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Synaptogen: A cross-domain generative device
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Dirk J. Wouters, and Daniel Bedau

Abstract— We present a fast generative modeling ap-
proach for resistive memories that reproduces the complex
statistical properties of real-world devices. To enable effi-
cient modeling of analog circuits, the model is implemented
in Verilog-A. By training on extensive measurement data
of integrated 1T1R arrays (6,000 cycles of 512 devices),
an autoregressive stochastic process accurately accounts
for the cross-correlations between the switching param-
eters, while non-linear transformations ensure agreement
with both cycle-to-cycle (C2C) and device-to-device (D2D)
variability. Benchmarks show that this statistically compre-
hensive model achieves read/write throughputs exceeding
those of even highly simplified and deterministic compact
models.

Index Terms— circuit modeling, statistics, neural net-
work hardware, stochastic circuits, resistive circuits

I. INTRODUCTION

A pressing challenge for large-scale simulations of neu-
romorphic systems is the availability of suitable synaptic
device models for resistive memories such as ReRAM [1]. For
applications, it is important to capture the complex stochastic
behavior of the devices, and models need to be fast enough to
simulate millions of cells at once to handle modern neural
network circuits. To this end, computationally lightweight
generative models can be trained on electrical characteristics of
fabricated devices, providing high speed simulations of large
networks with unprecedented statistical accuracy [2].

While our previous work focused on large-scale simulations
in high-level programming languages, here we present a
circuit-level model implemented in the hardware description
language Verilog-A, which is necessary to bridge the divide
between the machine learning (ML) and analog circuit sim-
ulation domains. The model was expanded to cover a device
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configuration with access transistors (1T1R), and we introduce
a measurement protocol for collecting the necessary training
data on integrated memory arrays. The stochastic modeling
approach closely captures the distributions, cross-correlations,
and history dependence of ReRAM switching parameters as
the devices are cycled (C2C), and has an extended treatment
of how those statistics vary between the different devices
on the chip (D2D). The resulting device model is far more
statistically comprehensive than existing compact models and
significantly outperforms them in read/write benchmarks for
both independent devices and for crossbar arrays. In circuit
simulations, we demonstrate weight programming and readout
of crossbars with up to 256×256 and 1024×1024 devices
respectively, the feasibility of which has not been shown
previously.

II. METHODS

A. Electrical measurements

An integrated ReRAM chip was obtained through the
manufacturing broker Circuits Multi-Projects (CMP) and used
for electrical measurements. A 512×32 1T1R crossbar array
was part of a custom layout within the Memory Advanced
Demonstrator 200mm (MAD200) design environment (Fig. 1).
Select logic and access transistors were implemented in the
HCMOS9A STMicroelectronics 130 nm CMOS process, and
ReRAM devices with material stack TiN/HfO2/Ti were de-
posited in a post-process by CEA-LETI [3]. Each ReRAM
device in the array is connected in series with an integrated
common-source N-channel MOSFET in a standard 1T1R
configuration. The 512 bit lines and corresponding select
lines (SLs) are each internally multiplexed to single output
pins, whereas the 32 word lines (WLs) are directly routed to
individual pins. The packaged chip was mounted on a custom
printed circuit board (PCB) providing a PC interface via the
digital outputs of a USB data acquisition board whereby
devices can be individually addressed for measurement. In this
work, a total of 512 devices sharing a single WL in the array
were sequentially selected to collect training data (Fig. 2).

High speed measurements were performed using external
generating and sampling equipment connected to the PCB
over 50 Ω lines. In order to collect bipolar switching cycles
continuously with a single driving signal, an unusual 1T1R
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Fig. 1. The ReRAM chip layout in the MAD200 process design kit (left)
and an optical image of the fabricated 1T1R ReRAM array (right).
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Fig. 2. Simplified circuit diagram showing a connected vector of 512
1T1R ReRAM devices which were individually selected for measure-
ment of model training data. Transistor bodies (“Gnd” terminal) were
biased to -1.8 V as bipolar voltage sweeps were applied to the WL and
current was measured at the respective BL (at 0 V).

biasing was necessary. The chip substrate (and FET body)
was biased to -1.8 V relative to signal ground and the gate
was biased to 1.35 V while a bipolar driving signal was
applied to the WL and current was measured at the BL through
a 50 Ω shunt to 0 V. Devices were formed by a single
3 V amplitude 1 ms triangle pulse before being cycled by
a continuous triangle waveform between -1.5 V and 2 V with
1 ms period. Preconditioning cycles were initially applied to
each cell before collecting 6,000 switching current vs. voltage
(I, V ) traces for each of the 512 devices.

