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Abstract

This work introduces a new method for comparing two reaction networks of
the same or closely related systems through their embedded networks in terms of
the shared set of species. Hence, we call this method the Common Species Em-
bedded Networks (CSEN) analysis. Using this approach, we conduct a comparison
of existing reaction networks associated with Wnt signaling models (Lee, Schmitz,
MacLean, and Feinberg) that we have identified. The analysis yields three important
results for these Wnt models. First, the CSEN analysis of the Lee (mono-stationary)
and Feinberg (multi-stationary) shows a strong similarity, justifying the study of the
Feinberg model, which was a modified Lee model constructed to study an impor-
tant network property called “concordance”. It also challenge the absoluteness of
discrimination of the models into mono-stationarity versus multi-stationarity, which
is a main result of Maclean et al. (PNAS USA 2015). Second, the CSEN analysis
provides evidence supporting a strong similarity between the Schmitz and MacLean
models, as indicated by the “proximate equivalence” that we have identified. Third,
the analysis underscores the absence of a comparable relationship between the Fein-
berg and MacLean models, highlighting distinctive differences between the two.
Thus, our approach could be a useful tool to compare mathematical models of the
same or closely related systems.

1 Introduction

Reaction networks have recently been used to perform parameter-free analyses of mathe-
matical models individually and comparatively [7,16,17]. The structure of the network’s
independent decompositions [5, 9, 10], equilibria parametrizations [8, 11], and a standard
toolbox for reaction networks [6] are some of the important tools that are used to analyze
the models. The crucial properties studied include multi-stationarity, absolute concentra-
tion robustness (ACR), and concordance. Multi-stationarity is the capacity for a network
to admit two or more positive equilibria with the same conserved quantities [3]. On the
other hand, a system exhibits ACR in a particular species if the equilibrium value for a
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particular species has the same value at any equilibrium regardless of any set of initial
conditions [24]. Finally, concordance property is a structural feature of a network that
enforce duller and more restrictive behavior despite what might be great intricacy in the
interplay of many species [23].

Embedded networks of reaction networks were first introduced in 2013 by Joshi and
Shiu in [14] and were used to study continuous flow stirred tank reactors (CFSTR). Em-
bedded networks are also the basis for embedded representations of Biochemical Systems
Theory (BST) systems [2]. In particular, Farinas et al. [4] used embedded representa-
tions to study a model of Mycobacterium tuberculosis growth. More recently, Meshkat
et al. [19] applied the concept to derive a necessary and sufficient condition to determine
whether a reaction network has ACR property for a class of mass action systems.

In this work, we analyze the structural and kinetic relationships of reaction networks
through their embedded networks relative to their set of common species. This was
motivated by our analysis of Wnt signaling models in biochemistry. Wnt signaling is a
vital mechanism that regulates crucial development processes and maintenance of tissue
homeostasis.

Wnt signaling pathway have been analyzed via reaction networks by MacLean et
al. [18] primarily to investigate bistability, i.e., existence of two stable positive equilibria
for a particular set of rate constants. They compared the previous models of Lee [15] and
Schmitz [22] with their proposed model [18], which we call MacLean model in this paper.
The species and reaction networks of the models are provided in the Appendices A and
B, respectively.

The Lee model focuses on the formation of the destruction complex from its constituent
parts and how its subsequent ability to degrade β-catenin is altered by the presence and
absence of an external Wnt stimulus. The model assumes that all species are uniformly
distributed throughout the cell and hence does not distinguish between the nucleus and
the cytoplasm. The Schmitz model focuses on the effect that shuttling of β-catenin and
destruction complex between the cytoplasm and the nucleus has on T-cell factor binding
to β-catenin in the nucleus. The MacLean model focuses on both β-catenin degradation
and protein shuttling between the cytoplasm and nucleus that may serve as a possible
mechanism for governing bistability in the pathway [18].

Feinberg [5] modified the Lee model by considering a complex of three species into a
single species, making the reaction containing this complex a reversible one, and eliminat-
ing a single species. In this paper, we call this network the Feinberg network. When the
pair of reversible reaction that does not contribute much to the network except to produce
a species that does not play any other role in the Wnt signaling network is removed, the
concordance property is achieved from an originally discordant network.

