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We study magnon transmission across gate-controlled junctions in the n = 0 manifold of Landau
levels in monolayer graphene, allowing for both spin and valley Zeeman fields. We show that by
tuning the external perpendicular magnetic field, the phase in the intermediate region of a 1|νm|1
sandwich geometry can be changed, due to which the magnon transmission can be switched between
fully transmitting and fully blocked. Our analysis, along with the experimental measurements, can
be used to determine the anisotropic couplings in the sample.

I. INTRODUCTION

The quantum Hall effect (QHE), initially discovered
in semiconductor heterostructures [1, 2], is the simplest
manifestation of band topology [3, 4]. The kinetic energy
in the strong orbital magnetic field is quenched into a
discrete set of highly degenerate Landau levels. When
an integer number of Landau levels are filled, the system
is insulating in the bulk. The topological nontriviality of
the bulk leads to protected chiral edge modes [5] which
carry the charge and heat currents detected in transport.
The absence of kinetic energy within each Landau level
means that the ground states of electrons in partially
filled Landau levels are controlled by interactions, leading
to the fractional quantum Hall effect (FQHE) [6, 7].

The dominance of interactions in the quantum Hall
regime is not limited to fractional fillings. If internal
degeneracies such as spin and valley are present, each
orbital Landau level can be filled by multiple flavors. At
integer fillings, the many-body ground state is selected
by the interactions, a phenomenon known as quantum
Hall ferromagnetism [8–11].

The QHE has found a new and remarkable manifesta-
tion in monolayer graphene (MLG) [12–15], an atomically
thin two-dimensional(2D) material with a honeycomb
lattice. MLG shows well-quantized Hall plateaus[15, 16]
in the presence of a strong orbital B⊥ field at low tem-
peratures.

The electronic band structure of MLG has two inequiv-
alent points in the Brillouin zone (BZ), the K and K ′

valleys, where the conduction and valence bands touch
each other linearly in Dirac crossings. The low energy,
long wavelength features of MLG are thus dictated by
the linear Dirac spectrum close to the two valleys [15].
At charge neutrality, the chemical potential lies at the
Dirac points. When an orbital B⊥ field is turned on, the
kinetic energy near each Dirac point becomes quantized
into a set of particle-hole symmetric Landau levels, with
En ∝ sgn(n)

√
B⊥|n| [15]. The internal (near) degenera-

cies are now spin and valley, leading to fourfold, nearly
degenerate Landau levels. Coming to the edge struc-
ture, all the n > 0 Landau levels produce chiral modes

with a particle-like dispersion, and all the n < 0 Landau
levels lead to chiral modes with a hole-like dispersion.
The n = 0 manifold of Landau levels is special, in that
the wave functions are composed of an equal superposi-
tion of particle-like and hole-like momentum states. Near
an edge, because of intervalley scattering, the orbital K
and K ′ n = 0 Landau levels combine to produce one
particle-like and one hole-like edge mode [17]. Another
special feature of the n = 0 LL is that the electronic wave
function in a particular valley is completely localized on
a particular sublattice of the honeycomb lattice (valley-
sublattice locking). Thus, in the zero-energy n = 0 man-
ifold of Landau levels (called the zero Landau levels, or
ZLLs), one needs a four-component spinor to describe
the internal spin/valley degrees of freedom. When none
of the ZLLs are filled, the filling factor ν is defined to
be ν = −2, which is the same as its Hall conductance in
dimensionless units. When a single ZLL is filled ν = −1,
and if a single one is empty ν = 1. The charge neutral
state with two filled ZLLs and two empty ones has ν = 0.

Let us first consider the one-body terms in the Hamil-
tonian. The Zeeman coupling EZ is always present. In
addition, in MLG samples encapsulated with hexagonal
Boron Nitride (HBN), partial alignment of the graphene
lattice with that of the HBN produces a sublattice poten-
tial that favors one sublattice over the other [18–21]. In
the ZLLs, this means favoring one valley over the other.
For this reason, we will call this coupling the valley Zee-
man coupling EV .

The case of ν = 0 (charge neutrality), though not
the main topic of this work, is the most complex and
has led to the development of many experimental tech-
niques [22–32] aimed at elucidating its nature. Two of the
four ZLLs are filled. When EZ > 0 and only long-range
Coulomb interactions are present, the ground state is a
quantum spin Hall insulator with maximal spin polariza-
tion [33, 34]. The two counter-propagating chiral modes
have opposite spins, and ought to produce a two-terminal
edge conductance of 2e2/h. However, experimentally, at
a purely perpendicular field, MLG is a vanilla insulator
with no edge modes [22–25]. In tilted field experiments,
when a B∥ as well as a B⊥ are applied and EZ is in-
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creased to a large value, the state does approach the fully
polarized spin ferromagnet, and the expected edge con-
ductance is asymptotically recovered [25].

In addition to the long-range Coulomb interaction,
there are lattice scale interactions that break the SU(4)
symmetry and compete with the Zeeman and valley Zee-
man couplings in selecting the ground state [17, 33, 35–
38]. It has long been known that at the four-fermion level,
the low-energy effective theory must conserve the number
of electrons in each valley separately, leading to a U(1)v
symmetry [35]. In a seminal work, Kharitonov proposed
an ultra-short-range (USR) model [39, 40] for the resid-
ual interactions which has two couplings, a valley Ising
coupling uz, and a valleyXY coupling u⊥, both expected
to scale linearly with B⊥. He then solved this model in
the Hartree-Fock (HF) approximation to obtain a phase
diagram in the uz −u⊥ parameter space. At charge neu-
trality, the following quantum Hall phases are seen [39]:
A fully spin-polarized quantum spin Hall insulator (FM),
a canted antiferromagnet (CAF), a bond-ordered (BO)
state, presumably with a Kekulé distortion (and thus of-
ten called KD, though we will use the notation BO), and
a charge density wave (CDW). It is believed that at a
purely perpendicular field, the system is either in a BO
state or a CAF state, and upon increasing EZ it under-
goes a transition to the fully spin-polarized state. More
recently, even more complex phase diagrams have been
proposed both for ν = 0 [41–44] and ν = ±1 [45, 46]
systems by relaxing the ultra-short-range assumption for
the anisotropic residual couplings.

Many experimental techniques have been used to
probe the ν = 0 state. Apart from transport [22–25],
the state has been probed by scanning tunneling mi-
croscopy/spectroscopy (STM) [30–32] and by the trans-
mission of magnons [26–29]. Magnons are collective ex-
citations which carry spin, and are always present in
systems which have a nonzero spin polarization. These
two techniques probe different order parameters. While
magnon transmission probes whether the state in ques-
tion has any spin polarization, current STM experiments
are not spin-resolved. They detect charge density at the
atomic scale, and can thus detect the presence of charge
and/or bond order. STM experiments ubiquitously show
bond order and CDW order [30–32]. As an aside, we
note that while bond order and CAF order do not co-
exist in Kharitonov’s phase diagram [39], removing the
restriction of ultra-short range interactions allows them
to coexist [41–44] at ν = 0. Based on a combination
of STM and magnon transmission experiments, the cur-
rent consensus is that at low B⊥, the system is a spin
singlet and has bond order. As the field B⊥ increases,
the couplings uz and u⊥ increase, while EV remains the
same. As detected by magnon transmission [29], the sys-
tem makes a transition into a magnetic state, presumably
the CAF phase, at some critical value of B⊥. Based on
Kharitonov’s phase diagram this puts physical systems
in the region of the parameter space where uz > 0 while
u⊥ < 0.

Our goal in this work is to thoroughly examine a much
simpler system, which is a “sandwich” of ν = 1, ν =
−1 and ν = 1, denoted as 1| − 1|1. Such a system has
been examined before in the limiting case when EV =
0 [47]. We study it in full generality in the neighborhood
of the physical region of the uz, u⊥ parameter space with
nonzero EZ , EV . Real samples of graphene are believed
to have uz > 0, u⊥ < 0. We will examine both uz > |u⊥|,
which puts the system at EZ = EV = 0 in the AF phase,
and uz < |u⊥|, for which the system is in the bond-
ordered phase at EZ = EV = 0. Since EZ , uz, u⊥ all scale
linearly with B⊥ while EV remains constant, one can
access many different regimes simply by varying B⊥. The
first step is to examine the Hartree-Fock (HF) ground
states for each of ν = ±1. As we will show, the ordering
of the HF energies in the ν = ±1 states, which depends
on the coupling constants uz, u⊥ as well as EZ , EV ,
plays a key role in the nature of the interface between
ν = 1 and ν = −1. The middle layer of the sandwich can
undergo transitions between different ground states as
B⊥ is varied. Note that magnon scattering in a skyrmion
crystal with a 1|1± δν|1 sandwich also has been studied
earlier [48].

Experimentally, magnons can be generated at the the
contacts in a ν = 1 system [26–29, 49, 50] by creating
a potential difference between the co-propagating edge
channels of opposite spins at an edge between ν = 2 and
ν = 1. When the bias voltage between the two chan-
nels exceeds the spin flip energy 2EZ , a magnon is cre-
ated by a spin-flip process, which can then be transmit-
ted through the 1|νm|1 junction, where νm is the filling
fraction in the middle region. The magnon transmission
probability through the sandwich is studied as a function
of the incident magnon energy, either by local conduc-
tance measurements or non-local voltage measurements.
In an earlier work [26] (believed to be for EV ≈ 0) it was
found that for both configurations 1|1|1 and 1| − 1|1, the
magnons were largely transmitted, while for 1|0|1, they
were largely reflected for energies near threshold (2EZ).
Although this can be understood through kinematic con-
straints [47], later experiments [28] show magnons are
largely reflected for 1| − 1|1. More recent experiments
[29] show that the transmission across the junction can
be changed by tuning the external perpendicular mag-
netic field B⊥. Thus, even for the simpler system, the
experimental situation is far from clear. This is a strong
motivation for our detailed study including all allowed
parameters. Our main result, in this paper, is to show
that magnon transmission through the 1|−1|1 ‘sandwich’
can detect various phases in the intermediate region and
the phase transitions, as a function of B⊥.

