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Abstract

We present the formalism and implementation of quasi-particle self-consistent GW

(qsGW ) and eigenvalue only quasi-particle self-consistent GW (evGW ) adapted to

standard quantum chemistry packages. Our implementation is benchmarked against

high-level quantum chemistry computations (coupled-cluster theory) and experimental

results using a representative set of molecules. Furthermore, we compare the qsGW

approach for five molecules relevant for organic photovoltaics to self-consistent GW

results (scGW ) and analyze the effects of the self-consistency on the ground state

density by comparing calculated dipole moments to their experimental values. We

show that qsGW makes a significant improvement over conventional G0W0 and that

partially self-consistent flavors (in particular evGW ) can be excellent alternatives.
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1 Introduction

The sufficiently accurate prediction of photo-ionization processes is still a serious computa-

tional challenge. The main workhorse for medium and large sized systems is the Kohn-Sham

density functional theory (KS-DFT).1,2 As is very well known, using KS-DFT eigenvalues

(especially using semi local functionals) for computational spectroscopy has, however, var-

ious fundamental and practical limitations. Moreover ∆SCF ionisation energies, which are

more accurate, are in general only applicable to obtain the first ionisation energies.3–5 An

approach promising better accuracy for the calculation of single particle excitations is the

GW -method. Its central object is the Green’s function G.6–9 It is calculated by solving the

Dyson equation that relates the full (interacting) Green’s function to a know non-interacting

reference one, G0, via a self-energy Σ. Depending on the starting point, G0, Σ adds or

corrects exchange and (dynamical) correlation. In GW -theory Σ is approximated evaluating

the Fock diagram, however employing a screened interaction W . Since the Green’s function,

G, exhibits (complex) poles that describe the (charged) excitation energies (and their life-

times),10,11 GW theory represents a simple and transparent framework for the investigation

of ionization processes.

Since GW comes with a substantial computational effort, a great variety of simplified fla-

vors of GW are in use, the most common being so called G0W0 approximation.9 It treats the

self-energy Σ as a first order (i.e. nonselfconsistent) perturbation acting on a KS or Hartree

Fock (HF) reference system. It produces sizeable corrections, in particular to the energies of

the frontier orbitals, at moderate computational costs; thus medium sized molecules can be

treated efficiently. These advantages are reflected in an increasing number of applications in

quantum chemistry.12–49

However, the lack of self-consistency in G0W0 implicates undesirable shortcomings: Both,

G and the polarization P , that enter the calculation are imported without change from

the underlying reference calculation (KS or HF). As a consequence, G0W0 depends on the

choice of the reference systems, e.g., the exchange-correlation (XC) functional of KS-DFT
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calculation. Furthermore, there is no update in the spatial shape of the orbitals, so the

ground state density of G0W0 reproduces the one of the reference theory.

These limitations are overcome by imposing self-consistency. However, due to the fact

that fully self-consistent GW (scGW ) is computationally expensive,25,34,50–58 it is highly

desirable to explore the potential of partially self-consistent schemes. In this work we follow

a procedure towards partial self-consistency that is numerically still tractable and gives

promising results; the quasi-particle (QP) self-consistent GW (qsGW ). For solids there is

already encouraging experience with this approach,59–66 and first applications to atoms36

and small molecules58 also seem promising. Here it is adapted for use in a general quantum

chemistry code. Our results indicate that the starting point dependence, observed at the

G0W0 level, which can easily exceed 1.0 eV,25,38,40,51,51,58,67–74 is completely removed in qsGW .

Our calculations suggest that the effects of orbital updates can be often neglected in

comparison to the correction coming from the shifts in the pole positions of the Green’s

function. Therefore, we also implement and investigate a simplified version of qsGW in

which the orbitals are kept fixed at the reference (DFT of HF) result and only the QP-

energies are updated (eigenvalue only GW , evGW ). Also this, and similar schemes, have

been successful already in implementations for solids75–77 and first applications in molecular

geometries.26,41,49 It is an approximation especially beneficial for larger systems since it is

computationally less demanding than scGW (and qsGW ). An important aspect of our

work is that we present a systematic comparison between qsGW and evGW providing a

validation of evGW . In particular we find that in evGW the starting point dependence is

strongly reduced as compared to G0W0.

An important aspect of testing a new methodology is comparison with other approaches.

A generally popular reference are experimental values. This commonly adopted practice

can however be misleading in the case of ionization energies. One difficulty is that the

experimental ionization energies are often adiabatic whereas those calculated within the

GW scheme are always vertical. In addition intrinsic effects originating from zero-point
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vibrations and relativistic effects (beyond those that enter via the reference calculation) are

usually not included, also not in our current approach. (We mention that at the G0W0

level a two component extension has been implemented recently to account for spin-orbit

effect for closed shell molecules.47) Therefore a comparison to more accurate theoretical

results would be more reliable. In this work, we make use of the possibility to compare

our results to coupled-cluster singles and doubles augmented by a perturbative treatment

of triple excitations (CCSD(T))78,79 employing the same atomic structure and basis set.80

Doing so rules out experimental uncertainties, temperature and zero-point renormalization

effects etc., but also basis set errors.

Our paper is organized as follows: In section 2.1 we present the formalism that is used

within our implementation of qsGW . Section 2.2 explains the details of the implementation.

The third section validates the qsGW method. First, our implementation is tested for in-

ternal consistency (Sec. 3.1), i.e. we test the convergence behavior with the basis set and

the number of iteration cycles. Second, the qsGW method is assessed using first ionization

potentials (IP) of a set of 29 representative molecules (section 3.2).40,51 Third, we compare

higher IPs with experimental data (section 3.3) and with results using the scGW implemen-

tation within the FHI-AIMS software package51 (section 3.3). Furthermore, we evaluate the

ground state densities and the dipole moments in section 3.5. In section 4 we compare the

results of qsGW to those of G0W0.

In section 5 we investigate two different approaches of partial self-consistency. We first

introduce and benchmark our implementation of the evGW method (self-consistency in the

poles positions of G and the response function) versus qsGW and CCSD(T). In section 5.2

we test the GevW0
49 approach (self-consistent only in the poles positions of G), versus qsGW .

Finally section 6 contains an analysis of the computational performance and scaling behavior

of the presented methods.
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2 Method

2.1 qsGW Approximation

We are aiming at an approximate self-consistent solution of the Dyson equation

G(E) = (E −H [G]− Σ[G])−1 (1)

Here, H [G] denotes the Hartree contribution incorporating the external potential (respec-

tively the ions), the kinetic contribution and the Hartree potential. The latter depends on

the charge density and hence is considered as a functional of G.

