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Laue Indexing with Optimal Transport
Tomasz Kacprzak, Stavros Samothrakitis, Camilla Buhl Larsen, Jaromı́r Kopeček, Markus Strobl,

Efthymios Polatidis, Guillaume Obozinski

Abstract—Laue tomography experiments retrieve the positions and orientations of crystal grains in a polycrystalline samples from
diffraction patterns recorded at multiple viewing angles. The use of a broad wavelength spectrum beam can greatly reduce the
experimental time, but poses a difficult challenge for the indexing of diffraction peaks in polycrystalline samples; the information about
the wavelength of these Bragg peaks is absent and the diffraction patterns from multiple grains are superimposed. To date, no algorithms
exist capable of indexing samples with more than about 500 grains efficiently. To address this need we present a novel method: Laue
indexing with Optimal Transport (LAUEOT). We create a probabilistic description of the multi-grain indexing problem and propose a
solution based on Sinkhorn Expectation-Maximization method, which allows to efficiently find the maximum of the likelihood thanks
to the assignments being calculated using Optimal Transport. This is a non-convex optimization problem, where the orientations and
positions of grains are optimized simultaneously with grain-to-spot assignments, while robustly handling the outliers. The selection of
initial prototype grains to consider in the optimization problem are also calculated within the Optimal Transport framework. LAUEOT
can rapidly and effectively index up to 1000 grains on a single large memory GPU within less than 30 minutes. We demonstrate the
performance of LAUEOT on simulations with variable numbers of grains, spot position measurement noise levels, and outlier fractions.
The algorithm recovers the correct number of grains even for high noise levels and up to 70% outliers in our experiments. We compare
the results of indexing with LAUEOT to existing algorithms both on synthetic and real neutron diffraction data from well-characterized
samples. The code and test data are available on https://github.com/LaueOT/laueotx.

Index Terms—Optimal Transport, Laue Crystallography, Expectation-Maximization

✦

1 INTRODUCTION

LAUE and Bragg diffraction are the foundation of modern
experiments in crystallography and solid state physics

[1], [2]. In neutron and X-ray diffraction, the incoming
waves are elastically scattered by the atoms in the crystal lat-
tice of the studied sample. Due to the regular arrangement
of the atoms in the crystal lattice, constructive interference
occurs and produces strong reflections, also known as Bragg
peaks, which can be detected with diffraction detectors cov-
ering the relevant angular range. Bragg’s law describes the
relation between the incidence angles, the lattice spacing,
and the wavelength of the incoming and reflected waves,
which defines the diffraction condition. This enables mod-
ern X-ray and neutron based experimental methods to infer
the internal structure of crystalline samples, with numerous
applications in material science, chemistry, medicine, biol-
ogy, electronics, and others.

The process of inferring the orientation of crystal lattices
from the recorded Bragg peak positions is a challenging
task: multiple methods have been proposed to solve variants
of this problem specific to different types of experimen-
tal setups (see [3] for review). One of the most difficult
problems in Laue diffraction is indexing of polycrystalline
samples, which contain multiple crystal grains with differ-
ent orientations [4], where many overlapping spot patterns
are recorded simultaneously. The three-dimensional macro-
scopic structures of samples can be inferred using tomo-
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graphic techniques, where projections from multiple sample
rotations are obtained during the experiment. The majority
of the crystallographic studies use a monochromatic beam
or the time-of-flight approach to resolve the wavelength rel-
ative to a diffraction peak measured. This enables immedi-
ate identification of the Miller indices corresponding to the
recorded diffraction spot, as the Bragg condition is satisfied
only for a single incidence angle between the crystal lattice
plane and the incoming beam for a specific wavelength.
While this simplifies the indexing process, this type of ex-
periment can be time consuming, as monochromatic sources
tend have lower overall intensity. The use of white beams
enables faster experiments, but leads to a more complicated
inference problem, as an observed spot can stem from al-
most any crystal lattice plane at any orientation. This creates
a mixed combinatorial and continuous problem, where the
peaks-to-grain assignments have to be found jointly with the
corresponding grain orientations and positions. Moreover,
the number of grains in the sample is not known a priori
and must also be inferred. Thus, the indexing of white
beam polycrystalline patterns is one of the most challenging
inference problems among crystallographic experiments.

From an experimental perspective, the last two decades
have seen progress in three-dimensional (3D) electron- [5]–
[11] and X-ray-based [12]–[21] grain indexing and recon-
struction methods, significantly improving experimental ca-
pabilities. These methods provide valuable insights into the
internal structure of samples and have yielded promising re-
sults in grain orientation mapping. Despite their impressive
spatial resolution, ranging from a few hundred nanometers
to micrometers, these techniques are not without limitations.
For example, 3D electron backscatter diffraction (3D EBSD)
is a destructive method that necessitates serial sectioning
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of samples. Moreover, the penetration of both electrons and
X-rays into metallic specimens is constrained, limiting the
volume of the sample that can be probed. On the other
hand, neutron-based methods [22]–[30] have emerged as a
potential solution owing to their superior penetration abil-
ity in various materials. These non-destructive techniques
enable investigations into large volumes within the bulk of
samples. Among the recently developed neutron diffraction-
based tomography techniques for 3D grain mapping, Laue
three-dimensional neutron diffraction tomography (Laue
3DNDT) [22] stands out as a particularly promising ap-
proach. It employs a polychromatic neutron beam, for multi-
grain indexing [23] and morphology reconstruction [30], ef-
fectively reducing the experimental time while maximizing
the information obtained from the sample.

With multiple solutions proposed for solving this types
of problems [22], [31]–[37], only few are directly applicable
to wide-beam polycrystalline indexing problem. Recently,
[22] proposed a forward-fitting algorithm that achieved
good results for samples with up to around 500 grains [23].
However, the method is greedy, incurs in a long runtime,
and it is not amenable for parallelization. With upcoming
improvements in experimental techniques and instrumen-
tation in white beam diffraction imaging with neutrons [38],
there is a clear need for designing novel algorithms for this
problem, which allow both for rapid indexing and analyzing
samples with orders of magnitude more grains.

The problem of finding orientations and positions of the
grains can be approached from the computer vision perspec-
tive; the task is in similar to the structure-from-motion [39],
camera localization in multi-view geometry (see [40] for
overview), as well as registration of point clouds [41]. The
task of spot-to-grain assignment and selection of prototype
grains can both be tackled using recent developments in op-
timal transport (OT), an area of active development [42]. In
particular, the recently proposed Sinkhorn Expectation Max-
imization method [43] demonstrated the deep relationship
between the OT and the Expectation-Maximization frame-
work, which is commonly used for solving probabilistic
models with latent variables. Regarding methods for finding
best-fit parameters, extensive literature exists for convex
optimization methods in similar computer vision problems,
with coordinate descent enjoying advantage in convergence
times in many cases [44].

Utilizing these ideas, we propose a novel technique
for indexing of polycrystalline samples from white beam
experiments, which we call LAUEOT (Laue indexing with
Optimal Transport). We propose a joint inverse problem
formulation for the assignment of spots to grains, and
the determination of each grain’s position and orientation.
Given an assignment of spots to grains, our formulation
benefits from closed-form updates for finding the orienta-
tion and grain position, and relies on optimal transport for
finding the assignments of spots to grains given candidate
grain orientations and positions. A critical initial step of
selecting prototype grains is also handled using the OT
framework [45]. This inverse problem formulation enables
very fast optimization using GPU-batch solver with con-
vergence guarantees. The optimal transport methods enable
solving for grain parameters and spot assignments jointly,
which increases the precision of the estimated parameters,

the recall of grains found, and the number of correctly
assigned spots.

The algorithm has two pre-processing steps: (i) creating
a set of plausible grain candidates by performing a coarse
single-gain fitting in the orientation and position space,
and (ii) selecting the prototype grains using the optimal
transport framework, following [45]. The main solver per-
forms multi-grain fitting, where it jointly optimizes for pa-
rameters of the grains and spot-to-grain assignments using
the optimal transport framework. The key aspect of the
problem is the treatment of outlier spots in the data and
unmatched spots in the model. In LAUEOT, we propose
a novel probabilistic outlier modeling tailored to the Laue
problem. We compare it to other methods in literature for
treatment of outliers: unbalanced and partial OT [46], [47].

2 PREVIOUS WORK

Multiple Bragg indexing algorithms have been proposed [3].
The Hough transform approaches [31], [48] are one of the
most commonly used in practice. These algorithms use 3D
histograms in the orientation space, and each spot “votes”
for the plausible voxels. The set of resulting grains corre-
sponds to the voxels with the most votes. This procedure is
then typically followed by a minimizer-based refinement to
find the spatial positions of the grains inside the sample.
This method is particularly effective for monochromatic
beams, as each spot votes for relatively small number of
rotations. Recently, an extension of this method for pink
beams was proposed by [32], where 10-20% divergence
in the beam spectrum is handled well by the algorithm.
The Hough transform-based methods can be limited by the
resolution of voxels in the orientation space, especially that
for wider beams the number of votes given by each spot
is large, which limits the use of sparse representations of
the 3D histogram. Moreover, most of such methods do not
include grain position estimation and use post-processing
steps to find it.

To address these problems and enable wide-beam anal-
ysis, a forward-fitting method LAUE3DNDT was recently
proposed [22]. This method first performs an exhaustive
search in the space of orientations, keeping the grain po-
sitions fixed at the center of the sample. For each candidate,
it predicts the model spots and assigns them to the mea-
surements using a nearest neighbor method. Then, the loss
is calculated as the median distance between spot pairs. If
the loss is smaller than some threshold, the gradient-based
optimization is performed to find the position and orien-
tation. If certain criteria are met, the candidate is accepted
and the assigned spots are removed from further analysis.
The algorithm ends when the number of remaining spots
is sufficiently low. The drawback of this method is its long
runtime, which is dominated by slow downhill optimizer.
The greedy nature of the algorithm excludes efficient paral-
lelization.

