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In this article I am arguing in favour of the hypothesis that the origin of gauge and string dualities
in general can be found in a higher-categorical interpretation of basic quantum mechanics. It is in-
teresting to observe that the Galilei group has a non-trivial cohomology, while the Lorentz/Poincare
group has trivial cohomology. When we constructed quantum mechanics, we noticed the non-trivial
cohomology structure of the Galilei group and hence, we required for a proper quantisation proce-
dure that would be compatible with the symmetry group of our theory, to go to a central extension
of the Galilei group universal covering by co-cycle. This would be the Bargmann group. However,
Nature didn’t choose this path. Instead in nature, the Galilei group is not realised, while the Lorentz
group is. The fact that the Galilei group has topological obstructions leads to a central charge, the
mass, and a superselection rule, required to implement the Galilei symmetry, that forbids transitions
between states of different mass. The topological structure of the Lorentz group however lacks such
an obstruction, and hence allows for transitions between states of different mass. The connectivity
structure of the Lorentz group as opposed to that of the Galilei group can be interpreted in the sense
of an ER=EPR duality for the topological space associated to group cohomology. In string theory
we started with the Witt algebra, and due to similar quantisation issues, we employed the central
extension by co-cycle to obtain the Virasoro algebra. This is a unique extension for orientation
preserving diffeomorphisms on a circle, but there is no reason to believe that, at the high energy
domain in physics where this would apply, we do not have a totally different structure altogether
and the degrees of freedom present there would require something vastly more general and global.

INTRODUCTION

String theory is sprinkled with a very complex web of
dualities, including T-duality, S-duality, various target
space dualities, Mirror symmetry [1], [2], [3], etc. Of-
ten theories defined in terms of very different geometri-
cal and topological structures are found to describe ”the
same physics” at the level of the properties of the spec-
tra of states emerging from such theories. The main
argument is that many if not all of those dualities can
be understood from the perspective of a higher quan-
tum mechanics, in the same way in which gauge symme-
tries can be understood from the perspective of standard
quantum mechanics. First we have to understand some
foundational aspects related to quantum mechanics and
its principles. There is a vast mathematical structure
underpinning quantum mechanics, from the construction
of a Hilbert space, to the commutation relation between
observables and their promotion to the level of operators
that are often matrix-valued and produce several possi-
ble outcomes instead of a single outcome as is the case in
classical physics. The famous uncertainty implied by the
construction of quantum mechanics seems to be a foun-
dational aspect of nature. Indeed, non-commuting ob-
servables do not have commonly defined well determined
values due to the nature of the commutation relations
between them. As, axiomatically, the commutator rela-
tion is a derivative, obeying the usual Leibniz axioms of
derivative

[A, ·] = DA (1)

it is worth keeping in mind that the non-commutative
nature of the quantum observables can be described in
terms of some form of parallel transport. I believe that
the indeterminacies of quantum mechanics have a deeper
cause. It is worth mentioning that such indetermina-
cies are still fundamental in nature, and cannot be re-
moved by means of any hidden variable models one may
consider. However, their ultimate cause lies in another
aspect of quantum mechanics which I consider to be fun-
damental.

In geometry there is always a tension between local
and global structures [4]. We can consider a generic man-
ifold to be locally flat, but the global structure will im-
pose some restrictions on the functions that can be rep-
resented on it, restrictions that are not easily derivable
in a strictly local manner. This tension between local
and global structures has been a leitmotiv in the devel-
opment of physics during the past centuries. The tran-
sition from the Galileo transformations and group to the
Lorentz group brought in more structure not detectable
at some small velocity, the transition further to curved
spacetime led to the introduction of the global structure
of curvature and its tensions with the local approxima-
tions of functions defined on the manifold, etc.

Indeed, it is interesting to think of quantum mechan-
ics as a way of harmonising two important principles
of physics. First the Lorentz covariance and the causal
structure introduced by it, as well as the locality of inter-
actions, and on the other side, the intrinsic mathemati-
cal connection between the local structure and the global
structure of a manifold. If physicists of past age had paid
more attention at the optimisation principles they used
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in their calculations, starting with the Maupertuis’s prin-
ciple and culminating with the Euler-Lagrange equations
and finally the Hamilton-Jacobi equations in classical me-
chanics they would have noticed that in the process of
any optimisation principle, one has to point out the in-
terference of non-local effects onto the so called classical
optimal trajectory. The optimisation is by all standards
a non-local phenomenon, as one admits the existence of
a manifold of which the classical path is some optimum,
defined by the rest of the manifold itself. One cannot
have an optimum, without defining what is it that that
optimum is for. Of course, if one considers only special
relativity and its causal structure, the contribution of the
rest of the manifold to the optimum must be fundamen-
tally limited to causal connections, and hence much if not
all the information of the global structure of the manifold
is lost. But in that case, we would have a very hard time
to understand why precisely a certain type of optimum
exists, and not another. Now, if the outcomes of all ob-
servables were strictly determined, as classical mechanics
demands, then the tension with the global-to-local influ-
ences we see in geometry would be impossible to account
for in physics, and indeed, even the classical Hamilton-
Jacobi equation would lose much of its predictive power.
It is in a sense funny to notice that indeterminacy of ob-
servational outcomes is required for information coming
from the global structure of the manifold to be able to
determine the most likely optimal path obtained by clas-
sical Maupertuis type principles. We can notice that this
is so by simply analysing an optimisation algorithm and
observing that various directions must be continuously
tried and discarded to obtain some transition towards an
optimum. This implies the probing of the global struc-
ture of the manifold, or at least the structure of the mani-
fold in the vicinity of the classical solution. If the optimal
solution had been uniquely determined, probing the sur-
rounding of it would bring us no closer to finding it, and
such a surrounding would not even be present. Experi-
ence shows that optimisation principles are more general,
offering solutions even in situations in which an exact fo-
cus on finding the specific solutions of the equations of
motion is futile.

In any case, as a conceptual link between local and
global structure exists, and is covered by a plethora of
mathematical tools, nature must have a way of harmon-
ising these connections. On one side, Lorentz invari-
ance doesn’t allow for signalling in a non-causal man-
ner, re-enforcing some concept of locality, but on the
other side, geometry implies ”subtle” influences coming
from the global structure of our manifold, which how-
ever must be in accord with Lorentz invariance and the
principle of locality. Nature’s ”solution” to this problem
was in a sense quite variate but had always a common
denominator: global structure influenced local physics
in ways that did not depend on Lorentz type signalling
in a direct manner. The most acute aspect of this har-

monisation appears in the black hole information para-
dox, but the situation is otherwise quite general. Instead
of influencing the local structure directly, by means of
causal effects, the influence came in the form of prob-
abilistic effects and correlations. And here we come to
the defining, in my opinion, property of quantum me-
chanics: quantum mechanics has the ability of encoding
global information into local physical effects by means of
probability amplitudes and quantum phases. In a sense
it is quite obvious: the way in which quantum mechanics
analyses all regions of the manifold that are physically
accessible, even though they may be separated by energy
barriers or light cones, does not contradict the notion
of Lorentz causality, as it implies just correlations, and
not causal signalling. Quantum mechanics, all by itself,
gives us access to features that are causally separated or
that are behind large energy barriers, simply by allow-
ing for the global structure of our underlying manifold to
influence the probability amplitudes (or maximal states
of knowledge, according to Schrodinger) of the phenom-
ena we try to determine locally. If such superpositions
of states of knowledge were not possible, as would be the
case in a classical approach to probabilistic calculations,
we wouldn’t gain the same access to global information
as would be required from a purely geometrical point
of view. That quantum mechanics can and indeed does
give us insights into non-perturbative or topological ef-
fects should be well known by now. When writing Feyn-
man diagrams in higher perturbative orders, we obtain so
called ”quantum” or ”radiative” corrections, which basi-
cally imply some form of integration over inner momenta
loops which exist due to the special relativistic effect of
particle creation and annihilation. However, those par-
ticles, in the perturbative approach, are off-shell, hence
they appear to have different masses than their physically
realised counterparts. We have to distinguish the pertur-
bative effects in this calculation and the quantum effects.
The series expansion is usually performed in terms of a
small coupling, while quantum effects behave, perturba-
tively, also similarly. However, the effects are different.
The higher we go in the series expansion in terms of the
coupling, the more quantum effects we take into account,
and those quantum effects contribute to the probing, by
means of integration over all momenta allowed for the
inner loops, of the space of states at energies way be-
yond what we would otherwise access. In fact various
particles have been and are expected to be detected by
means of their off-shell amplitude contributions emerging
in perturbative effects that would occur far below the
energies where the on-shell counterparts would become
real. While this should really be not surprising, the fact
that we can link this with a quantum probing of the non-
perturbative regions, by means of a perturbation theory
that would otherwise look quite remote from the region
where the inner loop particles are on-shell, signals an in-
teresting connection quantum mechanics offers us to non-
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perturbative effects. Of course, the fact that quantum
mechanics can probe into remote regions of our manifold
can be studied also by means of the tunnel effect, or of
the famous SU(2) anomaly for fermions, as identified by
Witten. Therefore, it seems clear that the deeper reason
for the indeterminacies of quantum mechanics is that the
global structures of the underlying manifold must have
an effect on its local structure together with its locally
defined functions, an effect that is not due to a causal,
light-signal-based connection, but instead is encoded in
correlation effects that couldn’t emerge unless quantum
mechanics had its uncertainties. How can this help us
understand dualities? In particular what does it mean
to dualities in string theory? To explain this one has to
go through various ways in which global information can
be obtained locally. Our understanding of the physical
phenomena at lower energies is based on the assumption
that the fundamental object we must deal with is a parti-
cle. A particle is a zero-dimensional object, and as such,
it has no dimension whatsoever. This concept has been
challenged in various ways and for good reason.

