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Many deep neural networks have been used to solve Ising models, including autoregressive neural
networks, convolutional neural networks, recurrent neural networks, and graph neural networks.
Learning a probability distribution of energy configuration or finding the ground states of a dis-
ordered, fully connected Ising model is essential for statistical mechanics and NP-hard problems.
Despite tremendous efforts, a neural network architecture with the ability to high-accurately solve
these fully connected and extremely intractable problems on larger systems is still lacking. Here
we propose a variational autoregressive architecture with a message passing mechanism, which can
effectively utilize the interactions between spin variables. The new network trained under an anneal-
ing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians,
especially for larger spin systems at low temperatures. The advantages also come from the great
mitigation of mode collapse during the training process of deep neural networks. Considering these
extremely difficult problems to be solved, our method extends the current computational limits of
unsupervised neural networks to solve combinatorial optimization problems.

I. INTRODUCTION

Many deep neural networks have been used to solve
Ising models [1, 2], including autoregressive neural net-
works [3–8], convolutional neural networks [9], recurrent
neural networks [4, 10], and graph neural networks [11–
17]. The autoregressive neural networks model the distri-
bution of high-dimensional vectors of discrete variables to
learn the target Boltzmann distribution [18–21] and al-
low for directly sampling from the networks. However, re-
cent works question the sampling ability of autoregressive
models in highly frustrated systems, with the challenge
resulting from mode collapse [22, 23]. The convolutional
neural networks [9] respect the lattice structure of the 2D
Ising model and achieve good performance [3], but can-
not solve models defined on non-lattice structures. Vari-
ational classical annealing (VCA) [4] uses autoregressive
models with recurrent neural networks (RNN) [10] and
outperforms traditional simulated annealing (SA) [24] in
finding ground-state solutions of Ising problems. This
advantage comes from the fact that RNN can capture
long-range correlations between spin variables by estab-
lishing connections between RNN cells in the same layer.
Those cells need to be computed sequentially, which re-
sults in a very inefficient computation of VCA. Thus,
in a particularly difficult class of fully connected Ising
models, Wishart planted ensemble (WPE) [25], Ref. [4]
only solves problem instances with up to 32 spin vari-
ables. Since a Hamiltonian with the Ising form can be
directly viewed as a graph, it is intuitive to use graph
neural networks (GNN) [26–28] to solve it. While a
GNN-based method [16] has been employed in combi-
natorial optimization problems with system sizes up to
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millions, which first encodes problems in Ising forms [29]
and then relaxes discrete variables into continuous ones
to use GNN, some researchers argue that this method
does not perform as well as classical heuristic algorithms
[30, 31]. In fact, the maximum cut and maximum inde-
pendent set problem instances with millions of variables
used in Ref. [16] are defined on very sparse graphs and
are not hard to solve [31]. Also, a naive combination
of graph convolutional networks (GCN) [28] and varia-
tional autoregressive networks (VAN) [3] (we denote it as
’GCon-VAN’ in this work) is tried, but performs poorly in
statistical mechanics problems defined on sparse graphs
[8]. Reinforcement learning has also been used to find
the ground state of Ising models [32, 33]. In addition,
recently developed Ising machines have been used to find
the ground state of Ising models and have shown impres-
sive performance [34], especially those based on physics-
inspired algorithms, such as SimCIM (simulated coherent
Ising machine) [35, 36] and simulated bifurcation (SB)
[37, 38].

Exploration of new methods to tackle Ising problems
of larger scale and denser connectivity is of great inter-
est. For example, finding the ground states of Ising spin
glasses on two-dimensional lattices can be exactly solved
in polynomial time, while ones in three or higher dimen-
sions is a non-deterministic polynomial-time (NP) hard
problem [39]. Ising models correspond to some problems
defined on graphs, such as the maximum independent
set problems, whose difficulty in finding the ground state
might depend on node’s degree being larger than a cer-
tain value [40, 41]. Design of neural networks to solve
Ising models on denser graphs would lead to development
of powerful optimization tools and further shed light on
computational boundary of deep-learning-assisted algo-
rithms.

Due to the correspondence between Ising models and
graph problems, existing Ising-solving neural network
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methods can be described by the message passing neu-
ral networks (MPNN) framework [42]. MPNN can be
used to abstract commonalities between them and de-
termine the most crucial implementation details, which
help to design more complex and powerful network archi-
tectures. Therefore, we reformulate existing VAN-based
network architectures into this framework and then ex-
plore more variants for designing new network architec-
tures with meticulously designed message passing (MP)
mechanisms to better address intractable Ising models.
Here we propose a variational autoregressive architecture
with a message passing mechanism and dub it message
passing variational autoregressive network (MPVAN). It
can effectively utilize the interactions between spin vari-
ables, including whether there are couplings and coupling
values, while previous methods only considered the for-
mer, i.e., the correlations.

FIG. 1. The residual energy histogram on the WPE with
system size N = 60 and difficulty parameter α = 0.2, which
makes problem instances hard to solve. The residual energy
is defined as the difference between the energy of the con-
figurations sampled directly from the network after training
and the energy of the ground state. Each method contains
9 × 106 configurations obtained from 30 instances and each
for 30 runs.

We show the residual energy histogram on the Wishart
planted ensemble (WPE) [25] with a rough energy land-
scape in Fig. 1. Compared to VAN [3], VCA [4], and
GCon-VAN [8], the configurations sampled from MP-
VAN are concentrated on the regions with lower energy.
Therefore, MPVAN has a higher probability of obtaining
low-energy configurations, which is beneficial for finding
the ground state, and it is also what combinatorial opti-
mization is concerned about.

