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Abstract. Members of the DFT+U family of functionals are increasingly prevalent

methods of addressing errors intrinsic to (semi-) local exchange-correlation functionals

at minimum computational cost, but require their parameters U and J to be calculated

in situ for a given system of interest, simulation scheme, and runtime parameters. The

SCF linear response approach offers ab initio acquisition of the U and has recently

been extended to compute the J analogously, which measures localized errors related

to exchange-like effects. We introduce a renovated post-processor, the lrUJ utility,

together with this detailed best-practices guide, to enable users of the popular, open-

source Abinit first-principles simulation suite to engage easily with in situ Hubbard

parameters and streamline their incorporation into material simulations of interest.

Features of this utility, which may also interest users and developers of other DFT

codes, include n-degree polynomial regression, error analysis, Python plotting facilities,

didactic documentation, and avenues for further developments. In this technical

introduction and guide, we place particular emphasis on the intricacies and potential

pitfalls introduced by the projector augmented wave (PAW) method, SCF mixing

schemes, and non-linear response, several of which are translatable to DFT+U(+J)

implementations in other packages.

Keywords: DFT+U, Abinit, Hubbard U, linear response, PAW, SCF, electronic

correlation DFT+U+J,DFT+U-J,DFT + U,DFT + U + J,DFT+U (+J),DFT+U(J),DFT+U±J

1. Introduction

Abinit [1, 2, 3, 4, 5] is an open-source electronic structure suite developed in the mid-

1990s by Xavier Gonze and colleagues. The suite is equipped with a variety of ab initio

http://arxiv.org/abs/2404.06284v1
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techniques and the softwares that support them, including, but not limited to, time-

dependent density functional theory, dynamical mean field theory, density functional

perturbation theory, many-body perturbation theory, electron-phonon calculations, and

PAW dataset generation.

Of particular interest here is Abinit’s primary implementation of approximative

density functional theory (DFT) and the family of Hubbard-like corrective extensions

thereof (referred to here as DFT+U+J). The ground-state DFT scheme relies on a

plane-wave self-consistent field (SCF) algorithm, into which developers comprehensively

integrated the projector-augmented wave (PAW) method [6] in 2008 [7, 8]. Shortly

thereafter, DFT + U was built on top of this PAW implementation, and programs were

developed to calculate its namesake parameter, the Hubbard U, and other corrective

objects in situ via linear response [9, 10].

How all these formalisms—DFT+U, PAW, linear response, SCF algo-

rithms—overlap in Abinit is not trivial, and there exists a need for comprehensive,

more didactic documentation making explicit the link between the programs and the

theory that inspired them [11]. Furthermore, state-of-the-art Hubbard corrective tech-

niques and practices have advanced in the 15 years since the initial implementation of

the DFT+U and linear response utilities. For example, the Hund’s exchange coupling

J and the DFT + U + J functionals have seen more scientific attention than before

[12, 13, 14, 15, 16, 17], and ground has been made in calculating the Hund J via linear

response [9, 10, 12, 18, 19]. Abinit’s DFT+U+J linear response implementation and

support utilities were due for reevaluation and expansion.

We address these matters in the current work. In Section 2, we provide an overview

of the many formalisms involved in Abinit’s DFT+U+J software, including the PAW

method (Section 2.1), Hubbard corrective protocol (Section 2.2), and the linear response

method for determining the Hubbard U and Hund’s J parameters (collectively referred

to herein as the “Hubbard parameters,” the in situ determination of which is described in

Section 2.3). The review of this formalism is designed to reinforce our description of the

technical implementation of DFT+U+J in Abinit, which constitutes Section 3.1 and

includes details on two topics: first, how to invoke various Hubbard parameter-related

features via the Abinit input file (Section 3); and second, a closer look at Abinit’s

relevant SCF mixing schemes (Section 3.1.1).

Through the evaluation of Abinit’s linear response faculties in Section 4, we found

Abinit-specific quirks requiring additional clarification as well as evidence of a defect

that prompted its renovation and expansion to calculate the Hund’s exchange J via first-

principles. We describe these renovations in Section 4.1 by comparing and contrasting

the improved UJdet functionalities with their successor, the lrUJ post-processor, a user

manual of which we document in 4.2. We then dissect the linear response procedure,

following a SCF calculation and documenting the algorithm that transforms potential

perturbations to occupancy responses to Hubbard parameters, a chronicle recounted in

Section 4.3.

A table of contents is provided for ease of navigation.
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2. Background

2.1. PAW Formalism

In 2008, Abinit developers comprehensively integrated the PAW method, introduced

by Peter Blöchl in 1994, into Abinit DFT in order to simplify the numerical treatment

of core electron wavefunctions, which are typically encumbered by tight oscillations near

the nucleus of atoms. While we summarize the relevant details of the PAW formalism

here, we refer the reader to Blöchl’s original paper (reference [6]) for more information.

Details on the PAW implementation in Abinit can be found in references [7, 8].

The PAW formalism starts by positing that there exists a true, full all-electron

(AE) wavefunction Ψ—a Slater determinant of one-electron Kohn-Sham orbitals tightly

oscillating about each atomic nucleus—that can be linked to a well-behaved pseudized

wavefunction Ψ̃ with few or no oscillations by a linear transformation τ ,

Ψ = τΨ̃. (1)

With this postulate in hand, we can derive physical quantities using the expectation

value of an operator A by sandwiching it between the transformation operator τ and its

Hermitian conjugate τ † to yield the operator’s pseudized counterpart, Ã. Accordingly,

the variational principle for the total energy is

∂E
[
τ |Ψ̃〉

]

∂〈Ψ̃|
= ετ †τ |Ψ̃〉 (2)

such that one may derive the pseudized equivalent of the Kohn-Sham equations. Thus,

instead of looking for the ground state of our system in real space, one may seek the

ground state energy in this particular pseudospace.

A better-defined transformation operator τ is necessary to pursue this method any

further. As a prerequisite, τ must modify the smooth, pseudo-valence wavefunction

within an atomic region in order to yield the correct nodal structure for the AE

wavefunction. This modification is only necessary in the regions closest to the atomic

nuclei. We then tailor our treatment specifically to this atom-centered region, spherically

symmetric about the nucleus, by defining a cut-off radius, inside which we consider only

the smooth, pseudized representation of the AE wavefunction, and outside of which the

AE and pseudo wavefunctions are equivalent. Figure 1 illustrates this concept.

In this way, we effectively define an augmentation sphere: a spherically symmetric

region of radius rc centered around each atomic site in our system. Consider constructing

a pseudized wavefunction for a particular orbital with quantum numbers ℓ and mℓ

on atom t. When r < rc, we must ensure that ψ̃i is a well-behaved projection of

the all-electron wavefunction ψi. Moreover, when r > rc, ψ̃i = ψi. To satisfy these

requirements, the transformation operator τ may be defined as an identity operator

plus the sum of atomic orbital-based modifications,
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Figure 1: (a) Schematic outlining the mathematical relationship between the three

canonical bodies used to construct PAW datasets. (b) The atom-centered augmentation

sphere, defined by projector pi, where i refers to the set of four indices {t, ℓ,mℓ, n} inside

cut off radius rc. When r > rc, the AE wavefunction ψi and the pseudo wavefunction

ψ̃i are equivalent.

τ = 1+
∑

i

(
|φi〉 − |φ̃i〉

)
〈p̃i|, (3)

where φi (φ̃i) are the AE (pseudo) partial wave basis functions with which we define the

AE (pseudo) wavefunctions ψi (ψ̃i). Here, i refers to the set of four indices {t, ℓ,mℓ, n},

representing the atomic site, angular quantum number, magnetic quantum number,

and projector index, respectively. The AE partial waves φi may be defined in any way,

although an organic choice would be the bound and scattering state solutions to the

Schrödinger equation for an isolated atom. In a manner analogous to the wavefunctions

they construct, the pseudo partial waves φ̃i corresponding to each ψ̃i are well-behaved

projections of φi when r < rc and identical to φi when r > rc. The objects that allow us

to restrict these projections to the pertinent regions of space are the projector functions

p̃i. These are the three mathematical objects intrinsic to the PAW formalism (and those

of any ultrasoft pseudo potential method, for that matter). Figure 1 makes explicit the
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Figure 2: Schematic of the structure of the AE wavefunction in the PAW formalism.

In this way, we can restrict our treatment of the cumbersome AE wavefunction to the

interior of a particular region.

nature of the mathematical duality between these functions. Crucially, note the relation

between the pseudo partial waves and the projectors; they are dual to one another, and

their projections are normalized inside the augmentation region.

We can represent the Kohn-Sham wavefunctions—which can be approximated as

plane waves (i.e., waves with wave fronts parallel to flat planes that are azimuthally

symmetric about the direction of propagation)—by an infinite sum of spherically

symmetric constituents called partial waves (i.e., waves with spherical wave fronts that

propagate along a radius emanating from a central point). Such partial waves, also

known as spherical waves, are the products of spherical Bessel functions and the spherical

harmonics, which are functions of angular momentum ℓ and azimuthal quantum number

mℓ. In the PAW context, therefore, a partial wave refers to a wave that is spherically

symmetric about an atom and a function of a given angular momentum ℓ.

Per equation (3), the atomic orbital based modifications that transform properties

into their pseudo-space counterparts comprise the cumulative differences between (i)

the projection of the AE partial wave on the augmentation region, and (ii) the pseudo

partial waves on the augmentation region. The transformation operator, when applied

to the wavefunction, is described visually in figure 2. Due to the structure of the

transformation operator τ , objects such as the density and the energy are formulated

analogously.

2.1.1. Construction of PAW datasets The three PAW basis sets ψi, ψ̃i, and p̃i, are

typically read into one’s chosen DFT program from a file, called a PAW dataset, not so

unlike a pseudopotential. A PAW dataset to be read intoAbinit should adhere to either

XML format (extension .xml) or the Abinit proprietary format (extension .abinit).

These datasets will typically include the following information.