One way in which it has been challenged, which will
be of importance later on, is in topology. There, a con-
struction called (co)homology has been introduced as a
topological invariant, namely a mathematical object that
allows us to classify objects that were equivalent from the
point of view of smooth transformations that did not take
into account the notion of distance (or metric). The in-
variant had to be able to get the same value anywhere on
the objects that were equivalent in terms of those smooth
transformations, and discretely change in value, in a pre-
dictable way, on objects that could not be deformed into
each other by smooth transformations. The result in this
case was the classification of tori in terms of the number
of handles or the number of holes. In any case, such
invariants also have some form of indeterminacy. That
very indeterminacy is the same we see in quantum me-
chanics, and the reasons are the same. It was observed
that in order to define a simplicial complex that would
triangulate a space, we have to form linear combinations
of certain simplexes, and that those linear combinations
had well defined coefficients. The (co)homology, and the
rest of the invariants were by construction determined
only up to the coefficient structure, which is usually de-
noted as the coefficient structure of (co)homology. Such
a coefficient structure is determined by one of the ax-
ioms of (co)homology, namely the so called ”dimension
axiom” which fixes the fact that the (co)homology of a
point space is trivial. Topologists call ”trivial” the co-
homology structure that is everywhere reducible leading
to it being Z in the order of the dimension of the point,
namely at order n = 0 and zero everywhere else, hence
all ”regions” of a single point space are connected among
themselves and contractible to a point (which seems triv-
ially true). Well, that would definitely be a point in our
standard understanding. It was however soon realised by

some mathematicians that a specific choice of a coeffi-
cient structure limits the ability of a (co)homology to de-
tect certain features, and that one cannot, by definition,
construct a (co)homology without a coefficient structure.
The remaining alternative was to abandon the dimension
axiom and introduce additional structure into the point.
If we introduce non-trivial coefficients instead of simply Z
in order zero of the (co)homology of a point, it means we
change the coefficients structure of the simplicial complex
from which we derived the (co)homology. This amounts
to a cohomology that would have structure attached to
the points, and if even higher orders in cohomology would
receive structure, instead of being simply zero, more in-
formation could be attached to our point. However, no
matter how much information we attach to a point, there
will always be properties of the actual topological space
that a certain invariant won’t be able to detect, at the
expense of others that it will be able to detect.

This should remind us to some extent to quantum me-
chanics. We will notice that if we extend the point to
a more complex object, we will do it at the expense of
detecting certain features that can be detected by points,
but will get to the situation in which we will be able to
detect structures not detectable by points. String theory
does precisely this.

First, strings are extended objects, therefore they will
have some form of access to non-local information, more
than a non-extended fundamental object. That means we
will obtain some access to non-perturbative information
by means of the dimensional extension we applied to even
a classical string. In that sense, even a classical string
starts by having some insight into quantum phenomena.

Dualities are instances in which string theories defined
in radically different geometric and topological contexts
provide the same physical states and symmetries between
them. The reason why we observe this is because of a
subtle interplay between local and global information as
detected by a string instead of a point. Indeed, the infor-
mation obtained by a string in a certain topological and
geometrical context may as well be totally identifiable
with that obtained in another context. Is there a relation
between such dualities? Or, better stated, would there be
possible to determine new dualities by simply analysing
some properties of quantum mechanics? It seems this
would be the case.

As mentioned previously, quantum mechanics, and in
particular its fundamental indeterminacies, are the way
in which nature harmonises the relation between global
shapes of our manifolds and the local nature of inter-
actions. In the context of extended objects, a similar
effect must take place. Quantum mechanics introduces
the additional quantum phase. Differences in local phases
of various components of the probability amplitude give
us probabilistic insight into the global structure of our
manifold. Basically, in quantum mechanics we are able
to probe the non-perturbative structure by means of rel-
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ative differences in the same complex phase. Entangle-
ment is the result of the existence of quantum states with
complex phases that amount to spacial (or otherwise) in-
separable descriptions of the phenomena. If we were able
to expand such entanglement to extended objects, we
should in principle find that certain string theory con-
figurations involving various global and local structures
become either equivalent or strictly dependent on each
other. This is the origin of string theoretical dualities.
These are the main claims of this article. Let us see in
what follows what can be proved and to what extent.

TARGET DUALITIES

The fact that quantum uncertainty and quantum sta-
tistical fluctuations allow for non-local information to be
revealed is relatively obvious. The fact that inner (say
loop particle, in Feynman diagrams) states are not prac-
tically realised but their possible existence, even at re-
mote regions in spacetime or vastly separated in energy
from the experimental region, do affect the probability
amplitudes, makes it relatively clear that global informa-
tion finds its way in our quantum description. Moreover,
as seen by means of the fermion SU(2) anomaly, quan-
tum mechanics can also probe topologically non-trivial
regions of symmetry groups, allowing us to figure out
what quantum field theories are meaningful and realised
in nature.

The obvious question one may ask is: would it be
possible to use quantum mechanical arguments to de-
termine what topological structure a symmetry group
should have? Isn’t it possible to use quantum arguments
to find arguments for changing our understanding of the
fundamental symmetry groups of nature, for example like
in the transition from Galilei groups to Lorentz groups
introduced by Einstein?

Let us see what we can say about how global infor-
mation is recovered locally in another framework, that
of conformal field theories, in particular conformal field
theories defined on a certain 2-dimensional manifold Σ
which may be embedded into a target manifold we will
discuss about soon. The Lagrangian L of such a theory
is fully solvable, particularly due to the infinite symme-
try group that exists in two dimensions. That means we
can determine the Virasoro central charge c of the theory,
giving us the quantum conformal anomaly, the allowed
states and their corresponding operators, as well as their
operator product expansion coefficients. This Lagrangian
is defined by means of its couplings and the variation of
the couplings due to renormalisation group flows show
us how the operators associated to those couplings be-
have in various limits. We can deform this Lagrangian
by adding to it more couplings and operator pairs.

L→ L′ + ⟨gi|O⟩ (2)

where we can simply express

⟨gi|O⟩ =
∑
i

gi · fi(z, z̄) (3)

If the modified Lagrangian also corresponds to a confor-
mal field theory then we found a potential family of con-
formal field theories. According to the dimension of the
operators, we have irrelevant, marginal, or relevant op-
erators, corresponding to how their couplings flow in the
IR. The marginal operators have the operator dimension
exactly 2 and hence preserve the classical scale invariance
and the couplings remain dimensionless. However, for
marginal operators the couplings may also change under
renormalisation flows. If the addition of such marginal
operators preserves the dimension of the couplings, then
we call those operators truly marginal and we obtain a
spectrum of Lagrangians, and hence a ”space” of theo-
ries. On this space we can imagine a group with some
symmetry operations acting on the space of Lagrangians,
modifying for example L1 → L2 and moving from point
to point on this space of theories. We can imagine var-
ious ways of classifying and partitioning this space, one
of them being by a subgroup of our group of transforma-
tions, call it GD ⊂ G which transforms our theory into an
equivalent theory. The question of what means ”equiv-
alent” here is quite interesting. The theories should in
principle be physically equivalent, and hence should pro-
vide the same physically observable answers for similar
contexts. But such a space of theories, let us call it M is
clearly not detached from the structures one can define
on it. It would be therefore imaginable that an equiva-
lent of a wavefunction could be defined on such a space
and that, given certain types of incompatibility relations
between theories, analogue to the non-commutativity re-
lations of quantum observables, we would obtain a form
of higher entanglement that would play a similar role for
describing distinct but inseparable theories. As the wave-
function and its inherent uncertainty allows us to statisti-
cally probe the non-local, non-perturbative regions of the
usual phase space, in this case, we would be able to find
inseparable and hence strongly correlated theories that
would amount basically to what we are accustomed to
call ”dualities”. In this context, dualities would be noth-
ing but strongly entangled ”states” in this space of theo-
ries. This aspect can be made decently precise if we think
about the connection between gauge symmetry and quan-
tum mechanics and how they both have the same origin.
Adding more theories in the conformal field theoretical
construction amounts to adding more operators and cou-
plings. But the overall context is that of a string the-
ory of which the conformal field theory is the worldsheet
representation and for which the background in which
it moves is represented by yet another space that is (at
least to a high degree) determined by the properties of
the worldsheet. It is well known that in this context, the
couplings gi on the conformal side correspond to allowed
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target space backgrounds in which the string can prop-
agate. The couplings in the conformal worldsheet can
be re-organised into the usual gauge fields of the back-
ground theory. This makes the conformal coupling flow
equations basically the equations of motion of the higher
gauge fields in the background description. If we think
of a simple bosonic string theory, the couplings are all

organised into three fundamental gauge fields: the back-
ground metric, let us call it Ĝij(X), the anti-symmetric

tensor field B̂ij(X) and the dilaton field Φ̂(X) where X
is the background or target space coordinate. Then we
can write the worldsheet action as

S =
1

4πα′

∫ 2π

0

dσ

∫
dτ [

√
ggαβĜij(X)∂αX

i∂βX
j + ϵαβB̂ij(X)∂αX

i∂βX
j − α′

2

√
gΦ̂(X)R(2)] (4)

No wonder our theories in the conformal space M are
entangled, or otherwise strongly correlated, given that
the space itself can be reorganised into a set of just three
distinct gauge fields. We have used the standard nota-
tion for the worldsheet metric gαβ and the associated
determinant g = det(gαβ) while α

′ is the string coupling
constant proportional to the inverse of the string length
and R(2) is the worldsheet scalar curvature.