In theGW -approximation9 the self-energy is given in terms of the causal Green’s function:

Σ(r, r′, ω) =
i

2π

∫

dω′G(r, r′, ω + ω′)W (r, r′, ω′)eiηω
′

(2)

and the screened Coulomb interaction W . η denotes a positive infinitesimal. W is obtained

from the following equation

W (r, r′, ω) = v(r, r′) +

∫

dr′′
∫

dr′′′v(r, r′′)P (r′′, r′′′, ω)W (r′′′, r′, ω) (3)

with v(r, r′) = e2 |r− r′|−1 denoting the bare Coulomb kernel. Ignoring vertex corrections

(consistent with the construction of Σ) the polarization P is calculated within the random

phase approximation (RPA)

PRPA(r, r
′, ω) = −

i

2π

∫

dω′G(r, r′, ω + ω′)G(r, r′, ω′)eiηω
′

(4)
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2.1.1 Quasi-Particle Equation and Quasistatic Approximation

A solution of equation 1 is constructed by introducing a quasi-spectral representation;

G(r, r′, z) =
∑

n

ψr,n(r, z)ψ̄l,n(r
′, z)

z − εn(z) + iηsgn(εn(z)− µ)
(5)

The right and left eigenvectors, ψr,n(r, z), ψl,n(r, z) and eigenvalues εn(z) represent quasi-

particle/hole (QP/QH) states and energies, µ being the chemical potential. The bar in

ψ̄l,n(r
′, z) denotes the complex conjugate. The (complex) poles z of the Green’s function 5

follow from the pole condition

z − εn(z) = 0 (6)

The QP-orbitals as well as the energies are found as solutions of the QP-equations

(εn(z)−HH[G]− Σ[G]) · ψr,n(r, z) = 0 (7)

ψl,n(r, z) · (εn(z)−HH[G]− Σ[G]) = 0 (8)

Within qsGW the self-energy 2 is approximated by an energy-independent, Hermitian

matrix. In the literature different variants have been proposed for such approximate self-

energies.60,61,81 Here we follow Faleev et al.60

Σ̃nn′ =
1

2
(Σnn′(εn) + Σnn′(εn′)) (9)

This approximation takes into account the quasi-particle part of the Green’s function

and neglects life-time effects. One of its merits is that it implies a consistent treatment of

the renormalization factor Z within the calculation of many observables.60

Removing the energy dependence from the self-energy has important computational ben-

efits. First, the energy integration in eq 2 can be performed analytically. Second, the
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approximate self-energy takes an Hermitian form hence left and right eigenvectors coincide

(

εn −HH[G]− Σ̃[G]
)

· ψn(r) = 0 (10)

and the poles are real, reflecting an effective single particle theory. Consequently, the Green’s

function of qsGW takes the form

G =
∑

n

ψn(r)ψ̄n(r
′)

E − εn + iηsgn(εn − η)
(11)

2.1.2 Kohn-Sham Initialization

An iterative procedure of solving eq 10 and 11 self-consistently is typically initialized with a

KS Green’s function constructed from the KS orbitals ψ
(0)
n (r) and energies ε

(0)
n :

G(0)(r, r′, E) =
∑

n

ψ
(0)
n (r)ψ̄

(0)
n (r′)

E − ε
(0)
n + iηsgn(ε

(0)
n − η)

(12)

2.2 Implementation

qsGW has been implemented within a local version of the TURBOMOLE package, building

on the routines for the calculation of the G0W0 self-energy.40

The solution of eq 10 is organized in an iterative scheme starting from the KS-initialization

eq 12. The QP-orbitals of the (i + 1)th iteration ψ
(i+1)
n (r) are expressed in the reference

orbitals of the previous iteration:

ψ(i+1)
n (r) =

∑

n

A
(i+1)
nn ψ(i)

n (r) (13)

In the reference basis ψ
(i)
n (r) eq 10 takes the form of an eigenvalue problem

∑

n

A
(i+1)
n′n

[
∫

dr′
∫

dr ψ(i)
n (r)

(

HH[G
(i)]δ(r − r′) + Σ̃(r, r′)

)

ψ(i)
n (r′)

]

= ε
(i+1)
n′ A

(i+1)
n′n (14)
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The diagonalization of eq 14 yields updates in ε
(i+1)
n′ and A

(i+1)
n′n . With the latter new or-

bitals ψ
(i+1)
n (r) are constructed via 13. These are orthonormal by construction due to the

hermiticity of the operators in eq 14.

Since hermiticity gives the present scheme a form similar to an effective single parti-

cle problem we can take advantage of established (DFT) routines to calculate the Hartree

Hamiltonian HH[n
(i+1)], n(i+1) =

∑N

i=1

∣

∣

∣
ψ

(i+1)
n (r)

∣

∣

∣

2

employing an updated density.

For the computation of the matrix elements of the self-energy

Σnn(E) = 〈n|Σx |n〉+ 〈n|Σc(E) |n〉 (15)

we recall the expressions already derived before in the context of the G0W0 implementation.40

The expression for the real part of a matrix element of the correlation part Σc of the self-

energy reads;

Re
(

〈n|Σc(E) |n
′〉
)

=

∑

m

[ occ
∑

i

(in|ρm)(ρm|n
′i)×

E − εi + Ωm

(E − εi + Ωm)2 + η̄2

+

unocc
∑

a

(an|ρm)(ρm|n
′a)×

E − εa − Ωm

(E − εa − Ωm)2 + η̄2

]

(16)

where ρm and Ωm denote the two particle excitation densities and energies and η̄ is a positive

infinitesimal. To express the exchange part we employ the common notation of the Coulomb

integrals

(pq|rs) =

∫

dr

∫

dr′p(r)q(r)
1

|r− r′|
r(r′)s(r′) (17)

p(r), q(r), etc. denoting single particle orbitals, e.g. of QP or KS type.

The unscreened exchange part of qsGW is identical to the exchange contribution of HF

theory,

〈n|Σx |n
′〉 =

occ
∑

n

(nn|nn′) (18)

where the sum is over all occupied (QP-)orbitals.
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Employing the quasi-spectral representation, eq 5, the new self-energy is calculated from

the updated pole positions ε
(i+1)
n′ and orbitals ψ

(i+1)
n (r). This uses the established routines

from the G0W0 implementation, taking into account all changes, i.e. in both G and W .

After the approximation eq 9 is applied the next iteration is started by solving again

eq 14. This procedure is continued until a self-consistent solution is achieved.

2.2.1 Convergence Criteria

In terminating the self-consistency cycle different convergence criteria are conceivable. An

obvious choice would consider the change of the QP energies from one cycle to the next.

However, motivated by earlier work,51 we check for the norm of the differences of the Green’s

functions:

∆ =
1

N2
Orbitals

∑

n,n

∣

∣Gnn(E = 0)−G(i−1)
nn (E = 0)

∣

∣ (19)

=
1

N2
Orbitals

∑

n

∣

∣Gnn(E = 0)−G(i−1)
nn (E = 0)

∣

∣ . (20)

The last step is valid when Gn,n is diagonal, i.e. given in the orthonormal eigenstates of the

QP-equation. Typically the iteration is stopped if ∆ < 10−7 is achieved. This corresponds

to orbital energies being converged to within 1 meV.