Another important motivation for us is the possibility
of determining all the coupling parameters using magnon
transmission across the sandwich. The idea is as follows:
The value of EV can be determined by zero-B⊥ measure-
ments of the gap [18]. Using this and the known value
of EZ , one is left with the free parameters uz, u⊥. The
three parameters EZ , uz, u⊥ all scale linearly with B⊥.
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The Coulomb interaction scales with
√
B⊥, whereas EV

is independent of B⊥. Thus, by varying B⊥ one may
be able to vary the ratios of these parameters over a
wide range. The ratios determine the ordering of the
one-body levels, and consequently the structure of the
junction, and the middle region of the sandwich. Of par-
ticular interest are specific ratios of parameters where
phase transitions in the order parameters of the middle
region occur, which are reflected in the magnon transmis-
sion probability. Thus, magnon transmission over a wide
range of B⊥ would ideally allow us to determine uz/B⊥
and u⊥/B⊥ for a given sample.

The rest of the paper is organized as follows. In Sec-
tion II, we present the Hamiltonian and understand the
bulk HF spectrum for ν = ±1. It will turn out that the
ordering of the levels in energy plays a key role in the na-
ture of the interface between ν = 1 and ν = −1, which in
turn determines the transmission/reflection of collective
excitations through it. We will examine how the various
parameters of the model (EZ , EV and the anisotropic
couplings) enter in determining this ordering of levels.
Since all the parameters except EV scale linearly with
B⊥, we can alter the ordering of levels simply by varying
B⊥. In Sec. III we will present the full Hamiltonian of
the system, including the interfaces, and apply the HF
approximation. Here we will explicitly see how the bulk
ordering of levels is the deciding factor in the structure
of the interface. In Sec. IV we study the collective ex-
citations via the time-dependent Hartree-Fock (TDHF)
approximation, and introduce the bulk collective exci-
tations which are the scattering states for the magnon
transmission problem. Following earlier work [47] we also
set up the formalism to study magnon transmission and
reflection through the 1| − 1|1 junction using the TDHF
equations. In Section V we present our results followed
by a discussion and conclusion in Sec VI.

II. THE BULK HAMILTONIAN AND HARTREE
FOCK GROUND STATE

The Hamiltonian of the N = 0 LLs in MLG, because
of its sub-lattice and valley locking, can be written using
four levels denoted by their spin(↑, ↓) and valley indices

(K,K ′). We work in the Landau gauge A⃗ = (0, B⊥x, 0),
where B⊥ is the external magnetic field perpendicular
to the sample. Note that in the following, the magnetic
length ℓ is defined as ℓ =

√
h/eB⊥.

The bulk Hamiltonian for the ZLLs in MLG for
generic symmetry-allowed interactions (first proposed by

Kharitonov [39]) is

Hbulk =
πℓ2

A

∑
k1,k2,q⃗

ei(ϕ(k1,q⃗)+ϕ(k2,−q⃗))e−
(q2ℓ2)

2 ×

[ ∑
α=x,y,z

vα(q) : (c⃗
†
k1−qy

ταc⃗k1
)(c⃗ †

k2+qy
ταc⃗k2) :

+V (q) : (c⃗ †
k1−qy

c⃗k1)(c⃗
†
k2+qy

c⃗k2) :
]

−
∑
k

EZ c⃗
†
k σz c⃗k −

∑
k

EV c⃗
†
k τz c⃗k (1)

where ϕ(k, q⃗) = ℓ2(−qxk + 1
2qxqy) and c⃗k =

(ckK↑, ckK↓, ckK′↑, ckK′↓)
T . The matrices τα and σα, α =

0, x, y, z, with 0 denoting the identity matrix, are Pauli
matrices acting in the valley and spin spaces respectively.
More explicitly, τα ≡ τα⊗σ0. Here, V (qx, qy) =

Ec√
q2ℓ2+q20

is the screened Coulomb interaction. We have used
the ultra-short-range (USR) assumption for the residual
anisotropic interactions [39], implying that vα(q) are in-
dependent of momentum; vα(q) = 2πℓ2uα. The valley
XY coupling is given by ux = uy = u⊥. As seen in earlier
work [41–44], relaxing the USR assumption does lead to
the appearance of new phases at ν = 0. However, it does
not seem to have a strong effect on the phases of ν = ±1
in the physical region of the parameter space [45, 46, 51],
which is why we continue to use the USR assumption
here. We will keep the Coulomb screening wavevector q0
small in our analysis. EZ is the spin Zeeman term, which
denotes the coupling of the electron spin with the exter-
nal magnetic field, EZ ∝ µbB⊥, where µb is the Bohr
magneton. EV is the valley Zeeman/sublattice potential
term, which breaks the valley degeneracy in MLG and
favors the K valley over the K ′ valley in the noninter-
acting limit. As explained in the introduction, this term
is usually generated from the partial misalignment of the
substrate layer, (such as hexagonal boron nitrate (hBN)
layer) with the graphene layer [18–21].

At this point, it is useful to look at the symmetries of
the Hamiltonian. For EZ = EV = 0 the Hamiltonian is
invariant under SU(2)s ⊗ U(1)v ⊗ Z2v, where the sub-
scripts s, v stand for spin and valley respectively. Once
one allows for nonzero EZ , EV , the symmetry reduces to
U(1)s ⊗ U(1)v. It is also worth noting that while the
U(1)s symmetry holds very generally, the U(1)v sym-
metry is valid only for interactions at the four-fermion
level [35]. Once one includes six-fermion interactions,
the conservation of momentum up to a reciprocal lattice
vector will reduce the U(1)v symmetry to Z3v. This has
the important consequence that when the U(1)v sym-
metry is spontaneously broken, the would-be Goldstone
modes will be gapped by the reduction of the continuous
symmetry U(1)v to the discrete Z3v.

Using the HF approximation and restricting to trans-
lational invariant ground states up to an intervalley co-
herence, the bulk HF Hamiltonian from Eq. 1 can be
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expressed as

Hbulk
HF =

∑
i,j

[∑
m,n

(Vijmn − Vinmj)∆mn − Vex∆ji

]
c†i cj

−c⃗ †(EZσz + EV τz)c⃗
(2)

where Vijmn =
∑

α uα(τα)ij(τα)mn and Vex =∫
Ec

2π ℓ2d2q e−[
q2ℓ2

2
]√

q2ℓ2+q20
is the exchange contribution of the

screened Coulomb interaction. The Hamiltonian is writ-
ten in the basis c⃗ † = (c†K↑, c

†
K↓, c

†
K′↑, c

†
K′↓). ∆ is com-

pletely known in terms of the one-body expectation

values ∆ij = ⟨HF|c†i cj |HF⟩ for the Slater determinant
ground state |HF⟩.

Now, let us look at the single-particle HF energies
of the various levels at ν = ±1. For ν = ±1 with
EZ , EV > 0, the electron spin and valley indices are
good quantum numbers so the projector ∆ for the occu-
pied state is diagonal in the basis (K ↑,K ↓,K ′ ↑,K ′ ↓)T .
For bulk ν = −1 the occupied level is K ↑, implying
∆ = diag(1, 0, 0, 0), leading to the single-particle HF en-
ergies

EK↑ = −Vex − EV − EZ ,

EK↓ = −EV + EZ + uz,

EK′↑ = EV − EZ − uz − 2u⊥,

EK′↓ = EV + EZ − uz (3)

For bulk ν = 1 the unoccupied state is K ′ ↓, implying
∆ = diag(1, 1, 1, 0), leading to the single-particle HF en-
ergies

EK↑ = −Vex − EV − EZ − 2u⊥,

EK↓ = −Vex − EV + EZ ,

EK′↑ = −Vex + EV − EZ − 2uz − 2u⊥,

EK′↓ = EV + EZ − uz − 2u⊥ (4)

One of the central thrusts of this paper is to examine
magnon transmission as B⊥ changes, while maintaining
the filling fractions across the junction. This is very rea-
sonable experimentally [29]. All the parameters of the
Hamiltonian(1) except EV change with B⊥. The cou-
plings in the Hamiltonian depend on B⊥ as follows [39],

Ec ∝
1

ℓ
=

√
B⊥ E0

c ,

uα ∝ 1

ℓ2
= B⊥ u0α,

EZ = B⊥ E0
Z (5)

where B⊥ is in Tesla, and E0
c , u

0
α, and E0

Z are the
strengths of the parameters at a reference perpendicu-
lar field of B⊥

0 = 1 Tesla. We keep B0
⊥ general in what

follows to maintain flexibility. As we will show in the
section on results (Section V), the magnon transmission
amplitude depends strongly on the structure of the junc-
tions and the intermediate region, which in turn is deter-
mined by the ordering of single-particle levels in the three

regions. Since this is an important finding of our paper
we will illustrate it here in some detail with examples.
Let us focus on the energy differences between the

single-particle energies of the HF levels. For ν = 1, the
energy differences between the occupied levels are

EK↑ − EK′↑ = 2(B⊥u
0
z − EV )

EK↓ − EK′↑ = 2(B⊥[E
0
Z + (u0z − |u0⊥|)]− EV )

EK↑ − EK↓ = 2B⊥(|u0⊥| − E0
Z) (6)

Since there are multiple energy scales involved, we will
consider two illustrative cases, leaving the detailed inves-
tigation of all the possibilities to later sections. In both
cases we will look only at what is believed to be the physi-
cal region of anisotropic couplings, given by uz > 0, u⊥ <
0. In Fig. (1) we focus on the case uz > |u⊥|. Assuming
that the field is perpendicular, and that u0z − |u0⊥| > E0

z .
Finally, assuming a partially aligned HBN substrate, we
take EV > u0z−|u0⊥|. As seen in Fig. (1), there are three
different orderings as a function of B⊥. For B⊥ < EV /u

0
z

(roughly 1.3T for the parameters chosen) the ordering of
the levels is EK↓ < EK↑ < EK′↑. For intermediate val-

ues EV

E0
Z+(u0

z−|u0
⊥|) > B⊥ > EV

u0
z
, the ordering becomes

EK↓ < EK′↑ < EK↑. Finally, for large values of B⊥,
beyond roughly 3.4T for the parameters chosen, the or-
dering is EK′↑ < EK↓ < EK↑.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-5

0

5

10

15

20

FIG. 1: HF energies of the occupied levels for bulk
ν = 1 as a function of B⊥/B⊥

0 with Vex = 0, E0
Z =

0.5, EV = 5, u0z = 4 and u0⊥ = −3 i.e. the case when

EV > (u0z − |u0⊥|) > E0
Z . For B⊥/B⊥

0 ≃ 1, the or-
dering of the occupied levels is given by EK↓ < EK↑ <
EK′↑. As we increase B⊥, the energy of the state K ′ ↑
decreases linearly while the other energies increase, thus
changing the order of the occupied levels.