We already identified the uncertainty of this construc-
tion. In certain cases, the addition of different ⟨gi|O⟩
terms does not make the theory properly distinguish-
able from another. Moreover, the various combinations
of terms that can enter in that pairing may vary from
one addition to another, and hence the sum introduced
above will be over different pairs of couplings and oper-
ators. This looks like a gauge/quantum indeterminacy.
For all practical purposes, when we perform a Feynman
path integral we integrate over all potentially equivalent
trajectories that lead to the same final state. The tra-
jectories may look different, but from the point of view
of the experimental setup they are not distinguishable.
In order to distinguish them we need to modify the ex-
periment in order to add some ”which path” detector,
leading to a totally different context. We can imagine
the same thing here. In a sense, string theory in the
target/background space is the final ”interference pat-
tern” outcome of our Feynman style integration over all
possible paths in the theory space. The uncertainty in
choosing a path amounts to the types of string theory
couplings and in the type of target space configurations
we can construct. In a sense, this is the way in which the
target spacetime ”emerges” from ”entanglement”.

We are accustomed to see dualities as symmetries oc-
curring in such a construction, namely symmetry opera-
tions from our group GD that lead us to equivalent the-
ories. It seems that there is much more structure to this
than just being a group. If we look at the string theoret-
ical description, then the worldsheet action allows us to
calculate S-matrix elements for scattering in the target
space. The objects that will scatter will be fluctuations

in the target theory around the classical values of the
background fields Ĝij , B̂ij and Φ̂. We may denote them
for convenience as

G̃ij(X) = Ĝij(X) + hij(X)

B̃ij(X) = B̂ij(X) + bij(X)

Φ̃ij(X) = Φ̂ij(X) + ϕij(X)

(5)

where the fluctuations hij , bij , ϕ describe the massless
graviton, antisymmetric tensor and dilaton of the target
space theory. Truly marginal operators on the worldsheet
correspond to massless particles in the target space. Rel-
evant worldsheet operators correspond to instabilities in
the target space and hence the existence of tachyons in
the background, while irrelevant operators on the confor-
mal side correspond to massive target states. In string
theory those operators are always dressed in such a way
that they appear as vertex operators with dimension
(1, 1) (denoting the left- and right- handed conformal di-
mension of the operator). In general we say there exists
a toroidal compactification in the background if for some
reason d of the total background dimensions have been
compactified and the gauge fields Ĝ, B̂, Φ̂ as well as X
are independent. The general assumption is that the op-
erators in GD correspond to target space dualities.
In standard quantum mechanics we can describe the

fact that observables are incompatible by means of com-
mutation relations. Let us look at this situation in a
broader sense now. After we promoted observables from
mathematical structures having a unique possible out-
come, that is in a one-to-one relation to the ”real” prop-
erty of our system, to operator valued observables in
which more possible outcomes exist, that are obtained as
possible answers to questions regarding the property of
the system as described by the observable, we realise that
not all such ”multi-valued” observables can be simulta-
neously determined to arbitrary precision. That means,
if we alter the experimental setup and hence we make the
question we ask precise enough to determine one of the
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properties, another property may become completely un-
determined in this new setup. This is essential for the for-
mulation of quantum mechanics, and it is most generally
expressed in terms of the possibility of accurately deter-
mining the answers of two different questions by the same
experimental setup. Mathematically this amounts to a
splitting of the phase space into mutually non-commuting
variables (say position and momentum) and the imple-
mentation of a non-trivial generalised derivative as being
non-trivial, namely DA = [A, ·]. But as we can see now,
there are various mathematical ways in which such an in-
compatibility of observables can be expressed, and each
applies best to a specific domain. What would be the
best way of applying it to the space of theories?

The existence of incompatible observables is the start-
ing point for the so called ”quantum fluctuations” of the
outcomes of some of the observables, in any physical con-
text. But it is precisely this type of fluctuation that al-
lows us to have access to global data in the form of corre-
lations that would otherwise not be possible. We cannot
directly probe the global structure of the manifold we are
working on, but we can probe it by means of correlations
that amount to the encoding of the global structure in
fluctuations of the outcomes. We do something very sim-
ilar in the context of string theory, where the quantisa-
tion of a string follows a very similar pattern, with some
distinctions related to the types of algebras emerging. In
effect, we start with a Witt algebra in a classical context,
describing the meromorphic vector fields on a Riemann
sphere, or the complexification of the Lie algebra of poly-
nomial vector fields on a circle, and by quantisation we
obtain the deformed Virasoro algebra which is the unique
central extension of the Witt algebra which includes the
central charge of the conformal field theory, namely the
so called ”quantum conformal anomaly”. This deviation
from the Witt algebra in the form of an extension makes
sense because quantum mechanics is sensitive to global
structures that are now properly encoded in the quantisa-
tion algebra. But is it certain that this extended algebra
represents the right global structure? The original idea
related to extensions was defined by an early seemingly
simple question: given two groups G and H, what would
be the groups that we can form out of those two groups,
say E, that would have their normal subgroup N isomor-
phic to G and the quotient group E/N isomorphic to H?
A normal subgroup is a subgroup that is invariant un-
der the application of all elements of the larger group in
which it is a normal subgroup, in this case, all elements of
E would leave N invariant, but the classification of E in
terms of elements of N (by means of the quotient opera-
tion) would amount to the group H. If we think in terms
of global effects in quantum mechanics, it is interesting to
note that in general in physics, the symmetry groups of
quantised systems are central extensions of their classi-
cal counterparts. Such central extensions are constructed
”by co-cycle” which basically means that they do indeed

refer to the global, cohomology-related properties of the
groups involved. Moreover, central charges, as the ones
we detect in the quantisation for conformal field theories,
arise naturally due to the requirement of forming a Lie
algebra using projective group representations to start
with. Consider we have a group structure, and we wish
to characterise it. We can for example translate it into
a projective representation. For a group G acting on a
vector space V and given an underlying field F , we can
find a group homomorphism

G→ PGL(V ) = GL(V )/F ∗ (6)

where F ∗ is the normal subgroup of non-zero scalar
multiples of the identity. We would have a projec-
tive representation of a group G given by the operators
ρ(g) ∈ GL(V ), g ∈ G where the homomorphism property
is obeyed up to a constant

ρ(g)ρ(h) = c(g, h)ρ(gh) (7)

and our ”phase” c(g, h) ∈ F is in fact a co-cycle. To
understand the topological nature of this statement, one
can find a set of linear operators ρ̃(g) ∈ PGL(V ), g ∈ G
with the property that

ρ̃(gh) = ρ̃(g)ρ̃(h) (8)

The two situations are different. On one side the homo-
morphism relation must ignore the phase, on the other,
we discuss about equivalence classes in which the phase is
merged into the definition of the representation. There-
fore ρ̃ forms a class of operators, and there will be topo-
logical obstructions emerging in the following way. We
can of course pick from each such equivalence class a
representative ρ(g) ∈ ρ̃(g) such that, at the level of those
representatives, the homomorphism rule is obeyed ex-
actly, and not only up to a phase. This is called a de-
projectivized operator that obeys

ρ(g) · ρ(h) = ρ(gh) (9)

In general when we have a projective representation of
a group, it is not always possible to go back to a lin-
ear representation meaning we cannot go from a map
ρ : G → PGL(V ) to a map ρ : G → GL(V ), the ob-
struction to this transition being characterised by group
cohomology. Quantum mechanics usually takes into ac-
count the phase, which appears as a global effect in the
groups, and therefore, in order to quantise theories in
general, and in particular conformal field theories, what
we do is to find another, related group that can be lifted
towards a general linear group. This different group is in
fact the central extension of the original group, which is
a group H appearing as a subgroup of G×GL(V ) defined
as

