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Lattice thermal conductivity (κL) is a crucial characteristic of crystalline solids with significant
implications for thermal management, energy conversion, and thermal barrier coating. The advance-
ment of computational tools based on density functional theory (DFT) has enabled the effective
utilization of phonon quasi-particle-based approaches to unravel the underlying physics of various
crystalline systems. While the higher order of anharmonicity is commonly used for explaining ex-
traordinary heat transfer behaviors in crystals, the impact of exchange-correlation (XC) functionals
in DFT on describing anharmonicity has been largely overlooked. The XC functional is essential
for determining the accuracy of DFT in describing interactions among electrons/ions in solids and
molecules. However, most XC functionals in solids focus on ground state properties that mainly
involve the harmonic approximation, neglecting temperature effects, and their reliability in studying
anharmonic properties remains insufficiently explored. In this study, we systematically investigate
the room-temperature κL of 16 binary compounds with rocksalt and zincblende structures using var-
ious XC functionals such as local density approximation (LDA), Perdew-Burke-Ernzerhof (PBE),
revised PBE for solid and surface (PBEsol), optimized B86b functional (optB86b), revised Tao-
Perdew-Staroverov-Scuseria (revTPSS), strongly constrained and appropriately normed functional
(SCAN), regularized SCAN (rSCAN) and regularized-restored SCAN (r2SCAN) in combination with
different perturbation orders, including phonon within harmonic approximation (HA) plus three-
phonon scattering (HA+3ph), phonon calculated using self-consistent phonon theory (SCPH) plus
three-phonon scattering (SCPH+3ph), and SCPH phonon plus three- and four-phonon scattering
(SCPH+3,4ph). Our results show that the XC functional exhibits strong entanglement with pertur-
bation order and the mean relative absolute error (MRAE) of the computed κL is strongly influenced
by both the XC functional and perturbation order, leading to error cancellation or amplification.
The minimal (maximal) MRAE is achieved with revTPSS (rSCAN) at the HA+3ph level, SCAN
(r2SCAN) at the SCPH+3ph level, and PBEsol (rSCAN) at the SCPH+3,4ph level. Among these
functionals, PBEsol exhibits the highest accuracy at the highest perturbation order. The SCAN-
related functionals demonstrate moderate accuracy but are suffer from numerical instability and
high computational costs. Furthermore, the different impacts of quartic anharmonicity on κL in
rocksalt and zincblende structures are identified by all XC functionals, attributed to the distinct
lattice anharmonicity in these two structures. These findings serve as a valuable reference for se-
lecting appropriate functionals for describing anharmonic phonons and offer insights into high-order
force constant calculations that could facilitate the development of more accurate XC functionals
for solid materials.

I. INTRODUCTION

Lattice thermal conductivity is a fundamental charac-
teristic of crystalline solids and holds significant impor-
tance in various modern technologies. It plays a cru-
cial role in essential processes such as heat dissipation
in integrated circuit chips [1, 2], direct energy conver-
sion between thermal and electrical energy [3, 4], and
safeguarding devices using thermal barrier coatings [5–
7]. Therefore, the identification of materials with the de-
sired κL values is of significant interest for various techni-
cal applications. However, the synthesis and experimen-
tal measurement of κL for a specific compound can be a
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time-consuming and costly process. With the rapid ad-
vancements in computer science and simulation theory,
many simulation methods have become more efficient in
predicting κL of a wide range of crystalline materials.
The accuracy of these predictions is highly dependent
on the methodology utilized. Different approaches may
yield conflicting conclusions [8–10].

Currently, there are primarily two methods used for
calculating κL in literature: molecular dynamics (MD),
which includes both equilibrium and non-equilibrium
MD [11, 12], and the Boltzmann’s kinetic approach [13].
MD accounts for all levels of anharmonic terms and can
analyze a wide range of systems such as amorphous ma-
terials, nanostructures, and fluids. However, MD simu-
lations require extensive computational time and do not
consider quantum effects [14]. On the other hand, Boltz-
mann’s kinetic approach offers improved computational
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efficiency for studying bulk crystals, but its precision de-
pends on the order of perturbation in phonon-phonon
interactions [14]. For instance, the Peierls-Boltzmann
method, which is based on three-phonon interactions,
tends to overestimate κL in materials like BAs [8], with
a more accurate value achieved by incorporating four-
phonon scattering [15]. Similar challenges arise in materi-
als like AgCl and HgTe [10]. However, the computational
expense of including higher-order anharmonic effects in-
creases substantially [16, 17].

Another critical factor that greatly influences the value
of the calculated κL is the XC functional utilized in DFT.
It is widely recognized that the XC functional is es-
sential in ensuring the precision and reliability of DFT
calculations. It is worth noting that various function-
als offer distinct representations of the gradual behav-
ior with respect to density gradient, even when operat-
ing at the same rung of the Jacob’s ladder [18]. There-
fore, it is expected that force constants may be greatly
influenced by the chosen XC functional, ultimately im-
pacting κL substantially [19]. Nevertheless, the develop-
ment of XC functionals for all properties poses a con-
siderable challenge, as most functionals can only yield
precise results for certain properties. With significant
dedication to the development of XC functionals over
the course of more than 50 years, more than 200 XC
functionals have been developed to date. These func-
tionals have been tailored to address a diverse range of
properties and scenarios [20]. Within the solid-state re-
search community, the most commonly utilized XC func-
tionals include LDA [21], PBE [22], PBEsol [23], and
revTPSS [24]. Recently, the SCAN functional has been
developed with meticulous attention to satisfying all 17
known exact constraints [25]. This functional has demon-
strated excellent performance across various properties of
solids, including lattice constants, polymorph stabilities,
phonon dispersion, and more [25–28]. However, subse-
quent studies have revealed that the SCAN functional
exhibits numerical instability and has the potential to
lead to divergence in self-consistent calculations in cer-
tain instances [29, 30]. To address this issue, the regu-
larized SCAN (rSCAN) functional was developed, which
overcomes the numerical stability problem but at the cost
of breaking certain constraints [29]. However, the rSCAN
functional has been found to exhibit larger errors com-
pared to SCAN in specific systems. To mitigate these
errors, the regularized-restored SCAN (r2SCAN) func-
tional was introduced, which achieves a better balance
between accuracy and efficiency [30]. While the perfor-
mance of these XC functionals has been assessed in our
previous work regarding anharmonicity within the quasi-
harmonic approximation [31], their performances in com-
puting the κL have not been thoroughly tested yet.