The analysis yields three important results for the Wnt signaling models. First,
the CSEN analysis of the Lee, which is mono-stationary, and Feinberg, which is multi-
stationary, shows a strong similarity. This justifies the study of the Feinberg model, which
was a slightly modified Lee model. Furthermore, it challenges the absoluteness of discrim-
ination of the models into mono-stationarity versus multi-stationarity. Second, the CSEN
analysis suggests a strong similarity between the Schmitz and MacLean models. This is
indicated by the “proximate equivalence” that we have identified. Third, the analysis
underscores the absence of a comparable relationship between the Feinberg and MacLean
models. This highlights the distinctive differences between these two models.

The rest of the paper is organized as follows: Section 2 provides the background
necessary to understand the flow of this paper. Section 3 outlines the new method of
comparing reaction networks via common species embedded networks. Sections 4, 5, and
6 provide our CSEN analyses for the Lee and Feinberg models, the Schmitz and MacLean
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models, and the Feinberg and MacLean models, respectively. Finally, a summary and
recommendation are given in Section 7.

2 Preliminaries

2.1 Chemical reaction networks and systems

We start by introducing a formal definition of a chemical reaction network (CRN).

Definition 2.1. A chemical reaction network, denoted by N , is a triple of nonempty
and finite sets (S ,C ,R) where

a. S = {A1, A2, . . . , Am} is the set of m species,

b. C = {C1, C2, . . . , Cn} is the set of n complexes, which are non-negative linear com-
binations of the species, and

c. R = {R1, R2, . . . , Rr} ⊂ C × C is the set of r reactions.

We usually denote a reaction (y, y′) using y → y′. In this reaction, y is called a reactant
complex and y′ is called a product complex. An inflow reaction, denoted by 0 → Ai,
means a constant supply of species Ai. On the other hand, an outflow reaction, denoted
by Aj → 0, means degradation of species Aj.

A reaction vector of the reaction is the difference y′ − y. Hence, a reaction vector is a
linear combination of species. The linear subspace of Rm spanned by the reaction vectors is
called the stoichiometric subspace of N , defined as S = span{y′−y ∈ R

m | y → y′ ∈ R}.
The m× r matrix, where the ith column contains the coefficients of the associated species
in the ith reaction vector associated with the ith reaction, is the stoichiometric matrix of
the network.

To describe the dynamics of the temporal evolution of the concentrations of the species,
a CRN is endowed with kinetics. Kinetics is defined as follows.

Definition 2.2. A kinetics for a reaction network N = (S ,C ,R) is an assignment to
each reaction y → y′ ∈ R of a continuously differentiable rate function Ky→y′ : R

S
≥0 →

R≥0 such that the following positivity condition holds: Ky→y′(c) > 0 if and only if supp y ⊂
supp c, where supp y refers to the support of the vector y, i.e., the set of species with
nonzero coefficient in y. The pair (N , K) is called a chemical kinetic system.

Definition 2.3. A kinetics for a CRN (S ,C ,R) is mass action if for each reaction
y → y′ (i.e., [y1, y2, . . . , ym]

⊤ → [y′1, y
′
2, . . . , y

′
m]

⊤),

Ky→y′(x) = ky→y′

∏

i∈S

x
yi
i

for some ky→y′ > 0.

Definition 2.4. The species formation rate function (SFRF) of a chemical reaction sys-

tem (N , K) is given by f (x) =
∑

y→y′∈R

Ky→y′ (x) (y
′ − y).

Note that the SFRF can be written as f(x) = NK(x) where N is the stoichiometric
matrix of the network and K is the vector of rate functions. The system of ordinary

differential equations (ODEs) of a chemical kinetic system is given by
dx

dt
= f (x) where

x is a vector of concentrations of the species that evolve over time.
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Definition 2.5. A steady state or an equilibrium is a vector c of species concentrations
such that f(c) = 0. A positive equilibrium is an equilibrium where each concentration is
positive.