(i) AE and PS partial waves, ψi and ψ̃i, and projector functions, p̃i, for all valence

orbitals

(ii) AE core charge density, nc
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(iii) PS core charge density, ñc

(iv) PS valence charge density, ñ1

(v) A local ionic pseudopotential, ν̃loc (see Section 2.1.2)

(vi) Information for the construction of the compensation charge, n̂, (i.e., a shape

function)

There exist a variety of publicly available programs to generate these datasets, the

one with ties to Abinit being atompaw [20, 21, 22].

These algorithms start by defining the AE partial waves as descriptions of all

orbitals of the element under scrutiny. As mentioned earlier, the eigenfunctions of the

solution to the Schrödinger equation for the isolated atom are a good starting point as

they are partial waves, thus comprising a sum of products—radial functions (typically

of polynomial form, although other options are open for use) multiplied by spherical

harmonics. DFT calculations are performed using the exchange-correlation potential,

νxc, of choice to obtain the AE basis functions defined on a radial grid of variable mesh

density. For this reason, PAW datasets are categorized in terms of the associated XC

functional (e.g., PAW-LDA, PAW-PBE). The atompaw algorithm, specifically, mandates

that the partial waves be defined as the atomic eigenfunctions resulting from these

calculations.

We assume here that the electronic states resulting from this calculation can be

separated into core orbitals—to be “frozen” only in the sense that they are grouped with

the nucleus and not represented individually by PAW basis sets—and valence orbitals,

which will be represented individually in the PAW basis [22]. In principle, the frozen core

approximation that inspired this treatment would necessitate the core electron density

remain unchanged from that of the relaxed isolated atom despite immersion in different

environmental potentials and configurations. By drawing more or less orbitals out of

the core and into the valence, the accuracy of this frozen core approximation may be

tailored to the system at hand. The number of PAW basis functions, used to describe

these valence orbitals, follows from this decision.

In practice, and in Abinit, a soft-core scheme is adopted to restore the core

electrons’ involvement in and response to the physics of the system. A pseudo density

representing the nucleus and core electrons, ñZc, is used to generate its namesake share

of the Hartree potential, and a soft-core density, ñc, contributes to calculations of any

non-linear core corrections [23]. Additionally, a compensation charge density, n̂, is

introduced to restore the correct multipole moments of the AE charge density n1 +nZc,

evaluated on a radial grid and exclusively inside the augmentation region [24].

Often, only one or two partial waves are necessary to accurately describe a valence

orbital’s angular momentum, as the partial wave expansion of orbitals rapidly converges.

At least one partial wave constructing a PS plane wave will represent a bound electronic

state of the atom. Often, when there are two partial waves representing a subspace, the

PAW dataset will feature one bound and one unbound electronic state.
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The pseudo partial waves and the associated projectors are then constructed from

one of many pseudization scheme designed to ensure that these bodies fulfill the

requisites established in earlier in this section. The PS partial waves are solutions

to the PAW Hamiltonian, which features a screened, pseudized local potential that is

equal to the AE atomic potential outside of a radius rpp. One option for the pseudization

scheme is that of Blöchl, in which the pseudized basis functions are solutions to the non-

relativistic Schrödinger equation of an isolated atom immersed in a pseudopotential

defined for each AE partial wave. In other words, the projector functions are chosen

first, and the PS basis functions are derived [21]. This procedure is described more

in Section VI B of reference [6]. Yet another option involves the RRKJ optimization

scheme [25], which represents the pseudo wavefunction as a sum of two Bessel functions.

The pseudization scheme with which we are most concerned, for reasons that will

be made known in Section 4.3.2 is the so-called Vanderbilt [26] scheme implemented

in atompaw. Via this scheme, the pseudo wavefunctions are eighth-degree polynomials

inside the augmentation region,

ψ̃i(r) = rℓ+1
4∑

k=0

ckr
2k, (4)

from which the basis and projector functions are deduced by fitting the five coefficients

ck such that φ̃i = φi in the vicinity of rc. The Vanderbilt scheme thus ensures that (a)

ψ̃i(r) is an eigenfunction of the atomic PAW Hamiltonian; and (b) the ψ̃i(r) satisfies

the generalized norm-conserving condition Qij = 0, where

Qij =

∫

r<rc,i

[φ∗
i (r)φj (r)− φ̃∗

i (r) φ̃j (r)] dr. (5)

and j represents a set of quantum numbers {t, ℓ,mℓ, n} distinct from that of i. The

integrand of Qij is known as the pseudized augmentation function between two partial

waves i and j. For more details on this scheme, we refer the reader to references [21, 26].

Following the pseudization process, the pseudo basis functions and their

accompanying projectors are orthogonalized according to a chosen orthogonalization

scheme, such as the Gram-Schmidt scheme or Vanderbilt’s own scheme, also published

in reference [26].

With the AE basis functions, pseudo basis functions and projector functions

defined, PAW dataset generators output their values on a radial grid in the form of a

pseudopotential in an increasing number of formats compatible with popular electronic

structure theory codes. Predefined, open-source, and tested PAW datasets for many

elements can be acquired from, for example, the atompaw or PseudoDojo [22, 27]

websites, among others.

2.1.2. The PAW pseudopotential PAW dataset generators construct a local ionic

pseudopotential using the chosen PAW basis functions via a method that is closely

analogous to Vanderbilt’s ultrasoft pseudopotential generation, described in reference

http://users.wfu.edu/natalie/papers/pwpaw/man.html
http://www.pseudo-dojo.org/


Facilities and practices for linear response Hubbard parameters U and J in Abinit 9

[26]. We briefly describe the construction of a PAW pseudopotential here from the basis

functions defined earlier [23, 24].

The first step is to construct a screened local atomic pseudopotential ν̃loc for an atom

in some reference configuration (usually the isolated atom), which is to be equivalent

to the AE atomic potential νloc beyond some radius rpp. (The cutoff radius rc is not

necessarily the same as rpp.) As an example of such a construction, Vanderbilt proposed

the use of a zero-order spherical Bessel function (equation 58 in reference [26]).

The pseudopotential ν̃loc comprises contributions from both the core and valence

densities. To expand the contribution of the latter, we take the pseudo partial

waves—which have been defined such that outside of the cutoff radius rc they are

equivalent to the AE basis functions—and use them to generate a different set of

functions χi

|χi〉 = (ǫi − T − ν̃loc(r))|φ̃i〉 (6)

where ǫi are the orbital energy eigenvalues associated with the AE basis functions and

T is the kinetic energy operator. The projectors p̃i are then represented in terms of χi,

|p̃i〉 =
∑

j

P−1
ij |χi〉, (7)

whereupon, owing to the orthogonality condition 〈p̃i|φ̃i〉 = δij ,

Pij = 〈φ̃i|χi〉. (8)

We take the operator Pij and employ it in the definition of a non-local potential

Dij = Pij + ǫjQij, where Qij is as defined in equation 5. In a final step, we effectively

unscreen the potentials Dij and ν̃loc to deduce a valence potential

D0
ij = Pij + ǫjQij −

∫
ν̃loc (r)

(
φ∗
i (r)φj (r)− φ̃∗

i (r) φ̃j (r)
)
dr (9)

and a local ionic pseudopotential

ν̃H[ñZc] = ν̃loc − νH[ñ
1 + n̂]− νxc[ñ

1 + n̂+ ñc], (10)

where νH and νxc are the Hartree and exchange-correlation potentials, respectively.

Finally, the PAW pseudopotential representing the atom in its entirety is

VPP = ν̃H[ñZc] +
∑

ij

D0
ij |p̃i〉〈p̃j|. (11)

2.2. DFT+U+J

Inspired by the Hubbard model [28], DFT+U+J [29, 30, 31, 32, 33] offers treatment

of self-interaction and static-correlation errors in highly localized electronic subspaces

while minimizing additional computational expense [34]. There are a variety of
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functionals occupying the Hubbard-like corrective class, ranging from the recognizable

and widely implemented Dudarev (DFT+Ueff=U-J) [31], Himmetoglu (DFT+U+J) [33],

and Liechtenstein [35] functionals, to the ultra-modern BLOR functional [17], derived

to explicitly address the flat-plane condition. The treatment provided by the additional

Hubbard U and Hund’s J terms is prescribed exclusively for subspaces that require

numerical attention in excess of those for which the base XC functional is descriptively

sufficient.

We assume that in consulting this technical report at all, the reader is already

operationally familiar with DFT+U, if not DFT+U+J, as a method. Furthermore, the

modifications we present here did not extend to the implementation of the Hubbard

functionals themselves, only the calculation of their parameters. For this reason, rather

than provide an overall review, we train our focus on the linear response determination

of the Hubbard U and Hund’s J in addition to the specifics of how DFT+U+J is

implemented in Abinit. (See Section 3.1). For more information on the formalism

and relative advantages of DFT+U+J method, we redirect the reader to references.

[8, 17, 18, 29, 30, 31, 32, 33, 35, 36].

2.3. Linear Response determination of the Hubbard parameters

In the relevant literature, the Hubbard U parameter for a valence subspace is most

often determined semi-empirically. That is, the parameter space is swept and a U value

chosen for its ability to get a particular DFT-derived property closer to some more

concrete benchmark. Otherwise, the U and J parameters are reappropriated from similar

studies, in perpetual and serial reuse. However, since these parameters are ground state

properties of subspaces described by a particular XC functional (and moreover specific to

code, pseudopotential, and other runtime convergence parameters), they are inherently

non-transferable on the one hand, but also derivable from first-principles on the other.

Following Pickett et al.’s [9] lead, Cococcioni and de Gironcoli picked up and

developed a linear response-based protocol for calculating the Hubbard U in situ [10].

Abinit researcher Donat Adams, alongside Bernard Amadon and Silke Biermann,

developed an Abinit utility, manifested in the PAW formalism, that determines the

strength of the Coulombic repulsion, the Hubbard U, and other metrics via linear

response. Details of this utility can be found in Section 5. The homologous linear

response protocol for the Hund’s J was published by Linscott et al. in 2018 [18], taking

inspiration from the earlier exploration of the same by Himmetoglu et al [12]. We refer

the reader to these articles for the mathematical formalism and theory.