2.2.2 Linear Mixing

The iterative approach introduced above does not always converge into a fixed point solution.

To improve stability and also rate of convergence we introduce a linear mixing scheme that

mixes into the updated Green’s function a contribution of the previous one to decrease the

step width between two iterations in a similar manner as done for iterative procedures for

the HF or DFT ground state. Therefore, strictly speaking we do not solve eq 14, but

[

ε(i+1)
n −

(

λ
(

HH[G
(i)] + Σ[G(i)]

)

+ (1− λ)ε(i)n

)

]

ψ(i+1)
n = 0 (21)
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Our tests indicate that λ = 0.3 is a reasonable choice which converges all studied molecules

and, on average, speeds up the convergence by factor 4 as compared to no mixing. As an

example Figure 1 shows the convergence using different mixing parameters for BF.
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10
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10
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0 10 20 30

Iteration

N
o

rm
 ∆

λ=0.1
λ=0.3
λ=0.5
λ=0.7

Figure 1: The flow of the convergence of the norm of the difference of the Green’s functions
from two iterations with the qsGW iteration for the BF. The termination criterion is indi-
cated by the solid line.

3 Validation of qsGW

In this section we will first confirm the internal consistency of the implemented qsGW

method. Second, we will benchmark, for a test set of 29 representative molecules, qsGW

versus ∆CCSD(T) first IPs and experimental results of higher IPs of 5 organic molecules.

Finally the results of qsGW are compared to full self-consistency GW (scGW ) literature

results to validate the accuracy of qsGW and to shed light on the internal features of the

quasi-static approximation.
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3.1 qsGW Internal Consistency

We investigate the basis set dependence of the implemented qsGW method and extract a

basis set which yields a good tradeoff of computational cost and accuracy. Furthermore, we

will show that the results of qsGW are independent of the chosen initial functional in the

initializing calculation.

3.1.1 Basis Set Convergence

We start the study of the basis set dependence of the qsGW IPs by a comparison for three

small molecules, water, nitrogen and methane. The results obtained using the def2-SVP,

def2-TZVP, def2-TZVPP and def2-QZVP basis set series are shown in Figure 2.82,83 The

results are plotted against the inverse of the size of the basis set. We take the ordinate offset

of the linear extrapolation (the dashed lines in Figure 2) of the def2-TZVP and def2-QZVP as

an estimate for the extrapolated complete basis set limit (CBS) result. This same approach

has been used and tested in two of our previous studies for G0W0 comparing also to other

basis sets.40,48 It these studies it turned out have an estimated error of typically within 50

meV for G0W0. Since the same physical quantities enter in qsGW as in G0W0 it is reasonable

to assume that the same holds for qsGW as well. Indeed for these three molecules we observe

the same rate of convergence as for G0W0.
40 We therefore use this approach also for qsGW ,

at least as long as thoroughly tested extrapolation schemes as known for Hartree-Fock or

coupled-cluster energies are not available.

In a similar manner as shown in Figure 2, we have performed a survey over a larger

subset of our test set of molecules and calculated the CBS limit for each individual molecule,

the overall convergence behavior is indicated in Figure 3. For the def2-SVP basis set we

find a maximum error larger then 0.8 eV. Furthermore, the largest deviations are seen for

systems with strong polar covalent bonds (H2O, LiH, and NH3). (This has already been

observed for G0W0 in ref. 40). Our interpretation is that the def2-SVP basis set is not

flexible enough to describe the high charge accumulation at one of the bond partners in ionic
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Figure 2: Convergence test of the qsGW -ionization potential with respect to the basis set
(using, from left to right, the def2-QZVP, def2-TZVPP, def2-TZVP, def2-SVP basis sets) of
water, nitrogen and methane. For nitrogen def2-TZVP and def2-TZVPP are identical. The
intersection of the linear extrapolation of the def2-TZVP and def2-QZVP points with the
ordinate gives an estimate for the complete basis set limit (CBS).

bonding situations. Therefore, the def2-SVP results have been excluded from the procedure

to obtain the CBS limit.

Overall we find that the def2-TZVP basis shows a maximal deviation of roughly 0.4 eV.

Adding another set of polarization functions, the def2-TZVPP basis set, for most molecules

the deviation drops below 0.3 eV. Previously we have shown that for larger molecules the er-

ror actually is smaller.48 Beyond def2-TZVP the quality of the GW results mainly depends

on the total number of basis functions, not necessarily the quality of the basis functions

at the individual atoms. Moreover, the CCSD(T) results are available in the def2-TZVPP

basis set, making those the ideal candidate for an accurate and unbiased comparison. We
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hence take the def2-TZVPP basis set as a reasonable compromise for the current study, with

an uncertainty due to the basis set of maximally a few hundred meV. For really accurate

calculations def2-QZVP basis set are however recommended. Using these for self-consistent

calculations routinely however, require further parallelization of the response and GW rou-

tines in TURBOMOLE.

Figure 3: Change of the qsGW -ionization potential ǫ with increasing size of the basis set
(using the def2-SVP, def2-TZVP, def2-TZVPP, def2-QZVP basis sets)82,83 using the complet
basis set limit (CBS) ǭ as reference. The CBS is obtained from a linear interpolation over
the inverse of the number of basis functions, see also Figure 2.

3.1.2 Starting Point Dependence

A major advantage of self-consistent GW schemes is that the fixed-point found in the it-

eration scheme is for the commonly used starting points (largely) independent of the ini-

tialization.84 This is true also for qsGW , as is illustrated in Figure 4. The convergence of
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the HOMO energy with increasing cycle number starting from different Kohn-Sham XC-

functionals is shown for the example of benzene. In this work we explore the LDA,85 PBE,86

PBE0,87 and PBE0(X%) (PBE0 with X % exact exchange). The iterative procedure con-

verges into exactly the same solution, independent of the starting point.
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Figure 4: The convergence of the HOMO energy for benzene with the qsGW iterative cycle
using the def2-TZVPP basis set. In this example the self-consistency cycle was initialized
with a KS-DFT Green’s function calculated employing LDA, PBE and PBE hybrid XC-
functionals with an exact exchange contribution of 25% (PBE0), 50%, 75%, and 100%. For
comparison also the G0W0, the experimental, and ∆CCSD(T)80 results are shown.