B. Statistical modeling
The core concept of the generative device model is to

first extract important features (i.e. resistance and voltage
threshold levels) from each cycle of the training data, then
learn to efficiently generate new samples with very similar
statistical properties. Using the generated features as a guide,
we approximate the I(V ) dependence for simulated cells
according to the voltage sequence applied to them.

1) Feature generation: The chosen features to model are
extracted from the raw data and organized into vector time
series

xn,m =


RH

VS

RL

VR


n,m

(1)

for each cycle number n ∈ [1, N ] and device number
m ∈ [1,M ]. The feature vectors are arranged from top to
bottom in the order that they occur in the measurement; RH

is the resistance of the high resistance state (HRS), VS is the
voltage of the SET transition, RL is the resistance of the low
resistance state (LRS), and VR is the voltage at the start of the

Axn = ΣBixn-i + Cεni=1
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Fig. 3. Graphical depiction of the VAR(p) base process used to
reproduce memory cycling statistics. Past features within cycle range p
have a linear deterministic impact on future values, and a 4-dimensional
white noise process ϵn contributes stochasticity to each feature.

RESET transition. The details of this feature extraction are
documented in [2].

Feature vector generation is based on a discrete vector au-
toregressive (VAR) stochastic process (Fig. 3), which captures
the cycle history dependence and the correlations between
features [4]. A VAR(p) models the nth feature vector as a
linear function of past values within cycle range p and is driven
by 4-dimensional white noise ϵn. The stochastic process has
the easily computable form,

Axn =

p∑
i=1

Bixn−i +Cϵn, (2)

where A, Bi, and C are 4 × 4 weight matrices subject to
training.

To map the normally distributed output of the VAR process
to the joint empirical distribution measured across cycles and
across devices, we apply a sequence of invertible transforma-
tions. The parameters of these transformations are learned in a
single training pass in which the generative process is carried
out in reverse (Fig. 4). Thereby, the marginal distributions of
the extracted features are normalized in two steps. First, the
device-specific mean and variance over the sampled cycles are
standardized using an affine transformation Ψm (Fig. 5). Then,
to further shape the intermediate probability densities into
normal distributions, the affine transformation is followed by
a parameterized, non-linear quantile transform Γ. A VAR(p)
process is then fit to the normalized data using least squares
regression.

In the generative direction, the learned transformations are
inverted and applied to independent realizations of the VAR
process for each simulated device. The normalizing map
Γ is defined such that its inverse consists of element-wise
polynomial evaluations,

Γ
-1
(x) =


γ1(RH)
γ2(VS)
γ3(RL)
γ4(VR)

 (3)



3

Fig. 4. An overview of the generative modeling approach. Training direction: (A) collect I, V data (N cycles × M devices), (B) extract feature
vectors, (C) learn a distribution of normalizing transformations, (D) fit a stochastic process (VAR) to the normalized data. Generative direction: (E)
realize an independent VAR process for each simulated cell, (F) apply device-specific random de-normalizing transformations to the VAR outputs,
(G) as voltages are applied, reconstruct I, V dependence of each cell.

where γi are 4th degree polynomials and are visualized in
Fig. 6.