The casual observations in literature have already
demonstrated the importance of the XC functional in the
calculation of κL. For example, Jain and McGaughey ex-
plored the influence of XC functionals on the calculated
κL for pure crystalline silicon and determined that the

relative error in calculated κL can reach up to 17 % [32].
LDA, PBE, PBEsol, and PW91 [33] underestimate κL,
while BLYP [34, 35] overestimates κL by 12 %. Qin et al.
investigated the κL of graphene using ten XC functionals
and found that the κL values ranged from 1396 to 4376
Wm−1K−1, depending on the specific XC functional em-
ployed [32]. Taheri et al. achieved higher values of κL

for graphene, ranging from 5442 to 8677 Wm−1K−1 by
utilizing five different XC functionals and two types of
pseudopotentials [36, 37]. Recently, Han and Ruan dis-
covered that four-phonon scattering plays a significant
role in graphene, and the discrepancies found in the lit-
erature regarding the calculated κL are attributed to con-
vergence issues in the grid sampling of the Brillouin zone
and the presence of higher orders of anharmonicity [38].
In a separate study, Dongre et al. determined that the
calculated κL of GaP using PBE is 1.8 times larger than
that calculated value using LDA [39]. Xia et al. investi-
gated the κL of Tl3VSe4 using the PBEsol functional [40],
while Jain conducted similar calculations for this com-
pound using PBE [41]. The discrepancies in the calcu-
lated κL values obtained using these two XC functionals
have led to different explanations regarding the origin of
the ultralow κL in this compound [40, 41]. It is worth
noting that the interplay between the XC functional and
the perturbation order of anharmonicity complicates the
underlying physics of κL, as errors introduced by the XC
functional and anharmonicity order may inadvertently
cancel each other out, resulting in better agreement with
experimental values when using low-order anharmonicity
approaches, as demonstrated in previous studies [10].

In this study, we systematically evaluate the perfor-
mance of three commonly used functionals (LDA, PBE,
and PBEsol) in solids, one popular van der Waals den-
sity functional (optB86b) [42], and four meta-GGA func-
tionals (revTPSS, SCAN, rSCAN, and r2SCAN) in pre-
dicting the room-temperature κL for 16 binary com-
pounds with rocksalt and zincblende structures at three
perturbation orders, namely HA+3ph, SCPH+3ph, and
SCPH+3,4ph. Our results show that the strong entan-
glement between the XC functional and the perturbation
order complicates the comparison between the computed
and the experimental κL. In other words, the MRAE
of the computed κL is strongly influenced by both the
XC functional and the perturbation order, leading to er-
ror cancellation or amplification. The minimal (maxi-
mal) MRAE is achieved with revTPSS (rSCAN) at the
HA+3ph level, SCAN (r2SCAN) at the SCPH+3ph level,
and PBEsol (revTPSS) at the SCPH+3,4ph level. Over-
all, PBEsol is numerically stable and exhibits the high-
est accuracy in calculating κL among these functionals.
The SCAN-related functionals demonstrate moderate ac-
curacy but suffer from numerical instability and higher
computational cost. Furthermore, all XC functionals
identify the different impacts of quartic anharmonicity
on κL between rocksalt and zincblende structures, which
can be attributed to their distinct coordination environ-
ment and lattice anharmonicity. These findings serve as
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a valuable reference for selecting appropriate function-
als for describing anharmonic phonons and offer insights
into high-order force constant calculations that could fa-
cilitate the development of more accurate XC functionals
for solid materials.

II. COMPUTATION DETAILS

All DFT calculations were performed using the
projector-augmented wave (PAW)[43, 44] method within
the Vienna Ab initio Simulation Package (VASP) [45,
46]. Eight XC functionals were utilized, namely LDA,
PBE, PBEsol, optB86b, revTPSS, SCAN, rSCAN, and
r2SCAN. With the exception of LDA, the PBE-version
PAW pseudopotential was employed for all other func-
tionals due to the unavailability of the PAW pseudopo-
tentials for these functionals in VASP. While this may in-
troduce some errors in these functionals, previous studies
on solids have predominantly used the PBE pseudopo-
tential, with negligible errors reported in studies utiliz-
ing the other functional [47–49]. The plane-wave basis
set was used with cutoff energies of 520 eV for LDA,
PBE, PBEsol, and optB86b, 600 eV for revTPSS, and
800 eV for SCAN, rSCAN, and r2SCAN. Additionally,
for SCAN, rSCAN, and r2SCAN, the precision parameter
was set to "accurate" (PREC = ACCURATE), nonspher-
ical contributions within the PAW spheres were included
(LASPH = .TRUE.), and additional grids for the eval-
uation of augmentation charges (ADDGRID = .TRUE.)
were implemented.