Recently, machine learning approaches have been pro-
posed to tackle the problem of indexing. In [37], a fast
neural network was created to output grain orientations
from X-ray experiments. This method calculates features for
each spot and then passes them through a neural network.
The feature used is a histogram of angular distances to
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neighboring spots within a certain radius. The method is
trained before or during the experiments on the simulations
of the corresponding crystal lattice in question. It reports
good performance and practically instant results. While not
tested on polycrystalline data, it could suffer difficulties
with interpreting multiple overlapping spot patterns for
samples with very large (>1000) number of grains.

There exists rich literature in computer vision (CV) and
optimal transport (OT) that is relevant to this problem. The
structure-from-motion (SfM) algorithms tackle the problem
of reconstructing 3D scene from a series of 2D images, each
taken at a different camera position. The inverse-problem
formulation with Expectation-Maximization has been suc-
cessful [49], [50]. In Laue tomography, two-dimensional
images are taken after rotating the sample in 3D. While
those problems are different, they share many similarities,
which suggests that the EM approach to be promising for
the Laue reconstruction.

Registration of point clouds is also a classic problem in
CV tackled by multiple classic approaches [51]. A major
difficulty in this problem is estimation of a rotation matrix
without correspondence, which has multiple minima. The
Go-ICP algorithm finds a global minimum using a branch-
and-bound method. Robust point matching [52] proposes
to use a soft assignment scheme, which can be viewed
as an optimal transport problem solved by the Sinkhorn
algorithm [53]. It uses a deterministic annealing schedule
to avoid getting stuck in local minima. As detected and
modeled spots can be viewed as point clouds registration
problem, this method may also have relevance for Laue
diffraction.

As the number of grains is not known a-priori, Laue
reconstruction has also similarities to sparse feature selec-
tion problems in the context of optimal transport. Recently,
sparse optimal transport methods have been proposed
[54]–[56]. However, the sparse OT problem is not convex
and most of the methods use gradient-based optimization,
which can limit the scalability of this approach. Other meth-
ods that exploit submodular properties of some OT prob-
lems [45], [57], which enable fast approximate optimization
with convergence guarantees.

3 LAUE ANALYSIS

In this section we provide a pedagogical introduction to
crystallogaphic lattices, Laue diffraction, and tomography
experiments.

3.1 Crystallographic planes

In a single crystal, the atoms are arranged in a specific
pattern, described by the crystallographic point group. The
lattice of the crystal creates a set of Miller indices, deter-
mined by integer triples [h, k, l]. They denote a family of
parallel lattice planes, sharing the distance between atoms
a and normal vector u. Given three lattice vectors a1, a2, a3
that define a unit cell, [h, k, l] denotes planes that intercept
the three points [ha1, ka2, la3] or their multiples (for zero
indices, the intercept is at infinity and the planes do not
intersect the axis). For cubic crystals with lattice constant
a, the spacing d between adjacent [h, k, l] lattice planes is
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Fig. 1. Bragg back-scatter diffraction from a crystal lattice with cubic
symmetry (pure iron). Showing a cross-section through the z-dimension.
Example Miller planes with normal vector u and indices [h, k, l]=[1, 2, 0]
are shown with the red lines. The incoming beam with wavelength λ is
shown with the colored line, with color corresponding to the value of the
light sine wave. The diffracted ray r displays constructive interference
with aligned phases, shown with the gray line.

d = a/
√
h2 + k2 + l2. In this work we will use the definition

of Miller indices as the inverse intercepts along the lattice
vectors. It is also common to use Miller indices defined as
points in the reciprocal lattice, which we do not use here. See
[58] for a comprehensive introduction to crystallography.

3.2 Laue diffraction
Laue-Bragg interference describes the scattering of waves
from a crystal lattice. The constructive interference of
diffracted waves occurs for specific combinations of the inci-
dence angle θ between the plane and the incoming beam, the
wavelength λ, and the distance d between atoms. Bragg’s
law states that constructive interference occurs when

nλ = 2d sin θ, (1)

where the integer n is the diffraction order. For an incoming
beam with unit direction e, the wave diffracted by plane
with normal unit vector u will have the unit direction r,
which can be calculated using the Householder equation,
and the wavelength λ at which the scattering occurs

r = ±(I− 2uu⊤)e, (2)

λ = 2du⊤e, (3)

with “-” for transmission (forward-scattering) and “+” for
reflection (back-scattering). The intensity of the ray r scales
with wavelength λ4, the incoming beam intensity at λ and
the volume of the crystal. See Figure 1 for an illustration of
Bragg diffraction for a single plane with [h, k, l]=[1, 2, 0].

Let’s consider a laboratory coordinate system with the
crystal at its origin. While each crystallogaphic plane in 3D
has some small offset with respect to the center of the lattice,
we will will use a common position x ∈ R3 in the laboratory
coordinate system for all planes belonging to the crystal,
which will correspond to its center. We use the incoming
beam with direction e=(1, 0, 0), and an example detector
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centered at γ, with surface normal vector ν. For a particular
[h, k, l] Miller planes defining the diffracted direction r, the
ray will create a Bragg peak (also called a spot) on the
detector, at the position

s = x+
ν⊤(γ − x)

ν⊤r
r, (4)

where (ν⊤(γ − x))/(ν⊤r) is the distance from the center of
the grain to the (3D) position of the spot in the detector.

3.3 Tomography experiments
Laue tomography experiments aim to study the internal
structure of polycrystalline samples. A polycrystalline sam-
ple is composed of multiple single crystals, or grains. Each
grain is described by its position x inside the sample and
orientation matrix R∈SO(3) with respect to the reference
Rref=I. We consider a sample to consist of a set of grains
{Gn}n∈N , each characterized by its position and orientation
matrix Gn=(Rn, xn). Each grain will contribute a set of
Miller planes, which we will consider to be located at the
grain’s center x, as described above. For a given experiment,
we can limit the number of considered Miller planes, as
higher order planes will not satisfy Bragg’s condition be-
cause the associated wavelength is too short or too long. We
will use a set {Mm}m∈M of plausible Miller planes, each
with a corresponding unit direction w and atom spacing
d, creating a couple Mm=(wm, dm). This plausible set is
provided as an input to the analysis.

The positions and orientations of the crystal are found
by recording locations of spots created by diffracted rays
on the detector screen after illuminating the sample by a
wide-spectrum beam. We will consider the beam to have
the wavelength λ in range λ∈[λmin, λmax]. During a to-
mographic experiment, the sample is illuminated multiple
times after being rotated. Let T ={Γt}t∈T be a set of rotation
steps, where Γt∈SO(3) is the rotation matrix for step t.
The formulations that we will develop are applicable to any
rotation, but the experimental setup that we consider allows
in practice only rotations along the (0,0,1) axis. Figure 2
shows the scene in question, with two detectors, recording
back-scatter or forward-scatter rays. The thick grey arrow
shows the incoming beam, the thin dashed line corresponds
to the axis of rotation for tomographic projections. A single
plane shown in dark grey, while the light gray shows the
studied sample in which the plane is located. In general,
more detectors can be included in the experiment. In the
interest of clarity, we will from now on consider only the
backscatter detector and rays. An equivalent analysis can be
easily performed for the forward-scattering mode.

At a given sample rotation Γt and for grain orientation
Rn, the vector umnt normal to the rotated Miller plane wm

will be
umnt = ΓtRnwm, (5)

the model ray is emitted in the direction

rmnt = (I− 2ΓtRnwmw⊤
mR⊤

n Γ
⊤
t ) e , (6)

creates a spot on the detector plane at position smnt as
follows

smnt = Γt xn +
ν⊤(γ − Γtxn)

ν⊤rmnt
rmnt, (7)
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Fig. 2. A scene of a tomographic diffraction experiment with two detec-
tors configured for recording backscatter and transmission spots. The
thick gray arrow corresponds to the incoming beam. The beam direction
is set by vector e. The light gray cube is the studied sample. The dark
gray plane is an example Miller planes in a grain. The plane is oriented
inside the grain with normal vector u. The constructive interference will
occur at directions r− (transmission) and r+ (backscatter) and create
spots s− and s+, respectively, on the detector screens. For clarity, the
detector size used here is smaller than in a typical experiment.

and at wavelength λmnt with

λmnt = 2dm(ΓtRnwm)⊤e. (8)

3.3.1 Detected spots
We assume that the center γ of a square backscatter detector
lies on the x-axis of the laboratory coordinate system, with
size l mm per side. We will assume that γ and l are known,
as they can be characterized accurately with a proper cal-
ibration process [38]. The detection of spots and the mea-
surement of their positions is performed by an external
algorithm and is considered as input to this analysis. Next to
real Bragg peaks, the set of detected spots will also contain
spurious detections, which we discuss in Section 7.2. An
experiment will yield a collection of detected spots {pi}i∈I ,
in all experimental images obtained for different rotations
of the sample. We will denote by ti the rotation step which
produced the ith spot.

We assume a ray noise model, where a noisy unit ray
direction follows the von Mises-Fisher distribution in 3
dimensions [59], with mean r and concentration κ

vMF3(y | r, κ) =
κ

4π sinhκ
exp

(
κ · r⊤y

)
.