3.2 First Ionization Potential: comparison to ∆CCSD(T)

As a first quantitative test we calculate the ionization energies/potentials (IP) for a test set

of 29 molecules ranging from H2 to tetrathiafulvalene.88 We focus on IPs since (i) they are

an important indicator to understand charge transfer processes (ii) experimental reference

data is available and (iii) one has access to results using more accurate theories (at least
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for small size molecules). The first IP is trivially extracted from the calculated data being

the (negative) energy of the highest occupied molecular orbital (HOMO). These, and all

following results have been calculated using the def2-TZVPP basis set.82,83

The G0W0 results have been calculated initialized from DFT using the PBE functional,

denoted G0W0@PBE. In the calculation of the correlation part of the self-energy the positive

infinitesimal η was chosen so that all (orbital-)energies are converged within 1 meV. Typically

η = 1 meV was used. For all calculations the RI approximation was used. It has been

shown previously that the errors introduced by RI, applying the standard auxiliary basis

functions,83 are, except for very small systems like He, Ne, and H2, below than 100 meV.48

The parameters for the qsGW calculations were chosen to converge the pole-positions within

1 meV.

The obtained IPs are compared to results obtained by employing the coupled-cluster

method in the CCSD(T) approximation,80 using the same atomic structures and same basis

set as were used in the GW calculations (def2-TZVPP).

The deviations in the calculated HOMO energies using the different flavors of GW to

∆CCSD(T) IPs are displayed in Figure 5. Together with the experimental (vertical) IPs the

calculated IPs are reported in Table 1. The data shows an improved agreement of qsGW

with ∆CCSD(T) in comparison to the G0W0@PBE results, by up to 1.41eV . The mean

absolute error (MAE) improves by 0.40 eV, see Table 2, from the single-shot G0W0 to the

self-consistent qsGW estimates. Furthermore, the increasing trend in the discrepancy is

cleared within qsGW .

3.3 Higher Ionization Potentials: comparison to scGW and ex-

periment

In this section we discuss the accuracy of qsGW for the calculation of higher IPs. The higher

IPs are difficult to access via CCSD(T). For the first ionization energy the total energy

difference between the neutral and cationic ground state has to be calculated. Calculating
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Table 1: The calculated (minus) HOMO energies from qsGW and G0W0 (initialized from
DFT employing the PBE functional using the def2-TZVPP basis set) as well as experimental
(vertical) Ionization Potentials and estimates from ∆CCSD(T).80 All values are in eV and
all calculated results are obtained wihtin the def2-TZVPP basis set.

molecule exp. ∆CCSD(T)80 G0W0 qsGW
H2 15.42 16.21 15.57 16.04
Li2 5.11 5.20 4.95 5.30
Na2 4.89 4.92 4.78 4.99
Cs2 3.70 3.58 3.40 3.57
F2 15.70 15.46 14.55 15.91
N2 15.58 15.54 14.69 15.86
BF 11.00 11.14 10.43 11.17
LiH 7.90 7.93 6.47 7.98
CO2 13.78 13.67 12.96 14.06
H2O 12.62 12.61 11.87 12.95
NH3 10.85 10.85 10.24 11.11
SiH4 12.82 12.70 12.11 12.96
SF4 12.30 12.62 11.88 13.03
Au2 9.50 9.10 9.84 9.12
Au4 8.60 7.67 7.45 7.62
methane 14.35 14.36 13.79 14.46
ethane 12.00 13.12 12.22 12.95
propane 11.51 12.13 11.54 12.31
butane 11.09 11.58 11.39 11.90
isobutane 11.13 11.68 11.26 12.00
ethylene 10.68 10.70 10.24 10.68
acetone 9.70 9.71 8.84 10.08
acrolein 10.11 10.20 9.23 10.55
benzene 9.24 9.34 8.87 9.40
naphthalene 8.09 8.04 7.68 8.22
thiophene 8.85 8.96a 8.48 9.02
benzothiazole 8.75 8.70a 8.24 8.83
1,2,5-thiadiazole 10.11 10.09a 9.65 10.18
tetrathiofulvalene 6.72 6.42a 5.98 6.56

a This work.
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Figure 5: Deviations of the HOMO energies using G0W0@PBE and qsGW with IPs from
∆CCSD(T)80 calculations. The corresponding numerial data is provided in Table 1 and
statistical evaluation of the deviations is shown in Table 2.

Table 2: Statistical measures of the difference of the calculated IP from G0W0 and qsGW
to the reference ∆CCSD(T) IP cumulated over the test set. All values are in eV.

G0W0 qsGW
ME 0.57 -0.16
MAE 0.59 0.19
σ2 0.08 0.02
MaxAE 1.49 0.45
MinAE 0.14 0.01

the latter correctly is already delicate. For the higher ionization energies excited states of the

cation have to be calculated. This makes these calculations very cumbersome (sometimes

impossible). We therefore fall back to experimental values as references.89

We extended our test with five organic molecules that are candidates for optical devices

and for which also experimental data is available. These molecules have already been inves-

tigated with scGW by Caruso et al.51,56 We will compare the G0W0, qsGW , and spectra to
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experimental results. The results are shown for naphthalene in this section, the results on

three more molecules (Thiophene, Benzothiazole, and 1,2,3-Thiadiazole) are available in the

supplementary information.

In Figure 6 higher IPs using G0W0, qsGW as well as scGW are compared to the experi-

mental (vertical) IPs for naphthalene. The G0W0 and qsGW methods show similar behavior

as described in the previous section. Furthermore, IPs from qsGW and scGW give simi-

lar agreement with experiment. qsGW clearly outperforms scGW for the lowest ionization

energies but for the higher ionization energies scGW becomes better. Both self-consistent

methods, qsGW and scGW , remove most of the energy dependence in the error of G0W0.

Actually, we find a rigid shift of about 0.5 eV for all energy levels between qsGW and scGW

for nearly all molecules investigated. A similar picture is observed for the three further

molecules where we compare the higher ionization energies between qs and scGW (see Sup-

plementary information). For these rather similar aromatic systems we observe in all cases a

shift ∼ 0.5 eV. Whether this holds for a broader class of molecules needs further systematic

investigation, especially since the molecules in this comparison exhibit very similar bonding.

The shift can be understood by recalling the split of the Green’s function into a quasi-

particle part and an incoherent part

G = ZGQP + Ḡ (22)

In qsGW the Z-factor is unity and the incoherent part Ḡ is neglected, while in the scGW

both are taken into account. We suggest that Ḡ is only weakly energy dependent, so that

its contribution Σ̄ = iḠW to the self-energy is also a relatively flat function of energy. The

current data, and the results by Koval et al.,58 show that for molecules the effect of the

quasi particle approximation however has the opposite sign as in solids. Vanschilfgaarde and

coworkers argue that calculating the response from the full green function, as in scGW, would

lead to under screening and hence overestimation of the ionization energies.61 This is indeed
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Figure 6: Deviation of the QP-energies betweeb G0W0, qsGW and scGW 51 (FHI-AIMS)
from experimental ionization energies for naphthalene. The dashed line indicates the devia-
tion of ±0.5 eV.

what one would conclude from results on the homogeneous electron gas.90 In the present

results on molecules scGW underestimates and qsGW overestimates. A systematic study

aiming to understand this inversion including many more molecules, exhibiting different

kinds of bonding is currently in progress.