The second-order force constants were calculated us-
ing the finite displacement method as implemented in
Phonopy code [50] with 4 × 4 × 4 supercell and 2 × 2
× 2 k-points mesh, and a 0.01 Ådisplacement. During
the self-consistent calculations, the energy is converged
to 10−8 eV. The projection operators were evaluated in
reciprocal space (LREAL = .FALSE.) to more accurately
compute forces. Since all atoms are in high-symmetry
Wyckoff positions and the only structure parameter is the
lattice constant, the equilibrium structures of all com-
pounds studied in this work were generated using the
experimental lattice constants at room temperature to
eliminate errors caused by thermal expansion. The ef-
fect of supercell size on harmonic phonons was carefully
tested. It was found that a 5 × 5 × 5 supercell can pro-
duce artificial imaginary frequencies for some compounds
using certain XC functionals, while the more numerically
stable option for all compounds was the 4 × 4 × 4 su-
percell, as shown in Fig. S1. The nonanalytic correction
to phonon dispersions near the Γ point is performed by
dipole-dipole interaction [51, 52], based on the PBEsol
functional calculated Born effective charges and macro-
scopic static dielectric constants using the density func-
tion perturbation theory implementation in VASP.

The third-order and fourth-order force constants were
extracted using the compressive sensing lattice dynam-
ics (CSLD) [53]. Phonon frequency shifts at finite tem-

peratures were calculated using the SCPH theory [54–
56]. The Peierls-Boltzmann transport equation was lit-
erately solved by sampling with a uniform 24 × 24 ×
24 q-point mesh for κL calculations with HA+3ph (κHA

3ph)
and SCPH+3ph (κSCPH

3ph ) methods, as well as a sparser
16 × 16 × 16 q-point mesh for κL with SCPH+3,4ph
(κSCPH

3,4ph ) method. The four-phonon scattering process is
accelerated using the sampling method [57]. All other pa-
rameters remain consistent with the previous study [10].

Elastic constants are determined through the structure
deformation method as implemented in Pymatgen [58].
The mean sound velocity (vm) is obtained as the average
of the longitudinal (vL) and transverse (vT) sound veloc-
ities, which are calculated based on the density (ρ), bulk
(B), and shear (G) modulus [59].
vm = [ 13 (

1
v3
L
+ 2

v3
T
)]

−1
3

vT =
√

G
ρ

vL =
√

B+ 4
3G

ρ

III. RESULTS AND DISCUSSION

In the kinetic theory [60], κL can be represented as
the product of the heat capacity (Cv), the square of the
phonon group velocity (vg), and the phonon relaxation
time (τ), as shown in the equation κL = 1

3Cvv
2
gτ . There-

fore, prior to assessing the accuracy of computing κL us-
ing eight XC functionals at three theoretical perturbation
orders, a comparison was conducted on the precision of
these functionals regarding phonon spectra, vg, and the
Grüneisen parameter (γ). The Grüneisen parameter is
commonly utilized to characterize anharmonicity and is
closely linked to the scattering rate (1/τ).

A. Phonon spectrum

The phonon spectrum contains essential information
regarding lattice dynamics, rendering it indispensable for
comprehending κL, and is also significantly influenced
by temperature. However, the harmonic phonon, ob-
tained from the harmonic approximation by diagonal-
izing the dynamical matrix formed from harmonic in-
teratomic force constants, fails to consider temperature
effects. The impact of temperature on the phonon spec-
trum can be effectively simulated using the SCPH the-
ory [54, 56, 61]. In this study, the phonon spectrum at
room temperature is calculated using the first-order cor-
rection based on quartic anharmonicity [62]. The phonon
spectra for all the compounds are analyzed using both
harmonic and quartic anharmonic approximations, with
the results computed using 8 XC functionals presented
in Fig. S2-S7. Additionally, Fig. 1(a) illustrates the dis-
crepancy (∆ωHA) in the optical phonon frequency at the
Γ point when calculated using different XC functionals
compared to the PBEsol functional. Note the phonon
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frequency before nonanalytical correction is adopted here
for the sake of simplicity. It is unexpected that the ∆ωHA

of the rocksalt compounds is greater than that of the
zincblende, even though the rocksalt compounds have a
considerably lower optical frequency at the Γ point, in-
dicating that the phonon frequencies of the zincblende
compounds are less sensitive to the XC functional than
rocksalt compounds. Out of all these functionals, only
LDA exhibits negative ∆ωHA for all the compounds due
to the fact that LDA calculated chemical bonds are elon-
gated (bonding interaction is weakened) when the ex-
perimental volumes utilized in this study. When com-
paring the phonon frequencies calculated using the HA
with those obtained through the SCPH method at 300
K, it is observed that the rocksalt structure exhibits
a slight increase in frequency, particularly in the case
of three optical branches. Conversely, the phonon fre-
quency of the zincblende structure remains relatively un-
changed or even decreases slightly in certain instances.
In order to quantify this, we show the frequency shift
of the phonon at the Γ point from the SCPH to HA
method (∆ωSCPH−HA = ωSCPH - ωHA) in Fig. 1(b). All
the ∆ωSCPH−HA of the rocksalt compounds are large
and positive except that of CaO calculated by SCAN,
while the ∆ωSCPH−HA of the zincblende compounds are
generally small or even negative by some of these func-
tionals. Exceptions are predominantly observed in four
metaGGA functionals: InAs by rSCAN, SiC by revTPSS,
rSCAN, and r2SCAN, ZnSe by revTPSS, SCAN, and
rSCAN, ZnTe by r2SCAN, and GaAs by SCAN. This
highlights the differences of the role played by quartic an-
harmonicity between rocksalt and zincblende structures.
All functionals predict a large positive ∆ωSCPH−HA in
BaO, while revTPSS is the only functional predicting a
large ∆ωSCPH−HA in SiC and SCAN is the only func-
tional having a large and negative ∆ωSCPH−HA for CaO.
These observations underscore the large difference be-
tween metaGGA and semilocal functionals in character-
izing anharmonicity.