Numerical experiments show that our method outper-
forms existing methods in solving two classes of disor-
dered, fully connected Ising models with extremely rough
energy landscapes, the WPE [25] and the Sherrington-
Kirkpatrick (SK) model [43], including more accurately
estimating the Boltzmann distribution and calculating

lower free energy at low temperatures. The advantages
also come from the great delay in the emergence of mode
collapse during the training process of deep neural net-
works. Moreover, as the system size increases or the con-
nectivity of graphs increases, MPVAN has greater ad-
vantages over existing methods in giving a lower upper
bound to the energy of the ground state. Comparing to
short-range Ising models such as the Edwards-Anderson
model [44], infinite-ranged interaction models (SK model
andWPE) we considered are more challenging since there
exist many loops of different lengths, which leads to more
complicated frustrations. Considering these extremely
difficult problems to be solved, our method extends the
current computational limits of unsupervised neural net-
works [45] to solve intractable Ising models and combi-
natorial optimization problems [46].
The paper is structured as follows. In Sec. II, we pro-

vide a detailed description of the message passing vari-
ational autoregressive network and provide a theoreti-
cal analysis. In Sec. III, we conduct experiments to
benchmark our method and existing methods for solv-
ing intractable Ising models. We conclude and discuss in
Sec. IV.

II. MESSAGE PASSING VARIATIONAL
AUTOREGRESSIVE NETWORK

The message passing variational autoregressive net-
work (MPVAN) is to solve Ising models with the Hamil-
tonian as

H = −
∑
⟨i,j⟩

Jijsisj , (1)

where {si}Ni=1 ∈ {±1}N are N spin variables, and ⟨i, j⟩
denotes that there is a non-zero coupling Jij between si
and sj .

MPVAN is composed of an autoregressive message
passing mechanism and a variational autoregressive net-
work architecture, and its network architecture is shown
in Fig. 2(a). The input to MPVAN is configurations
s = {si}Ni=1 in a predetermined order of spins, and the
ith component of the output, ŝi, means the conditional
probability of si taking +1 when given values of spins in
front of it, s<i, i.e., ŝi = qθ(si = +1|s<i).

As in VAN [3], the variational distribution of MPVAN
is decomposed into product of conditional probabilities
as

qθ(s) =

N∏
i=1

qθ(si|s1, s2, . . . , si−1), (2)

where qθ(s) represents the variational joint probability
and qθ(si|s1, s2, . . . , si−1) denotes the variational condi-
tional probability, both of which are parametrized by
trainable parameters θ.
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FIG. 2. Schematic diagram of the network architecture of MPVAN and four autoregressive message passing mechanisms, which
are shown on a problem instance with 3 edges and 4 spins. The spins are represented separately with numbers 1 to 4, and
node features are represented separately with hi, i = 1, 2, 3, 4. (a) The network architecture of MPVAN. The spin configuration
s = {±1}N is the input to the network, ŝ is the output, and h denotes the hidden layer. The ⟨s⟩MP and ⟨h⟩MP are updated
from s and h by message passing, respectively. The brown solid arrow indicates that neighboring nodes participate in message
passing, while the brown dashed arrow indicates that there are connections between neighboring nodes but message passing is
not performed to preserve the autoregressive property. The {aij} are the coefficient in message passing process, which vary for
different message passing mechanisms. (b) The processes of four autoregressive message passing mechanisms when updating h3.
Under the MP mechanism used in VAN [3], message passing is not performed, which is equivalent to the identity transformation
of h3. Under the MP mechanism used in GCon-VAN [8], message passing performs according to the adjacency matrix A, which
updates the h3 based on the topology structure of the graph. For the Graph MP mechanism we designed, message passing is
performed by using the couplings Jij of the Hamiltonian, which updates h3 based on the couplings and Z3 = |J31|+ |J32|. The
Hamiltonians MP mechanism we designed updates h3 based on the couplings and values of neighboring spins s1 and s2, which
is also the message passing mechanism used in MPVAN.

A. MPVAN Layer

MPVAN are constructed by stacking multiple message
passing variational autoregressive network layers. A sin-
gle MPVAN layer is composed of an autoregressive mes-
sage passing process and nonlinear functions with train-
able parameters defined by VAN [3].

The input to the MPVAN layer is a set of node fea-

tures, h = {h⃗1, h⃗2, . . . , h⃗N}, h⃗i ∈ (0, 1)F , where F is the
number of training samples. The layer produces a new

set of node features, ho = {h⃗o
1, h⃗

o
2, . . . , h⃗

o
N}, h⃗o

i ∈ RF , as

the output. For brevity, we set F = 1 and donate h⃗i and

h⃗o
i as hi and ho

i , respectively. The ho are obtained by

ho = σ(⟨h⟩MPW + b), (3)

where sigmoid activation function σ(x) = 1
1+e−x rang-

ing in (0, 1) and thus ho
i ∈ (0, 1). The ⟨h⟩MP =

{⟨h1⟩MP , ⟨h2⟩MP , . . . , ⟨hN ⟩MP }, ⟨hi⟩MP ∈ R, denotes
the updated node features from h by message passing.
The W and b are layer-specific trainable parameters, and
W is a triangular matrix to ensure the autoregressive
property [3, 19–21].
To show how to get ⟨h⟩MP , we first review the message

passing mechanism defined in the MPNN framework [42].
We describe message passing operations on the current
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layer with node features hi and edge features Jij . The
message passing phase includes how to obtain neighbor-
ing messages mi and how to update node features hi,
which are defined as

mi =
∑

j∈Na(i)

M(hi, hj , Jij),

⟨hi⟩MP = U(hi,mi),

(4)

where hj is the node feature of j, and

Na(i) = {j | j < i, Jij ̸= 0}, (5)

which denotes the neighbors located before node i. The
Na(i) is used to preserve autoregressive property, which is
different from general message passing mechanisms [42]
and graph neural networks [28, 47, 48]. The message
aggregation function M(hi, hj , Jij) and node feature up-
date function U(hi,mi) are different across message pass-
ing mechanisms.

Now, existing VAN-based methods can be reformu-
lated into combinations of VAN and different MP mech-
anisms. Then, we explore their variants and propose our
method.