H = {(g,A) ∈ G×GL(V )|π(A) = ρ(g)} (10)
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π : GL(V ) → PGL(V ) being the quotient map from
GL(V ) onto PGL(V ). H is a subgroup of G × GL(V ).
The connection between projective representations of
symmetry groups and their de-projectivisation is quite
interesting as it involved topological group structure
which has to be taken into account. By Wigner’s the-
orem for example, if G is a symmetry group, it can be
represented projectively on a Hilbert space by unitary
(or anti-unitary) operators. This usually implies transi-
tioning to the universal cover group of G and taking it
as a symmetry group. As we have noticed, this works for
the Lorentz group but does not quite work for the Galilei
group. Instead, to establish the symmetry group of the
Schrodinger equation one has to construct the central
extension of the Galilei group, known as the Bargmann
group. The reason for this is a topological obstruction
in the very construction of the Galilei group, in partic-
ular a non-trivial group cohomology feature that makes
the transition to quantum mechanics not as direct as in
the case of the Lorentz group. In a sense, if we first
learned of quantum mechanics, we could have thought
to re-consider the reference frame invariance transforma-
tions in order to avoid the topological obstruction that
emerged in the Galilei group. We could have therefore
constructed the Lorentz group by simply demanding that
the group cohomology be trivial in order to make it com-
patible with our quantum formulation. It so happened
however, that we first discovered the Galilei group, and
only thereafter quantum mechanics. But it also so hap-
pened that while we decided to trade the Galilei group
for the Lorentz group when passing from a classical to
a quantum construction (despite the fact that we still
work with Schrodinger’s equation, we know it is only a
low energy approximation), in the case of string theory
we sticked to the Witt algebra and decided to construct
its extension by a 2-cocycle to obtain the Virasoro alge-
bra. This is of course technically fine, but then, what
would have happened if we discovered first quantum me-
chanics and then we tried to define what the proper string
theory would be? Would we still look for an extension of
the Witt algebra? In a sense it seems natural (as in, ob-
struction free) to have the Lorentz group as a symmetry
group if quantum mechanics is to be assumed, and that
means quantum mechanics needs to take into account by
its complex phase, aspects that the global Lorentz group
determines. By going to a cohomology trivial group, we
can construct quantum mechanics and allow for the de-
projectisation and for the meaningful construction of the
complex phase. However, thinking historically, we first
came up with the Galilei group, which has a homolog-
ical obstruction, and when we discovered quantum me-
chanics, we had to construct its extension, going to the
Bargmann group in order to obtain Schrodinger’s equa-
tion together with its Galilei invariance. We didn’t keep
the co-cycle extension of the Galilei group though while
advancing in our understanding of nature. Instead, we

replaced the Galilei group with the Lorentz and Poincare
groups which are not presenting a cohomology obstruc-
tion (or a non-trivial cohomology). However, in string
theory we start with the Witt algebra in the classical
context, and in order to quantise, we perform a co-cycle
extension of the Witt algebra to obtain the Virasoro alge-
bra. Mathematically this seems a consistent way of work-
ing, but so did the Galilei group extension seem when
looked at from the perspective of Schrodinger’s equation.
It’s just so that Nature didn’t do it that way. It would be
pedagogical to remember what the situation would look
like in the transition from Poincare/Lorentz group to the
Galilei group (by the Wigner-Inonu contraction). Having
the generators Ki =M0i with i = 1, 2, 3, we obtain

[Ki, Pj ] = i(η0jPi − ηijP0) = −iδijP0 (11)

and by the Wigner-Inonu contraction we obtain

[Ki, Pj ] = −iδijM (12)

as in the non-relativistic limit the mass term will become
dominant.
We can look at the mass M as an element of a Lie

algebra that commutes with all other generators, also
because it is a scalar, and hence cannot be removed by
some continuous re-definition of the generators. It there-
fore amounts to a central extension of our Galilei group.
In each irreducible representation of the Galilei group we
therefore have to have this mass term, represented as a
scalar, and it is not possible to connect two representa-
tions with different masses by unitary transformations.
In terms of quantum mechanics, the wavefunction ob-
tains always a phase factor corresponding to the mass,
and the condition above imposes a superselection rule
that implies that we cannot construct wavefunctions as
linear superpositions of wavefunctions of particles with
different masses. This must be so because the global
phase is not observable in quantum mechanics, but the
relative phase is. Now, boosts even in the Galilei group,
do induce phase shifts. However, due to the fact that
the global phase is not detectable in quantum mechanics,
this does not affect the preservation of the Galilei group.
However, if different masses were present in a linear com-
bination each component would acquire a different phase,
and a differential phase is detectable in quantum mechan-
ics. To preserve the Galilei group structure, this cannot
happen, and therefore different masses cannot appear in
the same linear combination of states. This is an inter-
esting argument, because such transitions between states
of different masses are indeed observed in Nature, and
hence a simple central extension of the Galilei group, as
constructed by means of its mass as a ”central charge” is
not at all sufficient to describe Nature. The reason why
we didn’t allow the transitions between states of differ-
ent masses in quantum mechanics is because quantum
mechanics was in principle able to detect the topological
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structure of the group, namely the non-trivial cohomol-
ogy associated to the Galilei group and the special type
of central extension needed to construct the quantum
wavefunction made that structure only more manifest.
In fact, the obstruction to de-projectization of the pro-
jective reconstruction of the Galilei group amounted to
quantum mechanics making it clear that there is a dis-
crepancy between the groups we intended to use, and
the real groups Nature chose. Interestingly enough, the
Lorentz group, while topologically more trivial than the
Galilei group, differs from the Galilei group by the way
it behaves in the far reaches of its parameters, in partic-
ular in the far reaches of the velocity. That is the global
structure that quantum mechanics detected, and there
was also the reason why it presented an obstruction to a
clear-cut construction of a quantum representation.

In fact, within the Lorentz local group we can have
various linear combinations and superpositions between
particles of different masses, and we indeed can also en-
tangle various of their properties. We could call such
an effect a ”duality” in the sense that the description of
theories with different central charges may be related and
the properties of the two theories may be ”entangled” and
non-trivially correlated. Would it be possible to search
for a more generalised symmetry group that would be
topologically trivial as opposed to one that would pro-
duce central charges (anomalies)? We have to ask then
what can be done in order to create a structure that is
indeed changing its topology?

Topology changes occur in string theory among duali-
ties like T-duality with non-trivial H-fluxes, and that in-
dicates that topological structure is not pre-defined nor
essential for a theory to be consistent. In essence, in
the case of the transition between Galilei and the central
extension of the Galilei group, what we had to take into
account was in particular a non-trivial cohomology of the
group, which was avoided not by means of a central ex-
tension (as that would give us still a non-relativistic the-
ory), but by means of the change of the original group
itself, in particular, by considering it only a local ap-
proximation of another group valid at a different param-
eter range. In any case, Einstein was guided towards his
construction of special relativity and towards the use of
Lorentz transformations by clear experimental evidence,
which we don’t quite have in the case I wish to discuss
now. There is however another aspect about cohomology
groups that may play a role. As mentioned above, the co-
homology groups are defined only up to their coefficient
structures. The coefficient structure is the topological
structure of a point space. We define a cohomology the-
ory by specifying how it would behave for a single point
space to lowest order. In the simplest case, it is usually
given that

H0(P ) = Z
Hn(P ) = 0, ∀n > 0

(13)

This appears as the ”dimension axiom” in the Eilenberg-
Steenrood axioms of cohomology, and generalised coho-
mologies do in fact ignore this axiom.

When ignoring it, additional structure is given to the
point space in the cohomology theory, and the transition
between cohomology theories with different coefficients is
permitted by the Universal coefficient theorem, which is
represented by an exact sequence depending at one point
on the Extension groups, but not being uniquely defined
by them. We can indeed trivialise the Extension by pick-
ing a specific coefficient structure. Maybe in order to
determine a better foundation for the dualities in string
theory, it is this route that we could take. Of course
we can only guess what type of coefficient structure our
point should have, but probably there is no pre-defined
or pre-given coefficient structure, it is just that in some
coefficient structures it is simply much harder to oper-
ate and to make certain processes or dualities manifest.
However, due to the fact that universal coefficient the-
orems for generalised (co)homologies exist only in very
particular cases, as basic relations, and not as truly uni-
versal rules, practical advances in this direction are still
very limited and localised.

I suggested that we could search for relations between
different coefficients in cohomology as a source for du-
alities some time ago [5] but at that time the connec-
tion with quantum mechanics was not yet clear to me.
In fact, it should have been obvious. The anomalies in
quantum theories do usually emerge due to the fact that
our symmetries are sometimes imprecise and quantum
mechanics tends to probe and detect global structures of
the groups we ”offer” it to work with, making it quite
manifest when the groups we present to it are not really
what Nature intended. Usually we determine such issues
early on as inconsistencies in the quantum descriptions
or in the quantisation procedures that do appear in the
form of anomalies, but it is never quite so easy to see how
to extend or expand our groups or structures, and that
not because of quantum mechanics, but because of our
limited access to experimental evidence, and of course
because we don’t quite ask the questions for which such
modifications of the groups would be pertinent. I suspect
the hierarchy problem and the problem of the cosmolog-
ical constant are basically questions that would be very
pertinent to this.

In particular it is interesting to notice the existence
of a quantum mechanical structure, of the form of su-
perposition of probability amplitudes and of entangle-
ment, as in non-separability due to the existence of such
phase dependent probability amplitudes, at the level of
the theories that can be connected by means of duali-
ties. It seems to be possible to re-interpret even various
mathematical structures by means of quantum type cor-
relations, uncertainty, wavefunctions, etc. Dual theories
could be for example re-interpreted in the form of ”en-
tangled” theories, namely theories that are not separable
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in a cartesian sense in their respective domain of param-
eters, given some additional higher algebraic structure
that connects them and makes them not separable. In
this sense, quantum mechanics may lie at the heart of
dualities in gauge or string theories. In fact, if we look
at the Galilei group and its extension, we notice the type
of change that occurs if we set M = 0. The central ex-
tension indeed becomes trivial, amounting to be just the
extension by the direct product, a fully separable struc-
ture in itself and hence

M = 0 ⇒ c(g′, g) = 1 ⇒ U(g′)U(g) = U(g′ · g) (14)

Of course the construction of the extended Galilei group
with M ̸= 0 doesn’t just yet allow for non-trivial ma-
trix elements between different masses, due to the su-
perselection rule, but that simply happens because the
Galilei group ignores the global structure of our natural
group, or, in a metaphorical sense, following ER=EPR, it
doesn’t take into account the ”wormhole” connection be-
tween them given by the global structure of the Lorentz
group.