Definition 2.6. A CRN is said to admit multiple (positive) equilibria or is multi-
stationary if there exist positive rate constants such that the ODE system admits more
than one stoichiometrically-compatible equilibria.

2.2 Embedded networks and network transformations

In this section, we briefly review the concepts of embedded networks and network trans-
formations. First, the definition of embedded networks from [14] is as follows:

Definition 2.7. Let N = {S ,C ,R} be a CRN.

1. Consider a subset of the species set S ⊂ S , a subset of the complexes set C ⊂ C ,
and a subset of the reactions set R ⊂ R.

• The restriction of R to S, denoted R|S, is the set of reactions obtained by
taking the reactions in R and removing all species not in S from the reactant
and product complexes. If a trivial reaction (one in which the reactant and
product complexes are the same) is obtained in this process, then it is removed.
Extra copies of repeated reactions were also removed. The restriction of C to
R, denoted C|R, is the set of (reactant and product) complexes of reactions in
R.

• The restriction of S to C, denoted S|C, is the set of species that are in the
complexes in C.

2. The network obtained from N by removing a subset of species {Xi} ⊂ S is the

network
{
S \{Xi},C |R|S\{Xi}

,R|S \{Xi}

}
.

3. A subset of the reactions R ′ ⊂ R defines the subnetwork

{S |C |
R′ ,C |R′,R ′}.

4. Let N = {S ,C ,R} be a CRN. An embedded network of N is defined by a subset
of the species set S = {Xi1 , Xi2, . . . , Xik} ⊂ S , and a subset of the reactions set R =
{Rj1 , Rj2, . . . , Rjl} ⊂ R, that involve all species of S, is the network (S,C |R|S , R|S)
consisting of the reactions R|S.

Example 2.8. Models in BST have two types of variables: dependent (state variables that
change with time) and independent (constants that describe aspects of the process environ-
ment). Arceo et al. [1] introduced a power law kinetic realization, whereby the species set
of the underlying network—called a total representation—consists of the corresponding de-
pendent and independent species. In a subsequent work [2], they also defined the embedded
representation of a BST model, which is the embedded network of the total representation
relative to the dependent species. The embedded representation corresponds to the popular
technique in BST of “lumping the independent variables to the rate constants”.

The concept of network transformation originated in Nazareno et al. [21] and was
recently extended by Talabis and Mendoza [25] in their study of network operations. The
most well-known example of network transformation is the network translation of mass
action systems introduced by Johnston in 2014 [13]. Hong et al. recently showed that any

Page 4 of 15



network translation can be composed from three network operations: shifting, dividing,
and merging [12]. In this work, we will use shifting and “splitting by reaction vector” to
define the network transformations necessary for our study.

We first recall the definition of dynamical equivalence of kinetic systems:

Definition 2.9. Two kinetic systems (N , K) and (N ′, K ′) with stoichiometric matrix
N and N ′, respectively, are dynamically equivalent if

i. N and N ′ have the same set of species;

ii. K and K ′ have the same definition domain Ω = Ω′; and

iii. NK(x) = N ′K ′(x) for all x ∈ Ω.

The last condition implies that the ODE systems of N and N
′ are identical.

We now define several classes of network transformations:

Definition 2.10. A dynamical equivalence between (N , K) (with stoichiometric subspace
S) and (N ′, K ′) (with stoichiometric subspace S ′) is called

i. S-extending transformation if S is contained in S ′.

ii. S-including transformation if S contains S ′.

iii. S-invariant transformation if S = S ′.

iv. Network transformation (or simply transformation) if one of (i), (ii), or (iii) holds.

Network operations are network transformations that change a single reaction or a
pair of reactions in a network. Hence, they can be viewed as “building blocks” of trans-
formations. Two useful operations are as follows:

Definition 2.11. 1. Shifting the reaction q : y → y′ results to q′ : y + z
r
−→ y′ + z with

kinetics Kq′ = Kq where z = z1X1 + · · ·+ zmXm and zi ∈ Z for all i = 1, . . . , m.