Formulated practicably, the SCF linear response procedure for calculating a scalar

Hubbard U parameter is as follows.

(i) Serially apply several (preferably more than three) small perturbations ±α in equal

magnitude to both the up and down spin channels of the external potential of the

chosen error-afflicted subspace.
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(ii) Once the potential perturbation α is applied to the treated subspace, the charge

occupations on the spin-up n↑ and spin-down n↓ channels of that atom and the

surrounding atoms change in response. The change in occupation as a direct result

of this potential perturbation is nothing more than the non-interacting response

function, χ0, which is harvested here, after the first SCF iteration but before the

density and Hamiltonian are updated to begin a new iteration. Therefore, extract

the up and down subspace occupations of the subspace, n↑
0 and n↓

0, after the first

self-consistency iteration.

(iii) The perturbation is screened, its charge reorganized to compensate for the

disturbance once again until, after the last self-consistent iteration, it reaches an

equilibrium state. At the end of the SCF cycle, then, extract the up and down

subspace occupations, n↑ and n↓. The derivative of this equilibrium occupation

with respect to the perturbation magnitude is the interacting response function, χ.

(iv) Perform a linear (or higher-order polynomial) regression to the collected data sets

and differentiate at α = β = 0.0 eV to find the slopes of the response functions,

χ0 =
d(n↑

0
+n

↓
0
)

dα
and χ = d(n↑+n↓)

dα
.

(v) Insert the response functions into the following equation to acquire U.

U =
dα

d(n↑
0 + n↓

0)
−

dα

d (n↑ + n↓)

= χ−1
0 − χ−1. (12)

The extension to polynomial regressions in step (iv) accounts for the fact that the

response behavior is not always linear. Figure 3 partially demonstrates this for the Ni 3d

orbitals in a ferromagnetically ordered NiO system. Based on the visuals alone, one can

see the data demonstrate a noticeable degree of curvature. The use of a linear regression

on this response is not entirely justified. A system demonstrating exceptionally ill-

behaved linear response, wherein a third-order polynomial or higher would be needed to

accurately fit the data, can be seen in figure 2 of reference [37]. Linearity is expected in

the limit of small perturbations, but this region is not always accessible if one wants to

amplify the signal-to-noise ratio. If the perturbations are too large, one can expect some

non-linear behavior, or even asymmetry across the zero-perturbation axis, particularly

if the system has a shallow energy landscape.

Ideally, U is calculated for a cell of infinite size such that the perturbed subspace

is isolated from its periodic images. Since this is unfeasible computationally, U must

be converged with respect to an increasing number of atoms, ideally organized into a

roughly cubic supercell to isotropically distribute the effect of the perturbation.

The Hund’s coupling J parameter is calculated analogously [18, 29]. Instead

of monitoring the change in total subspace occupancy as a function of the applied

perturbation α, however, Hund’s J monitors changes in magnetization M, or difference

between the up and down spin occupancies (i.e., M = n↑ − n↓), in response to

perturbations ±β applied in positive magnitude to the spin-up potential and in negative
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magnitude to the spin-down potential. Furthermore, the sign convention in the

calculation of J is the opposite of that for the Hubbard U (i.e., a positive J corresponds

to the curvature of the total energy with respect to fractional magnetization, minus its

non-interacting analogue, demonstrating concavity). Formally,

J =
dβ

d (n↑ − n↓)
−

dβ

d(n↑
0 − n↓

0)

= χ−1
M − χ−1

0M
. (13)

NOTE: Equivalency of Unscreened Response Functions for α

and β Perturbations

It is important to note, for verification purposes, that the

unscreened response matrices χ0 and χ0M are equivalent. That

is, for the same material subspace, we can show that χ0 = χ0M .

The proof of this can be found in Appendix A of reference [37].

3. Implementation of DFT+U+J in Abinit

This and following sections are color- and font- coded for clarity. Mutable variables

found in the Abinit input file are displayed in blue code text. Immutable, internal

Abinit variables, functions and subroutines are displayed in orange code text.

3.1. Running DFT+U in Abinit

The DFT+U formalism is built into Abinit’s PAW functionality. As of version 9,

DFT + U and PAW are inseparable in Abinit and its users have no choice but to use

PAW datasets as pseudopotentials when administering a correction via the Hubbard

functionals. Moreover, the Hubbard functional implementation and related utilities in

Abinit are, for the moment, restricted to the case of collinear magnetism (i.e., when

the variable nspinor=1).

When DFT+U and PAW are simultaneously activated, the total energy becomes

EDFT+U = EDFT + Eee −Edc (14)

where EDFT is the standard DFT energy functional, Eee is the electron-electron

interaction energy expanded in equation (1) of reference [8], and Edc is the double-

counting term, which corrects for the interaction already encompassed in EDFT.

DFT+U is activated via the usepawu input variable, a single integer which may

adopt several non-zero values, each corresponding to the treatment of the double-

counting term. If usepawu = 0, DFT+U is unactivated. If usepawu = 1, the double-
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counting term is assessed via the Full Localized Limit formulation proposed by Anisimov

et al. [29], which takes on the following form,

Edc =
U

2
N (N − 1)−

J

2

∑

σ

Nσ (Nσ − 1). (15)

When only the Hubbard U is defined via input variable upawu, the Hund’s J is

assumed to be 0.0, and equation (15) inserted in equation (14) becomes the Dudarev

functional (DFT+Ueff) [31]. When the Hund’s J is set to a non-zero value via

jpawu, equation (15) contributes to a Hubbard corrective protocol sometimes called the

Liechtenstein [35] DFT+U+J functional. Its double-counting expression is derived from

a reference system that assumes the diagonal elements of the diagonalized occupation

matrix are integers. Similarly, this expression is evaluated if usepawu = 4, except

it is done so without spin polarization in the exchange-correlation functional [38]. If

usepawu = 2, the Around Mean Field double counting expression, found in equation

(7) of reference [39], is evaluated. Other options for the usepawu variable exist, which

are related to DMFT and GW methods. For the standard DFT protocol with Hubbard

corrections, use usepawu = 1, the Full Localized Limit.

Declaration of the usepawu compels Abinit to read three more input values: lpawu,

upawu and jpawu. The variable lpawu accepts an array of integers of length ntypat (the

number of types of atoms) to determine on which atomic subspaces we will apply U and

J values. If lpawu is negative, no Hubbard parameters are applied. If lpawu is positive,

Abinit will apply a Hubbard U and Hund’s J to the atomic subspace indexed by the

angular quantum number of the subspace (e.g., lpawu = 2 applies it to d orbitals, lpawu

= 3 to f orbitals). The U and J can be applied to any orbitals, including s orbitals.

The variables upawu and jpawu, subsequently, define respectively the Hubbard U and

Hund’s J parameters to be applied to those subspaces. By default, upawu and jpawu

are read in atomic units but can be specified in other units of energy, notably eV.

Optional variables for Abinit’s DFT+U implementation include usedmatpu and

dmatpawu, which work together to allow the user to propose an initial density matrix

to facilitate Abinit in finding the DFT+U ground state.

3.1.1. Mixing Schemes Abinit provides two mixing schemes: one that mixes the po-

tential and one that mixes the density. Both are available in the PAW implementation,

and both prove to perform equally well in efficiently achieving self-consistency (density

mixing slightly outperforms potential mixing). However, density mixing is preferable

when using PAW because of the degrees of freedom added to the electronic density via

the pseudovalence density and the compensation charge density, the latter of which is

directly related to the PAW occupation matrix. From reference [3]:

“When potential mixing is activated, all parts of the total energy are computed at

the same time; the total energy is thus variational with respect to the self-consistent

cycle step. When density mixing is activated, parts of total energy are computed at vari-
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ous stages of the cycle which results in a behavior of total energy that is not variational.”

The new density is computed, mixed with previous densities, then used to update

the energy total alongside other contributions that are not all updated at the same

place in the SCF cycle. Inside PAW, the on-site density matrix ρij , defined explicitly

in reference [7], is updated at the same level as the electronic density ñ + n̂, and is

then mixed at that level. Therefore, the Dij which is a potential term in PAW, is left

unmixed by default [7].

Density mixing is the default for Abinit under the PAW protocol (iscf = 17),

specifically via the Pulay mixing algorithm [40], which was developed in 1980 as an

efficient method of accelerating convergence of iterative sequences. Pulay mixing is

used to mix ρOUT
j and the residual density ρOUT

j − ρjIN in the following iterative update

of the density,

ρINi+1 = ρi+
mix
j≤i [ρ

OUT
j , P (k) ∗ (ρOUT

j − ρjIN)], (16)

where P (k) is a preconditioning factor corresponding to wavevector k, applied to the

residual density ρOUT
j − ρjIN of the prior iterations. This preconditioning factor is

defined, by default, as the inverse of the model dielectric matrix

P (k) = ǫ−1(k) = diemix ∗
diemac−1 + (dielng ∗ k)2

1 + (dielng ∗ k)2
(17)

where diemix is the dielectric mixing constant, set to 0.7 by default for PAW calculations

and 0.45 for linear response calculations; diemac is the model dielectric macroscopic

mixing constant, which is typically very large for metals and around 10 for insulators.

(dielng is a fine-tuning parameter). The variable iprcell can select the function used

to define the preconditioning factor.

The dielectric mixing constant diemix, and its magnetic analog diemixmag, is

applied to the first SCF density after the α (β) perturbation is applied but before the

on-site orbital occupations (magnetizations) are calculated. This means that diemix

(diemixmag) inadvertently scales the potential perturbation of the unscreened response

matrix χ0 (χ0M) in the determination of the Hubbard U (Hund’s J) parameter. To

counteract this, therefore, we must use the value of diemix (diemixmag) to unscale χ0

(χ0M) in the Hubbard U (Hund’s J) data-processing step. Based on a series of tests,

we can say conclusively that changing diemixmag does not influence the Hubbard U

parameter, and analogously, changing diemix does not influence the Hund’s J.