If we think in terms of possible extensions, as the direct
product extension for M = 0 indeed is trivial, it clearly
appears that the use of the term ”non-separability” or
”entanglement” when discussing about such structures is
not merely a matter of semantics, and indeed it has a
deeper meaning. One of the questions that has rightfully
asked itself is, if ER=EPR is valid [6], what is the low
energy interpretation of such a phenomenon? We can
imagine black holes being entangled and forming worm-
hole geometries between them, as Susskind showed in
his toy model, but surely, given that we have indeed en-
tanglement between particles that are not even close to
being black holes, what is the ”wormhole geometry” in
that case? If we take as an initial model the Galilei group
extension for M = 0 becoming trivial or a direct prod-
uct, then we can imagine that for M ̸= 0 the obstruc-
tion of the Galilei group creates a situation in which no
”wormhole” is present, and states of different masses are
not connected and cannot appear in linear combinations
of states. However, in the case of the Lorentz group,
the cohomology is trivial, and hence a ”connection” is
created, leading to transitions between masses. In this
sense, this ER=EPR relation can be regarded as parti-
cles being created or decaying. The ”wormholes” in the
low energy domain and in the context of group cohomol-
ogy are nothing but the particle creation and annihilation
processes permitted by relativistic quantum theory.

The wormhole geometry is a geometrical representa-
tion of the fact that particles shared at some point a
causal connection and their wavefunctions become super-
posed and eventually entangled, their description having
to become global, the full information about one par-
ticle being encoded in the whole system containing the
two particles. This can be translated in terms of co-
homology with variable coefficients. In one representa-

FIG. 1: Topological obstruction of the Galilei group vs.
topological connection of the Lorentz group

tion we keep the particles as such and describe our the-
ory with a regular cohomology theory with trivial co-
efficients, say Z. This works as long as we take into
account the proper extensions. After all, entangled par-
ticles do exist also in the Galilei group and can be de-
scribed by Schrodinger’s equation. If we do not wish
to use an elaborate extension of our group, or that ex-
tension simply doesn’t quite suite our requirements, for
example due to inter-mass transitions, we may decide to
change the extension, but by doing so we also have to
change the coefficient structure accordingly. In fact, in
some cases we can change the coefficient structure into
a structure that involves for example elliptic curves, in
which a global geometric connection between the parti-
cles would be more ”manifest”. This would of course be
just a representation of an inner structure of a ”point”
transforming a system made out of two apparently dis-
tinct subsystems, bound however by a more complicated
extension of their group, into one sole system, but with
an intricate geometrical connection between them, mani-
fest in the non-trivial point structure, but with a simpler
group. In any case, the mathematics of universal coeffi-
cient theorems for generalised cohomologies is much more
complicated and in many very important cases, the prob-
lems associated to it are not yet resolved. We can how-
ever apply the universal coefficient theorem in the case of
ordinary cohomology and therefore we can show how or-
dinary (co)homology determined (co)homology with ar-
bitrary coefficients. Given a chain complex C∗ of abelian
groups and a field F the homology group Hp(C,F ) and
the cohomology group Hp(C,F ) are related by a dual-
isation Hp(C,F ) ∼ HomF (Hp(C,F ), F ). If the coeffi-
cients do not form a field, but are an arbitrary abelian
group, then this relation is corrected by an Ext group.
If we think in a dual sense, then if F is a field then
there is an isomorphism Hn(C) ⊗ F ∼ Hn(C ⊗ F ) and
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if F is more general, then we obtain corrections by the
Tor group. I will now give the standard construction of
the Universal Coefficient Theorem [7]. If C∗ is a chain
complex of free abelian groups and A is an abelian group
then we denote C∗ = HomA(C,A) the dual cochain com-
plex with respect to A, Hn(C) the chain homology of C
and Hn(C,A) the cochain cohomology of C∗ with coeffi-
cients in A. There exists a canonical morphism of abelian
groups∫

−
(−) : Hn(C,A) → HomA(Hn(C,Z), A) (15)

given by taking the map of a cocycle into the evaluation
of that cocycle on a chain

[ω] → ([σ] →
∫
σ

ω = ω(σ)) (16)

Then the universal coefficient theorem then states that
there is a short exact sequence of the form

0 → Ext1(Hn−1(C), A) → Hn(C,A) → HomA(Hn(C), A) → 0 (17)

and the sequence splits (albeit non-canonically). For
group cohomology some additional information is needed.
SupposeG is a group andA is an abelian group. Then the
universal coefficient theorem relates homology for triv-
ial group actions of G on Z and cohomology for trivial
group actions of G on A. The (co)homology for triv-
ial group actions is defined as the (co)homology group

Hn(BG,A) where BG is the classifying space of G. A
classifying space of a groupG is a topological space whose
fundamental group is G and whose universal covering
space is at least weakly contractible. With this the uni-
versal coefficient theorem for group cohomology relating
(co)homology groups with trivial group actions is given
by

0 → Ext(Hp−1(G,Z), A) → Hp(G,A) → Homp(Hp(G,Z), A) → 0 (18)

and the sequence splits (albeit not naturally) and we ob-
tain

Hp(G,A) ∼ Hom(Hp(G,Z),M)⊕ Ext(Hp−1(G,Z), A)
(19)

Mathematically, the procedure is not as well defined, and
clearly I left many aspects undefined. For example, yes,
there exists group cohomology with coefficients in ellip-
tic curves, but there may not exist a universal coefficient
theorem linking such (co)homologies. Point being, math-
ematics is not yet as developed to make any statements

regarding that aspect in general. However, going back to
the constructions of physics, more interesting things can
be said.

It is interesting how the fact that quantum mechanics
had access to global data imposed the mass conserva-
tion of the Galilei group [8]. In order to see this, I will
closely follow the well known results of [13]. Taking into
account the infinitesimal elements of the one-parameter
subgroups of the Galilei group considered as a Lie group
and using the group law

G′G = (b′, a′, v′, R′)(b, a, v, R) = (b′ + b, a′ +R′a+ bv′, v′ +R′v,R′R) (20)

we can determine their commutators and form the Lie
brackets for the Lie algebra of the group. We take the
basis elements of the algebra being τ the time transla-
tions, ki(i = 1, 2, 3) the space translations, ui(i = 1, 2, 3)

the pure Galilei transformations, and Mi(i = 1, 2, 3) the
rotations. We get then

[Mi,Mj ] = ϵijkMk, [ui, uj ] = [ki, kj ] = 0 (21)
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[Mi, uj ] = ϵijkuk, [ki, τ ] = 0 (22)

[Mi, kj ] = ϵijkkk, [ui, kj ] = 0 (23)

[Mi, τ ] = 0, [ui, τ ] = ki (24)

We have the physical representation of the group in the
form of

U(b, a, v, R)ψ(p,E, ξ) = exp[−i1
2
ma · v + ia · p′ − ibE′]

∑
ξ

ψ(p′, E′, ξ)[Ds(R)]ξζ (25)

where ξ, ζ refer to the spin degrees of freedom and

p′ = Rp+mv
E′ = E + v ·Rp+ 1

2mv
2 (26)

where Ds characterises the particle behaviour with re-
spect to rotations. We can write with respect to this the
infinitesimal transformations as

M = −p× ( ∂
∂p )− iS

u = m( ∂
∂p ) + p( ∂

∂E )

k = p, τ = E

(27)

This realisation adds a new commutation relation, in the
sense that now the translations and pure Galilei trans-
formations no longer commute

[ui, kj ] = mδij (28)

What we have in fact is a projective representation. We
therefore obtained a representation of the Lie algebra of
a central extension of the Galilei group and not of the
Galilei group itself. The Lie algebra element of the one-
parameter subgroup by which the extension was made
is µ = m. The extension is central so that µ commutes
with all other Lie algebra elements but it is not trivial so
that µ must appear in the Lie brackets. The enveloping
algebra we can form now admits as invariants

2µτ − k2 = 2mE − p2 = 2mV
−(µM + k × u)2 = m2S2 = m2s(s+ 1)

µ = m
(29)

We conclude that the Galilei group allows us to consider
the internal energy of an isolated particle as an arbitrary

parameter. In particular all representations (m,V, s) and
(m,V ′, s) are physically equivalent as shown already in
ref [13]. However, we see that V is an element of the
centre of the group algebra. Therefore an equivalence
transformation can modify this centre. The observation
we need to make is that we work with an extension of
the Galilei group and such an extension doesn’t have a
unique Lie algebra. We have in fact a class of algebras in
one-to-one correspondence with the distinct but equiv-
alent systems of factors of the projective representation
associated with the extension [13]. When we go from one
algebra to another equivalent one, we have to modify the
centre element V only. The fact that within the centre of
the enveloping algebra of the group we find a basis ele-
ment of this algebra (in this case µ) means that we have
a superselection rule. If we have a wavefunction formed
from the superposition of two states of different mass,
again referring to [13],

ψ = ψ1 + ψ2 (30)

with the two ψ1, ψ2 belonging to the physical represen-
tations (m1,V, s) and (m2,V, s) of the Galilei group then
we can transform this composed state under the following
series of transformations: a translation a, a pure Galilei
transformation v, the inverse translation, and the inverse
Galilei transformation

(0, 0,−v, 1)(0,−a, 0, 1)(0, 0, v, 1)(0, a, 0, 1) = (0, 0, 0, 1)
(31)

and we get the identical transformation. However, with
respect to some physical representation this set of oper-
ations is represented by a phase factor at most.