2. Splitting [via reaction vector] (RV-splitting) the reaction q : y → y′ results to the pair
of reactions q′ : x

r
−→ x′ and q′′ : z

r
−→ z′ with the same kinetics (i.e., Kq = Kq′ = Kq′′)

and y′ − y = (x′ − x) + (z′ − z).

Note that shifting is an S-invariant transformation while splitting is an S-extending
one. More examples and applications of network operations and transformations can be
found in [25].

3 The method of comparing reaction networks via

common species embedded networks

In this section, we introduce a new method for comparing reaction networks of the same
or closely related biological systems. We call this method the Common Species Embedded
Networks (CSEN) analysis. This approach allows us to determine a possible relationship
between embedded networks of two CRNs via network operations or transformations, such
as dynamical equivalence.

Before we formulate the steps of the CSEN analysis, we introduce some new concepts
as follows.
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Definition 3.1. Let (N , K) and (N ∗, K∗) be kinetic systems. They are proximately

equivalent if there are kinetics K̃ and K̃∗, differing (at most in inflows) from K and

K∗, respectively, such that (N , K̃) is dynamically equivalent to (N ∗, K̃∗). When the

dynamical equivalence between (N , K̃) and (N ∗, K̃∗) is a network transformation, we
speak of a proximate transformation from (N , K) to (N ∗, K∗).

Remark 3.2. 1. Two kinetic systems differ at most in inflows if they share the same
set of reactions, but one system includes at least one inflow 0 → Ai that is absent
in the other.

2. The domain of the chosen proximate transformation is the set of proximate reactions
of NE. Its image is the set of proximate reactions of N ∗

E .

Example 3.3. i. Dynamically equivalent systems are proximately equivalent.

ii. Let NE and N ∗
E be CSEN. A maximal proximate transformation from NE to N ∗

E

is a proximate transformation defined by a subset of non-common reactions of NE

with the maximal number of elements. Note that there may be more than one such
subset; hence, more than one maximal proximate transformation.

We now carry out the method in three steps. The first step is to construct the em-
bedded networks NE and N ∗

E of two networks N and N ∗, respectively, with respect to
their set of common species S ′ = SN ∩ SN ∗ .

In the second step, we classify the reactions of each embedded network into 3 subsets
or reaction classes:

1. Common reactions of N and N ∗: RN ∩ RN ∗

2. Common reactions of the embedded networks which are not in the first class: (RNE
∩

RN ∗
E
)\(RN ∩ RN ∗)

3. Reactions of NE and N ∗
E for further classification into the proximate and non-

equivalent subsystems (see Definition 3.1)

The third step consists of the following task: identify a maximal proximate transfor-
mation from NE to N ∗

E (if it exists).

4 CSEN analysis of the Lee and Feinberg models

In this section, we compare the reaction networks of the Lee and Feinberg models by first
constructing their embedded networks with respect to the set of common species. We
then identify network operations that transform the remaining distinct reactions of the
Lee network into those of the Feinberg network. Our result shows that the two networks
are dynamically very similar and points to a relative aspect of the “model discrimination”
by MacLean et al. [18] into mono- and multi-stationary systems.

We now illustrate the approach using the Lee and Feinberg networks.
Since the species sets of the Lee and Feinberg networks are

SL = {A1, A2, A4, A6, A7, A8, A10, A12, A13, A22, . . . , A28}\{A28}

and
SF = {A1, A2, A4, A6, A7, A8, A10, A12, A13, A22, . . . , A28}\{A22},

then both networks have 15 species with 14 in common. Table 4.1 presents the results of
Steps 1 and 2 of the CSEN analysis.
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Table 4.1. Reactions of the embedded networks (NLE and NFE) of the Lee (NL) and
Feinberg (NF ) models with respect to their common species. Reaction num-
bers without the superscript E do not change after getting the embedded
networks with respect to their common species.