Note that samples from this distribution can be obtained
by drawing from a 3D isotropic multivariate normal distri-
bution with covariance C=σ2

I, where σ2=1/κ, and then
conditioning ∥x∥ = 1. Therefore the noisy ray r̂i is

r̃i ∼ vMF(ri, σ
−2), (9)

and the detected spots will be offset from their true positions
si following the noisy ray r̃i

si = Γtixni
+

ν⊤(γ − Γtixni)

ν⊤r̃i
r̃i. (10)
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3.3.2 Model spots
In our method, we aim to fit a dataset of detected spots
with a set of model spots stemming from some candidate
model sample in our experimental setup. Not all of the
model spots smnt can be considered in the problem, for
three reasons. Firstly, the model spot can lie outside the
detector area. Secondly, the brightness of the Bragg peak
will be proportional to the intensity of the beam at the
corresponding wavelength λ; if the intensity is close to zero,
then the spot will not be detected. Finally, the intensity of
the spot will be proportional to the volume of the grain;
small grains will yield low-intensity spots that will not be
detectable.

We therefore use a sequence of model spots S=(sj)j∈J ,
that contains only those spots that simultaneously lie inside
the beam wavelength range and the detector screen area

S = {smnt : (m,n, t) ∈M ×N × T

∧ λmnt ∈ [λmin, λmax] ∧ ∥smnt − γ∥∞ < l/2}.
(11)

We will use a sequence (rj)j∈J to denote rays corresponding
to spots in S . For clarity, we will use a sequence (tj)j∈J of
indices tj∈T to label the step at which spot j was generated,
itself labeled by index set Jt. Equivalently, let sequence
(nj)j∈J of indices nj∈N denote the index of the grain at
which spot j was created, itself labeled by index set Jn.
Thus, |Jn| and |Jt|, respectively, will be the number of
model spots generated by grain n or step t, meeting the
criteria in Equation 11. Finally, let mj denote the index of the
Miller plane which refracted the ray producing spot j and
Jm the collection of spot indices associated with a particular
Miller plane m.

4 THE LIKELIHOOD

In this section, we propose a probabilistic model for the
collection of observed spots detected given a collection of
model spots produced by a set of grains N producing each
a refraction for a collection of Miller planes M , with la-
tent variables encoding which detected spot matches which
model spot. We assume the experimental setup defined
above with detector described by (γ, ν, l), with sample ro-
tation step in T yielding detected spots indexed by I . First,
we introduce the problem without outlier spots, followed
by introduction of the outliers.

Let’s consider a guess grain with position xn that gener-
ates the ray j. For a detected spot si is matched with model
ray j, we define a ray estimate r̂ij as

r̂ij =
si − Γtjxnj

∥si − Γtjxnj
∥ . (12)

This quantity will be useful in further calculations.

4.1 Spot-to-spot assignment
We assume that there are no outliers among detected spots
and no missing model spots (corresponding to unmodeled
Miller planes), so that there is a one-to-one correspon-
dence between model and observed spots. To match the
detected spots with model rays, we introduce the assign-
ment variables Zij∈{0, 1} : i∈I, j∈J , with Zij=1 if the

detected spot si is associated to model ray rj , and Zij=0
otherwise. Only matches between spots occurring at the
same sample rotation t are allowed, otherwise Zij=0. Each
i is matched exactly to one j, so the joint log-likelihood
ℓ :=

∑n
i=1 log p(si | Zi·, s) for all observed spots si given

Zi· := (Zij)j∈J and rj as

ℓ =
1

σ2

∑
i∈I

∑
j∈J

Zij · r̂⊤ijrj − c. (13)

where c is the log normalizing constant. At step t, the
number of models spots and detected peaks is |Jt| and
|It|, respectively. Note that if we assume a uniform prior
probability for the assignment of i to all js such that ti = tj ,
and with Z := (Zij)i∈I,j∈J , we have

p(Z) =
∏
t

∏
(i,j):ti=tj=t

|Jt|−Zij = |Jt|−|It|, (14)

the joint log-likelihood only differs from ℓ by
−∑

t |It| log |Jt|, which just changes the normalizing
constant c. For clarity, we denote the spot assignment
likelihood matrix as L ∈ R|I|×|J|. It contains the cost of
assigning observed spot i to model spot j

Lij =
1

σ2
r̂⊤ijrj i ∈ I, j ∈ J. (15)

Since the assignment of peaks to models spots is a-
priori unknown, treating the variables Zij as latent
variables and maximizing the marginal log-likelihood∑

i log p(si | (Rn, xn)n∈N ) can be done with a classical EM-
algorithm, which maximizes the evidence lower bound
(ELBO)

L(Q; (Rn, xn)n) =
∑
i∈I

∑
j∈J

QijLij − const., (16)

where Q ∈ R|I|×|J|
+ is the responsibility matrix with ele-

ments Qij=E[Zij ]. Instead of the classical EM approach, we
propose to use the Sinkhorn-EM (sEM) formulation [43],
which was recently introduced for solving mixture model
problems. While the classical EM method calculates the
cluster memberships independently, sEM computes them
using optimal transport, where the responsibilities respect
the known proportions. It it shown that sEM displays better
global convergence guarantees, while optimizing the lower
bound on the log-likelihood and thus maintaining the prob-
abilistic interpretation of the analysis. In sEM, the likelihood
is replaced with an entropic-OT likelihood

LOT(Q; (Rn, xn)n) = sup
Q∈Π(a,b)

∑
i∈I

∑
j∈J

QijLij +H(Q)

 ,

(17)

where Π(a, b) is a set of all transport plans that have
joint distributions with marginals a and b, respectively, and
H(Q) = −∑

i,j Qij logQij is the entropy of Q1. In a discrete
setting applicable here, the marginal mass distributions a
and b have entries uniformly equal to 1: for each detected
and model spot: ai=bj=1. This formulation requires solving
an optimal transport problem. This likelihood is consistent

1. Here Q refers to the transport plan, not the entropy of the distri-
bution over permutation with mean Q.
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in the population limit with the classical likelihood ap-
proach while having a better geometrical properties and
is proven to be less prone to getting stuck in local optima
than classical EM. Using this formulation enables practical
solving of the large-scale Laue problem.

Note that Zij and Qij can only be non-zero if ti=tj ; in
the rest of the paper, we will consider the set Q of matrices
Q such that Qij=0 for all (i, j) with ti ̸= tj .

4.2 Assignments with outlier and missing spots

In this section we consider outlier spots, both in detected
and modeled sets. There are two reasons for outliers among
spots detected in image data. Firstly, the outliers can be just
spurious detections: noise spikes or points corresponding to
detection algorithm failures. Blended overlapping spots can
also have dramatically wrong position measurement, which
lies outside the range allowed by the noise level. Secondly,
the sample can contain very small grains that will give rise
to only few detectable spots, which can be insufficient to
form a diffraction pattern that can be reliably measured by
the solver. The number of outliers in the data can be large
and it is typically not known by the user.

We also consider unmatched model rays. The area of
the screen and wavelength range are limited, which leads
to spots moving out and into the image as the grain is
rotated. We start with a set of initial (or prototype) grains,
giving rise to a set of model spots S , with spots outside
the detector screen or outside the beam’s wavelength range
being excluded (Equation 11). However, as the orientation
and position of the grains are optimized, some spots may
exit the detector/wavelength range and should be also
excluded during the matching process. Conversely, there
will be spots that were initially excluded, but would ap-
pear for the updated grain parameters. Precise modeling
of this property in the likelihood would be complicated.
Therefore, we propose a simpler approach, were we treat
these cases as unmatched model spots instead. During the
optimization we will use the same set of model spots as
predicted using for the initial values of the prototypes
grains with (R0

n, x
0
n)n∈N . The closer the prototype model

parameters are to the their true value, the fewer unmatched
spots will be encountered. According to our empirical tests
for the number of prototypes considered here, the fraction
of different between the candidate models and their true
counterparts is no more than 10%.

We model the outliers using a full probabilistic descrip-
tion of the problem. We add an extra row to Z , with index
0, reserved for the assignment of spurious detection to the
outliers status, i.e. Zi0 = 1 for outlier spots. Symmetrically,
we add an extra column, again with index 0, to assign un-
matched model spots, i.e. Z0j = 1 if a model spot does not
match any detected peak. Note that multiple entries of the
0th row (resp. column) can be non-zero. At the intersection
of these rows the entry Z00 is ignored. To take into account
explicitly the possibility of outliers into the probabilistic
model, we modify the likelihood as follows. We assume
there is first a fixed probability π0 for a detected spot to be an
outlier, so that p(Zi0=1)=π0 and p(Zij=1)=(1− π0)/|J |.
Given that it is an outlier, we assume that it appears uni-
formly over the detector so that p(si|Zi0 = 1) = 1

S where

S is the surface of the detector, if it is not an outlier, we use
the same model as before. The joint likelihood of a detected
spot position si and it assignment variable Zi· can then be
written as

p(si, Zi·) =
(
π0

S

)Zi0

J∏
j=1

(
1
c expLij

)Zij
(
1−π0

J

)Zij
. (18)

Each term of the log-likelihood can be written as

ℓ(si, Zij) = Zi0 log
π0

S + (1− Zi0) log
1−π0

Jc + LijZij .

Given that our likelihood is constructed per detected spot,
and that we do not model their number, the probability that
a model spot is unmatched is modeled implicitly, given the
total number of model spots. We do not explicitly model the
probability of unmatched model spots in our formulation
of the problem, and set it to likelihood value of the von
Mises-Fisher distribution with concentration κ=σ−2 that
corresponds to the null angle difference. Note that, up to
additive constants, the term for a pair (i, j) with i, j ̸= 0 in
the log-likelihood remains as before. We define the extended
likelihood matrix

L0j = σ−2 − log(4πσ2 sinh(σ−2))

Li0 = log

(
π0

1− π0
· |J |c

S

)
=: Lout

Lij =
1

σ2
r̂⊤ijrj ∀i∈I, j∈J.