U(0, 0,−v, 1)U(0,−a, 0, 1)U(0, 0, v, 1)U(0, a, 0, 1) = e−ima·v (32)

and the composite state becomes

ψ = ψ1 + ψ2 → ψ = e−im1a·vψ1 + e−im2a·vψ2 (33)

Ifm1 ̸= m2 then an identical transformation would affect
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the norm of any of the component states. The relative
phase of the two states having different masses is arbi-
trary and therefore quantum mechanics should not allow
states with a mass spectrum or unstable particles. I had
to explain this in detail to make it clear how quantum
mechanics can detect features of the group we use and
how superpositions are affected by the type of groups we
choose.

Let us see if we can understand the transition between
different theories now in terms of quantum entanglement
and non-separability. As we have seen above, the change
in the cohomology of the underlying symmetry group as-
sociated to quantum mechanics eliminates a superselec-
tion rule imposed by the group cohomology of the Galilei
group. In that sense, we see this change in connectiv-
ity and the reduction of the topological obstruction in
the symmetry group as a ”wormhole” which affects the
types of superpositions we can form in quantum mechan-
ics. Indeed, in the realistic situation in which we have
local Lorentz symmetry the group has trivial cohomol-
ogy and we can indeed form states with a spectrum of
masses. This allows the decay of particles, as well as the
creation of entanglement between the decay products.
So, we have seen that the ”wormhole is entanglement”
idea can have an interpretation in other structures, for
example in groups and their topological structure, as op-
posed to only thinking in terms of boundary and/or bulk
spaces. This brings us to the situation of dualities in
string theory.

It is interesting to see how in string theory the quanti-
sation is being performed. The main idea of introducing
a string is to extend the particle to an object that has
an additional dimension. This action cannot exist all by
itself, as there are a series of symmetries that need to
be obeyed for the theory to properly take into account
the principles of physics we already know. Among those,
of course we start with local Lorentz invariance and dif-
feomorphism invariance to which we add the Weyl in-
variance on the string worldsheet. Quantisation however
takes into account the global structure of any underly-
ing manifold, and because of that not all symmetries are
compatible with each other. Moreover, it is not always
simple to lift the diffeomorphism operation to quantum
mechanics. To start from the very beginning let us in-
troduce the Witt algebra as

g = R[Ln : n ∈ Z] (34)

where Ln is the operator on the Laurent polynomial ring
R[z, z−1] given by Lnp(z) = z1−np′(z). The Witt algebra
then is being generated by such elements (Ln)n∈Z that
satisfy the commutation relations

[Lm, Ln] = (m− n)Lm+n, m, n ∈ Z (35)

If we replace R with C we define our algebra now gC.
The group of diffeomorphisms on a smooth manifold M ,

Diff(M) has a Lie group structure and we then have
a Lie algebra of this group V ect(M) consisting of the
smooth vector fields on M . If M is chosen to be the unit
circle S1 we obtain a Lie group that has a Lie algebra
defined by the Witt algebra. To see this we look at an
infinitesimal diffeomorphism on the circle and identify it
to a vector field on S1. The vector field is for example a
field of tangent vectors. Each tangent vector can be seen
as a multiple of ∂θ so the vector field can be described
by A(θ)∂θ where A(θ) are smooth functions on S1. We
can rewrite A(θ) as a Fourier series and the space of
vector fields is generated by {einθ|n ∈ Z}. Now let Ln =
−ieinθ∂θ. These satisfy the generator relations for the
Witt algebra for all smooth functions f on S1

[Ln, Lm]f = ei(n+m)θi(n−m)f = (m− n)Ln+mf (36)

which leads to the well known Witt algebra relations

[Ln, Lm] = (m− n)Ln+m (37)

This algebra is describing the operations associated to
diffeomorphism invariance for our S1 object and is the
basis of the generation of the gauge invariance of a (closed
bosonic, in this simple example) string theory. In any
case, quantisation implies lifting the theory to a recov-
ery of the de-projectivised representation of the struc-
tural symmetry group. We can imagine the Witt algebra
acting on the Heisenberg algebra by derivations, but in
fact at the level of representations, the Witt algebra does
not act on the Fock representations directly. The usual
solution to this is the construction of a central exten-
sion of the Witt algebra by co-cycle. Bringing together
the Lorentz/Poincare symmetry, the Diffeomorphism in-
variance, and the Weyl symmetry in a quantised theory
however is not quite trivial. Of course, we have to go
to the central extension to make sense of the action of
our operators on the Fock space we construct, but even
so, we encounter anomalies. Namely, we notice that the
central extension of the Witt algebra in which we work,
deviates from the algebra of the operators we would like.
If we consider the stress energy tensor, under conformal
transformations it will gain a term that violates the ten-
sor law, and in that way we obtain a central charge of
the transformation. The central charge is precisely the
amount by which the stress energy tensor violates the
tensor law at the classical level. If we continue with a
quantisation prescription, say BRST we obtain an addi-
tional degree of freedom that violates Lorentz invariance.
This is a result of the fact that in Lorentz symmetry is not
quite compatible with the string symmetries under quan-
tisation. However, we can solve this problem by adding
ghost fields in the process of the BRST quantisation. In-
deed, we have to fix three gauge symmetries in string
theory, and we do that by promoting the Jacobian deter-
minants obtained via the gauge fixing conditions under
the path integrals to a field dependent expression using



13

the relation between the determinant and the exponential
for ghost fields. The Jacobian is simply the best linear
approximation of the area resulting from a deformation
of the integration surface by a given transformation. The
transformation here is given by the gauge fixing condi-
tion, which then the field representation of the Jacobian
transports consistently across the entire manifold. How-
ever, by doing this, aside of fixing the gauge (or making a
gauge choice) one also expands the Fock space to a Fock
space that contains in essence also ghost mode operators.
The ghost modes are extremely important in this context
as they implement the gauge choice as a variable transfor-
mation that must be consistently transported throughout
our space. This ghost system will contribute to the stress
energy tensor allowing us to rewrite it in a covariant way
but will also deform our algebra. A particular choice
of the coefficients appearing in the ghost corrections ob-
tained in our algebra allows us to then recover the Witt
expression for the algebra

[Lm, Ln] = (m− n)Lm+n (38)

for our quantised theory, however, on a larger Fock space
that includes the ghost states. Physical states are to be
associated to BRST cohomology classes. But for that
we need the BRST charge operator, which is the equiva-
lent of the exterior derivative in a cohomology theory. As
such, this operator is the equivalent of a boundary opera-
tor, and hence, must satisfy the relation Q2 = 0 meaning
basically that the boundary of a boundary is nill, or oth-
erwise stated, a true boundary configuration must close
upon itself. With this requirement we can show that
for a bosonic string, the BRST charge does satisfy this
property, leading to a vanishing of the anomaly in the
case of D=26 dimensions. This is the basic path that
allowed us to obtain a quantised theory of a string (in
this case bosonic). We have to remember however some
choices that we made in this process. We made an exact
choice for the group designed for our symmetry to be one
that results in the Virasoro algebra locally. We expanded
around the Virasoro algebra with various group operators
and used a series of ghost fields to make it consistent with
quantum mechanics, which in a sense was expected given
that it was after all the central extension of the Witt al-
gebra, and that indeed the central extension makes the
quantum construction compatible with the symmetries
of the extended algebra. However, in all honesty, we do
not know what the actual group is supposed to be. The
anomaly cancellation that occurs in D=26 is only depen-
dent on us making the assumption that the same symme-
tries that are valid in non-string cases must be extended
by the means of a central, co-cycle based extension, which
then leads to a not so surprising BRST cohomology as a
domain for our physical states. If Einstein were to think
in a similar way, lacking additional experimental evidence
from, say, Maxwell’s electrodynamics, we would be work-
ing with a central extension of the Galilei group, which

amounts to the Bargmann group, but which also includes
false, un-natural superselection rules. But I am sure it
could be argued that there is no factual reason to chal-
lenge this approach for string theory, as we know of the
actual symmetries, namely local Lorentz invariance, gen-
eral reparametrisation invariance hence diffeomorphism
invariance on the worldsheet, and weyl invariance as a
result of a generalisation to a string worldsheet. How-
ever, as in the case of the Galilei group, the obstructions
appear at the level of quantum mechanics, so, it would
make some sense to think of potential modifications orig-
inating from our quantum mechanical understanding of
Nature.