3.4 Comparison to qsGW Literature Results

Recently Koval et al. also compared qsGW and scGW for a set of molecules.58 Their

work employs a spectral function technique on an equidistant energy grid to calculate the

convolution of G and W . Their method ’A’ is the same as the approach used in this work,

Bruneval’s implementation in molgw,36 and the original implementation by Faleev et al.60

for solids.91
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To make a definite test for the agreement between the three different implementations

of qsGW for molecules, we calculate the helium atom using the basis set employed in the

works by Koval et al. and Bruneval, the correlation-consistent basis sets.92 The results are

compared in Table 3. We observe an excellent agreement with Brunevals results at the meV

level. In contrast, we observe a deviation to the ’A’ method of Koval et al. that is quite

substantial, in the tens of meV range. For comparison Table 3 also lists the results from the

approximate ’B’ method.

Table 3: HOMO energies for atomic helium from qsGW , literature comparison. All values
are in eV.

basis qsGW B58 qsGW A58 qsGW 36 qsGW (this work)
cc-pVDZ 24.346 24.350 24.359 24.359
cc-pVTZ 24.554 24.340 24.320 24.320
cc-pVQZ 24.668 24.751 24.766 24.767
cc-pV5Z 24.705 24.799 24.825 24.826

3.5 Densities and Dipole Moments.

A self-consistent solution of the GW equations introduces corrections in the spatial shape

of the QP-orbitals in addition to shifts of the pole positions of the Green’s function. Hence,

corrections to the ground state density as compared to the reference density can arise.

Figure 7 shows the differences between the calculated electron densities of benzene for

DFT(PBE), DFT(PBE0) and qsGW , showing that the qsGW orbitals are slightly more

localized. This localization is cause by the cancelation of a large part of the the spurious

self-interaction of the approximate DFT functionals. The part of the self interaction that is

caused by self-screening is not canceled in qsGW .93 Removing this as well would require the

inclusion of more diagrams.94

The enhanced tendency towards localization displays clearer looking at an ionic molecule

like HF, see Figure 8; we observe a more localized density around the fluoride atom. Fur-

thermore, the amount of charge on the non-bonding side of the hydrogen atom is slightly
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Figure 7: Diagonal: Ground state electron density of benzene as obtained from DFT(PBE),
DFT(PBE0) and qsGW . Off-diagonal upper right: Difference in the ground state electron
densities: PBE-PBE0, PBE-qsGW , and PBE0-qsGW , horizontal cut. Off-diagonal lower
left: Same differences, vertical cut. The positions of the atoms are indicated by the black
(carbon) and white (hydrogen) crosses. The results from the qsGW calculation show a
slightly stronger localized density (blue area) around the H-C paires in comparison to the
DFT(PBE) calculations.

reduced. The trend seen here for qsGW agrees with the observations of Caruso et al. for

scGW .56

An experimentally easily accessible observable characterizing the ground state density

is the dipole moment. The comparison is given in Table 4. To also be able to compare to

scGW we will present here the systems used by Caruso et al..

While HF typically overestimates the dipole moment of the dimers, DFT typically slightly
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Figure 8: Difference between the calculated DFT (PBE) density and the qsGW density
normalized on the (initial) DFT density for hydrogenflouride. The fluor atom is denoted by
a green cross, the hydrogen atom by a grey cross.

underestimates it. In the range of hybrid functionals the best dipole moments are obtained

from the PBE0 functional. scGW performs comparable to PBE0. In contrast, qsGW yields

better agreement with an overall mean absolute error (MAE) of 0.03 Debye. To make

a definitive statistically sound statement discriminating between the qsGW and scGW is

however not possible due to the small number of systems. In conclusion, our results support

the general impression that self-consistent GW , is a promising tool to investigate the charge-

transfer in molecular interfaces and other (nano-scale) hetero-structures.95

Comparing the differences between sc and qs GW for on one hand the ionization energies

and on the other hand the dipole moments we observe a different degree of agreement. The
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Table 4: Comparison between experimental96 and theoretical dipole moments (Debye), from
PBE, PBE0, PBE0(75%), PBE0(100%), HF, scGW 51 (FHI-AIMS) and qsGW . For all
calculations the experimental equilibrium bond length was considered, the calculations of
this work are performed in the def2-TZVPP basis-set.

LiH HF LiF CO ME MAE
Exp. 5.88 1.82 6.28 0.11
PBE 5.60 1.80 5.99 0.24 -0.12 0.18
PBE0(25%) 5.77 1.85 6.18 0.11 -0.05 0.06
PBE0(75%) 6.01 1.93 6.45 0.14 0.11 0.11
PBE0(100%) 6.10 1.97 6.54 0.26 0.20 0.20
HF 6.03 1.95 6.50 0.26 0.16 0.16
scGW 51 5.9 1.85 6.48 0.07 0.05 0.07
qsGW 5.83 1.84 6.29 0.07 -0.02 0.03

dipole moments tend to agree better between the two methods than the ionization energies.

We assume this to be related to the rigid shift we observed between two respective spectra.

4 Comparison of qsGW and G0W0

Given the qsGW results for the IPs from the previous sections, we next evaluate next how well

the traditional G0W0 (G0W00th) is capable of reproducing them if one employs an improved

DFT starting point. One can do so by using parametrized functionals derived from the

PBE0 hybrid functional. In addition, the G0W0 2nd order approach49 (G0W02nd), which

takes into account off-diagonal elements of Σ in the QP-equation and hence an influence of

orbital corrections, is also tested.

4.1 First Ionization Potentials

The HOMO energies obtained from G0W00th@PBE (traditional G0W0 with a PBE starting

point) have a mean absolute error 0.75 eV and show a clear correlation between the error and

the actual value. With increasing energy, the error, as compared to qsGW , systematically

increases. Employing a PBE0 starting point improves the overall agreement with qsGW

down to a mean absolute deviation of 0.42 eV, see Figure 9 and Table 5. Best agreement
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is achieved employing the PBE-hybrid based starting point employing 75% exact exchange.

For this starting point, the correlation between the error and ionizationenergy disappears.

Our data also confirms a trend that already appeared in our earlier work: G0W00th and

G0W02th give similar results. This suggests that off-diagonal elements of Σ give negligible

contributions to the QP-energies.49

Table 5: Statistical measures over the data from Figure 9. Evaluated is the difference of
the calculated G0W0 and G0W0-2nd HOMO energies to the qsGW HOMO cumulated over
the test set. Three different DFT based starting points have been employed. On average,
best agreement is achieved with the PBE hybrid XC-functionals with a contribution of exact
exchange of 75% as the starting point (PBE0(75%)). All values are in eV.