(19)

As in practice it is difficult to estimate π0, in our implemen-
tation we use a fixed outlier likelihood Lout, as defined in
Equation 19. We set L00=Lout; the corresponding assign-
ment Q00 will serve as a sink for unused outlier capacity.
The complete log-likelihood of the data and associated
assignments take the form ⟨L,Z⟩ − const.+ log

(
1−π0

Jc

)
,

where now both L and Z have an extra row and column.
With constants dropped, the Sinkhorn EM objective is

LOT(Q; (Rn, xn)n∈N ) = ⟨L,Q⟩+ ϵH(Q) (20)

where Q ∈ Π(a, b) is the entropic transport plan, a and b are
marginal constraints (see Section 4.3), and ϵ is the entropic
regularization parameter, which is set to ϵ=1 in standard
sEM (also see Section 5.1). In literature, there are other
optimal transport problem variants that allow for outlier
treatment, such as unbalanced OT [46] and partial OT [60].
We compare the performance of our proposed outlier model
with these other variants. See Appendix C for details.

4.3 E-step with Sinkhorn updates

The E-step for finding the assignment Q now requires to
solve

max
Q

⟨L,Q⟩+ ϵH(Q)

s.t. Q ≥ 0, Q ∈ Q, Q1 = a, Q⊤
1 = b,

(21)

which follows from Equation 20, and ϵ is the entropic regu-
larization parameter (also see Section 5.1). The maximum
number of allowed outliers can be encoded in vectors a
and b, with Ta and Tb corresponding to the maximum
number of spurious detections and unmatched model spots,
respectively. We set ai=bj=1, i, j>1 for matched spots, so
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the weight of the outliers is a0=Ta and b0=Tb. In order for
the double-stochastic constraint in Equation 20 to be satis-
fied, we use Tb as the user-controlled variable and set the
Ta = Tb− b⊤1+ a⊤1. The transport plan matrix is updated
using the Sinkhorn subroutine Q ← BalancedOT[L, ϵ, ζtol]
shown in Algorithm 4, described in Appendix 4. The con-
vergence of this algorithm is controlled by user-specified
parameter ζtol.

4.4 The M-step updates
The M-step finds the maximum likelihood orientations and
positions for all grains (Rn, xn)n∈N by solving a separate
problem for each grain

∀n ∈ N : max
xn,Rn:R⊤

n Rn=I

⟨L,Q⟩ (22)

We solve this problem by coordinate descent in x and R. We
propose to find grain position x using Newton iterations.
We calculate the update at step k as

∆xk+1 =
(
H(xk) + ιI

)−1
g(xk), (23)

where H(xk) and g(xk) are gradient and Hessian matrices
evaluated at the current position xk, and ι is a very small
constant added for numerical stability. We show the calcula-
tion of these matrices in Appendix B. The update at iteration
k is

xk+1 ← xk −∆xk. (24)

The iterations are repeated until convergence threshold ζx

is met: ∥xk+1 − xk∥ < ζx. Subroutine LauePosNewton
(Algorithm 1, described in Appendix B), shows the details
of this process.

Finding the M-step update for the orientation matrix is
more complicated. In Appendix B we derive a Majorization-
Minimization algorithm for finding the orientation matrix
R maximizing the loss LOT. This sequence starts from an
initial rotation guess R0. We show that the maximization of
the objective is equivalent to the maximization of a concave
quadratic, for which a local maximum can be obtained by
solving a sequence of linear optimization problems over
rotation matrices that each take the form of a Wahba’s prob-
lem (an alternative formulation of the Orthogonal Procrustes
problem, see Appendix A for details). First, we calculate the
matrix M0

m using the current values of grain positions xn

and assignments Q. We then shift it so that it becomes PSD
by adding a constant diagonal ιI

M0
m := −

∑
j∈Jn∩Jm

Γ⊤
tj

[∑
i∈I

Qij (r̂ije
⊤ + er̂⊤ij)

]
Γtj , (25)

Mm := M0
m + ιI (26)

where wm is the direction of ray m and Mm, and ι is the
absolute value of the most negative eigenvalue of M0

m or 0
if M0

m does not have negative eigenvalues. The update at
iteration k is

Rk+1 ← arg min
R:R⊤R=I

∑
m

∥Rwm −MmRkwm∥2. (27)

The iterations terminate when the convergence threshold ζR

is met: ∥Rk+1 − Rk∥F < ζR. Subroutine LaueRotMM (Al-
gorithm 3, described in Appendix B) presents this method
in detail.

5 THE LAUEOT SOLVER

To efficiently solve the stated problem at scale, we propose
the LAUEOT formulation (Laue indexing with Optimal
Transport). We introduce key elements of this method below.

The LAUEOT method uses iterative updates for all vari-
ables. This enables very efficient implementation of coordi-
nate ascent steps on GPUs, as all of these operations require
only simple tensorized algebra.

As the number of local maxima in this problem can be
large, techniques for global optimization can be employed.
In this work we use a deterministic annealing scheme to
control the “temperature” of the problem [52] [61]. It enables
more efficient search for local maxima. During the final steps
of the algorithm the temperature control is switched off,
which corresponds to finding the local maximum likelihood
in Equation 20. This process is described in Section 5.1.

In a typical Laue analysis, the number of spots in the
problem can be large, up to several millions. Additionally,
only matches of spots at the same sample rotation t are
allowed. To enable good performance of the method at scale,
we work with a sparse representation of the assignment
matrix (see Section 5.2).

The multi-grain fitting step is initialized using a set of
prototype grains, which together constitute the final sam-
ple. Therefore, finding a good set of prototype grains is a
critical step. We create the set of prototype grains using two
pre-processing steps: (i) single-grain fitting, where we find
local minima for samples consisting only of a single grain,
starting from multiple initialization points in rotation and
position space, and (ii) prototype selection, where we select
a small number of prototypes out of all candidates, that form
the final sample. We describe the pre-processing steps in
Section 6.

5.1 Deterministic annealing

The problem in Equation 20 is non-convex and has multiple
local minima. This is a common problem for EM algorithms.
Deterministic annealing variant of EM has been proposed
to address this [62]. In this variant, the likelihood function
of data x and latent y given parameters Θ is replaced by
another function p(x, y | Θ) → p(x, y | Θ)β , where ϵ=1/β
is the “temperature”. The temperature starts at a value
ϵ≫1 and is gradually lowered during the EM iterations. At
ϵ=β=1, the original EM formulation is recovered. Gradual
temperature decrease helps with avoiding local minima.
Similar scheme that additionally includes outlier variables
was used in [63]. In the Laue problem, using temperature
ϵ>1 is analogous to increasing entropic regularization in
optimal transport. Starting with large ϵ allows for many
rays to explain a given detected spot. Decreasing ϵ allows
to to lift gradually the assignment ambiguities. The initial
temperature ϵinit is typically chosen to be ϵinit>100.

5.2 Working with sparse assignment matrices

Considering only ρ nearest neighbors in the assignment
scheme, which is equivalent to setting null assignment
weight in the full Q matrix, has the strong advantage to de-
crease the complexity of Sinkhorn updates from J2 to ρJ. In
the Sinkhorn algorithm, this will be a good approximation
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Fig. 3. Illustration of three selected steps of the LAUEOT solver on a toy problem with a simulated ruby-like sample with two grains and noise-
free detected spots, for a single projection in the backscatter detector. The left panels shows the initialization of two grains with red and blue model
spots, and strength of the initial assignment weights in grey lines. The darker the color of the line, the stronger the assignment weight. The algorithm
starts with a high temperature, which enables assignments between model and detected spots that can be far. As the optimization progresses, the
temperature is lowered, as shown in the middle panel. Finally, the algorithm assigns the model and detected spots to the grains. Note that some of
the detected spots were not matched; those will be considered as outliers. Conversely, some model spots are unmatched.

as long as exp(L/ϵ) is close to zero for all points outside
the neighbor set. We find this approximation to be stable
enough for our implementation, although other approaches
could be employed here [55], [64].

5.3 The algorithm

The LAUEOT method is described in Algorithm 9 (Ap-
pendix G). Next to the detected spots and algorithm con-
trol parameters, the routine takes as input a set of proto-
type grains (Rn, xn)n∈N , which is calculated in the pre-
processing steps. A simple visual demonstration of the
algorithm is shown in Figure 3. It shows two candidate
grains (blue and red spots) being fit to a set of detected spots
(black), at the initial optimization step (left panel), step 50
(middle panel), and the final assignment (right panel). The
gray lines show the strength of the assignment Q. Note the
outliers (black circles) and unmatched model spots (colored
circles) in the final assignment.

6 PRE-PROCESSING

We perform two preprocessing steps:

(i) single-grain fitting, where we fit multiple candidate
single grains from different starting points in rota-
tion and position space,

(ii) selection of prototypes from the list of optimized
candidate grains using the Selection of Prototypes with
Optimal Transport (SPOT) framework [45].

The goal of the first step is to find single grains that fit the
data well and can be included in the final grain set. The
second step selects the final set of prototype grains that will
be included in the sample and considered for multi-grain
optimization.

6.1 Single-grain fitting

The first pre-processing step is a single grain search over the
space of its orientations and positions. The necessity for this
step stems from the fact that, even for a single grain, the
problem in Equation 20 has multiple local minima in the x
and R variables.