There was some work done up to now in the field of
so called non-critical string theories. There, we assume
that we can work with string theories that do not satisfy
the cancellation prescriptions for anomalies, and there-
fore can exist in lower dimensions, say in D=4 dimen-
sions. The problem that appears in such approaches is
that the actual Lorentz symmetry or, if not, the var-
ious gauge symmetries are lost. Unless we have some
strong guiding principle for such a move, there is no jus-
tification to make it. But is there such a justification?
The main question that must be asked here is one that
emerges in quantum information and that is required to
unify various aspects of our geometrical understanding
of Nature. The question is ”how do we know something
about somewhere else?” The Lorentz group of transfor-
mations, and implicitly special relativity, are based on
the observation that light travels at a constant speed in
vacuum, constant in the sense that it doesn’t depend
on choices of reference frames. However, it is a leap of
faith to assume that the extraction of information about
an event that is separated in space must only be per-
formed by means of light signals. In fact, quantum in-
formation is based on the fact that the amount of in-
formation that can be transmitted by classical means
(that means, by light pulses) can be drastically dimin-
ished if there are some types of correlations that involve
global, non-separable information shared by the two par-
ticipants. Our concepts of spacetime intervals are defined
by means of classical light rays being the sole source
of information retrieval. This leads us to the Lorentz
group. However, if entanglement is involved, some con-
jectures claim that the geometry of spacetime is altered
(say ER=EPR). We can understand how that would af-
fect large black holes entangled with each other, having
wormhole geometries between them, but how would that
affect the local structure of spacetime, and in particu-
lar the Lorentz group transformations? Quantum me-
chanics allows us to probe into the non-perturbative and
topological regimes of our underlying manifolds and our
group structures. The existence of anomalies in the quan-
tisation of a string when the Lorentz symmetry is put
together with the Weyl and reparametrisation symme-
tries of the worldsheet could mean other things than the
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fact that we need to expand the number of dimensions
of spacetime. One might ask what kind of modifica-
tions to the Lorentz group should be made in order to
take into account that information retrieval ”speed” lim-
itations due to quantum mechanics must be superposed
with the light transmission limit of the traditional special
relativity? It is well known that the Lie algebra is a local
approximation of a Lie group, and that in principle sev-
eral possible Lie groups can be associated to the same Lie
algebra. In fact, Lie groups that are isomorphic to each
other have isomorphic Lie algebras, but the reverse is not
true. Only if we consider simply connected Lie groups
do we have the correspondence between Lie algebras and
Lie groups one-to-one. We can have isomorphic Lie al-
gebras that correspond to different Lie groups. Quan-
tum mechanics should in principle be sensitive to the
”true” Lie group of Nature, and therefore we should see
discrepancies once situations are involved where quan-
tum mechanics may ”probe” into this natural group that
deviates from our expectations. It is possible that the
anomalies to the quantisation of string theory suggest
deviations from the general group laws we imagined pre-
viously when considering only the local Lie algebraic re-
alisations. It does not seem that those deformations are
only visible in the high energy domain of string theory.
It seems like the relatively low energy region around a
black hole horizon already makes many such problems
manifest. The transition between symmetry groups and
some form of extension occurs in physics in various sit-
uations. Wigner’s theorem states that a symmetry of a
quantum mechanical system determines an (anti-) uni-
tary transformation in the Hilbert space up to a phase
factor of the form eiθ. Given therefore a symmetry group
G there exists an extension G′ of G by U(1) which acts
like a group of unitary transformations on the Hilbert
space. However, most of the time, such central exten-
sions are not directly used, as larger symmetry groups
are usually desirable. For example we do not use the
group SO(3) as often, simply because it has the tendency
to produce a sign ambiguity, and we can use its univer-
sal cover SU(2) where the sign disappears. In the same
way, the connected component of the Lorentz group has
a similar problem which is avoided by using the univer-
sal covering SL(2,C). This however does not work in the
case of the translation group R2n of translations in both
positions and momenta, where the phase factors cannot
be hidden. One therefore has to work with the central
extension, which is the Heisenberg group. As showed pre-
viously, the same happens for the Galilei group which is
not a symmetry of the Schrodinger equations but its cen-
tral extension, the Bargmann group is. Another example
worth mentioning is of course the algebra of currents,
which is related to the Kac-Moody algebras which are
themselves the universal central extensions of the loop
algebras. It seems suggestive that in both situations in
which a central extension was used to introduce a gauge

symmetry in quantum mechanics, there was something
fundamentally new going on in physics. Galilei had to be
replaced with Lorentz, and the anomaly of lifting Galilei
to a quantum symmetry was eliminated, and the phase
space translation R2n with its non-trivial phase was the
indication for quantum mechanics. The combination of
Lorentz, Diffeomorphisms, and Weyl and the resulting
string anomalies could be the indication of some new
physics as well. Given our function c(g, h) encoding the
non-trivial phase above, ϕ : G × G → U(1) such that
U(gh) = U(g) ·U(h) · c(g, h), we notice that U(g) can be
chosen such that c(g, h) = 1 then U is a unitary repre-
sentation of G on the Hilbert space. If that is not the
case, we have a projective (or ray) representation because
the phase factor c keeps appearing. Using this c we can
construct a unitary central extension G′ of G. It has
been observed that when G is semi-simple and simply
connected as a Lie group, we can choose U(g) such that
c(g, h) = 1 as a constant. Then G can be represented as
a symmetry group on the Hilbert space. Looking at the
previous examples, the group SO(3) is semi-simple but
is not simply connected, therefore we have an ambiguity
c(g, h) = ±1 and hence we can form a universal cover
SU(2) which is semi-simple and simply connected and is
a symmetry group on the Hilbert space. The restricted
Lorentz group is semi-simple but not simply connected,
therefore we have a double covering SL(2,C) which is
semi-simple and simply connected and a symmetry on the
Hilbert space. The group of phase space translations R2n

acting as translations of positions and momenta is indeed
simply connected, but it is not semi-simple, therefore we
have to go to a central extension which is the Heisen-
berg group. The same thing happens with the Galilei
group which is neither semi-simple nor simply connected
and requires a central extension which is the Bragmann
group. We see that we indeed finally had to modify the
theories we had before in the cases in which the com-
patibility with quantum mechanics was violated by the
group being either simply connected but not semi-simple
or neither simply connected nor semi-simple. The fact
that a group has a non-semi-simple structure means that
it cannot be decomposed into irreducible (simple) com-
ponents, or that the group itself is not such an irreducible
component. Basically a non-semi-simple group is one in
which there is interference between its parts.

SYNTHETIC STRINGS

The problem with string theory and its dualities, in
particular the string duality relating small and large ob-
jects, is linked with the ultimate definition of ”infinites-
imal”. Physicists should probably know that point-like
and infinitesimal do not mean the same thing, and one
cannot use the two concepts interchangeably. However,
the basis of calculus is such that those two concepts
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are indeed interchangeable, and in physics we use the
same calculus when dealing with Galilei groups, Lorentz
groups, or Virasoro groups.

We should however remember (or state) that the
Lorentz group transformations appear as a multiplica-
tive formal group law, and that a formal group law is
usually employed when an intermediate context must be
described, namely in between Lie groups and Lie alge-
bras. In general, a Lie group has some form of global
structure and is described, albeit not easily, by means
of a topological space or a manifold. Lie algebras are a
method of linearising Lie groups. They behave like the
tangent space to the identity of the group. The Lie alge-
bra is usually enough to determine the connected com-
ponent of the Lie group. However, the Lie algebra is
limited by the fact that it is defined around the iden-
tity. In characteristic zero of an underlying ring (meaning
zero number of multiplicative identities added together
to sum into the additive identity) the Lie algebra is suffi-
cient. However, if the ring is more general, using simply
the Lie algebra will not provide us information about
all connected components. The Lie algebras simply are
not sufficient to probe the entirety of the group. What
is required is a formal group, and the associated formal
group law, that can probe regions inaccessible to the Lie
algebra itself. The characteristic of formal group laws is
that they can be used in situations in which the objects
they act upon are generally higher order infinitesimal.
As a matter of definition, if we have a commutative ring
with identity R, we call a one-parameter formal group
F over R the power series F (X,Y ) ∈ R[[X,Y ]] with
the properties that F (X,Y ) = X + Y + d2(X,Y ), where
d2(X,Y ) are terms of degree larger or equal to 2, and that
F (X,F (Y,Z)) = F (F (X,Y ), Z), namely the associativ-
ity. That means there is much more genius in the Lorentz
transformations than first assumed. Not only are they
adapted to a finite speed of light, which is why they orig-
inally have been introduced, but they are also adapted to
variations of the infinitesimal objects on which they are
applied. The Lorentz group has been in fact constructed
in the form of a formal law due to the way it has been ex-
panded from the Galilei group. However, to make them
compatible with quantum mechanics when various other
(gauge) symmetries are introduced, one may wish to con-
sider generalisations. As mentioned before, the standard
approach is to consider extension, but as I showed before,
Nature didn’t choose the Bargmann group (the central
extension of the Galilei group) but instead the Lorentz
group, which is topologically different from the Galilei
group and its central extension. However, Nature seems
even more subtle than that. As the Lorentz law appears
in the form of a formal group law, and is in essence form-
ing a formal multiplicative group by itself, it may be
useful to consider it in the context of synthetic differen-
tial geometry [9]. Basically, by synthetic geometry we
refer to a type of geometry focused on the categorical

structure of the spaces involved, and not on the differen-
tial description usually employed. Using this geometry,
it is possible to define a category of partial differential
equations, as introduced by A. M. Vinogradov [11], [12].