Common to NLE and NFE

R1 : 0 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R12 : A10 → 0
R14 : A1 → A2

R15 : A2 → A1

R18 : A12 → A13

R19 : A13 → A12

R38 : A4 → 0
R43 : A24 + A26 → A23

R44 : A23 → A24 + A26

R45 : A8 → A25

R46 : A25 → A1 + A10

R47 : 0 → A26

R48 : A26 → 0
R49 : A4 + A6 → A7

R50 : A7 → A4 + A6

R51 : A24 + A4 → A27

R52 : A27 → A24 + A4

Embedding-derived common reactions
RE

41 : A23 → A2

RE
42 : A2 → A23

Unique to NLE Unique to NFE

RE
40 : A13 + A2 → A13 + A23 RE

53 : A13 + A2 → 0
RE

56 : 0 → A13 + A23

Theorem 4.1. Let NLE and NFE be the embedded networks of NL and NF , respectively,
with respect to their set of common species. Then NLE with mass action kinetics is
dynamically equivalent to NFE with mass action kinetics except for an inflow reaction.
The dynamical equivalence is via an S-extending network operation.

Proof. The common reactions of NLE and NFE consist of the 21 reactions listed in Table
4.1. The other remaining reactions in Feinberg become A13 +A2 → 0 → A13 +A23. This
is the transform by RV-splitting (an S-extending network operation) from A13 + A2 →
A13 + A23 in the Lee network. Furthermore, the rank of NLE is one less than that of
NFE.

Remark 4.2. 1. The aberrant kinetics on the inflow 0 → A13+A23 is given by kA13A2

(versus the usual constant kinetics convention). The choice of this kinetics is due
to splitting the reaction A13+A2 → A13+A23 (with the usual kinetics kA13A2) into
A13 + A2 → 0 and 0 → A13 + A23 (with the same kinetics) as seen, in general, in
Definition 2.11.

2. The expansion of the stoichiometric subspace potentially explains the mono-/multi-
stationarity difference, as equilibria previously in separate stoichiometric classes can
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fall into the same larger class. Since the embedded networks describe the projection
of processes in the larger (different) 15-dimensional species space onto the common
14-dimensional subspace, our result shows the strong dynamical similarity between
the Lee and Feinberg systems.

For Step 3 of the CSEN analysis, it is shown in the proof of Theorem 4.1 that the
subnetworks of the non-common reactions are proximately equivalent. Thus, the embed-
ded networks of the Lee and Feinberg models are proximately equivalent. In other words,
there is a proximate transformation from NLE to NFE.

5 CSEN analysis of the Schmitz and MacLean mod-

els

The coincidence of many structo-kinetic (e.g., multi-stationarity) and kinetic (e.g., ACR)
properties of the Schmitz network (NS) and the MacLean network (NM) suggests a
structural relationship between them. In this section, we use CSEN analysis to derive such
a relationship between their embedded networks, denoted by NSE and NME, induced by
the subset of common species. More precisely, we show that

• A network transformation of NSE coincides with NMEA (:= NME less 2 outflows
plus 1 reversible pair of “flow” reactions); and

• The kinetics of NSE is mass action, and that of NME , while generalized mass action,
is mass action except for 3 “flow” reactions.

Remark 5.1. In mass action systems, the rate function of a reaction is based on the
stoichiometric coefficients in the reactant complex. For example, under mass action ki-
netics, the reaction A5 + A3 → A9 has the rate function ka5a3. However in generalized
mass action systems, introduced by Stefan Müller and Georg Regensburger [20], the rate
function is not necessarily based on the stoichiometric coefficients in the reactant complex.
In the example above, under generalized mass action kinetics (GMAK), the rate function
can have the form kaα5a

β
3 where α and β can be any positive real number.

Table 5.1 shows the results of the CSEN analysis Steps 1 and 2.
For the embedded Schmitz network, the common species comprise a large subset (9 in

NME out of the 11 in NS) and the reactions generate a large subnetwork (NME has rank
7 while NS has rank 9). This observation already suggests an “inclusion/extension-like”
relationship between the networks.

The set of new common reactions is (RSE∩RME)\(RS∩RM) = {A8 → A1, A9 → A3}.
Hence, the total of common reactions make up 11 of the 15 reactions in NSE.