Generally, the problem of finding orientation matrices
to match point sets is multi-modal for data without cor-
respondences [51], [61] and is typically solved by running
convex solvers multiple times from different starting points
in SO(3). We note that, for many other computer vision
problems, a good set of starting points can be pre-computed
using simple alignment of principal components axes in
source and target sets. Diffraction patterns, however, do not
have a specific “shape”, which prohibits this approach. As
a pre-processing step to find a large number of candidate
grains, we use single-grain fitting runs, initiated a different
starting points in the six-dimensional (R, x) space (see
Section 6.1). We discretize the search space using a Sobol
sequence grid, where the grain orientation is represented
using the modified Rodrigues parameters [65]. The search over
R is restricted according to the crystalographic symmetries
of the lattice [66], while the search over x is limited to points
within the bounds of sample size. These limits are set by the
user depending of the type of lattice corresponding to the
composition of the sample, as well as its physical size.

From each initialization point, we run a single grain
fitting using a single-grain variant of the problem, described
in Appendix D. This formulation will treat most of the
detected spots as outliers. The number of runs is variable,
depending on the expected number of grains in the sample.
For 10 and 1000 grains, we run 5k and 500k initizalizations,
respectively. Once the optimization is finished, we store
the converged grain orientations and positions. Subroutine
SingleLaueOT (Algorithm 8, described in Appendix D) is
used for this task.
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6.2 Selection of Prototypes with Optimal Transport

The goal of this step is to select the grain candidates that
will compose the final sample. As no further grains will
be added to the sample later, this is a critical part of the
algorithm. Selecting too many or too few grain candidates
can lead to errors in the multi-grain fitting solutions. We
start with removing badly-fitted models by selecting grains
that have the fraction of unmatched model rays grater than
fout. A model ray is considered unmatched if its largest
weight in Q is assigned to the outlier column. Then to
create the final sample, we perform prototype selection in
the framework Selection of Prototypes using Optimal Transport
(SPOT) [45].

The SPOT framework casts the problem of selection pro-
totypes as a problem of learning a sparse source probability
distribution supported on k elements that has the mini-
mum OT distance from the target distribution. It poses the
prototype selection problem as a maximization version of
the OT problem, where the source distribution weights are
learned with a cardinality constraint. The proposed loss has
a key property of submodularity, which enables the use of
efficient greedy method with deterministic approximation
guarantees. We use the SPOTGREEDY method from [45],
where we pose the problem as grain-to-spot OT problem
of model grains to detected spots. Algorithm 7, described in
Appendix E, shows the subroutine LaueSpotGreedy which
is an adaptation of this method for our problem. In this
algorithm, we also determine the final number of prototypes
N : we find N after which the improvement in the total
cost of transport significantly decreases (see Appendix E for
details).

We note that this algorithm allows for assignment of
a larger number of detected spots to the grain than its
number of model spots. Enforcing that constraint leads to
a more complicated optimization problem of support selec-
tion, recently proposed by [67]. The problem formulation
presented there does not include the possibility of target
sample outliers, as well as poses a difficult challenge for
optimization. As we find that the SPOT method works well
in practice, we leave more further investigation in this area
to future work.

7 SIMULATIONS AND EXPERIMENTS

We evaluate our proposed LAUEOT algorithm according to
the following performance criteria

1) accuracy of the solution as a function of number of
grains in the sample and the noise level,

2) sensitivity of the solutions to the fraction of outliers
for different optimal transport formulations, and its
dependence on OT outlier control parameters,

3) number of successfully indexed grains as a function
of the number of initial single-grain optimizations
for two types of lattice,

4) improvement of the multi-grain solver solution over
the single-grain fitting solutions,

5) comparison of time-to-solution between LAUEOT
and the LAUE3DNDT method from [22],

6) comparison of the indexing results on spots ob-
tained from experimental images.

For simulated data, we use two types of lattices, FeNiMn
and CoNiGa, which are metal alloys (see [68] for introduc-
tion to metal alloys). We test the accuracy of the LAUEOT
solutions using simulated data in the following way. We
consider a neutron scattering experiment scenario with the
wavelength of the beam λ ∈ [0.6, 6] Å and two detectors
placed at γ+ = (−160, 0, 0) and γ− = (160, 0, 0) mm. The
fiducial experiment configuration for both samples is 12
projections (ω = 0◦ – 360◦,∆ω = 30◦). The noise level
for the fiducial configuration corresponds to the scatter of
σ=0.4 mm on the center of the detector screen, which is
equivalent to angular spread of σ = 0.143 deg for rays. The
chosen noise level is already conservative, as the size of the
point spread function on the scintillator detectors, such as
the ones used in neutron scattering studies, is∼0.2 mm, and
its pixel size is 0.103 mm. We add outliers to the simulated
detected spot set. The position of the outliers is drawn from
an uniform distribution on the image plane. The number
of outliers in the fiducial configuration is set to 10% of the
Laue spot count. In the fiducial configuration, the simulated
samples contain up to 1000 grains of orientations chosen on
a Sobol sequence with additional random scatter.

For synthetic data, we simulated two datasets using a
Fm3̄m space group and a Pm3̄m space group with lattice
parameters a=b=c=3.592 Å and a=b=c=2.872 Å, respec-
tively. Hereafter, the simulated samples will be referred to as
SynthSampleA and SynthSampleB, respectively. The choice
of the above space groups and corresponding lattice pa-
rameters was made because they match recent experimental
studies [23], [69]. For the experimental data, we used a ruby
single crystal, typically used in crystallography for calibra-
tion measurements, a CoNiGa oligocrystalline sample, and
a FeGa polycrystalline sample. Sample properties, including
space groups and lattice parameters, are listed in Appendix
F.1.

Use 32 nearest neighbors in the sparse formulation. The
initial temperature ϵinit is related to the number of nearest
neighbors considered in the sparse formulation: it is chosen
so that the farthest neighbor has a non-negligible probability
at start. The temperature is lowered by ϵcool=0.97 at every
iteration. For the likelihood of outliers, we use the log
likelihood Lout set to the likelihood corresponding to a
angular difference of 3σ. To discard badly fitting grains, we
require the number of rays matched to the outlier to be less
than fout · |Sn|, with typical value fout=0.1. For the multi-
grain fitting, we set the maximum number of unmatched
model rays Tb = ⌈0.4 · |Sn|⌉ of total number of rays.

7.1 Quality metrics

To assess the quality of the LAUEOT solutions, we compare:
(i) the fraction of correctly assigned spots across all grains,
(ii) the median difference between true and estimated grain
orientation, (iii) the median difference between true and
estimated grain position. The results of these comparisons
are shown in Figure 4, as a function of number of grains and
spot position noise level.

For samples with up to 500 grains, the number of re-
covered grains was exactly correct. After that, there was
at most 1 grain missing. Starting with samples with 700
grains and for higher noise levels, the method begins to
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Fig. 4. Quality metrics for indexing with LAUEOT using simulated data with variable number of grains and noise levels, for the constant fiducial
outlier fraction of 10%. The left panel shows the fraction of correctly assigned spots in the entire problem. The middle and right panel show the
scaled median absolute deviation of the error on the grain orientation and position, respectively. The number of grains was correctly identified for
up to 500 grains, and after that there was up to 1 grain missing. The method fails for large noise levels and high grain counts.
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Fig. 5. Quality metrics, as in Figure 4, for the multi-grain fitting solution of the full LAUEOT solver, compared to the single-grain fitting initializations.
The comparison is done for a fixed number of 500 input grains and the fiducial outlier fraction. The LAUEOT solver finds all grains successfully,
while the single-grain fitting results in ∼940 correctly indexed grains, with slight dependence on the noise level.

fail. This gives an idea for the limitations of LAUEOT. The
left panel shows the fraction of wrongly assigned spots as
a function of the number of grains and the noise level.
LAUEOT mismatches only up to 15% of spots even for
the challenging scenario of 500 grains and high noise level
σ=0.251◦ (0.7 mm on the image plane). For the low noise
level of σ=0.036 deg, LAUEOT assigns almost all spots
correctly. As expected, this fraction decreases with increased
noise level. Middle and left panels show the median error
of the recovered grain orientation and position, respectively.
Predictably, these errors increase with the noise level. They
stay almost constant with increased number of grains, which
is expected in case of good quality of assignments.

Figure 5 shows the benefit of obtaining solutions by
solving the full inverse problem in Equation 20 with OT,
compared to using the prototypes from single-grain fitting
only. It shows the quality metrics, as in Figure 4, for the
SynthSampleA with 500 grains, at varying noise levels and
fixed outlier fraction of 10%. To assess the performance for
the single-grain fitting, a model spot is hard-assigned to
the nearest detected spot. Rays were marked as unmatched

when the probability of the match was lower than the
vMF likelihood Lout corresponding to the angle of 3σ. The
OT formulation decreases the fraction of wrongly assigned
spots by a factor of 2. The grain orientation and position
errors also improve with the multi-grain fitting, with errors
decreasing by up to 25% for high noise levels.

7.2 Robustness to outliers

We test the sensitivity of the LAUEOT method to outliers
in the detected spots. We compare the performance of our
proposed LAUEOT formulation using probabilistic outlier
model (see Section 4.2), as well as two other OT formu-
lations: partial OT and unbalanced OT (see Appendix C).
In this ablation study we explore how this choice affects
the indexing results. In particular, we test the sensitivity
of the results to the choices of outlier control parameters:
likelihood associated with outliers, maximum number of
unmatched rays for OT with outlier modelling, κ and λ
entropic regularization parameters for the unbalanced OT,
and fraction of transported mass mOT for the partial OT.
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Fig. 6. Performance of the LAUEOT solver for number of outliers in the data, for three outlier treatment methods used. The hyperparameters for
each method were found by performing a grid search over multiple combinations and choosing the one that minimizes the average assignment
error over outlier fractions.