B. Sound velocity

Phonon group velocity vg is another pivotal metric en-
capsulating the speed at which the main heat carrying
phonons propagate through a solid crystalline, determin-
ing its thermal transport behavior [63]. Therefore, it is
widely used in both empirical formula and phonon Boltz-
mann transport theory for computing κL. Herein, vg is
approximated by the mean sound velocity (vm), which is
calculated from elastic constants, see the “Computational
Details” section for details. The vm is a critical parame-
ter that measures the speed of the primary heat-carrying
phonons traveling through a solid crystalline material,
influencing its thermal conductivity behavior [63]. Fig-
ure 2 illustrates the comparison between our calculated
vm values of all the compounds with the experimental
values measured at room temperature, utilizing all the
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FIG. 1. (Color online) (a) The HA frequency difference
(∆ωHA) of the optical phonon frequency at the Γ point cal-
culated using the other functionals with respect to that ob-
tained with PBEsol. (b) The frequency shift (∆ωSCPH−HA)
between the phonon calculated by SCPH and HA for all the
compounds calculated with 8 XC functionals.

XC functionals examined in this study. It should be
noted that the majority of vm values are derived from
direct experimental measurements, while a small subset
are calculated using the experimental elastic constants.
The calculated vm values of nearly all compounds, as de-
termined using all the XC functionals, are consistently
lower than the corresponding experimental values, with
the notable exception of BaO. This discrepancy is un-
expected, considering that our calculations are focused
solely on the intrinsic compounds and do not account for
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potential factors such as defects and grain boundaries,
which are known to exert a substantial slowing down of
vm [63]. The MRAE of these compounds exhibit only
slight variations across the XC functionals. The smallest
relative errors are observed at CaO and SiC, while the
largest errors are found at NaF and NaCl. Specifically,
the smallest and largest MRAE values are observed in
PBE (7.7 %) and SCAN (12.2 %) functionals, respec-
tively. It is noteworthy that the calculated vm values
for NaCl and NaF show significant deviations from the
experimental values. SCAN, among all the XC function-
als, identifies PbS, ZnSe, and InSb as having the largest
relative errors, leading to the highest MRAE, despite its
smallest relative error in NaCl. In general, the variation
in vm across various functionals is relatively small pre-
sumably due to the fact that the elastic constant is the
second derivative of energy with respect to displacement,
which is harmonic and can be well described by all these
functionals.
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FIG. 2. (Color online). The relative error of the calculated
mean sound velocity (vcal.m ) with respect to experiment values
(vexp.m ). The vexp.m are either taken from Ref. 64 or calculated
using the experimental elastic constants in Ref. 64.

C. Grüneisen parameter

The Grüneisen parameter γ, which is defined as the
rate of change of phonon frequency in response to vari-
ations in crystal volume [65, 66], is commonly utilized

to quantify the degree of anharmonicity and can be em-
ployed to compute κL and the thermal expansion coeffi-
cient of solids [67, 68]. In our previous study [31], we eval-
uated the performance of six XC functionals on comput-
ing the average value of γ for 17 binary compounds with
rocksalt, zincblende, and fluorite structures. The aver-
age γ was determined using the Phonopy code [50] based
on the HA phonon frequencies of 11 volumes around the
equilibrium volume at 0 K. In this study, the total γ is
computed as a weighted sum of the mode contributions,
as implemented in the ShengBTE package [69], incorpo-
rating both the HA and SCPH force constants. Conse-
quently, two γ values are determined for each compound,
specifically at 0 and 300 K. Figure 3(a) illustrates the
comparison between the experimental and calculated γ
values for all the rocksalt and zincblende compounds ex-
amined in this work. The experimental γ values primarily
originate from Ref. 70 and 71. For the calculated γ val-
ues based on the HA force constants, the MRAEs of the
LDA, PBE, PBEsol, optB86b, revTPSS, SCAN, rSCAN,
and r2SCAN functionals are 20.18 %, 15.49 %, 18.04 %,
16.46 %, 18.32 %, 22.73 %, 15.92 %, and 14.68 %, respec-
tively. It should be noted that both SCAN and r2SCAN
exhibit significant discrepancies compared to the previ-
ous results [31], which can be attributed to differences
in the dataset as well as the impact of lattice constants,
i.e., the use of DFT-optimized versus experimental lat-
tice constants. Notably, the compounds that resulted in
large relative errors with the SCAN and r2SCAN func-
tionals in our previous work (AlP and InP) were excluded
from this study due to the presence of imaginary frequen-
cies when employing the experimental lattice constants.
Additionally, the substantial difference observed in InSb
may be attributed to the discrepancy in the employed lat-
tice constants. As depicted in Fig. 3(b), the replacement
of the HA force constant with the SCPH one leads to a re-
duction in all MRAEs, particularly for the LDA, PBEsol,
and SCAN functionals, primarily due to improved agree-
ment for PbS. Among all the XC functionals considered,
r2SCAN exhibits the lowest MRAE (10.24 %), followed
by PBEsol (12.08 %) and LDA (12.36 %). With the ex-
ception of LDA and rSCAN, all functionals significantly
underestimate the γ value of InSb. It is evident that
PBE, PBEsol, optB86b, and revTPSS functionals yield
smaller MRAEs for the γ values of rocksalt compounds
compared to zincblende ones, likely due to the gener-
ally larger γ values observed in rocksalt structure than
zincblende [72].