In VAN [3], there is no message passing process from
neighboring nodes. Therefore, the node features hi are
updated according to

mi = 0,

⟨hi⟩MP = hi,
(6)

which is the first MP mechanism in Fig. 2(b). Another
successful variational autoregressive network approach is
variational classical annealing (VCA) [4], which uses an
RNN architecture to take into account the correlation
between hidden units in the same layer. The network
structure of VCA is a special RNN architecture designed
according to the topology of the model to be solved, thus
taking into account the features of neighboring nodes
through trainable parameters. Therefore, it is difficult
to represent VCA as MPVAN with a special MP mecha-
nism, since MP is free of trainable parameters.

In GCon-VAN [8], a combination of GCN [28] and
VAN, the ⟨hi⟩MP are obtained by

mi =
∑

j∈Na(i)

Aijhj ,

⟨hi⟩MP =
mi + hi

deg(i) + 1
,

(7)

where A is the adjacency matrix of the graph, and deg(i)
represents the degree of node i. The hi is updated based
on the connectivity of the graph, which is the second MP
mechanism in Fig. 2(b).

However, GCon-VAN performs poorly on sparse
graphs in calculating physical quantities such as corre-
lations and free energy [8] and it performs even worse
on dense graphs in our trial. It may be because GCon-
VAN only considers connectivity and ignores the weights

of neighboring node features. Also, from the results of
VAN in Fig. 1, the node feature hi itself should be high-
lighted rather than the small weight 1

deg(i)+1 in Eq. (7).

Therefore, we explore more variants and propose three
MP mechanisms. The mi are obtained by

mi =
∑

j∈Na(i)

|Jij |hj , (8a)

mi =
∑

j∈Na(i)

Jijhj , (8b)

mi =
∑

j∈Na(i)

Jijsjh
′
j , (8c)

where

h′
j =

1 + sj
2

hj +
1− sj

2
(1− hj). (9)

In above three mechanisms, the ⟨hi⟩MP are obtained by

⟨hi⟩MP =
mi∑

j∈Na(i)
|Jij |

+ hi. (10)

For the neighboring message mi in Eq. (8a), we con-
sider the weight of neighboring node features instead of
averagely passing those features in Eq. (7). Also, we in-
crease the weight of hi in Eq. (10) for all mechanisms we
designed. However, the Eq. (8a) ignores the influence of
the sign of couplings {Jij}.
Thus, we propose the MP mechanism made of Eq. (8b)

and Eq. (10), which is the third MP mechanism in
Fig. 2(b). It uses the values of couplings {Jij} in the
Hamiltonians to weight the neighboring node features.
Since it is based on the graph defined by the target
Hamiltonian, we dub it ’graph message passing mech-
anism’ (Graph MP).
Previous methods and the above two MP mechanisms

we designed do not make full use of the interactions be-
tween spin variables of the Hamiltonian in Eq. (1), and
known values of s<i when updating the hi. Intuitively, it
may be helpful to consider those interactions and values
of s<i in the message passing process.
Therefore, we propose the Hamiltonian MP mechanism

composed of Eq. (8c) and Eq. (10), which is the fourth
MP mechanism in Fig. 2(b) and also the mechanism used
in MPVAN. The sj = ±1 is the known value of the neigh-
boring spin j, and h′

j ∈ (0, 1) represents the probability
of the spin j taking sj .
Based on the above definitions, it is reasonable to use

h′
j rather than hj in message passing. To illustrate, sup-

pose for the neighboring spin j, sj = −1 and hj = 0.2.
Then, if we repeatedly sample spin j, we could obtain
sj = −1 with a probability of 0.8. It means that neigh-
boring spin j should have a greater impact on hi when it
takes −1 than +1, but hj = 0.2 is not as good as h′

j = 0.8
to reflect the great importance of sj = −1. On the other
hand, suppose for the neighboring spin j, sj = −1 and
hj = 0.8. We could obtain sj = −1 with a probability
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of 0.2 if we sample spin j again. At this time, using h′
j

instead of hj could show little importance of sj = −1.
So we think it makes sense to use h′

j to reflect the effect
of the spin j taking sj in message passing.
Taking the graph with 4 nodes and 3 edges in Fig. 2(b)

as an example, applying the above four message passing
mechanisms, the ⟨h3⟩MP are obtained as

⟨h3⟩MP in V AN = h3, (11a)

⟨h3⟩MP in GCon−V AN =
h1 + h2 + h3

3
, (11b)

⟨h3⟩Graph MP =
J31s1h1 + J32s2h2

|J31|+ |J32|
+ h3, (11c)

⟨h3⟩Hamiltonians MP =
J31s1h

′
1 + J32s2h

′
2

|J31|+ |J32|
+ h3. (11d)

We also consider more MP mechanisms and compare
their performance in Appendix. I, where Hamiltonians
MP always performs best. In addition, since an arbi-
trary message passing variational autoregressive network
is constructed through stacking MPVAN layers, we also
discuss the effect of the number of layers on the perfor-
mance. MPVAN exhibits characteristics similar to GNN,
i.e., there exists an optimal number of layers, which can
be found in Appendix. II.

B. Training MPVAN

We then describe how to train MPVAN. In alignment
with the variational approach employed in VAN, the vari-
ational free energy is used as loss function,

Fq =
∑
s

qθ(s)

[
E(s) +

1

β
ln qθ(s)

]
, (12)

where β = 1/T is inverse temperature, and E(s) is the
H of Eq. (1) related to a given configuration s. The
configuration s follows Boltzmann distribution p(s) =
e−βE(s)/Z, where Z =

∑
s e

−βE(s). Since the KL di-
vergence between the variational distribution qθ and the
Boltzmann distribution p is defined as DKL(qθ||p) =∑

s qθ(s)ln(
qθ(s)
p(s) ) = β(Fq − F ) and is always non-

negative, Fq is the upper bound to the free energy
F = −(1/β) lnZ.

The gradient of Fq with respect to the parameters θ is

▽θFq =
∑
s

qθ(s)

{[
E(s) +

1

β
ln qθ(s))

]
▽θ ln qθ(s)

}
.

(13)
With the computed gradients ▽θFq, we iteratively ad-
just the parameters of the networks until the Fq stops
decreasing.