4. Determination of the Hubbard parameters in situ in Abinit

There are two ways to determine the Hubbard parameters in situ with Abinit: linear

response (lrUJ or UJdet), or cRPA. The cRPA protocol is beyond the scope of the

present article, but the interested reader may take a look at the cRPA Abinit tutorial

in addition to references [41, 42] to get started.

https://docs.abinit.org/tutorial/ucalc_crpa/
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UJdet lrUJ

1 Embedded in Abinit core routine Post-processor

2 Two-point linear regression
3+ point polynomial (variable degree)

regression

3

χ and χ0 responses treated as matrices;

interatomic response monitored; matrices

augmented by total system charge

χ and χ0 responses treated as scalars

4 Supercell extrapolation scheme RMS Error analysis

5
Atomic Sphere Approximation projector

extensions/normalizations

Outputs *LRUJ.nc NetCDF files with details of

perturbative run

Table 1: Comparison of preserved and renovated Abinit linear response functionalities.

Prior to Abinit version 9.9, only the UJdet internal and post-processing utilities

existed as a means of calculating the Hubbard parameters via linear response in Abinit.

In 2022, users alerted Abinit to some inconsistencies in its implementation. These

inconsistencies are explained in appendix 5. For technical reasons, however, these issues

could not be easily remedied, and the decision was taken to decommission the UJdet

post-processing utility and to renovate its internal functionality.

As of version 9.10, the Abinit DFT suite is equipped with both the renovated

UJdet utility in addition to a new post-processing tool, the Linear Response U(J) (lrUJ)

utility, which is built upon the same core UJdet programming. Most of UJdet’s data

processing functionalities have been preserved throughout this renovation. However,

we emphasize that the functionalities of UJdet and lrUJ serve distinct purposes and

implement different levels of theory, which we discuss further in the following sections.

Although older versions of Abinit preserve the UJdet deprecated internal functions

and post-processing utility, their use is strongly disadvised for the reasons outlined in

appendix 5.

4.1. Clarification of available linear response utilities

The primary differences between the lrUJ and UJdet as implemented in current versions

of Abinit are outlined in table 1.

As mentioned in Item (2) of table 1, the most obvious difference between UJdet and

lrUJ is the number of data points used to compute a linear regression of the response

functions χ and χ0. The UJdet utility uses only two points: the unperturbed case—in

which the perturbation applied is zero and the subspace occupations are those of the

ground state—and one perturbed case, in which the potential perturbation is equal in

magnitude to the value of input variable pawujv.

By contrast, the lrUJ utility requires, at minimum, three data points (one

unperturbed case and at least two perturbations) to conduct a distinct regression
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Figure 3: Example of the linear response procedure conducted using the now outdated

rendition of UJdet in Abinit version 9.6.2, to find Hund’s J for Ni 3d orbitals on

ferromagnetically ordered NiO [43]. Data points are raw perturbation-occupancy pairs

output by Abinit categorized according to their place in the calculation queue; that

is, the SCF calculation involving the first (1st) β perturbation is represented by green

circles, and the SCF calculation of the second (2nd) β perturbation is represented by

tan diamonds. Open markers indicate unscreened response and filled markers indicate

screened response. The screened response χ relaxes to the same value regardless of its

status as first or second calculation. The unscreened responses, however, are different

depending on which perturbation is applied first. This contributes to J parameters

differing, in this case, by several eV. Orange lines are polynomial regressions (dashed

for first-order polynomial, solid for second-order polynomial) of each set of data.

analysis. With n data points, the lrUJ utility computes not only a linear regression

of the response functions χ and χ0, but all polynomial regressions up to degree n − 2.

Furthermore, the lrUJ utility conducts RMS error analysis on the fits and factors that

into an approximative RMS error on the resulting Hubbard parameters.
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NOTE: Insufficiency of two-point regression

Adequate sampling of the N(α) (in the case of the Hubbard

U) or M(β) (for the Hund’s J) terrains is crucial. It is

arguable that the two-point interpolation scheme implemented

in the Abinit UJdet utility, as demonstrated by the difference

taken in equations (40) and (41), is insufficient in terms of

sampling. Furthermore, no insight into the regression error may

be achieved using a two-point regression. For this reason, the

authors recommend performing multiple perturbations.

NOTE: Using a supercell

All atoms in the unit cell of a bulk material are bound to each

other by symmetry. Altering the subspace potential and/or

occupations of one atom will alter the subspaces potentials of

the other symmetry-related atoms of the same species, both

inside the explicitly defined cell and among their mirror images.

This ripple effect is counterproductive to the perturbation

cardinal to linear response; the occupancy of the perturbed

subspace must be allowed to evolve separately to both its mirror

images and other atoms of the same species.

To ensure that Abinit isolates the perturbed atom from

its mirror images, there’s really only one option: perform

linear response on the biggest supercell possible. It’s not

ideal, and protocols have been implemented to approximatively

circumvent this requisite (such as the supercell extrapolation

scheme). However, the authors here suggest performing linear

response on an actual supercell of the material.

Another crucial difference between the two utilities is Item (3) in table 1: the

UJdet utility treats the response functions as matrices, whereas the lrUJ utility treats

them as scalars. This means that the UJdet Hubbard parameters are, to some degree,

informed by the Hubbard interactions on and between the other atomic subspaces of

the system as well as the total charge bath. The protocol is expanded upon in reference

[44], wherein an extrapolation scheme aiming to accelerate the determination of the

Hubbard parameters is proposed. This scheme involves (a) augmenting the response

matrices (collecting the response functions while moving the site of perturbation) with

the negative of their total response to enforce charge neutrality, and (b) capitalizing on

the assumption that the occupancy response to the potential perturbation attenuates

for atoms further away from the site of the perturbation [10].
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By contrast, the lrUJ utility provides the scalar Hubbard parameters, informed only

by the change in occupancy on the perturbed subspace. This parameter is functionally

sufficient for corrective application to that subspace. For all other purposes, it can be

said that lrUJ offers a simplified data processing procedure to that of UJdet, provided

that the user commits to more than three LR data points (i.e., at least two separate

DFT runs). By design, these data points can be run in parallel, and so the use of the

lrUJ utility over the UJdet utility is strongly encouraged.

4.2. Running Linear Response with lrUJ

The explanation that follows is a more detailed version of the corresponding Abinit

tutorial. The linear response procedure can be carried out in three steps:

1. Run a ground state Abinit calculation of your supercell to generate WFK files.

2. Run a series of perturbative Abinit calculations to generate LRUJ.nc files.

3. Execute the lrUJ post-processing utility.

4.2.1. Ground state calculation and generation of WFK files We need to establish a

ground state system whose subspace potential we can perturb. For all intents and

purposes, this should be your ordinary DFT calculation, aside from a few minor

modifications to the input file.

NOTE: Which atom should be perturbed?

The short answer is, any atom, at least for lrUJ. If you

wish to avail of the UJdet functionalities such as the supercell

extrapolation scheme, the atom on which you intend to apply

the linear response perturbation MUST be the first atom listed

in xred. See Section 4.3.4 for more details.

First, we specify as a separate species the atom whose subspace we wish to apply

a potential perturbation. This will alert Abinit that we want to allow the perturbed

subspace to vary its external potential independently to its kin atoms in the cell. To this

end, we increase ntypat by 1 and adjust the parameters typat, znucl, lpawu, upawu,

jpawu, pseudos, and all other variables dependent on ntypat, to reflect that change.

This will remain true for Step (2), as well.

https://docs.abinit.org/tutorial/lruj/
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NOTE: Another way to break symmetries

By specifying the perturbed atom as a separate species, Abinit

will only harvest the changes in occupation of the perturbed

atom. This information is sufficient for the lrUJ procedure, but

not for UJdet. To avail of the supercell extrapolation technique,

you will need to set the symmetry relations, symrel, explicitly.

The symmetry relations are specified in terms of 3× 3 matrices,

and they represent in some form the Wyckoff positions of the

atoms. Making these explicit in the input will tell Abinit

that (a) the perturbed atom should vary independently to

its kin, and (b) it should still collect occupation information

for all atoms containing the subspace to be treated, not just

that of the perturbed atom. The UJdet utility then uses these

interatomic response matrix elements to inform its Hubbard

parameters.

You can generate these symmetries in a separate run, wherein

you specify the atom upon which the perturbation is to be

applied as a different species, in the same way described in

this lrUJ tutorial. From the output, you read the number of

symmetries (nsym), the symmetry operations (symrel), and the

translation vectors (tnons).

In what follows, we assume that the input U and J values are zero. To do this,

you can either set all values in upawu and jpawu to 0.0, or you can simply deactivate

DFT+U by setting usepawu=0. Crucially, make sure prtwf is set to 1 so that the WFK

file is printed.

Once you have all aspects of your ground state run assembled, launch Abinit with

the input file to acquire your WFK file.

4.2.2. Perturbative calculations and generation of LRUJ.nc files Once we have our

reference wavefunctions, we can start the linear response procedure. We will take

advantage of Abinit’s dataset functionality to iteratively apply perturbations of varying

strength to our chosen subspace. For now, we describe the input variables needed to

perform one such perturbation.

Building on top of the input file used in Section 4.2.1, we further activate

linear response with one input parameter: macro uj. This parameter’s integer value,

in combination with the value nsppol (the number of independent spin channels),

determines how the local potential perturbation is applied and the subsequent changes

in occupancy harvested. These options are organized in table 2. The options macro uj

= 1 and nsppol = 1 represent the non-spin-polarized case, where total occupations
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Possible Combinations

macro uj 1 2 3 4

nsppol 1 2 2 2 2

Parameter Hubbard U Hund’s J

Perturbation

applied to:
α on both spin ↑ and spin ↓

α on

spin ↑

α on

spin ↑

+β on spin ↑;

−β on spin ↓

Response

monitored on:
spin ↑ + spin ↓ spin ↑ spin ↓ spin ↑ − spin ↓

Table 2: Variables macro uj and nspden combinations available in Abinit and their

corresponding Hubbard parameter.

are double those of one spin channel. Importantly, note that both UJdet and lrUJ

are implemented exclusively for the non-collinear case as the linear response theory

governing its implementation requires further consideration [45, 46].