As a second illustrative example, let us consider a case
where, at EZ = EV = 0, the system would have been
in the BO state in the physical region of anisotropic
couplings, that is, uz < |u⊥|. We will consider a sce-
niario similar to the one in the previous paragraph, with
EV > (|u0⊥|−u0z) > E0

Z . Now there are only two different
types of orderings of single-particle energy levels, as seen
in Fig. (2). For B⊥ < EV /u

0
z (roughly 2.5 for the pa-
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rameters chosen) the ordering is Ek↓ < EK↑ < EK′↑. For
larger B⊥ the ordering switches to Ek↓ < EK′↑ < EK↑.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-5

0

5

10

15

20

FIG. 2: HF energies of the occupied levels for bulk
ν = 1 as a function of B⊥/B⊥

0 with Vex = 0, E0
Z =

0.5, EV = 5, u0z = 2 and u0⊥ = −3 i.e. the case when

EV > (|u0⊥| − u0z) > E0
Z . For B⊥/B⊥

0 ≃ 1, the ordering
of the occupied levels are again EK↓ < EK↑ < EK′↑,
but as we increase B⊥, the energies of all the occupied
levels increase. We find that the ordering of the occu-
pied levels changes only once, in contrast to Fig. (1)
where it changes twice.

From these examples it is clear that for fixed EV and
purely perpendicular field, the ratio of uz and u⊥ (that is,
whether uz

|u⊥| > 1 or uz

|u⊥| < 1) as well as the magnitude of

B⊥ control the energetic ordering of filled levels at ν = 1.
While any static ground state average will not be affected
by the ordering of the filled levels, we will show that this
ordering has drastic effects on the junctions, and thence
on the magnon transmission.

Thus far we have focused on the bulk. Now we will de-
scribe the full inhomogeneous Hamiltonian of our system
with the ν = 1| − 1|1 sandwich and explicitly show how
the bulk energetic ordering of occupied levels in ν = 1
and the strength of B⊥ affect the self-consistent HF re-
sults.

III. HAMILTONIAN AND HF
APPROXIMATIONS WITH JUNCTIONS

The Hamiltonian of the system in the presence of
ν = 1| − 1|1 sandwich is almost identical to Eq. 1, the
only difference being the positive background charges en-
forcing the different fillings in the different regions of the

sandwich.

H =
πℓ2

A

[ ∑
k1,k2,q⃗

∑
α=x,y,z

ei(ϕ(k1,q⃗)+ϕ(k2,−q⃗))e−
(q2ℓ2)

2

× vα(q) : (c⃗
†
k1−qy

ταc⃗k1
)(c⃗ †

k2+qy
ταc⃗k2

) : +∑
q⃗

V (q) : (ρ(q⃗)− ρb(q⃗))(ρ(−q⃗)− ρb(−q⃗)) :
]

−
∑
k

EZ c⃗
†
k σz c⃗k −

∑
k

EV c⃗
†
k τz c⃗k

(7)

where ϕ(k, q⃗) = ℓ2(−qxk + 1
2qxqy), and ρ(q⃗) is the

Fourier transform of the electron density ρ0(x, y) =
ψ0(x, y)

†ψ0(x, y) for the ZLL. ρb(q⃗) is the Fourier trans-
form of the positive background charge density, which we
choose to be

ρb(x, y) =
1

2πℓ2


3, x < −W/2
1, −W/2 ≤ x ≤W/2

3, x > W/2

(8)

Note that ρb is independent of y. As can be inferred from
Eq. 8, the positive background “tries” to maintain a fill-
ing of ν = 1 (three of four ZLLs filled) for |x| > W/2,
and a filling of ν = −1 (one of four ZLLs filled) for
the region |x| < W/2. The edges are sharp, that is,
there is an abrupt change in the background charge den-
sity at ±W/2. As we know from previous work, smooth
edge potentials can induce edge reconstructions [52–59],
a complication that we do not want here. The width
of the middle region is fixed by the device geometry,
and does not change with B⊥. At the reference value
B⊥

0 = 1 Tesla, the dimensionless width of the middle
region is given by W̃ 0 = W/ℓ0. As B⊥ increases the

dimensionless width W̃ = W̃ 0
√
B⊥ increases. This af-

fects the nature of the interfaces and consequently the
amplitude of magnon transmission through the system.
As with the Hamiltonian of Eq. 1, this Hamiltonian

also has the symmetry group U(1)s ⊗ U(1)v, with the
usual caveat about would-be valley Goldstone modes
becoming gapped when six-fermion interactions are in-
cluded.
In the HF approximation, one reduces the two-body in-

teraction terms in the Hamiltonian(7) to one-body terms
generated by taking averages assuming a single Slater
determinantal (SSD) state. Each SSD can be uniquely
characterized by all possible one-body averages. In our
problem, assuming that translation invariance in the y-
direction is not broken spontaneously, these averages are

⟨c†k1i
ck2j⟩ = δk1,k2∆ij(k1) (9)

i, j runs from 1 to 4 and denotes the four possible nearly
degenerate ZLLs. The inhomogeneity in the problem
manifests itself as a nontrivial dependence of the ∆ ma-
trices on the guiding center index k. We will make use
of the U(1)s ⊗ U(1)v symmetry to rotate the state in
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the spin and valley spaces so as to make the ∆ matrices
real. We get the following HF Hamiltonian in the basis
c⃗k = (ckK↑, ckK↓, ckK′↑, ckK′↓)

T as

HHF =
ℓ

Ly

∑
k1,k2

∑
i,j

[∑
m,n

(Vijmn(k1 − k2)−

Vinmj(k1 − k2))∆mn(k2) + VH(k1 − k2)∆jj(k2)

−VF (k1 − k2)∆ji(k2)
]
c†k1i

ck1j −
∑
k

Vbg(k)c⃗
†
k c⃗k

−
∑
k

Ez c⃗
†
k σz c⃗k −

∑
k

EV c⃗
†
k τz c⃗k (10)

where,

Vijmn(k) =
√
2π e−[ k

2ℓ2

2 ]
∑
α

uα(τα)ij(τα)mn,

VH(k) =

∫ ∞

−∞
ℓdq V (q, 0)e−[ q

2ℓ2

2 ] cos(qkℓ2),

VF (k) =

∫ ∞

−∞
ℓdq V (q, k)e−[

(q2+k2)ℓ2

2 ] (11)

and

Vbg(k) = 2ℓ2
∫ ∞

0

dqV (q, 0)e−[ q
2ℓ2

4 ]Re(e−iqkℓ2ρb(−q)).

(12)

As usual in applications of HF [47, 60, 61], one starts
with a “seed” configuration of the ∆ matrices. The HF
Hamiltonian is diagonalized, states below the chemical
potential are occupied, and the resulting ground state is
used to find an improved set of ∆ matrices. The pro-
cess is repeated until self-consistency is achieved, in the
sense that the ∆ matrices on the next step match the
∆ matrices on the previous step to some desired level of
precision. Once self-consistency has been achieved, the
eigenvalues of the ∆ matrix at every k can only be 0 or
1, representing the occupations of the energy levels at
that k. During the iterative process, the chemical poten-
tial is maintained such that the system is charge neutral
overall.

We will present some HF results here to explicitly show
how the bulk ordering in ν = 1, which is dictated by the
ratio of u0z and u

0
⊥ and B⊥ (for fixed EV , E

0
Z), determines

the self-consistent HF state of the junction. In Landau
gauge, the momentum k along the periodic direction y
is related to the guiding center position Xk = kℓ2 along
the x-direction. The figures we present in what follows
show the HF single-particle energies and the spin-valley
directions of each HF state as functions of the guiding
center position Xk. Since we have used the U(1)s⊗U(1)v
symmetries to make ∆ real, the averages of τ⃗ , σ⃗ lie in the
xz plane in each internal space. We will simply present
the directions as arrows with an ↑ representing K in the
case of valley, and ↑ representing ⟨σz⟩ = 1 in the case of
spin.