D. Scattering rates

The main process of phonon scattering in an intrinsic
semiconductor is the phonon-phonon scattering, predom-
inantly involving a three-phonon process [73]. However,
four-phonon scattering may also be significant in certain
systems [15, 74]. The scattering rate (1/τ) character-
izes the strength of scattering among phonons and is
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FIG. 3. (Color online). (a) and (b) are the relative errors of the total Grüneisen parameters (γ) at 0 K and 300 K, respectively,
when compared to experimental values. Gray color represents the calculation with imaginary frequency at 0 K (a) and at room
temperature (b).

a key factor in the phonon Boltzmann transport equa-
tion, playing a dominant role in determining κL [75].
In this study, scattering rates associated with the three-
phonon and four-phonon processes are calculated using
the single-mode relaxation approximation [75]. As de-
picted in Fig. S8-S13, all XC functionals indicate that
three-phonon scattering prevails in the scattering pro-
cess across all compounds. Specifically, the three-phonon
scattering rates in the low-frequency region, a key factor
in heat resistance, are higher in rocksalt compounds (∼
10 ps−1) compared to those with the zincblende struc-
ture (∼ 1 ps−1), consistent with previous research and
reflecting the stronger anharmonicity (larger γ) in rock-
salt structure compared to zincblende [10, 76]. Further-
more, all XC functionals suggest that the four-phonon
scattering rates in zincblende compounds are relatively
higher than those in rocksalt compounds, aligning with
previous observations based on PBE functional [10], due
to the relatively smaller three-phonon scattering rates in
zincblende compounds.

By comparing the phonon scattering rates of a com-
pound computed using different XC functionals, it is ev-
ident that SCAN-related functionals have a higher like-
lihood of predicting a different scattering rate from the
other XC functionals, as illustrated in Fig. S9-S11. For
example, rSCAN and r2SCAN consistently show signifi-
cantly lower three-phonon scattering rates for NaCl and
NaF compared to other XC functionals. SCAN pre-
dicts notably higher three-phonon scattering rates for
PbS and SiC in the low-frequency region. rSCAN demon-

strates significantly higher three-phonon scattering rates
for NaCl, NaF, and BAs in comparison to other func-
tionals, while r2SCAN predicts a notably high three-
phonon scattering rate for ZnTe in the low-frequency re-
gion. Furthermore, rSCAN and r2SCAN predict excep-
tionally high four-phonon scattering rates for NaF in the
frequency range of 150 ∼ 250 cm−1, with rSCAN also
showing a remarkably high four-phonon scattering rate
for NaCl. These findings underscore the complexity and
challenges associated with computing three- and four-
phonon scattering rates, especially for metaGGA func-
tionals.

E. Lattice thermal conductivity at room
temperature

The room-temperature κL of 16 binary compounds
with rocksalt and zincblende structures are computed us-
ing 8 commonly used XC functionals in solids at three dif-
ferent perturbation orders: HA+3ph, SCPH+3ph, and
SCPH+3,4ph. Currently, the mainstream method of
computing κL is HA+3ph, particularly for complex sys-
tems. SCPH+3ph accounts for phonon frequency shifts
due to temperature effect, necessitating the calculation
of higher-order force constants, and is particularly rel-
evant for systems with multiple low-frequencies phonon
branches. SCPH+3,4ph is considered as the most accu-
rate method in this study, as it incorporates both fre-
quency shifts due to finite temperature and four-phonon
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scattering.
The relative error of the calculated κL for 16 com-

pounds at the HA+3ph level with 8 XC functionals is
depicted in Fig. 4(a). It is important to note that some
compounds exhibit significant imaginary frequencies ei-
ther at the experimentally determined room-temperature
lattice constants or due to artificial numerical issues as-
sociated with specific functionals, as previously observed
in our lattice constant study [31]. Some of these imag-
inary frequencies cannot be stabilized at room temper-
ature using the SCPH method either. The presence of
imaginary frequencies at 0 K prevents the calculation of
κHA
3ph, while those at room temperature impede the deter-

mination of κSCPH
3ph and κSCPH

3,4ph . The minimum and max-
imum MRAEs of the calculated κL at the HA+3ph level
are 29.75 % using revTPSS and 49.18 % using rSCAN,
primarily attributed to the overestimation of κL in BAs,
which is a compound known for strong four-phonon scat-
tering [9]. Among all the functionals considered in this
work, only LDA and SCAN show significant underestima-
tion of κL for compounds with rocksalt structure. Addi-
tionally, PBE underestimates κL only for CaO and PbS,
which is contrary to the previous finding that PBE un-
derestimates κHA

3ph for most rocksalt compounds [10]. This
discrepancy arises from the use of experimentally deter-
mined room-temperature lattice constants in this study,
whereas the previous work utilized the PBE optimized
lattice constants at 0 K [10].

As illustrated in Fig. S14, the experimental volumes
measured at room temperature are smaller than the PBE
optimized ones at 0 K for all compounds, resulting in
shorter bond lengths and stronger bond strength, lead-
ing to enlarged κL values. OptB86b, similarly, over-
estimates the κL for all compounds except PbS. How-
ever, this trend varies among different functionals. For
instance, while revTPSS exhibits larger optimized vol-
umes compared to optB86b (see Fig. S14), the overes-
timation of κL by optB86b surpasses that of revTPSS.
The majority of XC functionals analyzed in this study
have a tendency to overestimate the κL values for com-
pounds with zincblende structure, with BAs and ZnTe
exhibiting the most significant overestimations. This is
consistent with the results reported by Xia et al. uti-
lizing the PBE functional with optimized lattice con-
stants [10]. Nonetheless, there are exceptions such as
ZnTe with r2SCAN, BAs with rSCAN and revTPSS. This
is particularly surprising as it is found that the calcu-
lated κHA