MPVAN is trained under an annealing framework, i.e.,
starting from the initial temperature Tinitial and gradu-
ally decreasing the temperature by annealing Nannealing

steps until the end temperature Tfinal. During each an-
nealing step, we decrease the temperature and subse-
quently apply Ntraining gradient-descent steps to update
the network parameters, thereby minimizing the varia-
tional free energy Fq. As with the VAN [3], the network is
trained using the data produced by itself. After training,
we can sample directly from the networks to calculate
the upper bound to the free energy and other physical
quantities such as entropy and correlations.

C. Theoretical Analysis for MPVAN

Compared to VAN[3], MPVAN has an additional
Hamiltonians message passing process. In this section,
we will provide a theoretical and mathematical analysis
of the advantages of the Hamiltonians message passing
mechanism in MPVAN in Corollary. 1 below.
The goal of MPVAN is to be able to accurately es-

timate the Boltzmann distribution, i.e., configurations
with low energy have a high probability and configura-
tions with high energy have a low probability. Specif-
ically, MPVAN is trained by minimizing the varia-
tional free energy Fq, composed of Es∼qθ(s)E(s) and
Es∼qθ(s) ln qθ(s).

Corollary 1. The Hamiltonians message passing pro-
cess makes Es∼qθ(s)E(s) and Es∼qθ(s) ln qθ(s) smaller,
and therefore variational free energy Fq smaller compared
to no message passing.

Proof. We discuss message passing process that makes
Es∼qθ(s)E(s) and Es∼qθ(s) ln qθ(s) smaller separately.

Step 1: Making Es∼qθ(s)E(s) smaller.
When training MPVAN, it is impossible to exhaust

all configurations to calculate the variational free energy
Fq, so we use the mathematical expectation of training
samples to estimate it. Therefore, we have

Es∼qθ(s)E(s) =
1

Ns

Ns∑
k=1

E(sk), (14)

where sk is kth training samples and Ns is the number of
all training samples.
Consider the Hamiltonians message passing process

(composed of Eq. (8c) and Eq. (10)) for updating the
hi as an example to analyze how message passing makes
Es∼qθ(s)E(s) smaller. Since the message passing process
maintains autoregressive property, making E(s) smaller
for any configuration is equivalent to making the local
Hamiltonian defined as Hlocal = −

∑
j<i Jijsisj smaller,

when given the values of its neighboring spins s<i.
Since Hlocal = −si

∑
j<i Jijsj with known

∑
j<i Jijsj ,

we are concerned about how the message passing affects
the probability of si taking +1 or −1. According to
Eq. (10), the value of

∑
j<i Jijsjh

′
j plays an important

role in that, and we discuss in 2 cases.
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Case 1: if
∑

j<i Jijsjh
′
j > 0, then according to

Eq. (10), we have

⟨hi⟩MP > hi, (15)

i.e.,

Pr[⟨si⟩MP = +1|s<i] > Pr[si = +1|s<i], (16)

where

⟨si⟩MP = Bernoulli(⟨hi⟩MP ), (17a)

si = Bernoulli(hi). (17b)

The Bernoulli(p) denotes sampling from the Bernoulli
distribution to output +1 with a probability p. Thus, we
have

Pr[⟨H ′
local⟩MP < 0] > Pr[H ′

local < 0], (18)

where

⟨H ′
local⟩MP = −⟨si⟩MP

∑
j<i

Jijsjh
′
j , (19a)

H ′
local = −si

∑
j<i

Jijsjh
′
j , (19b)

and Pr[· · · ] denotes the probability of something.
Case 2: if

∑
j<i Jijsjh

′
j < 0, then according to

Eq. (10), we have

⟨hi⟩MP < hi, (20)

i.e.,

Pr[⟨si⟩MP = −1|s<i] > Pr[si = −1|s<i], (21)

and also obtain the Eq. (18). Therefore, regardless of the
value of

∑
j<i Jijsjh

′
j , message passing process always

makes H ′
local smaller compared with no message passing.

It can be found that the difference between Hlocal

and H ′
local is that the latter has h′

j . It encapsulates
more information about the spin j beyond the current
configuration spin value sj , which can indicate how much
influence the message corresponding to the neighboring
node features hj has on ⟨hi⟩MP and, combining with
the coupling Jij , performs a weighted message passing.
Thus, although not identical, it is possible to predict
Hlocal through H ′

local and thus we get the conclusion
that Hamiltonians message passing mechanism makes
local Hamiltonian smaller.

Step 2: Making Es∼qθ(s) ln qθ(s) smaller.
Similar to Es∼qθ(s)E(s), we have

Es∼qθ(s) ln qθ(s) =
1

Ns

Ns∑
k=1

ln qθ(sk). (22)

The second derivative of y(x) = ln(x) is y(x)(2) =
−1/x2 and thus y(x) is concave down, which satisfies

FIG. 3. The negative entropy during training when
Nannealing = 25 and Ntraining = 100, on the WPE with
N = 30, α = 0.2 and averaging on 10 runs.

y(a)+y(b)
2 < y(a+b

2 ). From the analysis of Step 1, the
message passing process improves (reduces) the probabil-
ity of configurations with low (high) energy. Therefore,

message passing makes
∑Ns

k=1 ln qθ(sk) smaller compared
to no message passing.

In summary, combining the analyses of Step 1 and
Step 2, the message passing process makes the varia-
tional free energy Fq smaller compared to no message
passing.