The results of Step 3 are as follows: the following table defines two maximal proximate
transformation from NSE to NME:

Reaction Operation Parameter
A1 → A2 Splitting A2 − A1 = (A2 − 0) + (0− A1)
A2 → A1 Splitting A1 − A2 = (A1 − 0) + (0− A2)
A1 → A3 Splitting A3 − A1 = (A3 − 0) + (0− A1)
A3 → A1 Splitting A1 − A3 = (A1 − 0) + (0− A3)

The top two rows define the first maximal proximate transformation, the bottom two
the second. We choose the first and, hence, consider the reactions {A3 ⇄ A1} and
{A3 ⇄ 0, A4 → 0, A5 → 0} as the non-equivalent reactions of the CSEN.
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Table 5.1. Reactions of the embedded networks (NSE and NME) of the Schmitz (NS)
and MacLean (NM ) models with respect to their common species. Reactions
without the superscript E do not change after getting the embedded networks
with respect to the common species.

Common to NSE and NME

R1 : 0 → A4

R2 : A4 → A5

R3 : A5 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R6 : A5 + A3 → A9

R7 : A9 → A5 + A3

R8 : A6 + A5 → A7

R9 : A7 → A6 + A5

Embedding-derived common reactions
RE

10 : A8 → A1

RE
11 : A9 → A3

Unique to NSE Unique to NME

R14 : A1 → A2 R38 : A4 → 0
R15 : A2 → A1 R39 : A5 → 0
R16 : A1 → A3 RE

22 : A2 → 0
R17 : A3 → A1 RE

23 : 0 → A2

RE
24 : A3 → 0

RE
25 : 0 → A3

RE
30 : A1 → 0

RE
31 : 0 → A1

Defining the augmented MacLean CSEN as NMEA := NME ∪ {A1 ⇄ 2A1}, we can
extend the previous considerations to a “structural-kinetic relationship” as follows:

Theorem 5.2. The (mass action) system NSE transforms to the subnetwork NMEA\{A4 →
0, A5 → 0}, a generalized mass action system, which is predominantly mass action (14 of
19 reactions). Moreover, the transformation is the identity in 11 of the 15 reactions of
NSE.

Proof. The following table describes the GMAK details. We set Ki = kiAi where ki > 0,
i.e., linear kinetics for the species Ai:

Reaction Transformation 1/ Transformation 2/
Kinetics/Type Kinetics/Type

A1 → A2 0 → A2/ K1/ GMAK A1 → 0/ K1/ MAK
A2 → A1 0 → A1/ K2/ GMAK A2 → 0/ K2/ MAK
A1 → A3 0 → A3/ K1/ GMAK A1 → 0/ K1/ MAK
A3 → A1 0 → A1/ K3/ GMAK A3 → 0/ K3/ MAK
0 → A1 A1 → 2A1/ K3/ GMAK
A1 → 0 2A1 → A1/ K3/ GMAK

The rest of the reactions (and their mass action kinetics) in NSE remain unchanged. This
proves the claim that NMEA is a network transformation of NSE.
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6 CSEN analysis of the Feinberg and

MacLean models

Table 6.1 presents the species and reactions of the Feinberg (NF ) and MacLean (NM)
models. The Feinberg and MacLean networks have eight common species: A1, A2, A4, A6,
A7, A8, A12, and A13, and six common reactions: R1, R4, R5, R18, R19 and R38. Following
the discussion in Section 2.2, the embedded networks of the two models induced by their
common species are given in Table 6.2.

Table 6.1. Species and reactions of the Feinberg (NF ) and MacLean (NM ) Wnt signaling
models