It is worth highlighting that the J calculated here using macro uj=3 and nsppol=2

is not the Hund’s J parameter. For the purposes of calculating U, we rely primarily

on macro uj=1 and nsppol=2. This setting will apply the same potential shift to both

the up and down spin channels and monitor the occupancy response on the sum of

occupancies on those same spin channels.

The strength of the perturbation is determined by pawujv. The default units for this

variable are Hartree, but other units (notably eV) may also be specified. The variable

pawujat, a single integer, specifies the atom number (the atom coordinate index listed

under xred or xcart) on which the perturbation is to be applied. Make sure this is the

same atom specified as a separate species in generating the WFK file in Step 1.

NOTE: Reading in the right WFK file

The default settings adopted when macro uj is non-zero are

tolvrs=1d-8 and irdwfk=1. The former dictates the tolerance

on the potential residual (i.e., the difference between the input

and output potentials pertaining to a particular SCF iteration).

With the latter, Abinit is instructed to read in the WFK

files for a prior run, given the files are named according to

a specific convention. Alternatively, we can specify the WFK

file and its path by name. To do this, set the variable

getwfk filepath="</path2file/filename WFK>".

The input parameter named dmatpuopt, of which there are four options, selects

the expression with which the density matrix elements for each subspace are calculated

using PAW projectors. These options are discussed in Section 4.3.2, and we refer the
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reader to reference [37] for a comprehensive evaluation of the influence of this variable

on the Hubbard parameters.

Lastly, to have the UJdet internal functions print out a verbose level of information

as it completes its routine, the variable pawprtvol should be set to -3. To further

manage the print volume, set prtvol as needed.

In changing only these variables, we set up only one perturbative calculation. This is

sufficient to avail of the UJdet utility functionalities, which require only two data points

as discussed above. However, in many, if not all, cases, one perturbation is inadequate

to compute a good regression of the linear response data, and no error analysis can be

conducted thereof.

For this reason, we will need to conduct several (at minimum two, although the

more, the better) perturbative calculations. We will take advantage of Abinit’s dataset

function to get our system to iteratively undergo n perturbations by setting ndtset to

n and then specifying which perturbation strengths pawujv1, pawujv2, ... , pawujvn

we would like to apply. Once completed, launch the run.

Once the datasets have converged, your directory will have n files with the suffix

LRUJ.nc. These files, which are NetCDF binaries, contain all the internal information

pertaining to the perturbations undergone. The lrUJ utility will read in a series of these

files and harvest the necessary information to calculate the selected Hubbard parameter.

Developer’s Note: Info in LRUJ.nc file

For those considering development on the lrUJ utility, the

internal variables stored in the LRUJ.nc files are as follows: nnat,

natom, ndtpawuj, nspden, nsppol, usepaw, macro uj, pawujat,

dmatpuopt, diemix, diemixmag, ph0phiint, uj pert, luocc.

In the Abinit output file, all information related to the two-point calculation of

the scalar Hubbard parameter and all information regarding the UJdet functionalities

(completed once for every dataset) can be found between the “calculate U, (J)” flags.

An annotated example of the standard, scalar Hubbard parameter output, in addition

to the output of the supercell extrapolation scheme from UJdet, comprises figure 4.

4.2.3. Execution of the lrUJ post-processing utility Once the LRUJ.nc files are printed,

execute the lrUJ post-processing utility with the following command.

lruj * LRUJ.nc > lruj.out

It should take less than a second to run. If the lrUJ utility runs successfully, the

resulting output file, lruj.out, should resemble that shown in figure 5. The calculation

shown looks at the Hund’s J parameter (macro uj=4) using results from 6 perturbations,

the strengths of which are listed in the first table alongside the corresponding subspace

magnetizations, both unscreened (for χ0M) and screened (for χM).
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Figure 4: Generic output of the two-point Hubbard parameter determination functions,

found in the Abinit output file (typically with suffix .abo) for a linear response DFT

run. Output for the Hubbard U is shown here. In the case of a Hund’s J calculation

(obtained with macro uj=4), the labels referencing U, alpha, and Occupations will

be replaced by J, beta, and Magnetizations, respectively. The unscreened response

Chi0, as printed, is treated with diemix (see Sections 3.1.1 and 4.2.4 for clarification).

Explanation of the UJdet supercell extrapolation output written to .abo file. See Section

4.3.4 for more information regarding the intrinsic variables. Note that the small unit

cell used here is only for illustrative purposes and will not yield converged (scalar or

matrix) parameters.
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Figure 5: Output of the lrUJ post-processing utility for the Hund’s J parameter, having

requested a maximum polynomial degree of 5 via command line. Note that this output

is from Abinit Version 9.10.5 and so contains erroneous HP RMS errors in column 7.

See Section 4.3.5 for more details.

The last table gives the values for χ0 (χ0M), χ (χM), the Hubbard U (J), and their

RMS errors in units of eV, for all polynomial regressions up to degree 3 (cubic), by

default. One has the option to calculate higher-order polynomials, up to degree n − 2

for n points. This is done by appending the degree option --d <maximum degree > to

the command line. For example, for the example calculation with 7 data points, one

can bash

lruj *LRUJ.nc --d 5 > lruj d5.out

to get parameters and errors corresponding to all polynomials of order 1 through 5, as

shown in figure 5. Other command line options for the lrUJ utility include --version

and --help.

The values in eV of the Hund’s J parameter according to each regression are found in

column four. To assess which one is best, you’ll want to use the RMS errors in column

seven (more information on how the error analysis is conducted in Section 4.3.5) in

addition to the visual behavior of the linear response, which can and should be plotted

(see Section 4.2.4), particularly if the RMS errors seem unusually large.
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NOTE: Polynomial order in lrUJ

The lrUJ utility is programmed to only calculate polynomials

up to degree n – 2 for n data points, a conservative measure

implemented to avoid spurious overfitting effects. By default,

then, if one reads in only two LRUJ.nc files, the maximum

polynomial regression conducted will be linear; three LRUJ.nc

files means maximum degree is quadratic, and so on, up to degree

3 (cubic). If higher polynomial order regressions are needed, and

the number of data points suffices, then use the --d <maximum

degree > command line option to maximum degree.

At the very end of the lrUJ output file, information handy for plotting, such as the

coefficients of the polynomial regression formulae, is printed in YAML format.

4.2.4. Visualization of linear response data from Abinit Particular care must be taken

when plotting the linear response data coming from Abinit. The lrUJ and UJdet

implementations both print out the raw data, meaning that the unscreened occupations

(magnetizations) have not yet been scaled by the mixing constant diemix (diemixmag),

as is necessary based on the conclusions of Section 3.1.1. If one were to directly plot this

raw data, the plot would show a slope that does not match the χ0 printed in the output

file. To avoid this, we must perform a transformation on the data points, the form of

which will be shown in the following proof. We assume a Hubbard U determination as

an example proof, but the same deductions follow for the Hund’s J parameter.

We will refer to the data set of unscreened occupations as N0, to which some

polynomial function of the perturbation strength α is fitted, producing a regression

function N0(α). The unscreened response function is defined as

χ0 =
1

θ

dN0

dα

∣∣∣∣
α=0

(18)

where θ =diemix. In order to plot the unscreened response data with a function p(α)

set such that χ0 is shown with its θ-corrected slope at the zero-perturbation axis, we

perform the following multiplicative transformation on N0(α),

p(α) = γ ·N0(α) + c (19)

where γ and c are constants. The mandatory criterion governing the shape of p(α)

is

dp

dα

∣∣∣∣
α=0

= χ0. (20)

It follows from equations (18), (19) and (20) that
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Figure 6: Linear response Hund’s J plot demonstrating the necessary transformation

of the raw Abinit unscreened data to account for the mixing constant diemixmag (or

diemix in the case of the Hubbard U). The example data used here is the same as that

of figure 5, which is more aptly fitted with a degree 3 (cubic) polynomial as opposed

to a linear function. The cubic fits are shown in the main figure, and the linear fits for

the same data are shown in the upper right inset for qualitative comparison. The p(β)

function takes the same form as equation (27), noting that we substitute M0 for N0 and

β for α to accommodate the Hund’s J as opposed to the Hubbard U.

dp

dα

∣∣∣∣
α=0

= γ
dN0

dα

∣∣∣∣
α=0

(21)

= χ0 (22)

⇒ γ θ χ0 = χ0 (23)

∴ γ =
1

θ
(24)

In order to find the second constant c, we impose a secondary criterion on the shape

of p(α) to ensure that p(0) = N0(0). This leads to
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p(0) =
N0(0)

θ
+ c = N0(0) (25)

∴ c =
N0(0) (θ − 1)

θ
(26)

Thus,

p(α) =
1

θ
(N0(α) +N0(0) (θ − 1)) . (27)

As mentioned earlier, the same conclusion can be reached assuming a β perturbation

coupled with diemixmag as θ for the Hund’s J parameter. Figure 6 demonstrates such

a transformation for the raw Hund’s J lrUJ data shown in figure 5.

One can customize the mixing constant-corrected linear response plot by importing

the perturbation/occupation table into one’s choice graphical utility. Plot the screened

occupations as they are printed; for the unscreened occupations, plot the function in

equation (27). Figure 6, for example, was generated with Mathematica.