3ph is typically twice as large as the experimen-
tally measured κL due to its relatively strong four-phonon
scattering [15, 87]. Furthermore, as depicted in Fig. 5
and 2, the revTPSS and rSCAN functionals exhibit sim-
ilar phonon spectra and vm to other functionals, such as
PBEsol, but display a stronger three-phonon scattering
rate at low-frequency regions due to their larger weighted
phase space [88]. Interestingly, despite being derived
from revTPSS [25], SCAN and r2SCAN do not underes-
timate the three-phonon scattering rate of BAs and ex-
hibit very similar MRAE. This suggests the importance

of adhering to the constraints imposed by SCAN and
r2SCAN. Among these functionals, revTPSS functional
has the smallest relative error (κHA

3ph) for all compounds
except ZnTe, resulting in the lowest MRAE (29.75 %).
Although r2SCAN exhibits a similar vm as PBEsol for
ZnTe, as shown in Fig. 2, it has much stronger three-
phonon scattering in the low-frequency region, see Fig. 5,
resulting in good agreement with the experimental κL. It
is worth noting that this agreement is likely a result of
error cancellation, as the phonon frequency shifts and
scattering rates caused by quadratic anharmonicity have
significant effects on κL, leading to fortuitous agreement
between theory and experiment.

The Fig. 4(b) displays the calculated κL values by eight
XC functionals at the SCPH+3ph level. Among these
functionals, the SCAN-related functionals yield both the
highest and lowest MRAEs, with SCAN exhibiting the
smallest MRAE of 30.57 % and r2SCAN exhibiting the
largest MRAE of 73.11 %. Following closely behind is
rSCAN with a MRAE of 66.22 %. It is evident that all
XC functionals show a significant increase in MRAE com-
pared to the κL values calculated using HA+3ph. The
largest increase occurs in rSCAN and r2SCAN, with their
MRAEs increasing from 49.18 % to 66.22 % and from
35.23 % to 73.11 %, respectively. The relative errors of
each compound obtained from rSCAN and r2SCAN are
notably similar, with the exception of BAs, which can
be attributed to the strong three-phonon scattering pre-
dicted by rSCAN, see Fig. 5. The increase in MRAE
from HA+3ph to SCPH+3ph is mainly attributed to
the shift of the phonon frequency towards higher energy
(see Fig. 1) and the prior-existing overestimation of κL

by HA+3ph for most functionals. On the other hand,
LDA provides a clearer demonstration of the alleviation
of the κL underestimation from HA+3ph to SCPH+3ph.
Notably, the overestimation of κL for BAs and ZnTe is
slightly reduced due to the slight decrease in phonon fre-
quency caused by SCPH, as shown in Fig. 1(b). The
effects of temperature on κL can be more accurately as-
sessed for each compound by calculating the ratio be-
tween κSCPH

3ph and κHA
3ph. As illustrated in Fig. 6(a), the

majority ratios of κ3ph
SCPH/κ

HA
3ph exceed 1, indicating an en-

largement of κL from HA+3ph to SCPH+3ph. Notably,
compounds with the rocksalt structure exhibit larger ra-
tios compared to those with the zincblende structure,
consistent with previous findings using the PBE func-
tional [10], attributed to the lower coordination num-
ber and weaker anharmonicity of the zincblende struc-
ture [72]. Furthermore, the degree of enhancement varies
with the functional used for a specific compound. For
instance, the κSCPH

3ph /κHA
3ph ratios for NaCl are 1.67, 1.0,

1.48, 1.28, 1.68, 2.33, 0.79, 1.25 for LDA, PBE, PBEsol,
optB86b, revTPSS, SCAN, rSCAN, and r2SCAN, respec-
tively.

Notably, all of these functionals exhibit a large
κSCPH
3ph /κHA

3ph ratio for BaO, but a smaller ratio for other
alkaline earth metal oxides MO (M = Mg, Sr, and Ca).
This difference is likely attributed to the greater phonon
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FIG. 4. (Color online). (a)-(c) are relative errors of the calculated κL at HA+3ph (κHA
3ph), SCPH+3ph (κSCPH

3ph ), and SCPH+3,4ph
(κSCPH

3,4ph ) three levels with respect to the experimental values at room temperature, respectively. Gray color indicates the phonon
with imaginary frequencies at 0 K or 300 K that prohibits κL calculations. Experimental κL values are adopted from 77–86.

FIG. 5. (Color online) (a)-(c) are the three-phonon scat-
tering rate, weighted phase space, and phonon spectrum of
BAs, respectively. (d)-(f) are the three-phonon scattering
rate, weighted phase space, and phonon spectrum of ZnTe,
respectively.

frequency shift from SCPH to HA in BaO compared to
the other MO compounds, as shown in Fig. 1(b). Ex-
cept SCAN-related functionals, all the other functionals
demonstrate a similar trend in the κSCPH

3ph /κHA
3ph ratio for

compounds with the zincblende structure, where most
compounds have a ratio of around 1. Conversely, SCAN-
related functionals display more variability in this ratio.
Specifically, SCAN and rSCAN indicate a ratio greater
than 1 for ZnSe, while rSCAN and r2SCAN show ratios
greater than 1 for BAs and ZnTe, respectively. It is worth
noting that rSCAN deviates from the trend observed in
other functionals when calculating the κSCPH

3ph /κHA
3ph ratio

of NaCl in rocksalt compounds: while all other function-

als have a ratio of around 1, rSCAN yields a ratio of
0.79. This suggests that SCAN-related functionals can
not provide consistent results when calculating κHA

3ph and
κSCPH
3ph .