III. NUMERICAL EXPERIMENTS

As described in Sec. II, MPVAN also includes existing
neural network approaches as special cases, with differ-
ent message passing mechanisms. We conduct experi-
ments in Appendix. I to compare MPVAN with multi-
ple message passing mechanisms, where MPVAN with
Hamiltonians MP performs best. Therefore below we
consider comparing the MPVAN with Hamiltonians MP
to existing methods, and if not specified, in the following
MPVAN refers to for MPVAN with Hamiltonians MP.
We experiment on two classes of fully connected and in-
tractable models, the WPE and the SK models.
The Wishart Planted Ensemble (WPE) [25] is a class

of fully connected Ising models with an adjustable dif-
ficulty parameter α and planted solutions, which make
it an ideal benchmark problem for evaluating heuristic
algorithms. The Hamiltonian of the WPE is defined as

H = −1

2

∑
i ̸=j

Jijsisj , (23)

where the coupling matrix {Jij} is a symmetric matrix
that is subject to copula distribution. More details about
the WPE can be found in Ref. [25].
First, we discuss an important issue, mode collapse,

which occurs when the target probability distribution
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FIG. 4. The residual energy per site of MPVAN with benchmark methods varies with system size N . (a) On the WPE,
the ϵres/N averages on 30 instances and each for 30 runs, all instances with the system size N and α = 0.2. When N ≥ 50,
the problem instances cannot be solved due to rough energy landscapes. (b) On the SK model, the residual energy per site
averages on 30 instances and each for 10 runs. Since the energy of the ground state cannot be determined, we use the lowest
energy across MPVAN, VAN, SA, and PT to replace it. Due to computational limitations, we exclude VCA from comparison
when N > 100 as its speed is about N/10 times slower than MPVAN when trained under the same hyperparameters. More
details regarding computational speed of MPVAN and other methods can be found in Appendix V.

FIG. 5. On the variants of the SK model, the residual
energy per site of MPVAN with benchmark methods varies
with average degree of each node in graphs with N = 200
averaging on 30 randomly generated instances and each for
10 runs.

has multiple peaks but networks only learn a few of
them. It severely affects the sampling ability of autore-
gressive neural networks [23]. Entropy is commonly used
in physics to measure the degree of chaos in a system.
The greater the entropy, the more chaotic the system.
Therefore, we can use the magnitude of entropy to reflect
whether mode collapse occurs for the variational distribu-
tion. In our experiments, we investigate how the negative
entropy, a part of variational free energy Fq in Eq. (12),

changes during training, which is defined as

−S =
∑
s

qθ(s) ln qθ(s), (24)

where S is entropy. Equivalently, the smaller the negative
entropy, the more chaotic the system.
As shown in Fig. 3, the change of −S from MP-

VAN shows an increasing-decreasing-increasing trend,
while −S from other methods is monotonely increasing
and quickly convergent. When training step ≥ 500,
mode collapse occurs for other methods, while until
training step ≥ 2000, it occurs for MPVAN. Therefore,
MPVAN delays the emergence of mode collapse greatly.
In addition, we also consider the impact of learning rates
on the emergence of mode collapse in Appendix. VI,
where mode collapse always occurs later in MPVAN than
in VAN.
Next, we benchmark MPVAN with existing methods

when calculating the upper bound to the energy of the
ground state, i.e., finding a configuration s to minimize
the Hamiltonian in Eq. (23), which is also the core con-
cern of combinatorial optimization. To facilitate a quan-
titative comparison, we employ the concept of residual
energy, defined as

ϵres = [⟨Hmin⟩ava − EG]ava , (25)

where Hmin represents the minimum value of the Hamil-
tonians corresponding to 106 configurations sampled di-
rectly from the network after training, and EG is the
energy of the ground state. The ⟨. . .⟩ava denotes the av-
erage over 30 independent runs for one same instance,
and [. . . ]ava means averaging on 30 instances. In the fig-
ures representing the residual energy, such as Fig. 4 and
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FIG. 6. The KL divergence and relative errors vary with β on the WPE with N = 20 and α = 0.05. (a) The KL divergence
DKL(qθ||p) between the variational distribution qθ and the Boltzmann distribution p. The inset shows the DKL(qθ||p) when β
is small. (b) The relative errors of Fq relative to exact free energy F . The inset shows the relative errors when β is small.

Fig. 5, the solid line in the figures indicates the average
value of the residual energy, and the color band indicates
the area between the maximum and minimum values of
the residual energy of 30 independent runs for the corre-
sponding algorithm. Both solid lines and color bands are
obtained by averaging 30 instances.

As depicted in Fig. 4(a), the residual energy obtained
by our method consistently is lower than that of VAN,
VCA, and SA across all system sizes when averaging on
30 instances and each for 30 runs. Even compared with
state-of-the-art parallel tempering (PT) [49, 50], MP-
VAN also exhibits slightly better performance in terms
of average residual energy, but significantly better in
terms of minimum residual energy. For WPE instances
with system size N = 50, MPVAN can still find the
ground state with non-ignorable probability, but other
methods cannot. As the system size increases, MPVAN
has greater advantages over existing methods in giving
a lower residual energy. Since the number of interac-
tions between spin variables is |{Jij ̸= 0}| = N2 for fully
connected systems, larger systems have much more inter-
actions between spin variables. The advantages indicate
that using MPVAN to consider these interactions per-
forms better in rougher energy landscapes. We always
average 30 instances to reflect the general properties of
models, and the differences between instances can be seen
in Appendix. I. Also, each method runs independently 30
times on the same instances to weaken the influence of oc-
casionality in the heuristics training, which can be found
in Appendix. III.

Since these methods are trained in different ways, we
keep the total number of training samples used in training
and final sampling after training the same for all meth-
ods. The training samples of MPVAN consist of two
parts, training samples and final sampling samples. As-
suming annealing number Nannealing, training Ntraining

steps at each temperature, sampling Ntrasam samples
each step in training, and final sampling Nfinsam sam-
ples, the total number of training samples for MPVAN
is

NMPsam = Nannealing ×Ntraining ×Ntrasam +Nfinsam.
(26)

The training samples for VAN and VCA are the same
as those for MPVAN, with some fine-tuning of parame-
ters. Assuming the number of inner loops of SA is Ninlop

at each temperature, and the total number of training
samples for SA is

NSAsam = Nannealing ×Ninlop. (27)

Assuming the number of chains of PT is Nchain and the
number of random flips at each chain is Nrf , then the
number of training samples for PT of 1 replica is

NPT1sam = Nchain ×Nrf . (28)

