ± 0.1 mN/m. Fluorescein is
added to the soap solution for visualizations by fluores-
cence microscopy at a concentration of 1 g/kg.

To generate a foam, the solution is poured in a con-
tainer with a glass window for visualization on a vertical
side and needles pointing upward at the bottom. The
needles, either 22, 27 or 32 Ga, are used to inject air with
a pressure controller (OF1, Elveflow, France). We obtain
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a monodisperse foam in contact with the soap solution
and we stop the bubbling [26]. We selected four values of
the bubble radius R, which are [660, 800, 1000, 1400] µm.

The liquid fraction profile is given by φ(z) =

φ̂
(
z/ℓc + (φc/φ̂)

−1/2
)−2

[27], where φc = 0.26 is the
fraction of gaps in a close-packing of hard spheres and
φ̂ = ℓ2c/R

2δ2 with ℓc =
√
γ/ρg the capillary length and

δ = 1.73 a geometric constant. In our experiments, we
explored liquid fractions between 0.013 % and 2.4 %.

Textured surfaces are produced by molding poly-
dimethylsiloxane (PDMS) on a textured surface pro-
duced by optical lithography with SU8 resist. The
pattern consists of cubic pillars of edge length a
arranged on a square lattice with a spacing equal
to the pillar size a. We used seven surfaces for
a ∈ [0, 30, 60, 100, 130, 160, 200] µm that are made hy-
drophilic with a preliminary plasma treatment. A tex-
tured surface is then placed inside the container against
the glass window. Visualizations are made through the
textured surface with a custom horizontal fluorescence
microscope composed of a long working distance objec-
tive (Mitutoyo M Plan Apo x2), a tube lens (Edmund,
MT-1), a FITC filter cube (Edmund optics), a LED
light source (M470L5, Thorlabs), and a camera (ORCA-
Flash4.0 V3, Hamamatsu).

3 Results and discussion

Depending on the experimental parameters (R, a, φ), we
observe by fluorescent microscopy different shapes of the
bubble footprints on the surfaces. A first type is pre-
sented in figure 1(a) where the polyhedral footprints are
composed of vertices, rendered as bright spots, connected
by straight liquid channels, namely the PPBs. Although
the picture in figure 1(a) is taken on a rough surface, the
footprint morphology is identical to contacts on smooth
surfaces. Figure 1(b) is obtained for a lower liquid frac-
tion. In this case, the number of vertices remains un-
changed but the PPBs are distorted to comply with the
surface textures, forming a zigzag morphology. Our ob-
jective is to rationalize the transition from the footprint
following the Plateau rules to the zigzag PPBs. In ad-
dition, we aim to characterize the distortion induced by
the square lattice as a function of foam and surface prop-
erties.

From the photographs, we measured for individual
footprints the set {ℓi} composed of the lengths of each
segment illustrated in figure 1(a, b). We denote n the
cardinality of the set {ℓi}, which will be referred to the
number of segments. Also, the bubble footprint perime-
ter is ℓ =

∑
ℓi. By varying the experimental configura-

tions (R, a, φ), we obtained a dataset composed of about
4 000 footprints with typically about 25 footprints per
configuration.

The footprint perimeter distributions for the differ-
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Figure 1: Example of footprint zigzag transition of a
monodisperse foam R = 1000 µm on a textured surface
a = 60 µm (High resolution with segment labeling is
provided in SI). The image (a) is for a liquid fraction φ =
0.28 % (i.e. a/rpb = 0.65) where straight edge footprints
are observed. In (b), for φ = 0.03 % (i.e. a/rpb = 2.0),
edges have a zigzag morphology. The yellow line shows
the recorded path of the PPBs constituted of segments.
Scale bars in white represents 0.6 mm. Histograms are
the PDF of the footprint perimeters ℓ in the (c) straight
and (d) zigzag regimes, respectively. The vertical dashed
lines are the mean values, which are represented in (e)
as a function of R. The black line of equation ⟨ℓ⟩ = 7R
is a guide for the eye.

ent bubble radii are represented in figure 1(c,d) for the
straight and zigzag morphologies respectively. Distribu-
tions are similar with nearly identical mean and standard
deviation values as shown in figure 1(e), which shows
as well the proportionality between the mean perime-
ter and the bubble radius. Thus, the distortion of the
edges in the zigzag regime has a weak effect on the foot-
print perimeter, which is attributed to the separation of
lengthscales {a, rpb} ≪ {ℓ, R}.