First, consider the case where u0z > |u0⊥|, shown in

Fig. (3). We have chosen the parameters B⊥/B⊥
0 = 4
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FIG. 3: HF energies (top panel), spin structure (mid-
dle panel), and valley structure (bottom panel) of each
self-consistent HF level for B⊥ = 4B⊥

0. The Hamil-
tonian parameters are W̃ 0 = 20, E0

C = 30, E0
Z =

0.5, EV = 5.0, u0z = 4, u0⊥ = −3. The spin and valley
structure of each HF level is shown by plotting the vec-
tors σ⃗ = (⟨σx⟩, ⟨σz⟩)(for spin) and τ⃗ = (⟨τx⟩, ⟨τz⟩)(for
valley). ⟨σz⟩ = +1,−1 is identified with ↑,↓ spin and
⟨τz⟩ = +1,−1 with the valleys K,K ′ respectively.
The direction of the arrows of spin and valley repre-
sent the orientation of the averages of τ⃗ , σ⃗ in the xz
plane of each internal space. The colors of the arrows
are the same as that of the corresponding energy lev-
els. For the parameters chosen, the bulk ν = 1 or-
dering is EK′↑ < EK↓ < EK↑ < EK′↓ and the self-
consistent ground state prefers many-body spin rota-
tion, whereas the valley indices of each level flip discon-
tinuously across the interfaces.

with the other parameters identical to those of Fig. (1).
The ordering of the HF levels deep in the bulk of ν = 1 is
EK′↑ < EK↓ < EK↑ < EK′↓, whereas the filled state for
bulk ν = −1 is K ↑. As can be seen from the directions
of the spin and valley for each single-particle state, the
system prefers to spontaneously break the U(1)s sym-
metry at each interface, rotating the spins continuously.
However, the valley degree of freedom remains polarized
either at either K or K ′, keeping the U(1)v symmetry
intact. A level crossing occurs at the interface between
the two lowest levels, discontinuously exchanging their
valley polarizations.

Next, let us consider the case u0z < |u0⊥|, shown in

Fig. (4). For B⊥/B⊥
0 = 4 with the other parameters be-

ing chosen as in Fig. (2), the ordering of the HF levels in
the ν = 1 bulk is EK↓ < EK′↑ < EK↑ < EK′↓, whereas
the filled state for bulk ν = −1 is K ↑. Now a sponta-
neous breaking of the U(1)v symmetry occurs, and there
is a continuous rotation of the valley polarization of each
single-particle state. However, the spin directions remain
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FIG. 4: HF energies (top panel), spin structure (middle
panel), and valley structure (bottom panel) of each self-
consistent HF level for B⊥ = 4B⊥

0. The Hamiltonian
parameters are W̃ 0 = 20, E0

C = 30, E0
Z = 0.5, EV =

5.0, u0z = 2, u0⊥ = −3. We have used the same con-
vention to plot the spin and valley structure here as in
Fig. (3). In this case, the bulk ordering of the energy
levels EK↓ < EK′↑ < EK↑ < EK′↓, is different from the
case in Fig. (3). Here, we find self-consistently that the
ground state prefers valley rotation and the spin flips
discontinuously across the interfaces.

frozen at either ↑ or ↓, with an abrupt change occuring at
the interfaces via a level crossing between the two lowest
levels.

The above two examples show the importance of the
ratio u0z/|u0⊥| to the structure of the interface. We will
present many more examples in Section V and show how
the structure of the interfaces in turn affects magnon
transmission across the junction. However, we will first
examine the collective excitations of the system and re-
view the magnon scattering formalism [47] using the
time-dependent Hartree-Fock (TDHF) method.

IV. COLLECTIVE EXCITATIONS

It has been long known that when one uses the HF ap-
proximation for 1-body properties, the collective particle-
hole excitations should be treated in the time-dependent
Hartree-Fock (TDHF) approximation [62–65]. Together,
they constitute a conserving approximation [66] in which
the approximate correlation functions respect gauge in-
variance. In the TDHF approach we start with the equa-
tions of motion of an arbitrary 1-body operator

i∂tP̂ (t) = [H, P̂ (t)]HF , (13)

where P̂ stands for any c†i cj . After the commutator is
taken, all four-fermi terms are reduced to two-fermi terms
using the usual HF rule of considering all possible pair-
ings of operators that have nonzero expectation values
in the given SSD state. This results in a closed set of
equations for 1-body operators. In translation-invariant
problems, such as bulk states, one can further use the
conservation of the momentum of the particle-hole pair
to reduce the problem to that of diagonalizing a finite-
dimensional matrix. We will do this to obtain the ν = 1
bulk modes that are the “in” and “out” states in our
scattering problem. In the inhomogeneous problem we
consider, we will assume translation invariance in the y
direction, leading to a conserved y-momentum qy for the
collective excitations.
To make future manipulations convenient, we first

write all one-body operators in the basis that diagonal-
izes the HF Hamiltonian. Using the index k to label the
y-momentum (the guiding center location is Xk = kℓ2)
and the index m = 0, 1, 2, 3 to label the HF levels with
increasing single-particle energy, we obtain, in this basis,

⟨HF |c†k,mck′,n|HF ⟩ = δkk′δm,nNF (m, k). (14)

Here NF (m, k) is the occupation of the mth HF level
at the momentum index k. Since we are at T = 0 this
number can only be zero or unity. Let us define the
particle-hole operator with momentum labels k, qy as

Ôk,qy,m,n = c†k−qy,m
ck,n (15)

Operationally, this means the interaction matrix ele-
ments have to be rotated into this basis as follows

Ṽijlm(k1, k2, qy) =
∑
α

uα
[
(U†(k1 − qy)ταU(k1))ij

(U†(k2 + qy)ταU(k2))lm
]
,

V C
ijlm(k1, k2, qy) = Ec

[
(U†(k1 − qy)U(k1))ij

(U†(k2 + qy)U(k2))lm
]
, (16)

where U(k) is the unitary 4 × 4 matrix that rotates the
states from the original basis to the basis that diago-
nalizes the HF Hamiltonian. The TDHF equations now
reduce to

i∂tÔk,qy,m,n =
∑

k′,m′,n′

Kk′,m′,n′

k,m,n (qy)Ôk′,qy,m′,n′ (17)

We look for eigenmodes to these equations. Assuming
that a particular eigenmode is expressed as

Ôα,qy =
∑
k,m,n

Ψα
k,m,nÔk,qy,m,n (18)

we obtain the TDHF equation or generalized RPA
equation[47] in frequency space as∑
k′,m′,n′

Kk′,m′,n′

k,m,n (qy)Ψ
α
k′,m′,n′(qy, ω) = ωαΨ

α
k,m,n(qy, ω)

(19)
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(b) B⊥ = 2B⊥
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(c) B⊥ = 4B⊥
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FIG. 5: Hartree-Fock energies (first row), spin structure (second row), and valley structure (third row) of each en-
ergy level for three different values of the perpendicular magnetic field B⊥

0, 2B⊥
0, 4B⊥

0. The colors of the arrows
for the spin and valley are the same as that of the corresponding energy levels. At B⊥

0 the Hamiltonian parameters
are W̃ 0 = 20, E0

C = 30, u0z = 4.0, u0xy = −3.0, E0
Z = 0.5, EV = 5.0, identical to Fig. (1). We have chosen the values of

B⊥ such that we sample all three different regions of bulk ordering shown in Fig. (1). For B⊥ = B⊥
0 (first column)

both the spin and valley indices of each HF level remain a good quantum number but with increasing B⊥ (second
and third columns) the system prefers a spin rotated ground state close to the interfaces while the valley remains a
good quantum number.
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(b) B⊥ = 2B⊥
0

0 2 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

T(
,q

y
=

0.
0)

Spin wave
Valley wave
Spin-Valley wave

(c) B⊥ = 4B⊥
0

0 4 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

T(
,q

y
=

0.
0)

Spin wave
Valley wave
Spin-Valley wave

FIG. 6: Transmission amplitudes as a function of incoming magnon energy at qy = 0(normal incidence) correspond-

ing to the HF state in Fig. (5). At B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C = 30, u0z = 4.0, u0xy =

−3.0, E0
Z = 0.5, EV = 5.0. For this set of parameters, the transmission amplitude of the spin magnon mode

is strongly suppressed at higher energies and consists of some low energy peaks. The transmission behaviors re-
main qualitatively the same as B⊥ increases. Both the valley-wave and the spin-valley wave modes remain inactive
throughout.

with the kernel

Kk′,m′,n′

k,m,n (qy) = [ϵm′(k′ − qy)− ϵn′(k′)]δkk′δmm′δnn′+

ℓ

Ly
[NF (n

′, k′)−NF (m
′, k′ − qy)]×

[Fsr(k
′ − k, qy)Ṽn′m′mn(k

′ − qy, k,−qy)+
Flr(k

′ − k, qy)V
C
n′m′mn(k

′ − qy, k,−qy)−
Fsr(qy, k − k′)Ṽmm′n′n(k

′ − qy, k, k
′ − k)−

Flr(qy, k − k′)V C
mm′n′n(k

′ − qy, k, k
′ − k)]

(20)

where the short-range kernel Fsr and the long-range ker-
nel Flr are defined by

Fsr(k1, k2) =
√
2π e−

[k2
1+k2

2]ℓ2

2 ,

Flr(k1, k2) =

∫ ∞

−∞
ℓdqx

e−[
(q2x+k2

2)ℓ2

2 ] cos(qxk1ℓ
2)√

q2xℓ
2 + k22ℓ

2 + q20
. (21)
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(b) B⊥ = 2B⊥
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(c) B⊥ = 4B⊥
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FIG. 7: Hartree-Fock energies (first row), spin structure (second row), and valley structure (third row) of each en-
ergy level for three different values of the perpendicular magnetic field B⊥

0, 2B⊥
0, 4B⊥

0. At B⊥
0 the Hamiltonian

parameters are W̃ 0 = 20, E0
C = 30, u0z = 2.0, u0xy = −3.0, E0

Z = 0.5, EV = 5.0, identical to Fig. (2). For

B⊥ = B⊥
0, 2B⊥

0(first and second column) the occupied states at ν = 1 ordered as K↓ < K↑ < K ′↑. While
the spin of each HF level flipped across the interface, the valley indices of each level continue across the interface to
make the middle ν = −1 region ordered as K↑ < K↓ < K ′↓ < K ′↑. At B⊥ = 4B⊥

0(last column), the ordering of
the occupied ν = 1 states changes to K↓ < K ′↑ < K↑. In this case, the system prefers a valley rotated ground state
while the spin of each level remained to be a good quantum number.
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FIG. 8: Transmission amplitudes as a function of incoming magnon energy at qy = 0 (normal incidence) corre-

sponding to the HF states in Fig. (7). At B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C = 30, u0z = 2.0, u0xy =

−3.0, E0
Z = 0.5, EV = 5.0. For B⊥ = B⊥

0, 2B⊥
0 (first and second column) the transmission amplitude of

the spin magnon is strongly suppressed at higher energies, while both the valley and spin-valley waves are inac-
tive. This is consistent with the previous cases in Fig. (6) where the valley of each HF level remains polarized. For
B⊥ = 4B⊥

0(last column) we find completely different behavior. At high energies the spin magnon is completely
transmitted across the junction. We also find that for B⊥ = 4B⊥

0 at ω > 11 = 2EZ + 2EV the spin-valley wave is
excited.

and ϵm(k) is the HF energy of the self-consistent single
particle state |k,m⟩.