We choose simulated diffraction images of the
SynthSampleA with noise level σ=0.143◦ as the refer-
ence. We vary the fraction of outliers up to 70%. For
LAUEOT, we use combinations of outlier cost Lout and
maximum number of unmatched rays Tb. The outlier likeli-
hood corresponds to vMF probability for angular difference
of 2–5σ, while the fraction of unmatched rays between
1–40%. For UNBALANCEDOT, we set κ, λ∈[0.001, 1]. For
PARTIALOT, the fraction of transported mass is varied be-
tween mOT ∈ [0.4, 0.95]. For each OT method, we choose
the parameter configuration that yields the smallest average
assignment error over all outlier fractions.

Figure 6 shows the assignment error (left panel), grain
orientation error (middle panel), and position error (right
panel), for the three OT outlier treatment methods. The
results indicate that the methods are not affected by outliers.
The best overall results are obtained with the custom outlier
modelling in LAUEOT. The unbalanced and partial OT give
slightly worse, but comparable results. Given that the multi-
grain fitting is very fast, the user can perform a coarse grid
search to find reasonable values for the hyper-parameters.

7.3 Number of initializations and runtime

Figure 7 shows the number of correctly indexed grains as a
function of the number of single-grain fitting solutions con-
sidered in the prototype selection. Different number of true
grains in the sample is considered, using fiducial noise level
σ=0.143 deg. In this test we considered both SynthSampleA
and SynthSampleB. As expected, more initializations are
needed for high number of grains.

We compare the performance between LAUEOT and the
LAUE3DNDT method from [22], which is currently used for
wide-beam Laue tomography problems. Table 7.4 shows the
comparison between the methods limited to results that can
be obtained within 24 hours. This comparison is performed
for SynthSampleA using the fiducial noise and outliers,
with 32 rotation angles. In this test, LAUEOT finds the
exact number of grains within 1h on a single large memory
GPU, while LAUE3DNDT outputs 356/500 grains within
24 hours. Further acceleration for LAUEOT can be achieved
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Fig. 7. Fraction of correctly indexed grains as the number of single-
grain fitting initializations considered in the prototype selection, for sam-
ples SynthSample1 (darker-colored lines) and SynthSample2 (lighter-
colored lines). The results are shown for varying number of true grains
in the simulation, with spot noise level kept constant.

by running on multiple GPUs, as the single-grain fitting is
trivially parallelizable.

7.4 Application to experimental data
We demonstrate the performance of the LAUEOT solver
on spot data taken during neutron diffraction experiments.
We show results on three samples: (1) a ruby single-grain
calibration sample, (2) a CoNiGa alloy oligocrystal, and (3)
a FeGa alloy polycrystal. The details of the experiments are
described in Appendix F. Table 7.4 describes the samples
in terms of the number of projection angles used in the
experiment, the number of spots detected from the images,
and the wavelength range used in the LAUEOT algorithm.
The number of grains found by LAUEOT is 1, 13, and 251
for the ruby, CoNiGa, and FeGa, respectively. The runtime
for this analysis was few minutes for the ruby, 5 min for
CoNiGa and 30 min for FeGa, on a single A100 GPU. The
number of matched spots is 70-80%. The orientation and
position of the ruby crystal found by LAUEOT agrees well
with analysis by LAUE3DNDT. The ruby crystal measure-
ments was used to calibrate the experimental setup in terms
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Fig. 8. Results of LAUEOT indexing for three samples: a ruby single crystal (left panel), an oligocrystalline CoNiGa alloy (middle panel), and a
polycrystalline FeGa alloy (right panel). The panels show spots detected at all projection angles stacked together, for the forward-scatter detector.
For FeGa, we only show the matches for the first 20 grains. The black spots are detected from experimental images, while the colored spots show
the spots for the fitted model grains. Only matched spots are shown; outliers are omitted for clarity. The statistics of the matched spots are described
in Table 7.4.

TABLE 1
Crystal grain indexing results for three samples. The numbers in brackets correspond to spot counts in the (backscatter, forward-scatter) detectors.

Sample Number of projections Wavelength λ [Å] Number of spots Number of grains Number of matched spots
Ruby 46 [1.0-5.0] 3512 (3093, 419) 1 2852 (2468, 384)

CoNiGa 87 [1.0-5.0] 16822 (11246, 5576) 13 11883 (9039, 2844)
FeGa 86 [1.1-5.0] 269181 (197047, 72134) 251 214471 (169240, 45231)

TABLE 2
Time to solution for the LAUEOT algorithm compared to the solution from LAUE3DNDT [22].

sample number of grains found time-to-solution
LAUE3DNDT Ngrains = 200 196 24h

LAUEOT Ngrains = 200 200 8 min on a single A100
LAUE3DNDT Ngrains = 500 356 24h

LAUEOT Ngrains = 500 500 30 min on a single A100, 5m on 8×A100

of distances between the detectors and the sample, as well
as tilts of the detector plane [38].

Figure 8 shows the results of indexing of the ruby,
CoNiGa, and FeGa samples in the left, middle, and right
panels, respectively. The panels show stacked spots for
all projection angles in the forward-scatter detector. As in
Figure 3, the black points show the spots detected in the
experiment, and the colored points show the model fitted
by LAUEOT, with different colors corresponding to model
grains. For clarity, only the matched spots are shown, the
outliers are omitted. For the FeGa sample, we only show
spots for the first 20 grains. The empty area in the middle is
due to the fact that rays close to direction of the beam can
not satisfy the Bragg condition (Equation 1). The agreement
is very good for the ruby, and good for the CoNiGa and
FeGa samples, up to the precision level of calibrations.

8 CONCLUSIONS

We presented a novel approach to indexing grains in
multi-crystal samples from wide-beam diffraction experi-
ments. Our method, called LAUEOT, poses a principled
optimization problem formulation for the grain indexing.
The problem is solved using a computationally efficient

coordinate descent method, with assignment of grains–to–
spots performed in the framework of optimal transport. A
crucial part of this model is the treatment of outliers in
the experimental data and of redundant model spots. To
treat the outliers we propose a model dedicated to the Laue
indexing problem, based on a full probabilistic description
of outliers. Our new probabilistic model clearly outperforms
the two existing formulations in the literature, partial and
unbalanced OT.

We show the performance of LAUEOT using simulations
for variable number of grains in the sample, as well as
different noise levels and outlier fractions. For samples with
< 500, the method recovers all the input grains. For larger
samples, the method occasionally misses a single grain. We
found the limit of the stable performance of the algorithm
is reached for samples with large number of grains at high
noise levels. The accuracy of the fitted grain positions and
orientations is generally very good, but decreases slightly
with increased noise level.

The LAUEOT methods opens the possibility of analyzing
samples with large number of grains with short time-to-
solution. For samples with∼500 grains, the time-to-solution
LAUEOT on a Nvidia DGX node (8× A100 GPUs) is of
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order few minutes, compared to >24 hours taken by the
original indexing method of LAUE3DNDT. This enables
almost real-time sample analysis during the experiment, as
well as simulation-based setup optimization before starting
the measurements.

APPENDIX A
WAHBA’S PROBLEM

For two sets of points and their correspondences, the rota-
tion matrix can be found by solving the Orthogonal Pro-
crustes problem. This problem is solved through the singu-
lar vector decomposition. Wahba’s problem [70] generalizes
that to the analysis of points with weights and addresses
the sign ambiguity of the SVD output. The rotation matrix
R for a fixed set of K pair of points ak and bk and the
assignment weight wk using the subroutine Wahba (Algo-
rithm 2). Similarly to the Orthogonal Procrustes problem,
it uses the singular value decomposition, but additionally
uses a scaling by the product of determinants to remove the
sign ambiguity in the SVD.

APPENDIX B
M-STEPS FOR GRAIN POSITION AND ROTATION

In this section we derive the M-step updates for grain
position x and rotation R, as introduced in Section 4.4.
For both parameters, we find the updates corresponding to
the maximum of the likelihood in Equation 20. The M-step
requires solving the optimization problem for position xn

and Rn of every grain n ∈ N separately

∀n ∈ N : min
xn,Rn

L(Rn, xn) =
1

σ2

∑
ij

Qij r̂
⊤
ijrj . (28)

We perform coordinate descent alternating between updates
for R and x.

B.1 Grain position

We solve this problem for x using the Newton’s method.
The gradient ∇L(x) and Hessian ∇2L(x) are

∇L(x) =
1

σ2

∑
ij

Qij

τij
r
⊤
j

(
I − r̂ij r̂

⊤
ij

)
, (29)

∇2L(x) =
1

σ2

∑
ij

Qij

τ2
ij

(
3 · r⊤j r̂ij · r̂ij r̂⊤ij − rj r̂

⊤
ij − r̂ijr

⊤
j − r

⊤
j r̂ij · I

)
,

(30)

where τij :=∥si − Γtjxnj
∥ is the length of the ray r̂ij

from the grain center to the spot position si on the
screen. The Netwon’s method finds the step ∆x by solving
∆x← [∇2L(x)]−1∇L(x). Subroutine LauePosNewton in
Algorithm 1 describes the details of this process. The iter-
ations stop when a convergence threshold ζtol on position
is reached.