Fig. 4(c) displays the calculated κL at the
SCPH+3,4ph level, which represents the most ac-
curate method utilized in this study. The maximum and
minimum MRAEs are 35.06 % with rSCAN and 20.03 %
with PBEsol, respectively. A comparison with Fig. 4(b)
reveals a notable decrease in MRAEs attributed to
additional phonon-phonon scattering from four-phonon
interactions, which is particularly significant for sys-
tems with relatively weak three-phonon scattering like
BAs [15]. It is evident that four-phonon scattering signif-
icantly impacts the calculated κL of the compounds with
the zincblende structure, contrary to the effect of SCPH
as discussed earlier. In stark contrast to the results from
HA+3ph and SCPH+3ph, the LDA-calculated κSCPH

3,4ph
for all the examined compounds in this study are lower
than the experimental κL, with larger relative errors
for the compounds with the rocksalt structure. This
discrepancy is attributed to the overbinding issue of
LDA, which results in smaller volumes (shorter bond
lengths) compared to these at room temperature, see
Fig. S14, while the experimental lattice constants at
room temperature are employed in this work, which
leads to weaker chemical bonds in our LDA calculations.
A similar trend is observed in PBEsol, which exhibits
slightly larger equilibrium volumes than LDA at 0 K
but still smaller than room-temperature values for most
compounds, see Fig. S14. The agreement with experi-
mental lattice constants will be significantly improved if
the thermal expansion is considered [31]. Interestingly,
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FIG. 6. (Color online). Comparison of κL calculated using three methods for the 16 binary with rocksalts and zincblende struc-
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despite PBE-optimized volumes at 0 K being larger
than experimental volumes at room temperature (see
Fig. S14), resulting in enhanced chemical bonds when
utilizing room-temperature lattice constants, PBE only
overestimates the κL of three compounds (BaO, MgO,
and PbTe). This implies a more complex relationship
between bond length and κL across various XC func-
tionals. Among these functionals, only LDA, PBEsol,
and SCAN barely address the issue of overestimation
for BaO, showing the best agreement with experimen-
tal values among these functional [77]. While PBE,
optB86b, and revTPSS largely overestimate the κSCPH

3,4ph
of PbTe, other functionals achieve good agreement with
the experimental value if no imaginary frequencies are
present at the SCPH level. Additionally, we observed
that certain functionals yield significantly lower κSCPH

3,4ph
values for specific compounds compared to other XC
functionals. Examples include SCAN for CaO, LDA for
PbS, revTPSS and rSCAN for BAs, SCAN for ZnSe, and
r2SCAN for ZnTe. Conversely, all functionals largely
underestimate the κL of InAs and InSb except SCAN,
suggesting potential inaccuracies in the experimental
values or the influence of other factors such as lattice
constants. Overall, the performance of the PBEsol
functional is notable in most of these compounds, with
a slightly smaller relative error observed for compounds
with a rocksalt structure compared to those with a
zincblende structure.

The effect of four-phonon scattering on κL can be as-
sessed by examining the ratio of κSCPH

3,4ph /κSCPH
3ph . Anal-

ysis presented in Fig. 6(b) reveals that the compounds
with the zincblende structure are more significantly af-
fected by the four-phonon scattering compared to those

with the rocksalt one, with the exception of SiC, BP,
and GaAs across all functionals. This observation sug-
gests that four-phonon scattering is relatively weaker in
rocksalt compounds because it has strong three-phonon
scattering. Surprisingly, all the functionals find that the
ratios of κSCPH

3,4ph /κSCPH
3ph for InSb, InAs, and ZnTe are com-

parable or even smaller than that of BAs, a well-known
compound with strong four-phonon scattering [15], indi-
cating a more pronounced four-phonon interaction effect.
In contrast to other functionals, rSCAN predicts that the
rocksalt compounds NaF and NaCl also exhibit strong
four-phonon scattering, resulting in a significant under-
estimation of κL. A similar result is predicted by r2SCAN
for NaF, but not for NaCl. The four-phonon scattering
rates of these two compounds as predicted by rSCAN
are illustrated in Fig. 7. When compared to the PBEsol
functional, rSCAN demonstrates significantly stronger
four-phonon scattering in the low-frequency region for
both NaF and NaCl. In contrast, r2SCAN only predicts
high four-phonon scattering in NaF, aligning with the
observed trend in κL.

The κSCPH
3,4ph /κHA

3ph ratio provides valuable insight into
the relative contributions of phonon renormalization at
room temperature and the four-phonon scattering in the
calculation of κL. A κSCPH

3,4ph /κHA
3ph ratio of 1 indicates a

perfect cancellation between these two effects, while a
ratio of less than 1 suggests that the reduction of κL

due to four-phonon scattering outweighs the enhance-
ment from phonon renormalization, although the latter
can occasionally lead to a decrease in κL as well. Anal-
ysis of the data presented in Fig. 6(c) indicates that all
zincblende compounds demonstrate a κSCPH

3,4ph /κHA
3ph ratio

below 1 across all functionals, which is attributed to the
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FIG. 7. (Color online) (a) and (b) are the four-phonon scat-
tering rates calculated using PBEsol, rSCAN, and r2SCAN
for NaF and NaCl, respectively.

smaller or negative phonon frequency shifts at room tem-
perature and the heightened four-phonon scattering char-
acteristic of the zincblende structure, aligning with pre-
vious findings [10]. Among these compounds, SiC and
BP stand out as the only zincblende compounds with a
κSCPH
3,4ph /κHA

3ph ratio approaching 1. Conversely, all rocksalt
compounds exhibit a κSCPH

3,4ph /κHA
3ph ratio close to or greater

than 1. Notable exceptions to this trend are primarily
observed in NaF and NaCl across nearly all functionals.
At the same time, these two compounds are predicted
to have abnormally smaller κSCPH

3,4ph /κHA
3ph ratio than other

functionals by rSCAN. It is evident that the rocksalt com-
pounds generally display similar values for κSCPH

3,4ph /κHA
3ph

ratio, whereas the zincblende compounds show large frus-
tration across these compounds. BaO is identified as a
notable case where the inclusion of four-phonon scatter-
ing leads to a significant reduction in κL, surpassing the
overestimation produced by SCPH+3ph.