G0W0
@PBE @PBE0 @PBE0(75%)

0th 2nd 0th 2nd 0th 2nd
ME 0.70 0.67 0.42 0.41 0.11 0.19
MAE 0.75 0.72 0.42 0.41 0.18 0.26
σ2 0.20 0.18 0.05 0.04 0.05 0.23
MaxAE 1.46 1.41 0.90 0.87 0.85 2.41
MinAE 0.17 0.14 0.12 0.10 0.01 0.01

4.2 Higher Ionization Potentials

Figure 10 displays the QP-energies from G0W00th and G0W02th relative to qsGW for differ-

ent PBE0 based starting points for naphthalene. In our example we find best agreement, with

qsGW, employing the starting point with a higher contribution of exchange (PBE0(75%)).

Furthermore, we see in the calculation initialized from PBE0(75%) no energy dependent

trend in the error, while the trend persists in both G0W00th and G0W02nd employing a

PBE or PBE0 starting point.

5 Validating Partial Self-Consistency

Even though computationally more affordable than typical coupled cluster approaches, qsGW

is still too expensive for systematic screenings over large ensembles of intermediate sized
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Figure 9: Deviation of HOMO energies obtained from G0W00th and G0W02nd to qsGW .
Results are shown for calculations initialized from DFT, employing PBE and PBE hybrid
XC-functionals with an exact exchange contribution of 25% (PBE0) and 75% (PBE0(75%)).
On average best agreement is achieved employing the PBE0(75%) starting point, see Table 5.

molecules. Thus motivated, in this section we test simplified flavors of qsGW . Our aim is to

find an approximation scheme that captures the dominant contributions included in qsGW

and hence is capable of reproducing results of qsGW , at a lower computational cost.
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Figure 10: Comparison of the QP-energies from G0W00th and G0W02nd with qsGW for
naphthalene. Three different DFT based starting points employing the PBE, and the PBE
hybrid functional with 25% (PBE0) and with 75% exact exchange (PBE0(75%)), were cho-
sen. The best agreement, with qsGW , yields the calculation with the PBE0(75%) starting
point.

5.1 qsGW with Fixed Orbitals: evGW

Our studies of the charge density for qsGW suggest that orbital updates tend to be small.

Therefore, we next ignore orbital updates in the self-consistency cycle and take into account

only the update in the pole positions: eigenvalue only GW (evGW ).26

5.1.1 Method evGW

Within the methodology described in section 2.1 turning qsGW into evGW is straight for-

ward, one only needs to suppress the update in the orbitals between consecutive qsGW

iterations. In other words the machinery operates solely with the initial set of QP-orbitals

ψ(0)(r) and the orbital update from 13 is skipped. In all equations the orbitals ψ(i)(r) are
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replaced with ψ(0)(r). Furthermore. our treatment of the quasiparticle equation in evGW

neglects off-diagonal elements of Σ. Finally we discard the static approximation and restore

in the QP-equation the energy-dependent self-energy Σ. Then, for each pole the QP-equation

is solved self-consistently. Computationally this introduces the benefit that the Coulomb ex-

change integrals, see 18, do not need to be re-evaluated. For instance, the full exchange part

of the self-energy Σx, see 18, needs only one single evaluation.

5.1.2 Comparison to qsGW - First IPs

For the set of molecules specified in Table 1, the differences between the evGW estimates

of first IPs and the qsGW results are shown in Figure 11 (see Table 6 for the statistical

evaluation). Because evGW is not self-consistent in the orbitals there is a residual starting

point dependence, which is clearly visible in Figure 11. It is however significantly reduced

as compared to, e.g., G0W0. In contrast to the findings from the G0W0 before we find best

overall agreement with the qsGW by employing the PBE0 functional (and not anymore the

PBE0(75%) hybrid with 75% exact exchange). Even for pure PBE the overall agreement

with qsGW is better than with PBE0(75%).

Table 6: Statistical evaluation of the data from Figure 11. The deviation from calculated
evGW HOMO energies (from different PBE and PBE-hybrid starting points) to the qsGW
HOMO cumulated over the test set. With evGW we find best agreement with qsGW if the
PBE0 starting point is employed. All values are in eV.

evGW @PBE @PBE0 @PBE0(75%)
ME 0.09 0.12 0.12
MAE 0.17 0.15 0.20
σ2 0.03 0.02 0.06
MaxAE 0.39 0.36 0.85
MinAE 0.01 0.03 0.00

5.1.3 Comparison to qsGW - Higher IPs

A comparison of QP-energies from evGW and qsGW is given in Figure 12 for naphthalene.

The results confirm the findings for the first IPs. The starting point dependence is strongly
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Figure 11: Comparison of HOMO energies using evGW initialized from DFT calculations
with the qsGW HOMO energies for the test set. The evGW starting point was constructed
from PBE and PBE-hybrid calculations. The results of evGW show only weak dependence
on the amount of exact exchange in the functional of the initial DFT calculation.

reduced and we find that the trend in the energy dependence of the error, which was present

in G0W0, is not present anymore for all starting points. All in all, self-consistency in the

poles by it self already produces very good agreement with qsGW QP-energies for all starting
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Figure 12: Deviation of the QP-energies from evGW from different PBE and PBE-Hyrbid
starting points to qsGW for naphthalene.

5.1.4 Comparison to ∆CCSD(T) - first IPs

To further substantiate the accuracy of evGW we present a comparison to ∆CCSD(T)80

first IPs over the full test set, see Figure 13. The statistical analysis, see Table 7, shows

that the overall error is not larger than the error from qsGW . In fact evGW results exhibit

an even better agreement with ∆CCSD(T), especially when starting from PBE0. Starting

from PBE0(75%), PBE0 with 75% exact exchange, introduces various spurious outliers.

Summarizing, evGW seems to be a promising alternative to qsGW leading in practice to

results very close to the ∆CCSD(T) reference, with a typical deviation of a few 100 meV.
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Figure 13: Comparison of the HOMO energies using evGW initialized from different
DFT(PBEλ) starting points and qsGW calculations to the ∆CCSD(T)80 IP energies.