B.2 Grain rotation

As described in Section 4.4, finding R requires solving a
quadratic programming problem with orthogonality con-
straints. In this section we derive the LaueRotMM algo-
rithm, which finds the maximum likelihood solution. The
optimization problem in Equation 20 is equivalent to

min
R
−

∑
j∈Jn

〈∑
i∈I

Qij r̂ij , ΓtjRwmjw
⊤
mj

R⊤Γ⊤
tje

〉
, (31)

such that R⊤R = I and where we dropped the index of the
grain from the rotation matrix R. By introducing the matrix

M0
m := −

∑
j∈Jn∩Jm

Γ⊤
tj

[∑
i∈I

Qij (r̂ije
⊤ + er̂⊤ij)

]
Γtj , (32)

this problem can be expressed as

min
R:R⊤R=I

−
∑

m∈M

w⊤
m R⊤M0

m Rwm. (33)

The matrices M0
m are generally not positive semi-definite,

which makes the problem not concave. By using a positive
semi-definite matrix

Mm := M0
m + |ιm|I, (34)

where |ιm| is the smallest eigenvalue or 0 in case M0
m

has no negative eigenvalue, we can write an equivalent
optimization problem

min
R:R⊤R=I

−
∑
m

w⊤
m R⊤Mm Rwm. (35)

This problem is the Quadratic Program with Orthogonality
Constraints (QP-OC). There exist multiple solvers for this
problem in literature [71], [72]. Here we design a dedicated
Majorization Minimization method using an upper bound
on the function in Equation 33.

The associated quadratic is an upper bound of its first
order Taylor expansion around a rotation matrix Rk and so

−
∑
m

w⊤
m R⊤Mm Rwm

≤
∑
m

w⊤
m Rk⊤Mm Rk wm −

∑
m

2w⊤
m Rk⊤Mm Rwm.

(36)

The minimization of the upper bound is a Wahba’s problem
(see Appendix A) with unity weights:

min
R:R⊤R=I

−
∑
m

w⊤
m Rk⊤Mm Rwm (37)

⇔ min
R:R⊤R=I

∑
m

∥Rwm −MmRkwm∥2. (38)

The Minimization-Majorization scheme starts with an initial
guess R0 and performs a number of iterative steps accord-
ing to Equation 38. The routine LaueRotMM is shown in
Algorithm 3. The iterative steps are performed until a given
convergence thresholds on rotation ζtol is reached.
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APPENDIX C
OPTIMAL TRANSPORT VARIANTS

As described in Section 4.2, our main proposed method for
finding the transport plan between the model and detected
spots is using a custom probabilistic model for outlier treat-
ment. We compare the performance of this model to other
OT variants that allow for outlier treatment: unbalanced
and partial optimal transport. For all our Sinkhorn methods,
the convergence is controlled by a maximum difference to
previous iteration ζtol.

C.1 Partial optimal transport
Partial optimal transport [60] aims to move only a pre-
defined fraction mOT of the mass —here the number of
spots— that has to be transported in the OT formulation.
The optimization problem has a single control parameter,
which is specified by the user. The objective function for
finding the transportation plan Q is

max
Q

⟨L,Q⟩+ ϵH(Q)

s.t. Q ≥ 0, Q ∈ Q
Q1 ≤ a, Q⊤

1 ≤ b, 1
⊤Q⊤

1 = mOT,

(A)

where a and b are vectors corresponding to spot
weights (typically equal and set to one), and
mOT ≤ min{∥a∥1, ∥b∥1}, and ϵ is the temperature
parameter (see Section 5.1), which should be set to
ϵ=1 to match Equation 13. In partial OT, the spots to be
matched are selected automatically based on their cost. A
motivation to consider Partial OT in the presence of outliers
and missing spots is that one can hope that only inliers will
be matched with their corresponding models spots.

C.2 Unbalanced optimal transport
In this formulation, the constraint that the mass distribution
in Q should have marginals that are equal to a and b is
relaxed, and they are only encouraged to be close to them
by the means of regularization, typically a generalized KL-
divergence regularizer due to availability of closed-form
solution [46]. The optimization problem for transportation
plan Q in Problem (B) is

max
Q

⟨L,Q⟩+ ϵH(Q)− κD(Q1, a)− λD(Q⊤
1, b)

s.t. Q ≥ 0, Q ∈ Q
(B)

where the proximity term D(x, y) is the general-
ized Kullback-Leibler divergence between x and y,
D(x, y) = x⊤ log (x⊘ y) + (y − x)⊤1 , where ⊘ is the

element-wise division, and ϵ is the entropic regularization
parameter. The strength of these marginal constraint regu-
larization terms controlled by κ and λ.

In practice, due to the entropic term, a consequence of
relaxing the equality to the marginal, is that, as in partial OT,
the mass transported is smaller than the total mass, which
motivates the possible use of this method in the presence
of outliers and missing spots. Here, κ and λ influence the
outliers in source and target distributions, which will be
ignored if the cost of transporting them is too high. In the
limiting case of of κ → ∞, λ → ∞, the solution converges
to the balanced optimal transport where no outliers are
allowed.

APPENDIX D
SINGLE-GRAIN FITTING

The single-grain fitting is performed using the simplified
version of LAUEOT. The key difference is that we remove
the double-stochastic constraint, which does not make sense
for a single grain. The reason for this is that the model
spots from a single grain are sufficiently far from each other,
that it is extremely unlikely that they would be matched
to a common detected spot. Furthermore, removing this
constraint enables us to perform assignment updates in a
single step, without having to solving Sinkhorn. This speeds
up the process significantly. We employ the deterministic
annealing scheme here too to obtain better local minima.
We maximize the function

max
Q,R,x

⟨L,Q⟩+ ϵH(Q)

s.t. Q ≥ 0, Q ∈ Q, Q1 = a, R⊤R = I,
(39)

where L is the likelihood matrix in Equation 19. With
the double-stochastic constraint removed, the assignment
matrix is computed in a single update. Algorithm 8 for
single-grain fitting is described in detail in Appendix D. We
perform the optimization for model spots generated from a
single grain model. The annealing schedule is following the
same rules as the multi-grain fitting. Here we set the number
of iterations to a fixed number kmax, which allows us to use
perform multiple single-grain fitting runs in a batch mode.
This leads to a significant computational performance boost.
For grain position and rotation updates, we perform 4 steps
in the Newton and MM iterations. This is done to speed up
the computation, as the single-grain fitting prioritizes speed
over precision.

APPENDIX E
SELECTION OF PROTOTYPES WITH OT
Let’s consider a set of candidate grains {Gcn}n∈Nc , indexed
by N c, which are solutions obtained by single-grain fitting,
that have the number of outliers < fout|Sn|. Each candidate
will create model spots indexed by Jc

n. The goal is to find
a subset of initial grains Np ⊆ N c, called the prototypes,
that will constitute the final sample. We start with calcu-
lating the grain-to-spot assignment log-likelihood matrix
L̄ ∈ R|I|×|Nc|. The cost of assignment of spot si to grain Gcn
is calculated using the marginal probability of assignment
for all model spots in the grain

L̄in ← log
∑
j∈Jc

n

p(si, Zij = 1). (40)

We then shift the cost matrix to positive values

L̄in ← ∥L̄∥∞ + L̄in. (41)

The prototype selection depends on finding a weight vector
w ∈ ∆Nc corresponding to candidate grains, where simplex
∆Nc := {z ∈ RN

+ | z⊤1 = 1}. We define a set function

f(Np) := max
w: supp(w)⊆Np

max
P
⟨L̄, P ⟩

s.t. P ≥ 0, P1 = a, P⊤
1 = w,

(42)

where P is a OT assignment matrix and f(∅) = 0. The
objective function finds N∗ that maximizes f subject to
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cardinality constraint on |N∗| < k, enforcing that the size
of the set is smaller than k. The SPOT loss is

N∗ = argmax
Np⊆Nc,|Np|≤k

f(Np). (43)

Finding the optimum subset N∗ is NP complete, but can be
solved approximately using greedy incremental methods,
which leverage its submodular property. The algorithm
proposed in [45] has proven approximation guarantees [73].

We employ the SPOTGREEDY algorithm [45] to find the
approximate solution for Equation 43. This algorithm selects
prototypes in a greedy fashion, starting with the one that
contributes the most to the objective function. The relative
contributions of consecutive prototypes to the objective
reflect the degree of uniqueness of the prototype. When
the increment in the cost functions for a new candidate
prototype is small, that indicates that it is similar to a
prototype that already has been accepted. Due the greedy
nature of the algorithm, for cardinality k + 1 it will output
the same elements in the same order as for k, extended by
one new element.

Practically, the SPOTGREEDY algorithm starts with con-
stant outputs a sequence of indices and their corresponding
objective function values (nk, fk)k∈N∗ , indexed by N∗. A
subsequence with elements up to k corresponds to the
prototypes Np ⊆ N c, for cardinality constraint |Np| ≤ k.
To choose the final set of prototypes Np with size k∗, we
employ a criterion based on 2nd discrete difference of fk

k∗ ← argmaxk fk+1 + fk−1 − 2fk (44)

for k > 1. We use a fractional criterion instead of the
commonly used cut-off on the objective increment ϵ (see
Algorithm 1 in [45]), as it requires no knowledge of the
numerical values of the objective from the user. We call this
method LaueSpotGreedy (Algorithm 7) and describe it in
Appendix E. The prototype grain set is passed on to the next
step of the algorithm, which solves problem in Equation 20.
This procedure typically finds the correct number of grains,
except when the number of candidates obtained from single-
grain fitting is not sufficiently large. The number of single-
grain fitting candidates required is described in Section 7.

APPENDIX F
EXPERIMENTAL DETAILS

F.1 Samples
Ruby: As a first sample, a Ø 6 mm spherical single-crystal
ruby, typically used for detector calibrations, was measured.
For the indexing of the ruby crystal, a R3̄c space group
with lattice parameters of a=b=4.7606 Å, c=12.994 Å was
used.

CoNiGa: A cylindrical Ø 4 mm× 4 mm oligocrystalline
CoNiGa sample was selected as an intermediate test case.
The sample was prepared via hot-extrusion followed by
post-extrusion heat treatment, resulting in millimeter-sized
grains. The full details of the sample preparation are
given in [69]. For the indexing of the CoNiGa sample
a cubic Pm3̄m space group with lattice parameters of
a=b=c=2.8657 Å was used.