Therefore, corresponding to 1 run of MPVAN, SA runs
⌈NMPsam/NSAsam⌉ times independently and PT runs
⌈NMPsam/NPT1sam⌉ replicas, and then they output their
respective best results to benchmark MPVAN. It is im-
portant to note that the performance of each algorithm
depends not only on the number of training samples used
in training, but also on the training parameters, such as
the annealing schedule and initial and final temperatures.
We have fine-tuned the training parameters of each algo-
rithm to maximize its best performance.
We also experiment on the Sherrington-Kirkpatrick

(SK) model [43], which is one of the most famous fully
connected spin glass models and has significant relevance
in combinatorial optimization and machine learning ap-
plications [51, 52]. Its Hamiltonian is also in the form of
Eq. (23), where {Jij} are from a Gaussian distribution
with the variance 1/N and a symmetric matrix.
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As illustrated in Fig. 4(b), our method provides sig-
nificantly lower residual energy than VAN, SA, and PT
across all system sizes when averaging on 30 instances
and each for 10 runs. Notably, as the system size in-
creases, the advantages of our method over VAN, SA,
and PT become even more pronounced, which is consis-
tent with the trend observed in WPE experiments. We
also show the approximating ratio results on the WPE
and the SK model in Appendix. IV, which is of concern
to researchers of combinatorial optimization problems.

Inspired by the correlations between node’s degree and
difficulty in finding the ground state in maximum inde-
pendent set problems [40, 41], in addition to experiment-
ing on fully connected models, we also consider experi-
ments on models with different connectivity, i.e., degrees
of nodes in graphs. Since the SK model has been widely
studied, it may be interesting to design new models based
on the SK model. We generate models with different con-
nectivity by deleting some couplings of the SK model and
name them variants of the SK model. At each degree, we
always randomly generate 30 instances, and the couplings
{Jij} are from a Gaussian distribution with a variance of
1/N and a symmetric matrix. As shown in Fig. 5, our
method gives a lower residual energy than VAN and SA
at all degrees. Moreover, as degree increases, the ad-
vantages of our method over VAN and SA become even
more pronounced. The denser the graph, the larger the
number of interactions between spin variables. The ad-
vantages show that our method, which takes into account
these interactions, is able to give lower upper bounds to
the free energy.

In the following, we focus on estimating the Boltzmann
distribution and calculating the free energy as annealing.
As a proof of concept, we use the WPE with a small
system size of N = 20, where 2N configurations can be
enumerated and the exact Boltzmann distribution and
exact free energy F can be calculated within an accept-
able time. We set α = 0.05 and thus it is difficult to find
the ground state due to strong low-energy degeneracy.

As shown in Fig. 6, when the temperature is high, i.e.,
when β is small, the DKL(qθ||p) and the relative errors of
Fq relative to exact free energy F from MPVAN, VAN,
and VCA are particularly small. Therefore, it is neces-
sary to lower the temperature to distinguish them. As
the temperature decreases, the probability of the configu-
rations with low (high) energy in the Boltzmann distribu-
tion increases (decreases), thus making it more difficult
for neural networks to estimate the Boltzmann distribu-
tion. However, we find that the DKL(qθ||p) obtained by
our method is much smaller than that of VAN and VCA,
which indicates that the variational distribution qθ(s) pa-
rameterized by our method is closer to the Boltzmann
distribution. Similarly, our method gives a better esti-
mation of free energy than VAN and VCA. These results
illustrate that our method takes into account the inter-
actions between spin variables through message passing
and is more accurate in estimating the relevant physical
quantities.

IV. CONCLUSION AND DISCUSSIONS

In summary, we propose a variational autoregressive
architecture with a message passing mechanism, which
can effectively utilize the interactions between spin vari-
ables, to solve intractable Ising models. Numerical ex-
periments show that our method outperforms existing
methods including VAN, VCA, SA and even PT, in solv-
ing two prototypical Ising spin Hamiltonians, WPE and
the SK model, including more accurately estimating the
Boltzmann distribution and calculating lower free energy
at low temperatures. The advantages also come from
the great mitigation of mode collapse during the training
process of deep neural networks. Moreover, as the sys-
tem size increases or the connectivity of graphs increases,
MPVAN has greater advantages over existing methods in
giving a lower upper bound to the energy of the ground
state.
Formally, MPVAN and GNN are similar. We notice

that some researchers have recently argued that graph
neural networks do not perform as well as classical heuris-
tic algorithms on combinatorial optimization problems
[30, 31] for the method in Ref. [16]. Our work, however,
draws the opposite conclusion. We argue that when the
problems are in rough energy landscapes and hard to
find the ground state (e.g., WPE), our method performs
significantly better than traditional heuristic algorithms
such as SA and even slightly better than state-of-the-art
PT. Our method is based on variational autoregressive
networks, which are difficult to train due to slow speed
when the systems are particularly large, and thus MP-
VAN is not easy to expand to very large problems. At
the very least, we argue that MPVAN (or GNN) excels
particularly well in certain intractable Ising models with
rough energy landscapes, providing an alternative to tra-
ditional heuristics.
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hard-core model on random graphs revisited, Journal of
Physics: Conference Series 473, 012021 (2013).

[41] A. Coja-Oghlan and C. Efthymiou, On independent sets
in random graphs, Random Structures & Algorithms 47,
436 (2015).

[42] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, Neural message passing for quantum chem-
istry, in Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML (JMLR, 2017)
p. 1263–1272.

[43] D. Sherrington and S. Kirkpatrick, Solvable model of a
spin-glass, Phys. Rev. Lett. 35, 1792 (1975).

[44] S. F. Edwards and P. W. Anderson, Theory of spin
glasses, Journal of Physics F: Metal Physics 5, 965
(1975).

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing (MIT Press, 2016).

[46] Y. Bengio, A. Lodi, and A. Prouvost, Machine learning
for combinatorial optimization: A methodological tour
d’horizon, European Journal of Operational Research
290, 405 (2021).
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I. MORE RESULTS ABOUT VARIOUS MESSAGE PASSING MECHANISMS

In this section, we consider the combinations of various messaging mechanisms and VAN. Since our focus is on
messaging mechanisms, we always use the messaging mechanism to refer to its combination with VAN instead.