To represent the variation of the number of segment n,
we start by analyzing the space of the control parameters,
which is composed of the size of asperities a, the bubble
radius R, and the liquid fraction φ. The two last param-
eters are related to the bulk properties of the foam. The
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Figure 2: Average number of segments ⟨n⟩ as a function
of the dimensionless size of asperities a/rpb. Horizontal
lines are mean values for a/rpb < 1 and a/rpb > 1, and
are equal to 6.2 and 14.6 respectively. The markers en-
code the visual classification made in figure 1 with ◦ for
straight PPBs and + for the zigzag morphology. Images
illustrating the PPBs in the zigzag regime are provided
in SI. The inset is the PDF of the number of segments
for footprints satisfying a/rpb < 1.

corresponding surface properties are the PPBs perimeter
and width. As the range of liquid fractions in our exper-
iment corresponds to dry foams, geometrical considera-
tions show that the radius of curvature of the Plateau
borders is rpb = R

√
φ/0.33, which is a good estimate

of the width [4]. Since ℓ ≫ {a, rpb}, it is natural to
construct a dimensionless microscopic lengthscale a/rpb.

In figure 2, we plot the number of segments ⟨n⟩ aver-
aged over several footprints in the same conditions as a
function of a/rpb with the average perimeter ⟨ℓ⟩ encoded
by a color map. We observe two regimes. For a/rpb < 1,
the number of segments per bubble is typically ⟨n⟩ = 6±1
as illustrated in the inset of figure 2. This corresponds
to the widely observed morphology of bubbles in con-
tact with smooth surfaces [5, 22]. Bubble footprints are
mainly hexagonal, and some of them are pentagonal or
heptagonal. For a/rpb > 1, footprints have more than 8
segments and can be up to 40 segments on average with
a characteristic mean value of 14.6 segments. Figure 2
suggests no evident correlation between the number of
segments and the microscopic dimensionless parameter
a/rpb. However, we clearly observe an increasing trend
with the macroscopic footprint perimeter ⟨ℓ⟩, and thus
on the bubble radius R (Fig. 1(e)).

To understand the transition at a/rpb ≃ 1, we supple-
mented the fluorescence microscopy with visualizations
by confocal microscopy (Leica, TCS SP8). We used an
optical adaptation allowing measurements in a direction
perpendicular to gravity [28], as for the visualization by
fluorescence microscopy. For imaging purposes, we also
dissolved Nile red dye to the PDMS when preparing the
surface.

In figure 3, we report our observations where two con-
figurations are encountered depending on the geometric
parameter a and the radius of the Plateau borders rpb.
For a < rpb (Fig. 3(a)), the surface is fully covered by a
liquid film in addition to the PPBs whereas for a > rpb
(Fig. 3(b)), the PPBs in blue are directly in contact with
the textured surface in yellow. In figure 3(c), we present
the observations combining the PPB morphology and fill-
ing state of the pores, each being well-classified by the
value a/rpb. This wetting transition can be explained by
the capillary pressure of the foam as follows.

The capillary pressure of the meniscus between four
pillars scales as γ/a [23]. Balancing this pressure with
the pressure in the liquid foam γ/rpb leads to a criti-
cal value for the existence of such inter-pillar meniscus,
which scales as a/rpb. This criterion is in agreement with
our observations in figure 3(c) where the prefactor is close
to unity. Thus, we now understand that for a/rpb < 1,
the liquid film on the surface prevents the distortion of
the PPBs whereas for a/rpb > 1, the PPBs are between
the asperities causing a zigzag morphology. the PPBs
are trapped between asperities of larger height and spac-
ing that causes a zigzag morphology to comply with the
square lattice.