To restore device-specific offsets and scales to the generated
features, we invert Ψm by approximating the distribution of
an 8-dimensional block vector of sampled C2C means (µ) and
standard deviations (σ),

Sm =

[
µm

σm

]
=



µ(RH,n)
µ(VS,n)
µ(RL,n)
µ(VR,n)
σ(RH,n)
σ(VS,n)
σ(RL,n)
σ(VR,n)


m

. (4)

This distribution is represented by a superposition of mul-
tivariate normal (MVN) distributions, which is known as a
Gaussian mixture model (GMM). A GMM is cheap to sample
from and allows a close fit of the covariance structure of the
main cluster of Sm datapoints. The GMM also captures the
structure of statistical abnormalities that occur (i.e. defective
devices), which may have a disproportionate impact on system
performance. A three-component GMM, denoted

S∗
m =

[
µ∗

m

σ∗
m

]
, (5)

is fit to the empirical distribution by the expecta-
tion–maximization algorithm using k-means initialization and
is visualized in Fig. 7.

2) Modeling the I(V) dependence: The non-linear I(V ) state
for each cell is modeled as a linear combination of two
static, global limiting polynomials IH(V ) and IL(V ) (degree
5 and 6 respectively), whose coefficients are estimated from
the training data. This way, the model can reproduce a wide
variety of asymmetric non-linearities in both high and low

Fig. 5. A standardizing affine transformation applied to a representative
sample of 20 different devices. The forward transformation Ψm is
applied in the training direction as a first step to normalize the feature
distributions. Here, µm and σm are the sample means and standard
deviations of the feature vectors for device m across all cycles. The
inverse transformation is used in the generative direction, where µ∗

m
and σ∗

m are sampled from a distribution estimated from the entire
training set.

Fig. 6. The elementwise non-linear quantile transform Γ adapted to the
training data. The inverse transformations are polynomial functions γi

designed for fast evaluation during the generative process. The non-
linearity allows the model to reproduce the non-normal, asymmetric
distributions presented by the training data.
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Fig. 7. Correlative scatterplot of the feature means (µ) and standard deviations (σ) over all cycles of devices in the training set. The 512 datapoints
are fit and classified by a GMM with three Gaussian components (purple, yellow, and teal), allowing sampling of new vectors for the generative
model. Component k = 2 (teal) captures the multivariate structure of a device defect occurring in 4% of devices. The diagonal subplots show that
the weighted addition of the marginal probability distribution functions (PDFs) of the three components closely fit the histograms of the input data.

resistance states, and can also absorb the non-linearity of series
transistors when trained on 1T1R data.

Resistance levels of the devices are tracked by continuous
state variables rm ∈ (0, 1), which represent the degree of
mixing between the pre-defined limiting polynomials. The
current as a function of voltage for device m assumes the
form

Im(rm, V ) = rmIH(V ) + (1− rm)IL(V ). (6)

The state variable corresponding to each generated resistance
level R is calculated using the function

r(R) =
IL(V0)− V0R

-1

IL(V0)− IH(V0)
, (7)

which uniquely sets the static resistance of the device (evalu-
ated at V0 = 0.2 V) equal to R.

Transitions of the state variables occur when the voltage
applied to a device exceeds the threshold levels for SET
or RESET in its current cycle. The transitions connect each
generated resistance state to the following one, as illustrated in

Fig. 8. An exemplary I, V cycle reconstructed from its feature vector
representation. States are bounded by polynomials IH(V ) and IL(V ).
Intermediate states (weights) are programmed by applying a voltage
between VR and Vmax. Experimental traces (black) are plotted in the
background for reference.

Fig. 8. Below the SET threshold VS,n, there is an instantaneous
transition from resistance state RH,n to RL,n. After SET has
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occured, voltages above VR,n gradually shift the resistance
state from RL,n to RH,n+1. This gradual RESET proceeds
such that the device current has an empirical functional form

IRESET(V ) = a (Vmax − V )
η
+ c (8)

where

a =
ILRS,n(VR,n)− IHRS,n+1(Vmax)

(Vmax − VR,n)
η , (9)

c = IHRS,n+1(Vmax), (10)

Vmax is the maximum voltage applied in the experimental
sweeps, and the constant η ≈ 3 sets the curvature of the
RESET transition as estimated by a least squares fit to the
training data.

C. Implementation and benchmarks
By using easily evaluated polynomials and matrix multipli-

cations throughout, Synaptogen is designed for high through-
put and parallelization. We recently benchmarked an imple-
mentation in the Julia programming language, comparable
with the present model in terms of speed, demonstrating the
practicality of simulating large-scale physical neural networks
with over 109 weights [2]. However, due to the growing
interest in simulating networks at the circuit level, efficient
stochastic device models implemented in a hardware descrip-
tion language (HDL) are currently highly sought after [5]–[8].