First, we compare the three MP mechanisms we proposed in Eq. (8a), Eq. (8b), and Eq. (8c) on the same 30
instances in Fig. 1 of the main text. Since the Eq. (8a) used unsigned weights of graphs, we name it weighted message
passing mechanism (Weighted MP).

FIG. S1. For the three message passing mechanisms we designed, the residual energy histogram on the WPE with system size
N = 60 and α = 0.2 same as in Fig. 1. Each method contains 9× 106 configurations obtained from 30 instances and each for
30 runs.

It can be found in Fig. S1 that the performance of Graph MP is better than Weighted MP, which illustrates the
benefits of considering the sign of {Jij} in the message passing process. At the same time, Hamiltonians MP performs
best among three mechanisms, and thus is the mechanism we ultimately utilize in MPVAN.

Second, we design experiments to determine that Hamiltonians MP performs best compared with other mechanisms,
not solely as a result of considering the values of neighboring spins. Therefore, for MP in GCon-VAN (Eq. (7) in
the main text) and Graph MP (Eq. (8b) in the main text), we design their variants to incorporate the values of
neighboring spins, which is defined as

mi =
∑

j∈Na(i)

Aijsjhj ,

⟨hi⟩MP =
mi + hi

deg(i) + 1
,

(S1)

and

mi =
∑

j∈Na(i)

Jijsjhj ,

⟨hi⟩MP =
mi∑

j∈Na(i)
|Jij |

+ hi,
(S2)
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which are named Spin MP in GCon-VAN (we denote the combination as Spin GCon-VAN) and graph with spin
message passing mechanism (Graph Spin MP), respectively. We then conduct the same numerical experiments as in
Fig. 2 and Fig. S1.

FIG. S2. For the five MP mechanisms, the residual energy histogram on the WPE with system size N = 60 and α = 0.2
same as in Fig. 1. Each method contains 9 × 106 configurations obtained from 30 instances and each for 30 runs. Note that
the results of Spin GCon-VAN are too poor to be shown in the figure.

It can be found in Fig. S2 that when considering the values of neighboring spins, the performance of Graph MP has
slightly improved, while the performance of GCon-VAN has significantly deteriorated. Meanwhile, the performance
of Graph Spin MP is still inferior to Hamiltonians MP when combined with VAN.

We now show the mean and standard deviation in Fig. 1, Fig. S1 and Fig. S2 of the energy of 9×106 configurations
from all the mechanisms mentioned above when they are combined with VAN.

TABLE I. The mean and standard deviation in Fig. 1, Fig. S1 and Fig. S2 of the energy of 9× 106 configurations drawn from
each method.

mechanisms VAN VCA GCon-VAN MPVANa Graph MP Weighted MP Spin GCon-VAN Graph Spin MP
mean 0.64064516 0.59639586 1.23419866 0.43949546 0.53990054 0.63682414 5.95293475 0.51100764
std 0.28714161 0.24911534 0.63625889 0.17004693 0.23393397 0.27861996 2.44381817 0.20037946

a Here MPVAN denotes the combination of VAN with Hamiltonians MP.

Third, we compare the residual energy per site for MPVAN with existing methods across 30 instances of the WPE
in Fig. S3. These problem instances are hard to solve, and none of the above methods can find the ground state. The
results of GCon-VAN are poor and the area between the maximum and minimum values is too large, so we do not
plot its corresponding color band.

As depicted in Fig. S3, MPVAN consistently achieves the best results on all instances. Notably, the residual energy
decreases by a substantial margin, ranging from 16.82% to 33.49%, when compared to the results obtained using other
methods. Also, the differences between instances are large, which indicates the necessity of using the average of 30
instances to reflect the general properties of problems in other experiments.

It can also be seen that GCon-VAN yields the least favorable performance, which is a supplemental result to Ref. [8]
when problems are defined on dense graphs.

Fourthly, since a order of spins plays a critical role in the variational conditional probability qθ(si|s1, s2, . . . , si−1)
in Eq. (2) of the main text and autoregressive message passing process, we consider the impact of it within MPVAN.
To investigate this, we select two instances from Fig. S3 where the advantages in ϵres of MPVAN over other methods
are the smallest (the 7th instance) and biggest (the 24th instance).
In these two instances, we randomly generate 10 orders of spins and evaluate the performance of MPVAN and

existing methods. As illustrated in Fig. S4, MPVAN consistently achieves the best results on all orders of spins.
The results suggest that MPVAN may not exhibit a non-ignorable dependence on the order of spins, a characteristic
similar to the standard autoregressive model [21].
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FIG. S3. For MPVAN and existing methods, the residual energy per site on the 30 WPE instances with N = 60 and α = 0.2
and each for 30 runs.

FIG. S4. For MPVAN and existing methods with 10 random orders of spins, the residual energy per site. (a) On the 7th
instance. (b) On the 24th instance in Fig. S3, and each instance for 30 runs.

We show the ϵres of all mechanisms mentioned when combined with VAN in Tab. II on the WPE with N = 60 and
α = 0.2. To demonstrate the differences among instances, we also show the standard deviation of residual energy on
30 instances as std(ϵ).

TABLE II. The ϵres and std(ϵ) of all mechanisms combined with VAN on 30 WPE instances with N = 60 and α = 0.2.

mechanisms VAN VCA GCon-VAN MPVAN Graph MP Weighted MP Spin GCon-VAN Graph Spin MP
ϵres 0.03163008 0.02993632 0.06354465 0.01890272 0.02790873 0.03157805 0.28992669 0.02700393
std(ϵ) 0.00245206 0.00322317 0.00547017 0.00214708 0.00227124 0.00265405 0.02453801 0.00218599

It can be seen that MPVAN outperforms all other methods in mean(ϵres), and smaller std(ϵres) denotes that it
works stably on different instances.
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II. THE OPTIMAL NUMBER OF LAYERS FOR MPVAN

Formally, MPVAN and GNN are similar. Meanwhile, the number of layers is an important hyperparameter of GNN,
which can cause excessive smoothing when the number of layers is too big, and the effect tends to perform poorly
when the number of layers is too small as well. Therefore, we also consider the effect of the number of layers on the
performance of MPVAN here.