F. Dependence of lattice thermal conductivity on
volume

Our previous study demonstrates that there is a signif-
icant disparity between the computed room-temperature
lattice constants using QHA and the corresponding ex-
perimental values for many of these XC functionals [31].
However, due to the considerable cost associated with
computing thermal expansion through anharmonic ap-
proximation for such an extensive dataset, this work
employs the room-temperature experimental lattice con-
stants to mitigate the influence of lattice thermal ex-
pansion on κL. As illustrated in Fig. S14, most com-
pounds exhibit significant discrepancies between the op-
timized volumes at 0 K and the experimental ones at
room temperature. Consequently, the chemical bond-
ing of these compounds may be either strengthened or
weakened by the smaller or larger volumes in our calcu-
lations. A stronger (weaker) chemical bond could result
in a higher (lower) vg and, consequently, an increased
(decreased) κL [89]. To further elucidate the impact of
volume on the κL of these compounds, we present the

correlation between κL and volume for two represented
compounds ZnTe and PbTe in Fig. 8. As demonstrated
above, PBEsol exhibits exceptional performance in com-
puting κL across all perturbation orders. Consequently,
PBEsol is utilized to explore the dependence of κL on
volume. ZnTe is a zincblende compound, and our calcu-
lated κL is notably higher than that reported in a pre-
vious study [10]. On the other hand, PbTe serves as
a representative of the rocksalt compound with signifi-
cant anharmonicity. It is observed that the κL increases
monotonically as the volume decreases (corresponding to
an increase in pressure) for both ZnTe and PbTe. In-
terestingly, while the κSCPH

3,4ph of ZnTe is nearly linearly
dependent on volume, the changes of κHA

3ph and κSCPH
3ph

with volume is nonlinear. Additionally, both κHA
3ph and

κSCPH
3ph are much higher than κSCPH

3,4ph , and the difference
between them widens as the volume decreases, suggest-
ing a significant enhancement in four-phonon scattering.
Notably, a crossover is observed between κHA

3ph and κSCPH
3ph

at a volume close to the experimental one. When the vol-
ume is smaller than this critical volume, κSCPH

3ph is lower
than κHA

3ph. In contrast to ZnTe, the behavior of PbTe is
distinct, with κHA

3ph, κ
SCPH
3ph , and κSCPH

3,4ph exhibiting a lin-
ear increase as the volume decreases, albeit with slightly
different slopes. Notably, for any given volume, κSCPH

3ph

consistently exceeds κHA
3ph. These differences stem from

the disparity in the impact of the SCPH effect on rock-
salt and zincblende structures.
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FIG. 8. (Color online). (a) and (b) are the PBEsol calcu-
lated dependence of κL on the volume for ZnTe and PbTe cal-
culated at three perturbation orders (HA+3ph, SCPH+3ph,
and SCPH+3,4ph), respectively. The vertical dash line indi-
cates the PBEsol optimized volume.

IV. CONCLUSIONS

In this study, we systematically investigate the per-
formance of eight commonly used and newly proposed
XC functionals in the solid community on lattice thermal
conductivity based on the phonon gas model with three
different perturbation orders. Within the approximation
of harmonic phonons and three-phonon scattering, all the
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XC functionals tend to overestimate κL for almost all the
compounds. Among these functionals, revTPSS exhibits
the smallest MRAE (29.75 %), followed by SCAN (30.11
%), LDA (34.00 %), and r2SCAN (35.23 %), whereas
PBE (45.51 %) and rSCAN (49.18 %) possess the largest
MREA among these XC functionals. If the phonon spec-
trum is renormalized at room temperature using the
SCPH method and only include three-phonon scatter-
ing (SCPH+3ph), the κL values are further enlarged for
nearly all the functionals, due to the phonon frequency
shift towards higher energy, resulting in minimal MRAE
of 30.57 % by SCAN and maximal MRAE of 73.11 %
by r2SCAN. However, if the four-phonon scattering is in-
cluded in the SCPH+3ph as well (SCPH+3,4ph), which
is the most accurate method employed in this work, the
MRAEs of all the functionals are significantly reduced,
achieving the minimal MRAE of 20.03 % by PBEsol and
maximal MRAE of 35.06 % by rSCAN. Both rSCAN
and r2SCAN have improved numerical stability, but only
r2SCAN has comparable MARE with PBEsol, implying
the importance of adhering to the constraints imposed by
SCAN. However, although metaGGA functionals have a
higher hierarchy and are computationally more expen-

sive than LDA and GGAs, their accuracy in capturing
anharmonicity is slightly inferior to the lower hierarchy
functionals, particularly PBEsol. Due to the small differ-
ence in phonon spectra and the smaller MRAE in sound
velocity compared to the Grüneisen parameter, the pri-
mary source of error across these functionals predomi-
nantly arises from the difference in dealing with anhar-
monicity. Our findings not only offer a comprehensive
assessment of XC functionals for computing κL, but also
provide a useful guide for selecting appropriate XC func-
tionals when dealing with anharmonicity. Furthermore,
our results highlight the challenges of accurately describ-
ing anharmonicity using XC functionals.
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