To suit a circuit design ecosystem and to compare speeds
with alternative models, we implemented Synaptogen in the
Verilog-A HDL. Special programming requirements were im-
posed by the adaptation to a transient model description and
by the weak support for dynamic structures in Verilog-A. Fur-
thermore, due to the discontinuities at the threshold voltages,
the simulation step size was limited locally at each device
threshold to aid convergence. The order of the VAR process
in the Verilog-A implementation was fixed to p = 10.

Simulation speeds were compared with a minimalistic non-
stochastic linear ion drift model (LinearDrift) as a base-
line [9], as well as the more complex physics-based JART
v1b variability-aware model [5]. Read speeds are also com-
pared with randomly initialized arrays of ohmic resistances, a
linearly solvable problem which gives an upper bound for the
speed of the simulation framework.

We benchmarked the read and write performance for both
parallel operation of M independent cells as well as for√
M ×

√
M crossbar arrays with resistive leads (5 Ω between

every circuit node). This distinction is important because lead
resistance has a strong impact on the system, but is much
slower to solve due to the strongly coupled equations [10],
[11]. For the purpose of comparing simulation speeds between
the independent-device and crossbar-connected cases, the same
applied voltage waveform was shared by rows and columns
of the independent devices as though they were connected by
WLs and BLs. This makes the problem equivalent to a crossbar
array with zero lead resistance, but in practice is significantly
faster than enforcing crossbar connectivity in the netlist.

Simulations were performed using the Cadence Spectre
simulator with “moderate” settings for both the “accelerated

Fig. 9. For write tests, the image (A) was desaturated, resampled,
and written into square crossbar arrays (0 Ω lead resistance) of different
sizes using the Verilog-A implementation of Synaptogen. The array
dimensions shown are (B) 32×32, (C) 64×64, (D) 128×128, and (E)
256×256.

Fig. 10. Benchmarks of different Verilog-A models for (A) reading
and (B) writing M independent devices and

√
M ×

√
M resistive

crossbars. For the largest arrays, the JART model did not terminate.

parallel simulator” (APS) and error tolerance, running on 8
(out of 18) cores of Intel Xeon Gold 6154 CPU. Square bipolar
voltage pulses were applied to the WL terminals to simulate
read/write operations, and the throughput in operations per sec-
ond (OPS) was calculated as the number of devices involved
in the read/write process divided by the total time taken for
the transient analysis.

For weight programming benchmarks, arrays of devices
were initialized in their LRS before writing grayscale image
data into their resistance states by partial RESET (Fig. 9). The
pixel values were linearly mapped to a suitable reset voltage
range and, using a half-select voltage scheme [12], the voltages
were sequentially applied to the corresponding cells for 1 µs.
For situations where the entire array could not be written in
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Fig. 11. A comparison between measured (A) and generated (B) feature vector time series across 6,000 cycles for 10 randomly selected devices.
Visual inspection confirms that the variability between devices and the cycling cross-correlations are closely reproduced by the model.

a practical amount of time, the throughput was determined by
writing a 16×16 sub-block of devices.

For readout benchmarks, 200 mV pulses were simultane-
ously applied to all WLs for 1 ns as current was measured at
the grounded BL terminals. The results of the read and write
benchmarks are summarized in Fig. 10.

III. RESULTS

The described hierarchical modeling approach efficiently
generates feature vectors that closely resemble the training
data. This can be visually verified with respect to the time
series behavior (Fig. 11). The correlated variations in the
feature distributions across different devices are very closely
replicated while simultaneously recreating the total distribu-
tions over all devices and cycles (Fig. 12).