As we noticed in figure 2 that the number of foot-
print segments increases with the bubble perimeter in
the zigzag regime, we propose to seek for a dimension-
less number describing the zigzag regime. In figure 4(a),
we observe that the number of segments ⟨n⟩ is indepen-
dent of the liquid fraction φ for different bubble radii in
the regime a/rpb > 1. Thus, we exclude an effect of the
PPB size, which suggests that the number of segments
depends only on the pattern parameters.

The inset of figure 4(b) shows the probability distri-
bution function (PDF) of the normalized lengths of seg-
ments ℓ̃i = ℓi/2a. We choose the center to center dis-
tance of adjacent asperities as a normalization length.
The probability decreases with ℓ̃i independently of the
pattern size a. From the PDFs, we compute the mean
mathematical expectation E =

∑
i P[ℓ̃i]ℓ̃i, whose values

are indicated in the inset of figure 4(b) for each distribu-
tion. The mathematical expectation is not correlated to
the mesh size and is E = 2.4± 0.2.

To model the PDFs, we consider that the length of an
edge ℓi is the result of Bernoulli trials. From a segment of
an edge, the next step over the mesh size 2a is made with
a probability p to get an aligned extension and (1−p) to
form a kink, independently of the previous orientation.
Thus, the probability mass function follows a geometric
distribution [24]

P = (1− p)ℓ̃i−1p, (1)

where by construction p = 1/E . Equation 1 is plotted
over the distribution in the inset of figure 4(b) with a
good agreement.

The average length of an edge being 2a E , we deduce
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Figure 3: (a-b) Images obtained by confocal microscopy
where the textured surface is represented in yellow and
the liquid is in blue where a = 100 µm. (a) for rpb = 180
µm, the surface is filled by a liquid film of the thickness
of the pillars, and (b) the surface pores are empty (rpb =
75 µm). The width of the imaged surface is 1.2 mm. (c)
Phase diagram of the PPB morphology representing a
versus rpb. Large blue circles are for surfaces covered by
a liquid film, illustrated in (a) and large yellow triangles
are for dry surfaces as shown in (b). The black line is
the equality between axes.

that the characteristic perimeter length ⟨ℓ⟩ is propor-
tional to the mesh unit size 2a, the number of footprint
segments ⟨n⟩, and the mathematical expectation E , i.e.

⟨ℓ⟩ = 2a E⟨n⟩. (2)

From our experimental data, we successfully plot, in fig-
ure 4(b), the dimensionless form of equation 2 without
any fitting parameter. Interestingly, equation 2 can serve
as a prediction of the mean number of footprint segments.
Indeed, the mathematical expectation E is independent
of size a and the foam parameters. As shown in fig-
ure 1(e), the mean perimeter ⟨ℓ⟩ is proportional to the
bubble radius R such that there is a direct relation be-
tween R and the average number of segments ⟨n⟩.

4 Conclusion

In conclusion, when a foam is placed on a surface with
regularly spaced asperities, we observe a straight to
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Figure 4: Statistics in the zigzag regime. (a) The
mean number of segments ⟨n⟩ is plotted against φ for
a = 130 µm in the regime a/rpb > 1. The dashed lines
are the mean values for each bubble radius R. Vertical
error bars represent the standard deviation and horizon-
tal ones the interval. (b) The main plot shows E⟨n⟩ as
a function of the dimensionless parameter ⟨ℓ⟩/2a for the
entire dataset in the zigzag regime. The solid line repre-
sents equality between axes. The inset is the PDF P of
the lengths ℓi/2a for five different sizes a. On both plots,
the vertical error bar represents the standard deviation
and the horizontal one is the range over which the data
are regrouped.