In the next subsection we present the bulk collective
excitation for ν = 1, and in the following subsection we
turn to the main topic of the paper, the transmission of
magnons through the ν = 1| − 1|1 junction.

A. Bulk collective excitations of ν = 1

Bulk systems are translation invariant in both direc-
tions, hence the HF states |k,m⟩ ≡ |m⟩, their ener-
gies ϵm(k) ≡ ϵm, and the occupation of each HF level
NF (m, k) ≡ NF (m) are all independent of momentum
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index k. In this case, one can define an additional con-
served momentum qx for the eigenoperators. The RPA
kernel defined in Eq. (20) is made block diagonal in mo-
mentum space q⃗ = (qx, qy) by the following Fourier trans-
formation

Km′,n′

m,n (q⃗) =
∑
∆k

Kk′,m′,n′

k,m,n (qy)e
−iqx∆kℓ2 , ∆k = (k′ − k)

=
[(
ϵm′ − ϵn′

)
−

(
NF (n

′)−NF (m
′)
)
uc(q)

]
δm,m′δn,n′

+
(
NF (n

′)−NF (m
′)
)
f(q)

[
Ṽn′m′mn − Ṽmm′n′n

]
(22)

with

uc(q) =
Ecℓ

2

2π

∫
d2k

e−(k2ℓ2)/2 e−i(k⃗.q⃗)ℓ2√
k2ℓ2 + q20

, (23)

f(q) = e−
q2ℓ2

2 (24)

and

Ṽijlm =
∑
α

uα(U
†ταU)ij(U

†ταU)lm (25)

“U” is the unitary matrix that diagonalizes the bulk HF
hamiltonian 2.

Thus, for the translational invariant bulk, the TDHF
equation(19) simplifies to∑

m′n′

Km′,n′

m,n (q)ϕαm′n′(q) = ωα(q)ϕ
α
mn(q), (26)

where

ϕαmn(q) =
1

Ly

∑
k

Ψα
k−qy,m,n(qy, ω) e

−iqxkℓ
2

(27)

are the normalized bulk collective modes of frequency
ω(q), having the normalization condition,∑

mn

(
NF (n)−NF (m)

)
ϕ̄αmn(q)ϕ

β
mn(q) = δαβ . (28)

Here ϕ̄α represents the complex conjugation of ϕα. We
are interested in the positive frequency ω(q) > 0 collec-
tive modes ϕmn(q) here, but it can be shown that the col-

lective modes ϕ̃mn(q) with frequency −ω(q) are related

to the positive frequency modes by ϕ̃mn(q) = ϕ∗nm(−q).
It is easy to see from the bulk TDHF Eq. (26) that

the collective excitations are superpositions of particle-
hole excitations which create a hole in a filled HF level
and a particle in an unfilled HF level. For the ν = 1
bulk, the filled states are K ↑,K ↓,K ′ ↑ and the unfilled
state is K ′ ↓, and as these states preserve the spin and
valley indices the bulk RPA kernel in Eq. (22) is diago-
nal in the particle-hole basis made of one filled and one
unfilled ν = 1 HF level. We get three orthonormal bulk
collective modes[47] for ν = 1. (1) The spin wave or
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FIG. 9: Occupied single-particle HF energies for bulk
ν = 1 as a function of B⊥/B⊥

0 with Vex = 0, E0
Z = 0.5,

EV = 1, u0z = 4 and u0⊥ = −3. The parameters are
chosen such that it reflects the case when u0z > |u0⊥| >
EV > E0

Z . As we can see, for this case the ordering of
the occupied state is EK′↑ < EK↓ < EK↑ which does
not change with increasing B⊥.

the spin magnon mode ϕsmn ≡ ϕs(K′↓,K′↑) conserves val-

ley but flips spin. (2) The valley wave ϕvmn ≡ ϕv(K′↓,K↓)
conserves spin but flips the valley. (3) The spin-valley
wave ϕsvmn ≡ ϕsv(K′↓,K↑) which flips both spin and valley.

Their dispersions are [47]

ωs(q) = Vex − uc(q) + 2EZ + uz[1− f(q)],

ωv(q) = Vex − uc(q) + 2EV + uz[f(q)− 1]

−2u⊥[1− f(q)],

ωsv(q) = Vex − uc(q) + 2EZ + 2EV + uz[f(q)− 1].
(29)

uc(q),f(q) are defined previously in equations 23 and 24.

B. Magnon Scattering setup for ν = 1| − 1|1 junction

We will follow the method of Ref. [47], and solve the
following elastic scattering problem. A bulk ν = 1 spin
magnon is sent in from the asymptotic x → −∞ ν = 1
region towards the junction. Given the geometry of our
system, we assume that the y-momentum of the magnon
qy is conserved. Note that the Hamiltonian of the system
conserves total Sz. The spin magnon and the spin-valley
magnon both have Sz = −1, because they both involve
one spin- 12 electron flipping its spin from ↑ to ↓. The
valley magnon does not carry spin. This means that at
the junction, the spin magnon can mix with other spin
magnons and spin-valley magnons with the same qy, but
not with a valley magnon, because the total Sz has to
be conserved. The outgoing waves are either reflected or
transmitted, and by the above logic, have to be either
spin magnons or spin-valley magnons with the same qy
and the same energy (elastic scattering conserves energy).
The outgoing waves are also assumed to be detected in
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(b) B⊥ = 2B⊥
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(c) B⊥ = 4B⊥
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FIG. 10: Hartree-Fock energies (first row), spin structure (second row), and valley structure (third row) of each en-
ergy level for three different values of the perpendicular magnetic field B⊥

0, 2B⊥
0, 4B⊥

0. At B⊥
0 the Hamiltonian

parameters are W̃ 0 = 20, E0
C = 30, u0z = 4.0, u0xy = −3.0, E0

Z = 0.5, EV = 1.0, identical to Fig. (9). For the parame-
ters chosen the self-consistent HF states always prefer a spin rotated ground state close to the ν = 1| − 1 interfaces,
while the valley remains a good quantum number. This is similar to the case of B⊥ = 4B⊥

0 in Fig. (5).
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(c) B⊥ = 4B⊥
0

0 4 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

T(
,q

y
=

0.
0)

Spin wave
Valley wave
Spin-Valley wave

FIG. 11: Transmission amplitudes as a function of incoming magnon energy at qy = 0 corresponding to the HF

states in fig(10). At B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C = 30, u0z = 4.0, u0xy = −3.0, E0
Z = 0.5, EV =

1.0. As in Fig. (6), we find that the transmission amplitude of the spin mode is strongly suppressed at higher ener-
gies.

the asymptotic bulk regions x → ±∞. The system is
divided into three regions: In the two regions |x| > x0 the
HF ground state is the bulk state of ν = 1, while for |x| <
x0 the HF state for each guiding center is obtained by the
method described in the previous sections. Note that the
middle region is typically quite a bit bigger than the size
of ν = −1 region as defined by the background potential,
Eq. 8, because the one-body density matrix takes several
magnetic lengths to relax to its bulk value, as seen in
Figs. 3, 4. We will label the guiding centers forming the
region |x| < x0 by the guiding centers [Xi,i = 1, ..., N ].
We study the transmission probability of an incoming
collective mode inX < X1 to an outgoing collective mode

in X > XN . For X ≤ X1 we have, very generally,

ΨX,m,n(qy, ω) =
ϕsmn√
vs

[
eiq

s
xX + rse

−iqsxX
]

+
rvϕ

v
mn√
vv

e−iqvxX +
rsvϕ

sv
mn√
vsv

e−iqsvx X (30)

where rs, rv, and rsv are the reflection coefficients for the
spin wave, valley wave and spin-valley wave respectively.
The momentum vector qx for each bulk collective mode
is determined as the positive solution of the equation
expressing the conservation of energy

ωα(q
α
x , qy) = ω. (31)
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FIG. 12: Occupied single-particle HF energies for the
bulk ν = 1 state as a function of B⊥/B⊥

0 with Vex =
0, E0

Z = 0.5, EV = 1, u0z = 2 and u0⊥ = −3. We
have chosen the parameters such that it reflects the
case when |u0⊥| > u0z > EV > E0

Z . In this case we find
the bulk ordering is EK↓ < EK′↑ < EK↑, which does
not change with B⊥.