Common to NF and NM

A1, A2, A4 A6, A7, A8, A12, A13

R1 : 0 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R18 : A12 → A13

R19 : A13 → A12

R38 : A4 → 0

Unique to NF Unique to NM

A10, A23, . . . , A28 A3, A5, A9, A14, . . . , A21

R12 : A10 → 0 R2 : A4 → A5

R14 : A1 → A2 R3 : A5 → A4

R15 : A2 → A1 R6 : A5 + A3 → A9

R43 : A24 + A26 → A23 R7 : A9 → A5 + A3

R44 : A23 → A24 + A26 R8 : A6 + A5 → A7

R45 : A8 → A25 R9 : A7 → A6 + A5

R46 : A25 → A1 + A10 R20 : A13 → A14

R47 : 0 → A26 R21 : A14 → A13

R48 : A26 → 0 R22 : A2 → A15

R49 : A4 + A6 → A7 R23 : A15 → A2

R50 : A7 → A4 + A6 R24 : A3 + A14 → A19

R51 : A24 + A4 → A27 R25 : A19 → A3 + A14

R52 : A27 → A24 + A4 R26 : A19 → A14 + A15

R53 : A13 + A2 → A28 R27 : A15 + A17 → A21

R54 : A2 → A23 R28 : A21 → A15 + A17

R55 : A23 → A2 R29 : A21 → A3 + A17

R56 : A28 → A13 + A23 R30 : A13 + A1 → A18

R31 : A18 → A13 + A1

R32 : A18 → A13 + A2

R33 : A2 + A16 → A20

R34 : A20 → A2 + A16

R35 : A20 → A1 + A16

R36 : A8 → A1

R37 : A9 → A3

R39 : A5 → 0

Despite extensive systematic search, we were unable to identify any proximate equiv-
alences. This points to a limitation of the relationship of the two embedded networks to
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Table 6.2. Reactions of the embedded networks (NFE and NME) of the Feinberg (NF )
and MacLean (NM ) models with respect to their common species. Reactions
without the superscript E do not change after getting the embedded networks
with respect to the common species.

Common to NFE and NME

R1 : 0 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R18 : A12 → A13

R19 : A13 → A12

R38 : A4 → 0

Embedding-derived common reactions
RE

46 : 0 → A1

RE
54 : A2 → 0

RE
55 : 0 → A2

RE
56 : 0 → A13

Unique to NFE Unique to NME

R14 : A1 → A2 RE
8 : A6 → A7

R15 : A2 → A1 RE
9 : A7 → A6

RE
45 : A8 → 0 RE

20 : A13 → 0
R49 : A4 + A6 → A7 RE

30 : A13 + A1 → 0
R50 : A7 → A4 + A6 RE

31 : 0 → A13 + A1

RE
53 : A13 + A2 → 0 RE

32 : 0 → A13 + A2

RE
36 : A8 → A1

the purely structural coincidence of 10 of the 15–16 reactions.

7 Summary and recommendation

We presented a novel method, which we call the Common Species Embedded Networks
(CSEN) analysis, to compare reaction networks in closely related systems. We applied
this approach to assess existing reaction networks associated with Wnt signaling models
(Lee, Schmitz, MacLean, and Feinberg).

The CSEN analysis produced three interesting results. Firstly, the analysis revealed a
strong similarity between the Lee (mono-stationary) and Feinberg (multi-stationary) mod-
els. This result challenges the absolute discrimination of models into mono-stationarity
and multi-stationarity by Maclean et al. Second, our analysis provided evidence support-
ing similarity between the Schmitz and MacLean models, highlighted by the identified
“proximate equivalence.” Lastly, the analysis emphasized the absence of a comparable
relationship between the Feinberg and MacLean models, emphasizing distinctive differ-
ences between the two. Situations where the search for proximate transformations become
challenging (as was the case in Section 6) present further research opportunities.

The CSEN analysis introduced in this study offers a valuable tool for comparing math-
ematical models in related systems. This approach may be useful in uncovering structural
similarities and differences between reaction networks. Further exploration and applica-
tion of the CSEN analysis could enhance our understanding of the dynamics of closely
related systems and contribute to refining mathematical models in biological and chemical
contexts.
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A Definition of variables

Table A.1 provides the species in the Wnt signaling networks that we consider.