For all models and conditions, read operations were sig-
nificantly faster than writes, and speeds were much higher
for independent devices than for an equal number of crossbar
connected devices. Synaptogen wrote at ∼ 103 OPS for inde-
pendent devices, but started at 13 OPS for 16×16 crossbars,
degrading with crossbar size to only 0.3 OPS at 256×256.
For readout, Synaptogen is competitive with simple ohmic
resistive networks, reaching 60% to 80% of their speed in most
cases. The throughput of these read operations increased for
larger numbers of devices, with 8× 103 OPS for 256 devices
and 4 × 106 OPS for 1,048,576 devices. Crossbar connected
readouts were slowed by 2 to 4 orders of magnitude relative to
independent devices as the array size increased from 16×16
to 256×256.

Synaptogen was between 10× and 100× faster than Lin-
earDrift for all benchmarks, which is remarkable because
LinearDrift is a very simple ordinary differential equation
(ODE) formulation for which the simulator should be well
adapted. Furthermore, LinearDrift does not include C2C

Fig. 12. A comparison of measured and generated feature distributions
for 6,000 cycles of 256 devices. The marginal densities, their variation
between devices, as well as the total distribution across all cycles of all
devices are very closely replicated by the generative model.
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TABLE I
ESTIMATED TIME REQUIRED FOR NEURAL NETWORK OPERATIONS

USING SYNAPTOGEN WEIGHTS IN THE CADENCE SPECTRE SIMULATOR

Layer size Weight Initialization Inference

Independent Crossbar Independent Crossbar

16×16 160 ms 20 s 3.4 ms 54 ms
32×32 660 ms 4.9 min
64×64 2.3 s 1.1 h 9.2 ms 1.0 s

128×128 13 s 1.5 d
256×256 1.4 min 25 d 82 ms 28 s

1024×1024 300 ms 9.6 min

or D2D variability, and cannot reproduce many important
switching features of actual devices. Synaptogen even more
significantly outperforms the JART v1b variability model,
which is more closely comparable in terms of covered device
behavior. Due to its complexity and implicit formulation, JART
performance degrades faster than the other models as the
array size grows; for JART array sizes 256×256 and above,
not even a single write operation could be performed in a
reasonable time frame. At 1024×1024, read operations were
also impossible. For the conditions that could be simulated,
operations on independent Synaptogen devices were always
over 100× faster, with the speed of writes approximately
200×, and reads reaching 6,000× those of JART. For the
resistive crossbar simulations, Synaptogen was between 10×
to 100× faster for 64×64 and smaller arrays, and between
100× and 10,000× for larger arrays.

Analog circuit simulations face intrinsic speed limitations
due to the computation necessary at each time step to con-
verge on solutions to large systems of non-linear differential
equations. Even with dramatic speed increases over compet-
ing models, simulation in Cadence Spectre with Synaptogen
synapses is practical for training and inference of fully con-
nected neural network layers only within limits. Table I shows
the time necessary to write a pre-trained model and to perform
an inference operation according to our benchmarks. While
many operations can be completed in well under a second,
others (such as writing to large resistive crossbars) can take a
considerable amount of time (hours or days).

As modern ML networks commonly exceed millions of
weights, these benchmarks highlight the need to extend the
device model’s applicability to larger scales. Therefore, while
the Verilog-A implementation provides compatibility with
circuit design tools, we also implemented Synaptogen in the
Julia programming language. The internal operation is the
same for both models, while the latter achieves orders of
magnitude higher speed by avoiding transient calculations.

IV. CONCLUSION

In this work, we developed a generative compact model for
resistive switching devices that seamlessly adapts to statistical
measurements. Through an automated training procedure, the
model closely captures both C2C and D2D variability of data
measured on integrated ReRAM devices. While an equivalent
model can be used in a high-level programming domain
for larger scale simulations, here we demonstrate its use in

analog circuit simulation of 1T1R arrays. The implemented
circuit level model operates orders of magnitude faster for
reading and writing compared to other compact models, and
we demonstrate crossbar programming (256×256 devices)
and readout (1024×1024 devices) at scales which far exceed
what was previously possible in the analog circuit simulation
domain.

CODE AVAILABILITY

The Verilog-A compact model as well as its Julia coun-
terpart are available on GitHub (https://github.com/
thennen/synaptogen) and archived in Zenodo (https:
//zenodo.org/doi/10.5281/zenodo.10942560).
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