Here, vα(q
α
x , qy) = (

dqαx
dω )−1, α = s, v, sv are the group

velocities of the spin wave,valley wave and spin-valley
waves respectively. Recall also that by Sz conservation
valley magnons cannot be generated, and thus rv = 0.
Similarly for X ≥ XN the most general solution is

ΨX,m,n(qy, ω) =
tsϕ

s
mn√
vs

eiq
s
xX +

tvϕ
v
mn√
vv

eiq
v
xX

+
tsvϕ

sv
mn√
vsv

eiq
sv
x X (32)

where ts, tv, and tsv are the transmission coefficients for
the spin wave, valley wave and spin-valley wave respec-
tively. The same logic that dictates rv = 0 also forces
tv = 0. It is also possible that Eq. 31 has no real so-
lutions for a particular mode in a certain range of ω, in
which case that mode will be kinematically forbidden.

If the full wave function of the collective excitations
is known, the reflection coefficients can be obtained at
X = X1 as [47]

rs(qx, qy) =
[√
vsϕ̄

s
mn(q)ΨX1,m,n(qy, ω)− eiq

s
xX1 ]eiq

s
xX1

rv(qx, qy) =
√
vvϕ̄

v
mn(q)ΨX1,m,n(qy, ω)e

iqvxX1

rsv(qx, qy) =
√
vsvϕ̄

sv
mn(q)ΨX1,m,n(qy, ω)e

iqsvx X1 .
(33)

Similarly, the transmission coefficient can be found from
the wave function at X = XN as [47]

ts(qx, qy) =
√
vsϕ̄

s
mn(q)ΨXN ,m,n(qy, ω)e

−iqsxXN

tv(qx, qy) =
√
vvϕ̄

v
mn(q)ΨXN ,m,n(qy, ω)e

−iqvxXN

tsv(qx, qy) =
√
vsvϕ̄

sv
mn(q)ΨXN ,m,n(qy, ω)e

−iqsvx XN . (34)

In writing the above expressions for reflection and trans-
mission coefficients, we have assumed sums over repeated
indices.

The next task is to find ΨX1,m,n(qy, ω) and
ΨXN ,m,n(qy, ω) for the ν = 1| − 1|1 junction. We fol-
low the procedure outlined in Ref. [47]. In this approach,
we take the full TDHF equation, Eq. 19, and use the fact
that the form of the solution is known in the asymptotic
regions X < X1, X > XN . We then integrate out these
asymptotic regions to obtain an inhomogeneous set of
equations only for the region X1 ≤ X ≤ XN .

N∑
i′=1

∑
m′n′

[
KXi′ ,m

′,n′

Xi,m,n (qy) + (ΣL)
Xi′ ,m

′,n′

Xi,m,n (qy)+

(ΣR)
Xi′ ,m

′,n′

Xi,m,n (qy)− ωδii′δmm′δnn′
]
ΨXi′ ,m

′,n′(qy, ω)

= V s
Xi,m,n(qy, ω), 1 ≤ i ≤ N

(35)

Here

(ΣL)
Xi′ ,m

′,n′

Xi,m,n (qy) = δi′,1
∑
j<1

∑
β

KXj ,m
′,n′

Xi,m,n (qy)δβ,(m′,n′)

× e−iqβx (Xj−X1),

(ΣR)
Xi′ ,m

′,n′

Xi,m,n (qy) = δi′,N
∑
j>N

∑
β

KXj ,m
′,n′

Xi,m,n (qy)δβ,(m′,n′)

× eiq
β
x (Xj−XN )

(36)

are the self-energy contributions which arise from inte-
grating out the asymptotic regions. With β running
over all the indices (m,n) of the bulk collective modes.

KXi′ ,m
′,n′

Xi,m,n (qy) is given in Eq. (20) with Xi = kℓ2 and

Xi′ = k′ℓ2. The inhomogeneous term is given by

V s
Xi,m,n(qy, ω) =

∑
j<1

∑
m′n′

1
√
vs

KXj ,m
′,n′

Xi,m,n (qy)ϕ
s
m′n′(q)

×
[
e−iqsx(Xj−2X1) − eiq

s
xXj ].

(37)

Finally, we solve the inhomogeneous system of matrix
equations (35) to find ΨX1,m,n and ΨXN ,m,n for general
qy and ω [47] from which one can read out the reflection
and transmission coefficients using Eqs. (33), (34).
Let us now turn to the results.

V. MAGNON TRANSMISSION ACROSS THE
1| − 1|1 JUNCTION

In view of the large number of parameters in the prob-
lem, EV , B⊥, u0z, u0⊥, W̃

0, we need to organize the
results. The case EV = 0 was already addressed in
Ref. [47], and hence we will always take EV > 0 in what
follows. We will focus solely on the regime of short-range
interactions where u0z > 0, u0⊥ < 0, believed to be re-
alized in graphene. Here there are two major cases, (i)
uz > |u⊥| and (ii) uz < |u⊥|. Our second organizing
principle is to start with small B⊥ and go towards large
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FIG. 13: Hartree-Fock energies (top panel), spin structure (middle panel), and valley structure (bottom panel) of
each energy level for three different values of the perpendicular magnetic field B⊥

0, 2B⊥
0, 4B⊥

0. At B⊥
0 the Hamil-

tonian parameters are W̃ 0 = 20, E0
C = 30, u0z = 2.0, u0xy = −3.0, E0

Z = 0.5, EV = 1.0, which are the same

parameters we chosen in Fig. (12). Here we find initially for B⊥
0(a), both the spin and valley of each HF level re-

main as a good quantum number. With increasing B⊥ in (b) and (c), although the spin of each self-consistent level
continues to behave as a good quantum number, the valley rotates across the interfaces.
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FIG. 14: Transmission amplitudes as a function of incoming magnon energy at qy = 0 for the HF state in Fig. (13).

At B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C = 30, u0z = 2.0, u0xy = −3.0, E0
Z = 0.5, EV = 1.0. The

transmission amplitude of the spin wave shows behavior consistent with Fig. (8), i.e., when the valley remains a
good quantum number, as in (a), the transmission goes to zero at larger energies and when the valley rotates, as in
(b) and (c), the transmission goes to unity at high energies. For (b) and (c) at intermediate energies the spin-valley
wave is also excited.

B⊥. At small B⊥, for samples EV will typically be larger
than the short-range couplings (due to the dependence of
uz, u⊥ onB⊥), whereas at largerB⊥ the short-range cou-
plings may be of the same order or even larger than EV .
The relative magnitudes of the short-range couplings vs
EV have profound effects on the self-consistent structure
of the interfaces, and thus on the magnon transmission
amplitudes across the system. One of the primary moti-
vations of this work is to use such as study to constrain
the ratio uz/|u⊥|.

In view of these considerations, this section is orga-
nized as follows: In Subsection VA, we examine the case
EV > u0z, |u0⊥| over a range of B⊥. Results for both
uz > |u⊥| and uz < |u⊥| will be presented. We find
that for uz > |u⊥| there is no qualitative change in the
magnon transmission amplitudes as B⊥ increases, while
for uz < |u⊥| the magnon transmission amplitude at high
energy changes dramatically as B⊥ increases. Interest-
ingly, in this latter case, a spin-valley magnon is also
excited. Next, in Subsection VB, we examine the case
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FIG. 15: Occupied Hartree-Fock single-particle energies
for the bulk ν = 1 as a function of B⊥/B⊥

0 with Vex =
0, E0

Z = 0.5, EV = 0.1, u0z = 4 and u0⊥ = −3. The
parameters satisfy u0z > |u0⊥| > E0

Z > EV . In this case
the ordering of the occupied levels is EK′↑ < EK↓ <
EK↑ which remains unchanged with increasing B⊥.

of intermediate EV , with the same subcases as in Sub-
section VA. Finally, in Subsection VC, we consider the
case when EV is the smallest energy scale in the problem,
with the inequalities |u0α| > E0

Z > EV .

A. Magnon transmission for large EV

Throughout this section, we assume EV > |u0α| > E0
Z

with α = z, xy.
Let us start with the case u0z > |u0xy|. We choose

the parameters W̃ 0 = 20, E0
C = 30, u0z = 4.0, u0xy =

−3.0, E0
Z = 0.5, EV = 5.0, which are the same param-

eters that we used to illustrate the ν = 1 bulk ordering
in Fig. (1). Now, as seen in Fig. (1), there are three
possible orderings of the energies of the filled one-body
states as a function of B⊥. To sample all the orderings
we have chosen three values of B⊥ = B⊥

0, 2B⊥
0, 4B⊥

0.
The self-consistent HF results are shown in Fig. 5,

where it is seen that the system prefers to rotate the
spins through the interface regions, while the valley de-
gree of freedom remains polarized. This is to be expected
because of the large value of EV . Thus there is no qual-
itative change in the nature of the interface as B⊥ in-
creases. The transmission amplitudes for the bulk col-
lective modes for B⊥ = B⊥

0, 2B⊥
0, 4B⊥

0 are shown in
Fig. 6.

As expected from the adiabatic continuity seen in the
HF configurations, there is no qualitative change in the
magnon transmission amplitudes as B⊥ increases. Fur-
thermore, the spin magnon coming in from the ν = 1
bulk to the left is excited in the K ′ valley, because the
only unoccupied state is K ′ ↓. However, the ν = −1
bulk has only K ↑ occupied, hence it’s spin magnon is
excited in the K valley. This incompatibility, combined
with the fact that the valley is a good quantum number,
leads to very low transmission of magnons throughout

the energy range. There are a few sharp peaks which
we attribute to resonances between the cavity magnons
inside the ν = −1 region and the incoming magnons,
mediated by the collective modes at the interface. It is
also worth noting that only the spin-magnon is excited,
because the spin-valley magnon has a very high energy
due to the large value of EV .

We next turn to the case u0z < |u0xy|. We choose the pa-

rameters W̃ 0 = 20, E0
C = 30, u0z = 2.0, u0xy = −3.0, E0

Z =
0.5, EV = 5.0, the same as those used in Fig. 2. As shown
in Fig. 2, the ordering of the one-body levels changes
once as B⊥ increases. EK↓ is always the lowest state.