4.2.5. What AbiPy can do with a lrUJ output file This mixing constant-corrected linear

response plot can be easily generated through the AbiPy python package; its version

0.9.7 is able to read in results from one’s chosen lruj.out output file and visualize

its results. To avail of this functionality, educe a python script in the same directory

as that containing your lruj.out output. Begin the python script by importing the

LrujResults function from the AbiPy package:

#/usr/bin/env python

from abipy.electrons.lruj import LrujResults

Import the lruj.out file using the following line.

lr = LrujResults.from file("path to file /lruj.out")

The plot function may then be summoned with

lr.plot(ax, degrees, inset, insetdegree, insetlocale, ptcolor0,

ptcolor, gradcolor1, gradcolor2, ptitle, fontsize )

where the arguments listed in blue are keywords to tailor particular characteristics of

the ensuing plot. These options are described in more detail in table 3.

Other AbiPy tools to better accommodate the linear response process inAbinit are

currently in the works. For example, under development is a suite of functions that aim

to facilitate visualization of the convergence of the Hubbard parameters with respect to

supercell size. Keep an eye on forthcoming releases of AbiPy for such developments.

https://abinit.github.io/abipy/index.html
https://abinit.github.io/abipy/index.html
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LrujResults plot utility optional arguments

Argument Default Other Options Description

ax None ax

Optional axes argument. If
None, a new plot is generated.
If ax, the figure without the
axes is returned. Useful for
generation of a grid of plots.

degrees "all"

List of integers i such

that 0 < i < maximum

degree

Degrees of polynomial
regressions to be included in
the plot, provided as a Python
list of integers (e.g., [1, 2, 3]).
The maximum integer allowed
is maximum degree, which is
read in via the lruj.out
output file

inset True False

Option to print inset with
response information (i.e.,
values of χ0, χ, the Hubbard
parameter and their respective
errors in units of eV). If True,
information is printed for the
linear regression case in the
lower left corner of the plot
(by default; see insetdegree
and insetlocale options to
tailor). If False, no inset is
included.

insetdegree 1 Any integer ∈ degrees
Polynomial degree of printed
response information
appearing in inset.

insetlocale
"lower

left"

"upper right", "center

left", "lower center",

"center", corresponding

integers 0-10, etc.

Position of inset containing
response information in
standard format for
matplotlib legend locations.
See
matplotlib documentation
for all options.

ptcolor0 "k"

"r", "blue", "FF6E42",

(0.1,0.9,0.54), "0.75",

etc.

Color of unscreened response
data point markers in any
standard matplotlib color
format (see
matplotlib documentation
for all formatting options.
Default color is black.
Markers themselves are open
circles + (immutably so, for
now).

https://matplotlib.org/2.0.2/api/colors_api.html
https://matplotlib.org/2.0.2/api/colors_api.html
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ptcolor "k"

"r", "blue", "FF6E42",

(0.1,0.9,0.54), "0.75",

etc.

Color of screened response
data point markers in any
standard matplotlib color
format (see
matplotlib documentation
for all formatting options.
Default color is black.
Markers themselves are filled
circles ○ (immutably so, for
now).

gradcolor1 "#3575D5"
Hexadecimal (HEX) code

for any color

Line color of the lowest
polynomial degree to be
plotted (i.e., the smallest
integer input via degrees
argument). This color, in
addition to that of
gradcolor2 will inform the
line colors of the intermediate
polynomial degrees in a linear
gradient fashion. Must be
entered as a HEX code (six
characters preceded by a ‘#’).
The default color is dark blue.

gradcolor2 "#FDAE7B"
Hexadecimal (HEX) code

for any color

Line color of the highest
polynomial degree to be
plotted (i.e., the largest
integer input via degrees
argument). Must be entered
as a Hex code (six characters
preceded by a ‘#’). The
default color is salmon pink.

ptitle

"Linear

Response

for atom

<pawujat >"

Any string
Title of plot. Incorporates
input value of pawujat by
default. For no title, put "".

fontsize 12 Any integer > 0 Font size in point (pt) units of
the plot legend.

Table 3: Optional arguments and their possible values available in the plot function

implemented in the LrujResults function of the AbiPy package.

4.3. Internal workings of the Abinit U(J) determination procedures

In this section, we describe in detail the algorithm Abinit undergoes to conduct

linear response calculations. While sufficient as a launchpad for future developers of

the program, this description is primarily intended to provide Abinit users with a

more transparent understanding of the linear response operations and their connection

with the objects printed in the output files. We follow the internal variables as

they undergo transformations and transfer relevant information, monitoring how the

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html
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potential perturbations render occupancy responsesrender Hubbard parameters through

the lrUJ post-processor. For ease of reference, we use the language intrinsic to Abinit,

referencing variables, functions, subroutines, modules and programs as they are in the

Abinit source code.

4.3.1. Application of perturbation Say we launch an Abinit run in which we seek to

determine a Hubbard parameter for subspace nℓU by perturbing the potential of atom

pawujat by a strength pawujv.

After the variables are read from the input file and the ground state driver

is activated, the non-zero macro uj flag sets off the self-consistent cycle driven by

pawuj drive. Here, the strength of the perturbation pawujv is read and stored in

a matrix called atvshift—a nsppol × (2 ∗ ℓU + 1) array—according to the type of

perturbation incited via the value of macro uj. (For example, for the Hubbard U on a

3d subspace, atvshift will be a 2×5 matrix in which all elements are equal to +pawujv.

Alternatively, for the Hund’s J parameter, the second row of atvshift, representing the

spin-down channel, will be set equal to -pawujv, keeping the first row equal to +pawujv.)

Following this, the PAW density is initialized and the unperturbed occupancy matrix

calculated, diagonalized, and printed. Here is where the first linear response data point,

corresponding to the unperturbed ground state read-in via the WFK file, is collected.

The collection occurs in subroutine pawuj red. More information on how and what

information is collected is described in Section 4.3.3.

It is important to note that at this point in the code, the density (and thus the

potential) is mixed according to the mixing scheme outlined in Section 3.1.1. This means

that the potential perturbation applied in the first iteration of the SCF cycle will be

scaled by the value of diemix, which is equal to 0.45 by default when macro uj>0. We

must accordingly descale the unscreened response function χ0 when the time comes.

The program then calls subroutine pawdij. This is where the program computes

the pseudopotential strengths Dij of the non-local Hamiltonian operator. The potential

HPAW = −
1

2
∆ + ν̃eff +

∑

ij

|p̃i〉
(
D̂ij +D1

ij − D̃1
ij

)
〈p̃j | (28)

Here, -1
2
∆ is the kinetic energy operator and ν̃eff is the effective one-electron potential

written in the PAW formalism. As in Section 2.1, the indices i, j refer to congruent but

distinct sets of four indices: {t, ℓ,mℓ, n}. The non-local part of the Hamiltonian mirrors

the PAW energy,

E = Ê + E1 − Ẽ1 (29)

such that D̂ij = ∂Ê/∂ρij is the derivative of the PAW pseudized energy with respect

to the density. Similarly, D1
ij = ∂E1/∂ρij and D̃1

ij = ∂Ẽ1/∂ρij , where E
1 and Ẽ1 are,

respectively, the all-electron and pseudized on-site energies.

Implementing this formalism in Abinit requires categorization of these terms into

those calculated outside the SCF loop and those calculated within the SCF loop. For
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a more detailed derivation of this, see reference [7]. For now, and for our purposes,

it suffices to note that the pseudopotential strengths Dij of the non-local Hamiltonian

operator for each spin channel are calculated inside Abinit as the following sum of

terms,

Dij = D0
ij + D̂ij +DH

ij +Dxc
ij +DU

ij, (30)

where DU
ij is the term to which the α perturbation is applied, and D0

ij, D
H
ij , and D

xc
ij are,

respectively, the atomic, Hartree, and exchange-correlation components, all of which are

functionals of the density [7]. In the Abinit source code, this matrix is named dijpawu.

Inside the pawdij driver, a loop over all atoms in the cell is induced, within

which the subroutine pawdiju is summoned. Here, matrix dijpawu is defined as a

function of the spin channel (either 1 or 2 for up or down, respectively) and of the

matrix indices, which enumerate the non-core electrons by systematically combining

the principle quantum number n, angular quantum number l, the magnetic quantum

number ml, the PAW projector index n, and the location in the matrix. In other words,

the 2-dimensional matrix across all sub-indices pertaining to i and j is unfolded into a

one-dimensional vector.

As an example of how this works, consider the case in which we apply a perturbation

α to the spin-up 3d orbital of Ni. Say, we use a PAW dataset for Ni that has two partial

waves to describe both the p and d orbitals, but only one plane wave for s orbitals,

and freezes a core containing all orbitals with n ≤ 2. For one spin channel on one

atom, we are left with 18 combinations of quantum numbers n > 2, l, ml and PAW

projector n (the 4s orbital of Ni contributing 2 electrons × 1 partial wave = 2 elements,

and the 3d orbital contributing 8 electrons × 2 partial waves = 16 elements). So,

the matrix dijpawu for each spin channel is 18 × 18, yielding 324 matrix elements.

However, the pseudopotential strengths are symmetric across the diagonal (i.e., element

ij = element ji); to save memory and time, Abinit computes the upper right triangular

matrix elements only (a total of 171 in our Ni example). The matrix elements are thus

enumerated from 1 to 171 starting from the upper left and reading left to right, top to

bottom.

The DU
ij matrix elements themselves are found to be

dijpawu = 〈φni
|P ti

mm′ |φnj
〉 ∗ V σ,U

mimj
. (31)

Here, P ti
mm′ is the AE projection operator acting on the radial parts of the PAW

AE basis functions φn. This term is discussed in detail in Section 4.3.2. Furthermore,

the term V σ,U
mimj

comprises a homogeneous potential V σ,U across all mi for a particular

subspace and, if appropriate, the perturbation:

V σ,U
mimj

=

{
V σ,U mi 6= mj

V σ,U + fatvshift ∗ atvshift(σ,mi) mi = mj .
(32)
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The term fatvshift is vestigial from prior versions of the UJdet implementation,

where a loop over values fatvshift=1 and fatvshift=-1 corresponded to the positively

and negatively valued perturbations of strength pawujv. (Now, fatvshift=1 only). If

pawprtvol=3 in the input file, the entire dijpawu matrix will be printed in the .log

file for all spin channels and all atoms, where one can verify that the perturbation is,

indeed, being applied here. Here ends the subroutine pawdiju, which returns dijpawu

for each spin channel. Back in pawdij, dijpawu is added via matrix addition to all

other pseudopotential strength matrices to calculate the total Dij in accordance with

equation (30).