Table 7: Statistical evaluation of the data shown in Figure 13. The evGW approach shows
better agreement with the ∆CCSD(T) reference than the qsGW approach, for all considered
starting points. Best agreement of evGW with ∆CCSD(T) is achieved by employing the
PBE0 functional in the starting point for the DFT calculation. All values are in eV.

evGW
qsGW @PBE @PBE0 @PBE0(75%)

ME -0.16 -0.07 -0.04 -0.04
MAE 0.19 0.15 0.12 0.18
σ2 0.02 0.01 0.01 0.06
MaxAE 0.45 0.47 0.46 1.17
MinAE 0.01 0.02 0.01 0.01

5.2 Comparison of GevW0 versus qsGW

So far, our results indicated that orbital updates have a minor effect on the pole positions of

qsGW . The next question is whether the QP-energies are as sensitive to the pole positions

of W as they are to the pole positions of G in Σ. To this end we recall an approximate
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scheme, GevW0, which we introduced before.49 It keeps the screened interaction based on

the starting point calculation W0, and introduce self-consistency only at the pole positions

of the Green’s function. The computational cost of GevW0 is the same as traditional G0W0

(within our implementation).

5.2.1 First Ionization Potentials

Figure 14 shows the difference of the HOMO energy obtained as from GevW0 to the qsGW

HOMO energies for the full test set. The statistical measures are reported in Table 8.

The first IPs from GevW0 show a reduced starting point dependence in comparison to the

single-shot G0W0 and the G0W02nd results. However, the starting point dependence is

much stronger that in the case of evGW . Furthermore, GevW0 shows improved agreement

with qsGW if one employs the PBE or PBE0 starting point. If one employs the optimal

PBE0(75%) starting points the plain G0W0 and the GevW0 are comparable close to the

qsGW results.

Comparing the optimal staring point we find for the three different approximate GW

flavors, G0W0 evGW and GeVW0 there are some interesting remarks to make. In evGW

the differences are rather small with a small preference of PBE0, which is in agreement

with PBE0 having the best dipole moment of the various starting points. The results are

comparable to those of qsGW . The exact shape of the orbitals hence does not impact the

results that much. However, if W is kept fixed there is a clear preference for a PBE0(75%)

starting point. This indicates that given the, relatively small, spread in orbitals obtained

in the range from PBE to HF it is primarily important to have a good screening. Good

orbitals is only of secondary importance. This is also reflected in the small orbital corrections

obtained in qsGW .
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Figure 14: Distance of calculated HOMO energies using GevW0 from DFT(PBEλ) starting
points to the qsGW HOMO energies. With increasing exact exchange contribution in the
PBEλ starting point improves the agreement with qsGW . Nevertheless, we find for all
starting points an error which increase with energy. the statistical evaluation is reported in
Table 8.

5.2.2 Higher Ionization Potentials

In Figure 15 the QP-energies from GevW0 are compared to the ones from qsGW for naph-

thalene. The spectrum based on GevW0 shows a slight overestimation of the QP-energies
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Table 8: Statistical measures of the difference of the calculated GevW0 HOMO energies
from DFT(PBEλ) starting points to the qsGW HOMO cumulated over the test set. Best
agreement is achieved employing the PBE0(75%) starting point. All values are in eV.

GevW0 @PBE @PBE0 @PBE0(75%)
ME 0.39 0.29 0.13
MAE 0.43 0.30 0.21
σ2 0.09 0.03 0.06
MaxAE 1.18 0.66 0.83
MinAE 0.04 0.04 0.01

for all starting points. Furthermore, we find that the shift on the poles from the self-energy

due to the QP-correction corrects to poles towards the full qsGW solution. Regarding the

starting point dependence we find again that the PBE0(75%) gives best agreement with the

qsGW results.

6 Computational Performance

The total computational effort needed for one GW iteration comprises the calculation of the

response function and the self-energy part. Under the latter we understand the construction

of the self-energy and the solution of the quasi-particle equation. The time needed for the

construction of the response function is for all considered approximations identical. The

time needed for the self-energy part varies depending on the treatment of the QP-equation.

Figure 16 displays the computational cost for the different (approximate) GW flavors within

our implementation.

The G0W00th approach is by far the fastest and shows the best scaling with the number

of basis functions of only ∼ N3 for the self-energy part. The computational cost for G0W00th

calculations are hence dominated by the construction of the response function, which has

a scaling of ∼ N4. However, this is only true for comparably small molecules. In the

exact evaluation, one has to calculate all excitations, a matrix of range ∼ N2 has to be

diagonalized. This is a hard ∼ N6-step, but with a small prefactor and still less than a ∼ N7
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Figure 15: Deviation of the QP-energies from GevW0 to QP-energies from qsGW for naph-
thalene. Three different DFT based starting points employing the PBE, and the PBE hybrid
functional with 25% (PBE0) and with 75% exact exchange(PBE0(75%)) were chosen. The
best agreement, with qsGW, yields the calculation with the PBE0(75%) starting point.

scaling for CCSD(T) in conventional implementations.

Similar to G0W0, evGW approach operates solely on the diagonal part of the QP-

equation. Hence, it has the same scaling behavior as (diagonal only) G0W00th. But, to find

a self-consistent solution, typically six iterations are necessary till convergence is achieved.

Hence, the total time needed for evGW is that of G0W0 plus six times that of the the

response calculation.

Both, G0W02nd and the qsGW approach, which diagonalize the QP-equation 10, the

self-energy part shows a scaling with the number of basis functions N of ∼ N5, worse by a

factor of N2 as compared to G0W00th and evG0W0. Still we find that the computational time

needed for the majority of the molecules within our test set is dominated by the construction
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Figure 16: The computational time needed for the construction of the response function and
the time needed for a single iteration GW -proper over the number of basis functions. In
evGW every full iteration consistes of a response step and a G0W00th step. In GevW0 only
the first iteration has a response step, subsequent steps are computationally equivalent to a
G0W00th step, and times are almost the same for both procedures.

of the response function. Only for systems requiring more than 340 basis functions, the self-

energy part begins to dominate the computational cost. An actual optimization for best

performance within the GW is still an open task within our implementation. Especially in

the qsGW implementation we expect room for improvement.

Note that all GW -proper parts of our implementation have been designed for parallel

computation. We find for all approaches a nearly perfect scaling with the number of cores,

i.e. the typical setup of 8 core nodes gives a typical speedup of 7.94. Hence, due to very

good parallel scaling larger scale systems are tractable.
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7 Summary

Considering the first IPs, we confirm for or a set of 29 representative molecules, that all flavors

of the GW method strongly improve agreement with experiment and CCSD(T) results as

compared to the underlying DFT calculation. Moreover, the self-consistent qsGW improves

agreement with the CCSD(T) by an order of magnitude as compared to G0W00th using a

semi-local starting point (see Figure 5). Also, we find that qsGW has a better agreement

with experiment in ionization spectra as compared to results based on G0W0 using a semi

local starting point by typically 500 meV. Using an optional staring point, i.e. PBE0(75%)

for G0W0 and GevW0 and PBE0 for evGW , gives results very close to qsGW . Comparing

qsGW and scGW , we observed a rigid shift towards stronger binding in qsGW , in the favor

of qsGW for both dipole moments and ionization energies. The small number of molecules

however prohibits to make a final claim un the ultimate accuracy difference between sc and

qsGW for molecules. A study comparing the two using the GW100 set48 is currently under

way.