FIG. S5. Schematic of the multi-layer autoregressive message passing process and experimental results for MPVAN with
different numbers of layers. (a) The multi-layer autoregressive message passing process. For node 10, we highlight the 3-hops
neighboring nodes it employs in message passing using different colors (the message passing is illustrated by the solid arrow,
and the neighborhood is illustrated by the k = 1, 2, 3 circle for node 10), and nodes 11 and 12 are not utilized to preserve
the autoregressive property. (b) The residual energy per site varies with the number of layers for MPVAN across system sizes
N = 30, 60, and 90 on the WPE with α = 0.2.

Message passing process with one layer utilizes features from one-hop neighboring nodes. Moreover, by stacking
MPVAN layers, we can access neighboring features from nodes multiple hops away. As demonstrated in Fig. S5(a),
we visualize the message passing process of three layers for node 10. It is important to note that nodes 11 and 12 are
deliberately excluded from the MP process to preserve the autoregressive property.

We conduct experiments to determine the optimal number of layers for MPVAN. As illustrated in Fig. S5(b),
the residual energy exhibits a trend of decreasing and then increasing as we vary the number of layers. Notably, the
residual energy reaches its minimum when there are 3 layers, a result consistent across system sizes, including N = 30,
60, and 90. Fewer layers limit the ability of networks to pass features from more distant neighboring nodes, while a
large number of layers can lead to excessive smoothing of node features, making them indistinguishable. Therefore,
we always adopt a 3-layer network for MPVAN.

III. THE OCCASIONALITY IN HEURISTIC METHODS TRAINING

In the main text, we consistently employ the average of multiple runs for the same instance to provide a represen-
tative overview of its general p. Here we present the residual energy for 30 individual runs on a single WPE instance
with N = 60 and α = 0.2.

The residual energy of 30 independent runs are presented in Fig. S6, which shows the occasionality in heuristic
methods training. There is substantial divergence in the outcomes of 30 independent runs of the neural networks,
with some runs yielding results that are as much as 168.94% to 411.36% higher than the minimum residual energy
achieved by the respective methods. This significant variation underscores the necessity of employing the average of
multiple runs to accurately reflect the general properties in other experiments.
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FIG. S6. The residual energy of 30 independent runs on the 0 th instance in Fig. 4 of the main text.

IV. THE APPROXIMATING RATIO RESULTS CORRESPONDING TO FIGURE. 4

We show the approximating ratio results corresponding to Fig. 4 of the main text in Fig. S7. Similar to residual
energy, MPVAN always provides a better approximation of the energy of the ground state than benchmark algorithms
on the WPE and the SK model.

FIG. S7. The approximating ratio results corresponding to Fig. 4 of the main text. (a) The results on the WPE. (b) The
results on the SK model.

Notably, for the WPE with N = 30 and N = 40, there are some instances where some methods can find the ground
state with a non-negligible probability. However, when N ≥ 50, none of the methods can identify the ground state
for any of the instances.

V. THE TRAINING SPEED

We also evaluate the training speeds of VCA, VAN, and MPVAN to provide a comprehensive understanding of their
computational efficiency. The training speed of VCA is slower compared to VAN and MPVAN due to its reliance on
the RNN structure. In the RNN, hidden units from the same layer must be computed sequentially, whereas VAN
and MPVAN can be computed concurrently. To quantify these differences, we record the running speeds of MPVAN,
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VAN, and VCA, with the results summarized in Tab. II. The data presented represents the time required for a single
training step on a same instance, and all methods are evaluated on the same NVIDIA 3090 GPU and with the same
hyperparameters.

TABLE III. Time for 1 training step of MPVAN, VAN, and VCA.

methoda N=30 N=60 N=90
MPVAN 0.042 sec. 0.068 sec. 0.093 sec.
VAN 0.052 sec. 0.087 sec. 0.132 sec.
VCA 0.118 sec. 0.486 sec. 0.952 sec.

a Note that all the methods have the same hyperparameters and are compared on the same NVIDIA 3090 GPU.

As presented in Tab. II, the training time of VCA for identical parameters is approximately N/10 times longer than
that of VAN and MPVAN for instances with a system size of N . To maintain manageable computational requirements,
we limit our comparisons to VCA on instances with N ≤ 100 in the remaining experiments.

VI. THE NEGATIVE ENTROPY AT DIFFERENT LEARNING RATES

Here we show the negative entropy at different learning rates as a supplement to Fig. 3 of the main text.
First, the distribution of MPVAN is consistently more uniform than that of VAN. When mode collapse emerges in

VAN, MPVAN still has a larger negative entropy, indicating a more uniform distribution. Therefore, MPVAN delays
the emergence of mode collapse. The negative entropy of MPVAN is smaller because the message passing changes the
variational distribution, making some conditional probabilities small, resulting in a decrease in the joint probability
of the configurations.

Second, when the learning rate is greater than 0.004, there is a decrease in negative entropy during training. It is
because when learning rate is large, the training samples have a great impact on the back propagation of the neural
network. The change gets stronger as the learning rate increases, making some conditional probabilities particularly
small, so the negative entropy will be extremely small. Also, the minimum negative entropy decreases with increasing
learning rates.

In summary, regardless of the choice of learning rates, the distribution of MPVAN is always more uniform than
that of VAN, and mode collapse occurs at lower temperatures. Therefore, MPVAN delays the emergence of mode
collapse.
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FIG. S8. The negative entropy at different learning rates during training on three WPE instances with N = 30 and α = 0.2.
Note that for all learning rates, Nannealing = 25 and Ntraining = 100 and run 10 times on each instance. Figure. 3 of the main
text is the result with lr = 0.1 on Instance No.0.
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