4.3.2. Calculation of orbital occupancies via dmatpuopt Calculation of the occupancy

matrix, or more precisely choice of the projection operator, is dictated by the input

variable dmatpuopt, which may take on values one through four. More information on

this topic can be found in references [8, 37, 47]. Briefly, subspace occupancies in the

PAW formalism may be calculated using the AE projection operator P ti
mm′ via

ntiσ
mm′ =

∑

ij

ρσ
ij
〈φni

|P ti
mm′ |φnj

〉, (33)

where φn are the radial parts of the PAW AE basis functions, and the density matrix

inside the PAW augmentation region is

ρσ
ij
=

∑

k,v

fσ
kv〈Ψ̃

σ
kv|p̃i〉〈p̃j|Ψ̃

σ
kv〉. (34)

When dmatpuopt=1, occupations are projections on bound state atomic orbitals

φ0,

nti,σ
m,m′ =

∑

ij

ρσ
ij
〈φni

|φ0〉
〈
φ0

∣∣φnj

〉
. (35)

The Abinit documentation for this variable is clear that the dmatpuopt=1 option

must be accompanied by a PAW dataset wherein the first atomic wavefunction of

the correlated subspace (that which is set to φ0 in Abinit) is a normalized atomic

eigenfunction. To determine if a particular PAW dataset meets this criterion, one must

refer to the documentation of its generator.

We are able to reasonably infer, based on the atompaw user guide in addition to

reference [20], that PAW datasets generated by atompaw will always feature a normalized

atomic eigenfunction as the first atomic wavefunction of an atomic dataset. Step 4

on Page 2 of reference [20] states clearly that atompaw mandates the use of “atomic

eigenfunctions related to valence electrons (bound states)” as the partial waves included

in the PAW basis. Therefore, all PAW datasets generated by atompaw, including

the JTH sets listed on PseudoDojo [27], list atomic eigenfunctions as the first atomic

wavefunctions of the correlated subspace. The normalization, however, depends on the

pseudo partial wave generation scheme. atompaw provides two options for this scheme:

https://users.wfu.edu/natalie/papers/pwpaw/atompaw-usersguide-MarcTorrent.pdf
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the Vanderbilt or the Blöchl. Based on the descriptions of these schemes in Sections 1.1

and 1.2 of reference [21] and an Abinit forum response in 2016, normalization of the

pseudized basis functions and their corresponding projectors is guaranteed only under

the Vanderbilt scheme. The JTH table of PAW datasets, available on the PseudoDojo

website, therefore matches all criteria as a suitable dataset with which one may use

dmatpuopt=1.

Because the PAW datasets most readily available for widespread use do not

necessarily fulfill these criterion, dmatpuopt=2 is established as the default setting. With

dmatpuopt=2, occupations are proportional to projections of atomic orbitals onto each

other,

nti,σ
m,m′ =

∑

ij

ρσ
ij

〈
φni

∣∣φnj

〉
. (36)

Equation (36) corresponds to a projection operator of form

P ti
mm′(r, r

′) = 1◦(r)δ(|r
′ −Ri| − |r−Ri|)× Yℓm(r̂)Y

∗
ℓm′(r̂

′),

where δ is the Dirac-Delta function that effectively “counts” spatial overlap, 1◦ (r) is a

step function equal to unity when r is inside the augmentation region and zero elsewhere,

and Yℓm are the spherical harmonics.

When dmatpuopt=3 or 4,

nti,σ
m,m′ = N (2−dmatpuopt)

0

∑

ij

ρσ
ij
〈φni

|φ0〉〈φ0|φnj
〉, (37)

where N is a normalization constant representing the overlap between the bound state

atomic eigenfunctions inside the augmentation sphere, delimited by cutoff radius rc,

N =

∫ rc

0

φ2
0 dr. (38)

The value is computed in subroutine pawpuxinit and printed in the log file as

ph0phiint(1). When dmatpuopt=4, N is squared in the denominator.

An evaluation of the effect of the choice of dmatpuopt on the magnitude of the

Hubbard parameters can be found in reference [37].

4.3.3. Extraction of changes in occupation matrix The outer SCF loop, declared in

pawuj drive, continues after the perturbation is applied; the loop symmetrizes and

prints Dij . If macro uj>0, a subroutine labeled pawuj red is called. The subroutine

generates the mesh that directly associates the strength of the perturbation (translated

from atvshift to a shorter variable called vsh), and the corresponding change in

occupancy, called occ. This information, along with the atom and spin indices, are

saved in a type called dtpawuj, which is made accessible to the internal UJdet and

lrUJ functions after the SCF cycle. The occupancy is calculated as the trace of the

occupancy matrix nti,σ
m,m′ discussed in Section 4.3.2,

https://forum.abinit.org/viewtopic.php?f=9&t=3335&p=10247&hilit=dmatpuopt#p10247
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occ(ti, σ) = Tr[nti,σ

m,m′ ] ∗ (3− nspden). (39)

The factor (3−nspden) accounts for the occupation of two spin channels on a single

atom if and only if we do not distinguish between the up and down spin channels. See

table 2 for clarity.

The SCF iteration concludes by calling the subroutines associated with updating the

density and the Hamiltonian. It then uses those updated quantities to find the updated

potential, restarts a new SCF iteration, and so on and so forth until self-consistency is

achieved.

The combinatory values of macro uj and nsppol as outlined in table 2 determine

how the elements of occ are combined and saved in a new array called luocc.

If nsppol=1, then occ and luocc are identical, complementing the application of

the perturbation to the entire atomic subspace by monitoring the response on the

entire atomic subspace. In the case of the Hubbard U calculation, however, where

nsppol=2 and macro uj=1, luocc(ti) = occ(ti, ↑) + occ(ti, ↓). In this way, the

response is monitored on the total occupancy of the subspace. By contrast, when

calculating the Hund’s J by setting nsppol=2 and macro uj=4, one monitors the

subspace magnetization: luocc(ti) = occ(ti, ↑) − occ(ti, ↓).

The type dtpawuj saves four (vsh, luocc) pairs, indexed by integers 1-4. (In the

verbose .log file, these pairs are labeled (vsh1, occ1), (vsh2, occ2), etc.; but the occ

printed is actually the luocc value.) If the pair’s referential index (called iuj) is an odd

integer, that pair’s occupation is harvested at the end of the first SCF cycle, immediately

after the perturbation is applied to Dij, but before the Hamiltonian and the density are

updated to reflect that perturbation. These points will be used by lrUJ and UJdet

to calculate the unscreened response matrix χ0. Conversely, if iuj is an even integer,

that occupation is harvested after self-consistency has been achieved. Following suit,

these points will be used in by the UJdet and lrUJ functions to calculate the screened

response matrix χ.

Note: The unperturbed case

The pairs (vsh1, occ1) and (vsh2, occ2) correspond to the

unperturbed ground state. Because no perturbation is applied,

the unscreened and screened responses are identical. That is,

vsh1=vsh2=0.0 eV, and occ1=occ2, which are the ground state

occupancies of the subspace in question.

All (vsh, luocc) pairs for all atoms and spin channels are printed out at the end

of the SCF iteration in which they are determined.

4.3.4. The Hubbard U parameter determination via UJdet All subroutines constructing

Abinit’s UJdet utility—an abbreviation of “Hubbard U and J determination”—are
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housed inside module 65 paw/m paw uj.F90. When the SCF cycle is complete, the

same subroutine that launched the SCF cycle and allocated default variables for the

dtpawuj type, pawuj drive, calls the subroutine pawuj det.

Once called, this subroutine calculates and prints the scalar Hubbard parameter for

exclusively the perturbed atom using the two data points it has (i.e., the unperturbed

occupancies and those of the one perturbation applied during its run). It is here that

the program creates the NetCDF file with suffix LRUJ.nc for this perturbative run,

filling it with all information that the lrUJ post-processor will need to determine the

choice Hubbard parameter in tandem with other perturbations. Before Abinit wraps

up its DFT run, however, the UJdet algorithm switches to the matrix prescription for

calculating the Hubbard parameters. In doing so, it proceeds to calculate all elements

of the response matrices using the aforementioned (vsh, luocc) pairs in the following

manner:

χ0titj
=

luocc3ti − luocc1ti
diemix (vsh3tj − vsh1tj )

(40)

χtitj =
luocc4ti − luocc2ti
vsh4tj − vsh2tj

(41)

where ti, tj are all atoms of the same species as the perturbed atom. (See note on symrel

in Section 4.2.1 to avail of this UJdet functionality).

Once again, only the upper right triangular elements of the matrix are calculated

via equations (40) and (41). The matrices are then funneled, via the mother Hubbard U

subroutine lcalcu, to subroutine ioniondist, where they are completed via symmetry,

returned and saved into variable tab. tab holds four matrices: χ0, χ, and their matrix

inverses. It follows that tab is shuffled over to subroutine linvmat, which calculates

the inverses of not the response matrices themselves, but treated matrices designed to

speed up the convergence of the Hubbard parameters with respect to supercell size.

These treatments are mentioned in the “Further Considerations” section of reference

[10], where it is posited that the perturbation on the Hubbard subspace would benefit

from enhanced locality if charge neutrality in the response matrices was enforced,

thereby isolating the perturbed atom from its periodic images, as one hopes to do

using supercells. Following this understanding, Abinit augments the response matrices

with the negative of the sum of each row and each column, as illustrated in figure 7.