The qsGW introduces only minor corrections on the spatial shape of the QP-orbitals

and ground state density as compared to the KS-reference. Comparing calculated dipole

moments to experimental results we find that the qsGW improves agreement to experiment

compared to traditional method like the Density Functional Theory (DFT) using a PBE

functional, and the Hartree-Fock (HF) approach (see Table 4).

Based on this result we conclude that the partially self-consistent flavor of qsGW updating

only the orbitals, eigenvalue only qsGW (evGW ) is an efficient alternative. The evGW is able

to reproduce the (first) IPs from qsGW very well and showed a strongly reduced dependence

on the choice of the functional in comparison to G0W0.

If system size is prohibiting even evGW we find the best alternative to beG0W0@PBE0(75%).

The increased amount of exact exchange is reasoned to mainly be necessary to improve the

screening. Since the standard PBE0 orbitals turn out to be in general closest to the qsGW

results and also give best dipole moments as compared to experiment, one could even envi-
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sion a hybrid approach. This would use the orbitals from PBE0, but perturbatively correct

the eigenvalues using 75% exact exchange before calculating the response function.

8 Outlook

The full solution of Hedin’s equations gives access not only to the quasi-particle (qp) energies,

but also to charge neutral, particle-hole (ph) type excitations. A characteristic feature

that all variants of the GW -theory share is that the energy of a ph-excitation is estimated

neglecting the interaction between the particle and the hole, so that there is a tendency to

overestimate the energy cost for creating ph-pairs, i.e. excitons.97 As a result the Coulomb

interaction is under screened, which leads to an underestimation of the magnitude of the

correlation part of the self-energy. Thus, the HOMO energy is typically underestimated (i.e.

the ionization potential is over estimated) as also observed in our results.

There is no real consensus about the consequences of under screening for the qp-energies.

A wide-spread belief is that under screening in the effective interaction W (denominator)

does not affect these energies because it is fully cancelled by the explicit vertex corrections

(Γ, nominator) appearing in the self-energy diagrams. Rigorous arguments in favor of the

cancellation have not been given; so far, the existing evidence supporting cancellation relies

on explicit calculations for a number of test systems, such as, e.g., homogeneous electron

gases98 and bulk silicon.99

Our results indicate that when applying qsGW to single molecules, HOMO energies and

ionization potentials are typically underestimated. In our opinion, a natural explanation is

under screening of the Coulomb-interaction in W ; we hence propose that the cancellation of

vertex-terms is not efficient in molecular matter.

To account for the binding-energy of excitons in the polarization function, one has to go

beyond the GW -framework, i.e., include vertex corrections. A common means to this end

is solving the Bethe-Salpeter equation (BSE). This is computationally challenging, however,
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and can be done only by employing suitable approximation schemes.100

On the simplest level (RPA-X) one modifies the calculation of the polarization function

by adding an exchange-matrix element to the Coulomb-matrix element of conventional RPA.

The resulting theory would reproduce the time-dependent Hartree-Fock approximation if it

were not for the correlation part of the self-energy. Following our philosophy of exploring

the potential of static approximations, this step would be the most natural one to try next

for us.

Indeed, several groups have already employed the GW+BSE method to molecular sys-

tems in order to investigate into the effect of vertex corrections for charge-neutral excita-

tions. We only mention two very recent works benchmarking the approach against TDDFT

for small molecules.101,102 We would like to consider these results as an indication that

vertex-corrections are indeed significant for predicting and understanding molecular spectra.

These studies also indicate, that BSE-calculations inherit the starting point dependency of

the underlying G0W0-calculations.
101 To eliminate this artifact of G0W0, self-consistent cal-

culations on the qsGW -level have been employed; they can achieve a numerical accuracy

comparable to TD-PBE0 calculations.102

As promising as it is, the combination of GW and BSE adds vertex corrections only to

the response function still neglecting them when constructing Γ for the self-energy Σ. The

approximation thus obtained is not conserving. Moreover, if indeed large system classes

exhibit a cancellation between vertex terms in W and Γ, then these systems cannot be

treated with the present technology. Therefore, we consider it very likely that a general

method to be applied successfully to molecules and metals has to treat vertex corrections in

W and Σ on the same footing.

In principle, also the study of strongly correlated electron liquids relies on solving Hedin’s

equations – at least to the extent that perturbative methods are being employed – even

though the respective community does not usually think about it in this way. In this context,

a new method has been devised in recent years, the functional renormalization group method
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(FRG )103,104 Unlike GW+BSE, FRG includes vertex corrections toW and Σ in a consistent

way. Its success for strongly-correlated matter originates from its capability to reliably

signalize the existence of new phases with a broken symmetry, such as magnetism. From a

conceptual point of view, FRG is very appealing because it can predict phase transitions in

an unbiased manner; in principle, an apriori guess about what phases are likely to appear is

not required.

Similar to qsGW , also FRG is typically formulated employing a static approximation for

the self-energy and the interaction vertex. Like traditional BSE-calculations, also the FRG

focuses on the simplest subset of diagrams for the vertex. However in contrast to traditional

BSE, the FRG solves these (approximated) Hedin equations in a self-consistent manner.

This is how FRG goes beyond the GW+BSE-scheme.

The enhanced complexity requires a solution strategy that differs from the conventional

iteration scheme to self-consistency still underlying, e.g., qsGW . The strategy of FRG is to

reformulate the self-consistency problem in terms of a set of (non-linear) differential matrix

equations. The main idea may be understood as follows: In traditional self-consistency

solvers, an initial guess gradually transforms (“flows”) into the fixed-point solution under

the action of the iteration routine. Now, FRG replaces this “iterative flow” by another flow

along an artificial coordinate, Λ, that plays the role of a cut-off energy familiar from the

renormalization group. By construction, Λ connects a known trivial solution of Hedin’s

equations at Λ=∞ with the exact solution at Λ=0. The advantage of this formulation

as compared to the traditional self-consistency routines is that it is known exactly how

to initialize the flow equations; a starting guess for the Green’s function, self-energy and

interaction vertex is not required. If instabilities occur along solving the differential equation,

then these can be interpreted as “runaway flow” indicating a nearby phase with broken

symmetry.

Applications of FRG to molecules do not yet exist. A first step into this direction has

been made recently by two of us who formulated the FRG for systems without translational
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invariance.105 Since vertex functions are kept explicitly, FRG comes with a computational

complexity that might prohibit its use for intermediate sized molecular systems in the near

future. Nevertheless, for benchmarking GW+BSE and high precision calculations for smaller

molecules, FRG could have a significant potential that we believe is worthwhile to explore

in future research.
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Figure 17: TOC graphic
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