For B⊥ < Bc ≈ 2.6B⊥
0 we have EK′↑ > EK↑, while for

B⊥ > Bc ≈ 2.6B⊥
0, we have EK↑ > EK′↑. The HF

self-consistent results are shown in Fig. 7.
For B⊥ < Bc both spin and valley are good quantum

numbers for the one-body levels. The spin of the lev-
els changes via level crossings while the valley quantum
number remains unaltered. Once again, we expect the in-
cident magnon from the left to be in the K ′ valley, while
the bulk magnon of ν = −1 is in the K valley. Thus, we
can expect very little transmission, except at resonances
mediated by the collective modes at the two edges of the
ν = −1 region.
This is indeed the case, as seen in Fig. 8a,b. For

B⊥ > Bc, however, the valley is no longer a good quan-
tum number across the system. As can be seen in Fig. 7c,
the spin remains a good quantum number. Thus, we can
expect mixing between the bulk K ′ spin magnon of ν = 1
and the bulk K spin magnon of ν = −1. This expecta-
tion is indeed borne out in Fig. 8c, where we see that at
high energies spin magnons are almost fully transmitted
across the system. This almost perfect transmission at
high energies can be understood as follows: high-energy
magnons have a very short wavelength, much smaller
than the length scale over which the valley superpositions
change in Fig. 7. Since the valley is not a good quan-
tum number, the magnon can “adiabatically” change its
valley components as it traverses the interfaces. Further-
more, due to the valley rotations at the interfaces and
at the high energy, it now becomes possible to excite the
spin-valley magnon, which are shown in the red traces in
Fig. 7c. Since the q = 0 energy of the spin-valley magnon
is 2EZ + 2EV , it occurs only for ω > 11 in our units.

B. Magnon transmission at intermediate EV

Throughout this subsection, we assume the inequalities
|u0α| > EV > E0

Z with α = z, xy.
First, we consider the case where u0z > |u0xy|. We il-

lustrate this case with the parameters u0z = 4, u0⊥ =
−3, EV = 1, EZ = 0.5, for which the one-body energies
are shown as a function of B⊥ in Fig. 9. As can be seen,
we always have EK′↑ < EK↓ < EK↑ < EK′↓ for ν = 1.
The occupied state for ν = −1 is |K ↑⟩.
The self-consistent HF solutions for B⊥ =
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(b) B⊥ = 2B⊥
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FIG. 16: Hartree-Fock single-particle energies (top panel), spin structure (middle panel), and valley structure (bot-
tom panel) of each energy level for two different values of the perpendicular magnetic field B⊥

0, 2B⊥
0. At B⊥

0 the

Hamiltonian parameters are W̃ 0 = 20, E0
C = 30, u0z = 4.0, u0xy = −3.0, E0

Z = 0.5, EV = 0.1 which is same as that
of Fig. (15). In this case the self-consistent states preserve the spin quantum number while the valley of each level
rotates in the middle ν = −1 region. Because of very small but nonzero EV the occupied state in the middle region
has both valley components.
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FIG. 17: Transmission amplitudes as a function of incoming magnon energy at qy = 0. The parameters corre-

spond to the HF state in Fig. (16). At B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C = 30, u0z = 4.0, u0xy =

−3.0, E0
Z = 0.5, EV = 0.1. The spin wave is fully transmitted across the junction with some transmission dips at

smaller energies. The qualitative behavior remains the same as B⊥ increases.

B⊥
0, 2B⊥

0, 4B⊥
0 are shown in Fig. 10. As in the

case of large EV , we find that for uz > |u⊥| the system
prefers to undergo spin rotations at the interfaces, leav-
ing the valley quantum number conserved. It is therefore
not surprising that the transmission amplitudes, shown
in Fig. 11, are very similar to those at large EV (Fig. 6).
There are sharp peaks at low energies, which we believe
represent coupling to the cavity collective modes in
the ν = −1 region mediated by the interface collective
modes. At high energies the transmission drops to zero.

Next, we consider the case where u0z < |u0⊥|. We have
illustrated this case with the following choice of parame-

ters: u0z = 2, u0⊥ = −3, EV = 1, EZ = 0.5. As shown in
Fig. 12, the ordering of the one-body energies does not
change as B⊥ increases.

The self-consistent HF solutions for B⊥ =
B⊥

0, 2B⊥
0, 4B⊥

0 are shown in Fig. 13. For this
case, we find that for low B⊥ the HF solution conserves
both spin and valley quantum numbers. However,
beyond a certain B⊥, the system prefers to rotate the
valley degree of freedom leaving the spin as a conserved
quantum number. The value of this critical B⊥ at which
the valley ceases to be a good quantum number is not
universal, but depends on the coupling constants as well
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FIG. 18: Occupied Hartree-Fock single-particle energies
for the bulk ν = 1 as a function of B⊥/B⊥

0 with Vex =
0, E0

Z = 0.5, EV = 0.1, u0z = 2 and u0⊥ = −3. The
parameters satisfy |u0⊥| > u0z > E0

Z > EV . For this case
the ordering of the occupied states is EK↓ < EK′↑ <
EK↑ which does not change with increasing B⊥.

as on the width of the ν = −1 region.
The corresponding transmission amplitudes are shown

in Fig. 14. For small B⊥, we see the characteristic
magnon transmission associated with a conserved valley
quantum number in Fig. 14a, very similar to those of
Fig. 11. However, when the valley is no longer a good
quantum number, we switch to the other type of magnon
transmission spectrum, similar to that of Fig. 8c, with
the transmission becoming perfect at high energy, and
with spin-valley magnons being excited at intermediate
energies.

C. Magnon transmission at very small EV

In this subsection we will take EV to be the smallest
energy scale in the problem, that is, |u0α| > EZ > EV .
First, we consider the case where u0z > |u0xy|. We illus-

trate this case with the parameter choices u0z = 4, u0⊥ =
−3, EZ = 0.5, EV = 0.1. The HF one-body energy in
the ν = 1 bulk are shown in Fig. 15. As can be seen, the
ordering EK↑ > EK↓ > EK′↑ is preserved for all B⊥.

The self-consistent HF solutions for B⊥ = B⊥
0, 2B⊥

0

are shown in Fig. 16. In this case, the system always
conserves the spin quantum number while spontaneously
breaking the valley U(1) symmetry, rotating the valley
degree of freedom in the interface regions. In our case,
because EV ̸= 0, the occupied state in the ν = −1 re-
gion has both valley components as opposed to the case
EV = 0 examined by Wei et al[47], where the filled state
in the ν = −1 region is |K ′ ↑⟩. The magnon transmis-
sion amplitudes are shown in Fig. 17. As can be seen
the transmission is nearly perfect at all energy, barring a
few resonant reflections, presumably due to couplings of
cavity modes in the ν = −1 region with the asymptotic
modes. This is very similar to the EV = 0 case examined
earlier in Ref. [47].

Next we consider the case |u0xy| > u0z. The ordering of
the HF one-body levels for all B⊥ is EK↑ > EK′↑ > EK↓,
as shown in Fig. 18. The self-consistent HF solutions
across the system are shown in Fig. 19.
We see that in this case the system spontaneously

breaks the valley U(1) symmetries at the interfaces and
in the ν = −1 region, while preserving the spin symme-
try. The corresponding magnon transmission spectrum is
shown in Fig. 20. The magnon transmission now vanishes
at low energies, increasing, and becoming nearly perfect
at high energies. There are the usual dips associated with
resonant reflections at discrete energies.

VI. CONCLUSIONS, CAVEATS, AND OPEN
QUESTIONS

In this work, we study the transmission of spin
magnons across a graphene 1| − 1|1 system. Our main
motivation for studying this particular setup is to ob-
tain knowledge about the ratio of lattice-scale, ultra-
short-range anisotropic couplings uz and u⊥. In phys-
ical graphene samples it is believed that uz > 0 while
u⊥ < 0, and that the two have roughly the same magni-
tude. Furthermore, their ratio can be altered by Landau-
level mixing [67–70] and the screening environment [71].
Pinning down this ratio and its evolution with screening
and other tuning parameters would be invaluable in de-
termining the phases of the ν = 0 system, which is yet
to be fully understood.
In the setup, we used the bulk ground states for

ν = ±1. In contrast to ν = 0, where the nature of
the phase is not fully understood, the ground state at
ν = ±1 in the physical range of couplings with both
Zeeman and sublattice potential present is known to be
a valley-polarized ferromagnet. This makes it easier to
determine the values of the couplings themselves. At per-
pendicular field, EZ is known, and in principle, one can
determine EV by measuring the gap at charge neutrality
at B⊥ = 0. A great advantage of this setup is that the
in situ tuning parameter B⊥ allows us to alter the ratio
of EV with respect to the other couplings.
We used the Hartree-Fock approximation to find the

self-consistent one-body states, and the variant of the
time-dependent Hartree-Fock approximation developed
by Wei et al [47] to examine the transmission of magnons
across the system. We find that the magnon transmis-
sion is quite sensitive to the structure of the interfaces
between ν = 1 and ν = −1. This structure in turn is
dependent on the precise ordering of the HF energy lev-
els in bulk ν = 1, and on the width of the intermediate
ν = −1 region. We find that in certain cases we can
control the ordering of energy levels by tuning B⊥. Ex-
perimentally there is a finite range over which B⊥ can be
varied, bounded at the lower end by disorder, which de-
stroys the quantum Hall effect at low B⊥, and bounded
by a few tens of Tesla at the upper end.