This augmented matrix is, by definition, singular and thus non-invertible. To render

the matrix invertible, an all-ones matrix is added to it, breaking its singularity. Note

that this matrix is no longer equivalent to the input response matrices. However, as

demonstrated in Appendix A.4 of reference [48], the difference of the inverses of two non-

invertible matrices—which is not possible mathematically—may be calculated indirectly

by adding the same non-zero constant to each matrix element. This renders these

matrices invertible, and the added constant is canceled when taking the difference of

the two matrices.
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Figure 7: Flowchart illustrating manipulation of (vsh, occ) pairs to determine the final

Hubbard parameter, ures, for a transition metal (TM) Hubbard subspace.

Once prepped, the response matrices are funneled into the LAPACK routines

dgetrf and dgetri, which respectively, LU factorize the matrices then invert them.

These inverted matrices are then saved into the last two positions of tab and returned

back to subroutine lcalcu. At last, the inverted response matrices are subtracted, then

scaled by a factor called signum (=1.0 for the Hubbard U and =-1.0 for the Hund’s

J). The first element of that object then (row 1, column 1), in eV, is found to be the

long-awaited Hubbard parameter.

The UJdet utility does not stop here, though. The “Further Considerations” section

of reference [10] considers a hypothetical extrapolation scheme speculatively designed

to converge much more quickly the Hubbard parameter with respect to supercell size.

The number of Hubbard subspaces in a supercell corresponds linearly with the response

matrix dimension. But intuition suggests that the occupancy effect of the perturbed

subspace will attenuate with distance; that is, the matrix elements of the nearest

neighbor atoms to that perturbed will feature most prominently in the determination of

the Hubbard parameter, and those least neighborly to the perturbed atom will undergo

small, even negligible, changes in occupancy, rendering their influence negligible. Abinit

developers took these further considerations to heart by incorporating an extrapolation

scheme, wherein the response matrix elements of the primitive unit cell are used to fill

out the response matrix elements of a supercell. Concisely, in Abinit’s UJdet utility,

the off-diagonal elements of the primitive cell response matrices are multiplied by the

number of next-nearest neighbor (NNN) Hubbard atoms in the primitive cell and divided

by the number of Hubbard atoms in NNN shell in the supercell. These supercell response
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matrices are then inverted following the same procedure as above to approximate the

Hubbard parameters for subspaces in supercells of increasing size.

4.3.5. The lrUJ post-processor When the lrUJ post-processing utility is executed via

command line, it reads in a user-specified series of NetCDF files with suffix LRUJ.nc. The

program sorts the n files in order of perturbation strength, then reads in all necessary

data related to those perturbations, including the unperturbed state (which is output

in all perturbative calculations) in addition to the unscreened and screened occupations

(or spin magnetization in the case of Hund’s J).

NOTE: units

After the perturbation strengths are read from the NetCDF files,

where they are reported in Ha, the lrUJ program converts them

to eV. All calculations are then conducted in eV.

Compatibility tests are conducted on the input information, and then the linear

response procedure begins.

The lrUJ utility was constructed with the occasional non-linearity of linear

response in mind. Therefore, the program has an inbuilt subroutine that calculates

the polynomial regression of any degree for any list of data points. This subroutine

calculates the n + 1 coefficients of a degree n polynomial by constructing a matrix

using the fitted data points, then solving the resulting system with linear algebra.

The mathematical specifics of this procedure are illustrated in figure 8 but outlined

more formally on this website. Thus, as shown in figure 8, the polynomial regression

subroutine is dependent on the functionalities available in LAPACK.

We use polynomials only in this program because of their relative simplicity and

reasonably predictable RMS error behavior. In case the user wants to fit another type of

function to the data, the data points are printed out in an easily copy-pasted or parsed

format for independent regression analysis.

To begin the regression procedure, the lrUJ program tests if the user has specified

a maximum polynomial degree to calculate. If so, this degree has to be greater than

or equal to the number of data points (i.e., the number of incoming LRUJ.nc files plus

one unperturbed state) plus 2. If the user has left this information unspecified, then

the maximum polynomial degree will default to cubic (degree 3) UNLESS the number

of input files is equal to two or three, in which cases the maximum polynomial degree

will be set to linear (degree 1) or quadratic (degree 2), respectively.

Once the max polynomial degree is set, the arrays storing the response information

for each degree are allocated and the loop over polynomial degree begins. For every

degree, the polynomial regression subroutine is called twice: once to fit the unscreened

occupancies (magnetizations) and record its unbiased RMS fit error, and the other to fit

the screened occupancies (magnetizations) and record its unbiased RMS fit error. For

an N -point linear regression f (α), where αi is the perturbation strength corresponding

https://muthu.co/maths-behind-polynomial-regression/#:~:text=Polynomial%20regression%20is%20a%20process,is%20a%20set%20of%20coefficients.
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Figure 8: Flowchart illustrating the lrUJ algorithm.

to occupation (magnetization) µi, the equation for unbiased RMS fit error is

σRMS =

√∑N

i=1 (f (αi)− µi)
2

N − 1
(42)

The RMS fit error, alongside the fit coefficients, are returned to the main program,

where the utility uses that information to find χ and χ0 as

χ0 =
1

diemix

df0 (α)

dα

∣∣∣∣
α=0

(43)

χ =
df (α)

dα

∣∣∣∣
α=0

. (44)

With one-dimensional polynomials as functions of α, the derivative at α = 0.0 eV

is simply the second coefficient pertaining to that polynomial function. The unscreened

response χ0 must be divided by the mixing parameter that was used in the preceding

Abinit run. This default mixing parameter is diemix and it is equal to, by default, 0.45.

However, if the value of diemix is changed, or if a Hund’s J calculation is conducted

(at which point diemixmag instead of diemix is used for the mixing constant), χ0 is

divided by that value to get the true unscreened response.

The resulting scalar Hubbard parameter corresponding to these response functions

is calculated as

HP = signum ·
(
χ0

−1 − χ−1
)

(45)
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where signum = 1 if calculating the Hubbard U or signum = -1 if calculating the Hund’s

J. The error on the Hubbard parameter, printed in column 7 of the lrUJ output file, is

then

σHP =

√(
σχ0

χ2
0

)2

+

(
σχ
χ2

)2

. (46)

Having executed its main function, the program concludes its operations by printing

out the information in user-friendly format to the main output file (if specified in the

command line; prints to terminal otherwise). An example of such an output is available

in figure 5.

NOTE: Initial bug fixes

Although the lrUJ post-processor emerged with Abinit version

9.10.1, important bug fixes for this utility were implemented in

Abinit version 9.10.5, and a further update using the correct

form of equation 46 will go into effect in Abinit version 9.11.

If using prior versions of lrUJ, please note that the reported

RMS error for the Hubbard parameter is unreliable (i.e., these

versions of lrUJ program erroneously do not square the response

functions in the denominators of equation 46).
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Appendix

Appendix A: UJdet prior to Abinit version 9.9

In the late 2000s, Abinit developed a utility—the U(J) Determination (UJdet)

protocol—designed to determine the Hubbard parameters based on Cococcioni and

de Gironcoli’s linear response method outlined in Section 2.3. In Abinit versions 5

to 9.9, when activated, the protocol would serially introduce two perturbations—one

of strength pawujv and the other of strength -1.0 × pawujv—to the subspace-uniform

potential and harvest the resulting occupancy responses at the beginning and end of

the two ensuing self-consistent cycles. The utility then had two points with which it

could calculate the screened and unscreened response matrices, χ and χ0, defined as

derivatives of occupation with respect to perturbation strength.

It is important to note that the positive value of pawujv was applied first, followed

by its negative image. One would expect, then, that in performing two separate runs

with the positive and negative values of pawujv should yield the same linear response.

This was not the case in Abinit versions prior to 9.6.2. To demonstrate the

error, we produced figure 3 by performing β perturbations on a particular system

(ferromagnetic NiO) and monitoring the response from both the first and second

UJdet calculations, respectively. That is, we categorized perturbation-occupancy pairs

according to their place in the queue in this double perturbation cycle. The screened

response χ relaxes to a reasonably similar value regardless of its status as first or second

calculation. The unscreened responses, however, are different depending on which

perturbation is applied first. This discrepancy contributes to Hund’s J parameters

differing, in this case, by several eV. The same phenomenon was observed for the α

perturbations contributing to the Hubbard U. The fact that the unscreened occupations

differed depending on their place in the queue indicated that the perturbations were not

being applied to the same initial ground state. Internal variables were not undergoing

proper initialization, and so the second perturbation was inheriting information from

the converged state of the preceding perturbative cycle.

There are a few methods available to test which χ0 is the correct one. We know

that, for the same system, where α = β,

dN0

dα
=
dM0

dβ
. (.1)

as was discussed in Section 2.3. This requisite is fulfilled only for the first applied

perturbation (i.e., only the value supplied in pawujv, not its negative counterpart).

Furthermore, we know that when we apply a potential perturbation to the spin-up

channel only, the unscreened occupancy on the spin-down channel should not change.

Applying a perturbation exclusively to the spin-up channel can be achieved by setting

macro uj=2 (the macro uj input parameter will be explained in Section 4.2.2). We ran

perturbations under this setting, applying perturbations to the spin-up channel only

of a Ni atom and monitoring the change in unscreened occupancy on the down spin
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Figure 1: Comparison of unscreened spin-down occupation changes in response to a

perturbation α applied exclusively to the spin-up 3d channel of a Ni atom on NiO of

various magnetic orderings, where (vsh, occ) pairs are categorized according to their

queue (first perturbation applied or second) in the full DFT cycle. We expect the slopes

of these lines to be zero, but only the first Abinit calculation fulfills this requirement.

channel of the same Ni atom. The results of this inquiry, displayed in figure 1, show

that the unscreened occupancy on the spin-down channel remains constant only for the

first applied perturbation, thereby corroborating the earlier conclusion that the second

applied perturbation in the Abinit cycle is unreliable. The silver lining for users of

UJdet prior to Abinit 9.10.1 is that the first perturbation-occupancy data point is still

salvageable.
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