FeGa: As a final test case, a 3 × 3 × 3mm cube Fe0.9Ga0.1
polycrystalline sample was measured. The sample was pre-
pared via arc-melting of 99.95% purity Fe and Ga buttons in
an argon atmosphere. To obtain a homogenous distribution
of elements, the sample was re-melted 4 times. After arc-
melting, the sample was annealed in argon at a temperature
of 1000 ◦C with a heating rate of about 20 ◦C/min and a
holding time of 12 h with subsequent quenching to room
temperature. The final sample shape was achieved via spark
cutting and subsequent polishing with sandpaper, diamond
suspension, and colloidal silica. For the indexing of the FeGa
data set, a Im3̄m space group with lattice parameters of
a=b=c=2.917 Å were used.

The noise level was set to σ=1.07◦ and σ=0.27◦ for
CoNiGa and FeGa samples, respectively. The CoNiGa sam-
ple required higher noise level, as the uncertainty also
included systematic errors in the detector setup calibration.
For both CoNiGa and FeGa samples, the number of spots
detected in each rotation varied by up to 40%. This is not
expected, as the number of spots per projection should
remain constant. This large variation can be caused by drops
in beam flux for that exposure, as well as failures of the spot
detection algorithm. Some rotation angles were removed
from the analysis, as they had abnormally small number
of detected spots compared to other angles. To address this,
we set the single-grain selection threshold fout < 0.4 for
CoNiGa and fout < 0.35 for FeGa.

F.2 Neutron Laue diffraction tomography

All neutron Laue diffraction tomographies were collected
at the Pulse Overlap Diffractometer (POLDI) [74] at the
SINQ neutron source of the Paul Scherrer Institute (PSI),
Switzerland, using a white beam and the FALCON double-
detector system [38]. The FALCON forward- and backscat-
tering detectors were placed upstream and downstream
from the sample, respectively. Measurement parameters
such as the sample-to-detector distances and exposure times
were chosen for each sample to optimize signal quality and
overall spot coverage on the detector.

The ruby tomography was carried out with sample-to-
detector distances of 16.5 cm and 16.8 cm for the back- and
forward-scattering detector, respectively. The sample was
rotated a full 360◦ in steps of 8◦, resulting in 46 projections
in total. Each projection was measured with an exposure
time of 90 s.

The CoNiGa tomography was carried out with sample-
to-detector distances of 16.5 cm and 12.5 cm for the back-
and forward-scattering detector, respectively. The tomog-
raphy was performed by rotating the sample a full 360◦

in steps of 4◦, resulting in a total of 91 projections. Each
projection was measured with an exposure time of 90 s.

The FeGa tomography was carried out with sample-to-
detector distances of 16.5 cm and 12.5 cm for the back- and
forward-scattering detector, respectively. The tomography
was performed over a full 360◦ rotation in steps of 4◦,
resulting in a total of 91 projections. Each projection was
measured with an exposure time of 100 s.
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APPENDIX G
ALGORITHMS

The symbol ⊘ stands for element-wise division. Element-
wise minimum of elements between two vectors x and y
is denoted as min(x, y). The diag(x) function creates a
diagonal matrix from an input vector x. Vectors a and b
correspond to data point weights, which in LAUEOT are set
to a← 1, b← 1. LAUEOT employs balanced optimal trans-
port with explicit outlier modeling, the iterative updates are
shown in Algorithm 4. For UNBALANCEDOT, the iterative
updates are shown in Algorithm 5. For PARTIALOT, the it-
erative updates are shown in Algorithm 6. These algorithms
are described in Appendix C.

Algorithm 1 LauePosNewton: Newton’s method for finding
grain positions.

1: input: (si, wmj ,Γtj )j∈Jn , e
2: input: x0

n, Rn, (Qij)j∈Jn,i∈I ,
3: input: ζtol, kmax

4: set: k ← 0, ζ ← inf
5: while ζ > ζtol and k < kmax do
6: g ← ∇L(xk) (Equation 29)
7: H ← ∇2L(xk) (Equation 30)
8: ∆xk

n ← H−1g
9: xk+1

n ← xk
n −∆xk

n

10: ζ ← ∥xk+1
n − xk

n∥2
11: k ← k + 1
12: end while
13: output: xk

n
14: a

Algorithm 2 Wahba: solution to the Wahba’s problem
1: input: a, b, w
2: B ←

∑K
k=1 wkakbk

⊤

3: USV ⊤ ← svd(B)
4: M ← diag[1, 1, det(U) · det(V )]
5: R← UMV T

6: output: R

Algorithm 3 LaueRotMM: Majorization-Minimization algo-
rithm for finding rotations with reflected points.

1: input: (si, wmj ,Γtj )j∈Jn , e, R0
n, xn, (Qij)j∈Jn,i∈I , ζtol, kmax

2: set: k ← 0, ζ ← inf
3: set: Mm ←M0

m + |ιm|I (Equation 34)
4: while ζ > ζtol and k < kmax do
5: Rk+1

n ←Wahba(MmRkwm, wm,1)
6: ζ ← ∥Rk+1

n −Rk
n∥F

7: k ← k + 1
8: end while
9: output: Rk

n

Algorithm 4 BalancedOT: Sinkhorn algorithm for balanced
optimal transport with entropic regularization.

1: input: L, ϵ, ζtol
2: set: K ← exp(L/ϵ) , x0 ← 1, y0 ← 1

3: set: ζ ← inf , k ← 0
4: while ζ > ζtol do
5: xk+1 ← a⊘ (Kyk)
6: yk+1 ← b⊘ (K⊤xk+1)
7: ζ ← max(∥xk+1 − xk∥, ∥yk+1 − yk∥)
8: k ← k + 1
9: end while

10: Q← diag(xk) ·K · diag(yk)
11: output: Q

Algorithm 5 UnbalancedOT: Sinkhorn algorithm for unbal-
anced optimal transport with entropic regularization.

1: input: L, ϵ, κ, λ, ζtol
2: set: K ← exp(L/ϵ), x0 ← 1, y0 ← 1

3: while ζ > ζtol do
4: xk+1 ← (a⊘ (Kyk))

λ
λ+ϵ

5: yk+1 ← (b⊘ (K⊤xk+1))
κ

κ+ϵ

6: ζ ← max(∥xk+1 − xk∥, ∥yk+1 − yk∥)
7: k ← k + 1
8: end while
9: Q← diag(xk) ·K · diag(yk)

10: output: Q

Algorithm 6 PartialOT: Sinkhorn algorithm for partial op-
timal transport with entropic regularization.

1: input: L, ϵ, mOT, ζtol
2: set: K ← exp(L/ϵ), Q1, Q2, Q3 ← JIJ

3: set: x← 1, y ← 1, K0 ← K
4: while ζ > ζtol do
5: K1 ← diag[min(a⊘Kk

1, x)][Kk ·Q1]
6: Q1 ← Q1 ·Kk ⊘K1

7: K2 ← [K1 ·Q2] diag[min(b⊘K⊤
1 1, y)]

8: Q2 ← Q2 ·K1 ⊘K2

9: Kk+1 ← K2 ·Q3 ·mOT/(1
⊤K21)

10: Q3 ← Q3 ·K2 ⊘Kk

11: ζ ← ∥K −Kprev∥F
12: k ← k + 1
13: end while
14: Q← K
15: output: Q

Algorithm 7 LaueSpotGreedy: Selection of grain prototypes
using optimal transport in the Laue indexing problem.

1: input data: Nc, L̄in

2: initialize: N0 = ∅
3: for 1 ≤ k ≤ |Nc| do
4: Define vector fn ← f(Nk−1 ∪Nc

n)− f(Nk−1)
5: Find largest increment nk ← maxn fn
6: Create a grain set for k: Nk ← Nk−1 ∪Nc

nk
7: Store the increment function fk ← fnk

8: end for
9: Get final number of grain prototypes k∗ (Equation 44)

10: Get the final prototype grain set N∗ ← Nk∗

11: output: N∗
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Algorithm 8 SingleLaueOT: Single-grain fitting for Laue
indexing.

1: input data: (si)i∈I , σ
2: input number of starting grains: Ns

3: input outlier parameters: Lout

4: input control parameters: ϵinit, ϵcool, ζtol, kmax

5: set: Calculate Sobol grid of starting grains (Rn, xn)N
s

n=1
6: set: L·0 ← Lout

7: set: L0· ←= σ−2 − log(4πσ2 sinh(σ−2))
8: for 0 < n < Ns do

9: ▷ Use a sample with a single grain
10: ϵ← ϵinit

11: for 0 < k < kmax do

12: Calculate model rays, ∀ j ∈ J :
13: rj ← (I− 2ΓtjR

k
nj

wmjw
⊤
mj

Rk⊤
nj

Γ⊤
tj
)e

14: Calculate detected ray estimates, ∀ i ∈ I, j ∈ J :

15: r̂ij ←
si−Γtj

xk
nj

∥si−Γtj
xk
nj

∥

16: Log likelihood matrix, ∀ i ∈ I, j ∈ J :
17: Lij ← 1

σ2 r̂
⊤
ijrj

18: ▷ E-step

19: Update assignments:
20: K ← exp(L/ϵ)
21: Qk

n ← K · diag(a⊘K1)

22: ▷ M-step

23: Update positions and orientations, ∀ n ∈ N :

24: xk+1
n ← LauePosNewton[xk, Qk

n, ...]
25: Rk+1

n ← LaueRotMM[Rk
n, Q

k
n, ...]

26: Decrease the temperature: ϵ← ϵ · ϵcool
27: k ← k + 1

28: end for

29: end for
30: output: (Rn, xn)N

s

n=1
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