The first important fact to bear in mind in understand-
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(b) B⊥ = 2B⊥
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FIG. 19: Hartree-Fock single-particle energies (top panel), spin structure (middle panel), and valley structure (bot-
tom panel) of each energy level for two different values of the perpendicular magnetic field B⊥

0, 2B⊥
0. At B⊥

0 the

Hamiltonian parameters are W̃ 0 = 20, E0
C = 30, u0z = 2.0, u0xy = −3.0, E0

Z = 0.5, EV = 0.1, same as that in Fig. (18).
For this case we find the spin of each HF level flips across the interface and the valley rotates continuously across
the junction. The occupied state in the ν = −1 region has both valley components.
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FIG. 20: Transmission amplitudes as a function of incoming magnon energy at qy = 0 for the HF states in

Fig. (19). At B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C = 30, u0z = 2.0, u0xy = −3.0, E0
Z = 0.5, EV = 0.1. As

in previous cases where the valley of each HF level rotates, we find the spin waves are transmitted perfectly at large
energies.

ing our results is that for EV > 0 the bulk spin magnons
have different valley characters in ν = 1 and ν = −1.
In ν = 1 the spin magnon is entirely in the K ′ valley,
while in ν = −1, it is entirely in the K valley. This
mismatch is why the nature of the interface is so critical
to the transmission of magnons across the system. As a
function of the coupling constants and B⊥, the system
may prefer to keep both spin and valley U(1) symme-
tries intact, or spontaneously break either or both of the
U(1) symmetries. In all cases when the valley symme-
try is preserved by the HF ground state, the magnon
transmission drops to zero at high energies because of
the mismatch stated above. If the valley symmetry is

spontaneously broken, the magnon transmission becomes
nearly perfect at high energies, because the high-energy,
short-wavelength magnons can adiabatically follow the
valley rotation across the interfaces.

The second important fact in understanding our results
is that in the physical region of parameters, uz > 0, u⊥ <
0, when uz > |u⊥| the system prefers to break the spin
U(1) symmetry at the interfaces, while in the opposite
case uz < |u⊥| the system prefers to break the valley U(1)
symmetry (for some particular B⊥). Since the interfaces
between ν = 1 and ν = −1 can very roughly be thought
of as miniature regions of ν = 0, this is consistent with
the fact that in the corresponding regions the ν = 0 bulk
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ground state breaks exactly those symmetries.

Keeping these two facts in mind, we can easily un-
derstand the cases that we considered in Section V with
uz > |u⊥|. There is no valley rotation in these cases,
and thus the magnon transmission drops to zero at high
energy. The more interesting case is uz < |u⊥|, believed
to occur for unscreened or lightly screened samples [71].
Here a crucial role is played by the valley Zeeman field
EV . For vanishing EV → 0 the physics of magnon trans-
mission was analyzed by Wei et al[47], and there is nearly
perfect transmission at high energy. Focusing on EV

moderate to large, at small B⊥, EV > |uα|, Ez. In this
case, the interfaces do not break any symmetries, and the
magnon transmission vanishes at high energies. However,
there is a threshold B⊥ at which the couplings uα become
dominant over EV , beyond which the interfaces break the
valley U(1) symmetry, restoring nearly perfect transmis-
sion at high energies. This threshold B⊥ depends not
only on the couplings, but also on the width of the in-
termediate ν = −1 region, and can be estimated in our
model given the sample geometry. This is one of the main
results of our work, because this threshold field provides
quantitative information about the coupling constants.

Let us turn to some of the assumptions that underlie
our approach. We have assumed ultra-short-range in-
teractions throughout. Relaxing this assumption in the
physical region of parameters uz > 0, u⊥ < 0 does not
change the phases of ν = ±1. However, introducing
interactions beyond ultra-short-range does produce new
phases at ν = 0. Because of our sharp interfaces, the
ν = 0 regions here are fairly narrow, and we believe inter-
actions beyond USR will not have any qualitative effect
on our results. Secondly, we have focused on incident
magnons with qy = 0. In Appendix A, we show some
results for incident magnons with qy ̸= 0, which look
qualitatively similar to our results in Section V. Thirdly,
we have ignored disorder and finite temperature effects.
Disorder can induce the magnons to scatter elastically,
thereby reducing the transmission. At T ̸= 0, thermally
generated collective modes will be present in the system,
and could scatter the electrically generated magnons in-
elastically.

There are many open questions that could in principle
be addressed by a detailed analysis of magnon transmis-
sion. The most important is the ν = 0 state, which
remains to be completely understood. It is believed that
Landau level mixing leads to the interactions acquiring a
range of the magnetic length ℓ [41, 42, 71]. Introducing
such interactions leads to the appearance of new phases
which manifest the coexistence of CAF and bond order,
and are separated from the bond-ordered and CAF states
by second-order phase transitions [41, 42, 44]. It should
be possible to vary the screening to make the system tra-
verse this coexistence phase. Presumably, the magnon
transmission properties of this phase differ from that of
the standard CAF phase. Furthermore, fractional quan-
tum Hall phases near ν = 0 also display a rich variety of
phases in the physical regime of parameters, which could

be explored via magnon transmission [29]. We hope to
address these and other such questions in the near future.
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Appendix A: Magnon transmission at finite qy

All the results presented in the main text are for qy =
0. In this Appendix, we examine magnon transmission
when the y-momentum is nonzero. Although we show the
results for a particular choice of qy = 0.3, this illustrates
the general behaviour of the transmission results for any
finite qy. We find that the magnon transmission results
are qualitatively similar to the results for qy = 0.
We organize the results in the same way as in Sec. V,

considering three different values of the valley potential
EV .
First, we consider EV > |u0α| > E0

Z with α = z, xy.

Magnon transmission for uz > |uxy| at B⊥ = 4B⊥
0 is

shown in Fig. (21). We find that the magnon trans-
mission is strongly suppressed, apart from the resonant
peaks similar to the qy = 0 case.
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FIG. 21: Transmission amplitudes as a function of in-
coming magnon energy at qy = 0.3 and B⊥ = 4B⊥

0. At

B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C =
30, u0z = 4.0, u0xy = −3.0, E0

Z = 0.5, EV = 5.0 and
the corresponding HF state is shown in Fig. 5(c). As in
the case qy = 0, we find that the transmission of the
spin-wave is strongly suppressed at most energies, apart
from a few isolated resonances.
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Still staying with EV > |u0α| > E0
Z , we now consider

the case uz < |uxy| at B⊥ = 4B⊥
0. The magnon trans-

mission results are shown in Fig. (22). Here we find that
the magnon transmission is small at lower energies and
increases with the magnon energy eventually leading to
complete transmission at higher energies. The behavior
is very similar to that at qy = 0.
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FIG. 22: Transmission amplitudes for the collective
modes as a function of the incoming magnon energy
at qy = 0.3 and B⊥ = 4B⊥

0. At B⊥
0. The Hamiltonian

parameters are W̃ 0 = 20, E0
C = 30, u0z = 2.0, u0xy =

−3.0, E0
Z = 0.5, EV = 5.0, with the corresponding HF

state being shown in Fig. 7(c). As in the case qy = 0
(Fig. 8(c)), we find that the transmission of the spin
wave mode goes to unity at higher energies.

Next, we consider intermediate values of EV such that
|u0α| > EV > E0

Z with α = z, xy. The case of uz > |uxy|
is shown in Fig. (23), while the case with |uxy| > uz is

shown in Fig. (24). Both the results are for B⊥ = 4B⊥
0.

Here too, the results are qualitatively similar to the qy =
0 results.
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FIG. 23: Transmission amplitudes as a function of in-
coming magnon energy at qy = 0.3 and B⊥ = 4B⊥

0. At

B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C =
30, u0z = 4.0, u0xy = −3.0, E0

Z = 0.5, EV = 1.0 and
the corresponding HF state is shown in Fig. 10(c). We
see qualitatively similar behavior to the qy = 0 results
shown in Fig. 11(c).

0 4 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

T(
,q

y
=

0.
3)

Spin wave
Valley wave
Spin-Valley wave

FIG. 24: Transmission amplitudes as a function of in-
coming magnon energy at qy = 0.3 and B⊥ = 4B⊥

0. At

B⊥
0 the Hamiltonian parameters are W̃ 0 = 20, E0

C =
30, u0z = 2.0, u0xy = −3.0, E0

Z = 0.5, EV = 1.0 and
the corresponding HF state is shown in Fig. 13(c).
Once again, we see qualitatively similar behavior to the
qy = 0 results shown in Fig. 14(c).

Finally, we consider the case when the valley Zeeman
coupling is the smallest scale i.e. |u0α| > E0

Z > EV . The
case with uz > |uxy| is shown in Fig. (25) and the case
with |uxy| > uz is shown in Fig. (26). Both the results are

shown at B⊥ = B⊥
0. As one can see, for uz > |uxy|, the

magnon transmission remains almost unity apart from
the resonant dips similar to the results at qy = 0 in
Fig. 17. For |uxy| > uz, on the other hand, as seen be-
fore in Fig. 20, the magnon transmission increases with
energy and eventually saturates to unity.

0 1 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

T(
,q

y
=

0.
3)

Spin wave
Valley wave
Spin-Valley wave

FIG. 25: Transmission amplitudes for all the collec-
tive modes as a function of incoming magnon energy
at qy = 0.3 and B⊥ = B⊥

0. At B⊥
0 the Hamiltonian

parameters are W̃ 0 = 20, E0
C = 30, u0z = 4.0, u0xy =

−3.0, E0
Z = 0.5, EV = 0.1 and the corresponding

HF state is shown in Fig. 16(a). We can see qualita-
tively similar behavior to the qy = 0 results shown in
Fig. 17(a).
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FIG. 26: Magnon transmission amplitudes for all the
collective modes as a function of incoming magnon en-
ergy at qy = 0.3 and B⊥ = B⊥

0. At B⊥
0 the Hamilto-

nian parameters are W̃ 0 = 20, E0
C = 30, u0z = 2.0, u0xy =

−3.0, E0
Z = 0.5, EV = 0.1 and the corresponding HF

state is shown in Fig. 19(a). Once again, the behavior
is qualitatively similar behavior to the qy = 0 results
shown in Fig. 20(a).
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