zigzag transition of the PPBs. We demonstrated that
this transition depends on the dimensionless parameter
a/rpb that compares the Laplace pressure of the foam
with the capillary pressure of the asperities. Below unity,
the filled pores offer a smooth-like surface to the foam,
while above, the PPBs are between the asperities im-
posing a tortuosity. In this latter regime, we rationalized
that the number of PPB segments increases linearly with
⟨ℓ⟩/2a, with a prefactor that is the mathematical expec-
tation. Future studies will be necessary to expand these
findings, exploring a wider range of geometrical param-
eters of the pillars such as the height, the spacing, the
spatial organization as well as the shape.

So far, the motion of bubbles on surface decorated
with pillars has been studied for bubbly liquid where the
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zigzag regime is not observed [25]. The motion of sur-
face bubbles of a dry foam focused on surfaces randomly
covered by glued beads, for which sliding, stick-slip and
anchored behaviors were observed [26]. In forthcoming
studies, we plan to analyze how regularly spaced asperi-
ties can affect the dynamics of bubbles on the solid sur-
face depending on the PPB morphology. Additionally,
since the coarsening dynamics is primarily affected by
the topology, we anticipate that such observations have
an impact on the aging process of foams. Eventually,
a heterogeneous coarsening, with a different dynamics
close to rough surfaces could lead to structural gradients
in foams.
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Supplementary information:
Straight to zigzag transition of foam pseudo Plateau borders

on textured surfaces

Alexis Commereuc1, Sandrine Mariot1, Emmanuelle Rio1, and François Boulogne1

1Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay,
France.

1 High resolution images from Figure 1
We provide high resolution images of Figure 1 to show the details of the zigzag pattern and the counting
of the segment number. Figure S1 corresponds to Figure 1(a) and Figure S2 to Figure 1(b).

Figure S1: High resolution version of Figure 1(a) where the image on the left is the original image and
on the right, we superimposed the segments. Here, n = 6, for a bubble radius R = 1000 µm, a surface
parameter a = 60 µm and a liquid fraction φ = 0.28 %, i.e. a/rpb = 0.65.
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Figure S2: High resolution version of Figure 1(b) where the image on the left is the original image
and on the right, we superimposed the segments. Here, n = 26, for a bubble radius R = 1000 µm, a
surface parameter a = 60 µm and a liquid fraction φ = 0.03 %, i.e. a/rpb = 2.0.

2 High resolution images for a/rpb > 1

To illustrate the variety of zigzag patterns we observed, and more specifically the few cases where
a large number of segments is observed in figure 2, we provide examples in figure S3 of the zigzag
patterns. The purpose of these images is also to explain the choices we made to count the number of
segments.

In figure S3(a,b), we show examples of bubbles for respectively a/rpb = 1.61 and a/rpb = 2.84.
We observe that the PPB can bridge either direct neighboring pillars or diagonally. In both cases, the
number of segments remains typically lower than 25.

However, in figure S3(c), we show an example where we detected a large number of segments
(n = 35). The magnified regions illustrate the difficulty to define the segments at the transition. Here,
we observe mostly staircase patterns generating a large number of segments. This is characteristic of
the highest number of edges (typically n > 25) encountered solely just above the straight to zigzag
transition.
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Figure S3: Photographs of two zigzag patterns near and long after the transition. (a) the parameters
are a = 100 µm, R = 1400 µm and φl = 0.06 %, i.e. a/rpb = 1.61. We obtained n = 21. (b) the
parameters are a = 130 µm, R = 1400 µm and φl = 0.03 %, i.e. a/rpb = 2.84. We obtained n = 19.
(c) The parameters are a = 130 µm, R = 1400 µm and φl = 0.09 %, i.e. a/rpb = 1.59. We obtained
n = 35.

S-3


	Introduction
	Experimental methods
	Results and discussion
	Conclusion