B Reaction networks of Wnt signaling models

B.1 Lee Model

The following is the reaction network for the Lee model:

R1 : 0 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R12 : A10 → 0

R14 : A1 → A2

R15 : A2 → A1

R18 : A12 → A13

R19 : A13 → A12

R38 : A4 → 0

R40 : A13 + A2 → A13 + A22 + A23
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Table A.1. Species and corresponding biomolecules that can occur in the Wnt signaling
models considered

Species Meaning
A1 destruction complex (DC) (active form)
A2 DC (inactive form)
A3 active DC residing in the nucleus
A4 β-catenin
A5 β-catenin in the nucleus
A6 T-cell factor (TCF)
A7 β-catenin-TCF complex
A8 β-catenin bound with DC
A9 β-catenin bound with DC in the nucleus
A10 β-catenin (for proteasomal degradation)
A11 β-catenin (for proteasomal degradation) in the nucleus
A12 dishevelled (inactive form)
A13 dishevelled (active form)
A14 active dishevelled in the nucleus
A15 inactive DC in the nucleus
A16 phosphatase
A17 phosphatase in the nucleus
A18 active DC bound with dishevelled
A19 active DC bound with dishevelled in the nucleus
A20 active DC bound with phosphatase
A21 active DC bound with phosphatase in the nucleus
A22 GSK3β
A23 axin-APC complex
A24 APC
A25 β-catenin bound with DC (for proteasomal degradation)
A26 axin
A27 β-catenin-axin complex
A28 a complex considered as a single species (in [5]):

(A13 + A22 + A23 = A28)

R41 : A22 + A23 → A2

R42 : A2 → A22 + A23

R43 : A24 + A26 → A23

R44 : A23 → A24 + A26

R45 : A8 → A25

R46 : A25 → A1 + A10

R47 : 0 → A26

R48 : A26 → 0

R49 : A4 + A6 → A7

R50 : A7 → A4 + A6

R51 : A24 + A4 → A27

R52 : A27 → A24 + A4

B.2 Feinberg Model

The following is the reaction network for the Feinberg model:

R1 : 0 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R12 : A10 → 0

R14 : A1 → A2

R15 : A2 → A1

R18 : A12 → A13

R19 : A13 → A12

R38 : A4 → 0
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R43 : A24 + A26 → A23

R44 : A23 → A24 + A26

R45 : A8 → A25

R46 : A25 → A1 + A10

R47 : 0 → A26

R48 : A26 → 0

R49 : A4 + A6 → A7

R50 : A7 → A4 + A6

R51 : A24 + A4 → A27

R52 : A27 → A24 + A4

R53 : A13 + A2 → A28

R54 : A2 → A23

R55 : A23 → A2

R56 : A28 → A13 + A23

B.3 Schmitz Model

The following is the reaction network for the Schmitz model:

R1 : 0 → A4

R2 : A4 → A5

R3 : A5 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R6 : A5 + A3 → A9

R7 : A9 → A5 + A3

R8 : A6 + A5 → A7

R9 : A7 → A6 + A5

R10 : A8 → A1 + A10

R11 : A9 → A3 + A11

R12 : A10 → 0

R13 : A11 → 0

R14 : A1 → A2

R15 : A2 → A1

R16 : A1 → A3

R17 : A3 → A1

B.4 MacLean Model

The following is the reaction network for the MacLean model:

R1 : 0 → A4

R2 : A4 → A5

R3 : A5 → A4

R4 : A1 + A4 → A8

R5 : A8 → A1 + A4

R6 : A5 + A3 → A9

R7 : A9 → A5 + A3

R8 : A6 + A5 → A7

R9 : A7 → A6 + A5

R18 : A12 → A13

R19 : A13 → A12

R20 : A13 → A14

R21 : A14 → A13

R22 : A2 → A15

R23 : A15 → A2

R24 : A3 + A14 → A19

R25 : A19 → A3 + A14

R26 : A19 → A14 + A15

R27 : A15 + A17 → A21

R28 : A21 → A15 + A17

R29 : A21 → A3 + A17

R30 : A13 + A1 → A18

R31 : A18 → A13 + A1

R32 : A18 → A13 + A2

R33 : A2 + A16 → A20

R34 : A20 → A2 + A16

R35 : A20 → A1 + A16

R36 : A8 → A1

R37 : A9 → A3

R38 : A4 → 0

R39 : A5 → 0
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