Because of this, its axiomatic structure is broad enough
to encompass generalisations that are not considered in
the usual interpretations of geometry, having as ultimate
goal the replacement of most if not all differential geomet-
ric prescriptions with algebraic ones. While the Lorentz
group law is a formal group law, the rest of the gauge
symmetries that we require on the string worldsheet are
not, in particular, the worldsheet diffeomorphisms and
the Weyl transformations.

If we are to follow the standard approach of string the-
ory quantisation, what we do is to implement the string
worldsheet gauge symmetries as constraints, and to im-
plement a gauge choice by means of sets of ghosts and
anti-ghosts a la BRST cohomology. In a sense the BRST
cohomology quantisation prescription uses ghosts as a
form of ”regularisation” for the potential incompatibil-
ity between the Lorentz symmetry and the gauge invari-
ance on the string worldsheet when quantum mechanics
is ”switched on”. We do in fact obtain ghost contri-
butions for example to the stress energy tensor of the
string, and if we separate that term out, we notice that
together with the matter stress energy tensor we can in
fact cancel out the resulting quantum anomalies due to
the various gauge symmetries introduced, with the rela-
tively funny requirement that the target or background
spacetime is 26-dimensional in the bosonic string case
and 10-dimensional in the superstring case. The origin of
this high-dimension requirement is therefore to be traced
to the way we considered the rest of the gauge symme-
tries on the worldsheet. One may ask whether something
is wrong with them, before one just decides to work in
higher dimensional spaces, but this was not, historically,
what people did. The fact that the quantum anoma-
lies could be removed only in higher dimensions however
led to some ideas of working with so called non-critical
string theories, where the conformal symmetry on the
worldsheet was simply abandoned. Probably that is not
the right way to go. However, there could be other ways
to deal with this, aside of the generally accepted com-
pactification of the extra-dimensions. In fact, it could
be possible to understand how the quantum anomalies
could be eliminated in lower (maybe even (3+1)) dimen-
sions if one tried to express all gauge symmetries in a
form more suitable to the extension to extended objects,
or in general to objects that have a non-trivial structure.
The transition from a point to an extended object is not
at all trivial, and in fact it is the subject of synthetic ge-
ometry which tries going through a series of intermediate
steps (namely the so called infinitesmial spaces of various
orders). In fact, we should remember that the Lorentz
law is defined locally and acts point-wise. How could it
be generalised to see how it would act when the point-
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object on which it acts is replaced by a string? We should
not consider the string as ”made up” of smaller com-
ponents. Physicists keep reminding us that we need to
see the string as ”fundamental”, and therefore, although,
luckily the Lorentz group appears as a formal group, it
would be interesting to see explicitly how it acts when
it is not supposed to act on a point-like object but on
an extended object? This would amount to a categorifi-
cation of Lorentz symmetry. But apparently we have it
rather easy with the Lorentz symmetry, and not so much
with the other gauge symmetries of the worldsheet. In-
deed, both diffeo- and Weyl are much more distant from
synthetic geometry than Lorentz. Therefore it is a per-
tinent question to ask whether string theory could be
made consistent in lower dimensions provided we gave it
proper modifications of the group laws as pertinent to
extended objects, and then go to the low energy limit by
transitioning to infinitesimal spaces instead of set the-
oretical point-based spaces. In fact, whenever we work
with standard calculus, we assume we can take certain
limits in which various properties of infinitesimals can
be ignored. We can look for example at the notion of
a standard derivative. We can assume that, when we
calculate a derivative in the limit in which the distance
between two positions becomes very small, we can ne-
glect all properties that are of higher order. In synthetic
differential geometry the properties related to such differ-
entials, in particular the ability to ignore higher powers of
infinitesimals, is introduced as an axiom. However, one
may ask, if one accepts that some infinitesimal proper-
ties can be ignored, what infinitesimal properties cannot
be ignored? In fact, it is possible to formulate consis-
tent axiomatic systems in which some special infinites-
imal structures cannot be ignored. If we assume that
our fundamental object is a string (and not a straight
line as in synthetic differential geometry) we could ask
what kind of fundamental infinitesimal property should
we not ignore for string theory to accommodate the usual
symmetries on the worldsheet in the usual (3+1) dimen-
sions. This is an alternative way of thinking to the usual
compactification approach in string theory. While string
theory generally claims to have an extended fundamental
object, it doesn’t extend the consequences of such an as-
sumption to the differential geometry used to work with
string theory or with the symmetry groups that rely on
a point-like mathematics. The result is that what we ask
in reality to string theory is : if we introduce a tiny vi-
brating string which we claim to be fundamental, but we
continue believing that it is made out of smaller entities
(points), which we then use to define various constraints
due to the symmetry laws we know from our large scale
approach to physics, what do we have to change in the
parameters we work with in our point-based physics to
accommodate this construction? The answer is in gen-
eral that we have to extend the dimensions of our space.
However, the question we should ask is : if we intro-

duce an extended object as a fundamental object, how
do we have to change the differential geometry we are
customary using, as well as the group laws of the sym-
metry groups we constructed in our point-based world
in order to accommodate such an extended object? This
radically changes our perspective on string theory and its
meaningful definition in various limits.

Synthetic geometry is a categorical approach to geom-
etry in which the underlying structure is that of a topos.
As such, the logic involved in synthetic geometry is not
the classical logic anymore, but instead the so called in-
tuitionistic logic. The main difference between classical
logic and intuitionistic logic is the fact that we can in the
latter case abandon the rule of excluded middle

ϕ ∨ ¬ϕ (39)

As a result of this convention, the double negation prin-
ciple is not allowed, and therefore

¬(¬ϕ) =⇒ ϕ (40)

is not a valid implication in intuitionistic logic. This
rule is particularly important in the description of in-
finitesimals. In general, we say a number is invertible if
it is nonzero. However, while in classical logic we can
conclude that if a number is non-invertible it must be
zero, in intuitionistic logic, this must not be necessarily
true. A non-invertible number may be zero, but it may
be any other number that may be, for example, in the
same equivalence class with zero, given certain properties
of that class. Another aspect is the notion of linear de-
pendence and independence. In intuitive logic and topos
theory those two concepts cannot be directly related to
each other in the same way classical logic allows. For
example let M be vector space valued in a commutative
ring R, and letM be in a topos E . We say that an n-tuple
v1, ..., vn ∈M is linearly free if

∀λ1, ..., λn ∈ R, [

n∨
i=1

(λi#0) =⇒ ¬(
n∑

i=1

λivi = 0)] (41)

is valid in E , where the symbol # means that the element
on the left side is invertible, i.e. it is separated (apart)
from zero, or (¬(x = 0)). We say that the same n-tuple
is linearly dependent if

∃λ1, ..., λn ∈ R,¬[
n∨

i=1

(λi#0) =⇒ ¬(
n∑

i=1

λivi = 0)] (42)

is valid in E . In intuitive logic the notion of linearly
dependent and that of not linearly free are not equiv-
alent. The linearly free vectors v of M are those that
can be defined to belong to ¬{0} while the non-linearly
free vectors belong to ¬¬{0} which however in general
is not {0}. Linear independence however, defined in the
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classical logic sense implies

∀λ1, ..., λn ∈ R, [

n∑
i=1

λivi = 0 =⇒
n∧

i=1

(λi = 0)] (43)

It is important therefore to notice that linearly free is not
equivalent with linearly independent.

One aspect that looked interesting in an introduction
to synthetic differential geometry was the relatively sim-
ple observation that when we defined a derivative in cal-
culus, we calculated the first derivative by ignoring the
second or higher order variations so, if we had an oper-
ator h that generated a variation, we ignored any higher
power in it hn, n ≤ 2. When performing compactifica-
tion we construct a boundary operator, by implementing
the requirement that δ2 = 0, which, in translation from
the language of topology means that the boundary of
a boundary is zero, or, any boundary must be closed.
Of course, not every closed curve is a boundary, but ev-
ery curve that is a boundary must be closed. These are
two instances in which the quantity we ignore, defined
as an infinitesimal distance between points in the first
case, and as a closing condition upon itself in the second
case amount to two types of large scale ”accountabil-
ity” of the null potency of certain operators. In the first
case, the fact that our distance is infinitesimal allowed
us to ignore pretty much everything about it and only
characterise the function at a given point, and in the
second case we couldn’t ignore quite everything about
the object, but we could still take the limit and consider
another form of null potency, namely of the boundary
operator. Synthetic geometry is indeed a very attractive
approach to take, but unfortunately it is not fully gen-
eral. It does introduce an ”infinitesimal”, the interval ∆,
that can be considered a ”straight line” and replaces the
point, while being an object in the tangent space of our
previous manifold, and inside our manifold at the same
time. While it is very desirable to have such an extended
tangent ”point”, what we need is something with more
structure than just being the extension of a point to a
segment. Our string has modes of excitation, we have
creation and annihilation operators acting on this fun-
damental ”segment” and therefore this approach is too
restrictive. However, some properties that synthetic ge-
ometry discovered remain valid. For one, we may find
it necessary to think of all the structures that we wish
to preserve at the lowest scale and define those synthetic
differentials (of order one) in them. The fact that the
Lorentz group is a formal group insures that the Lorentz
transformations will be preserved when going to a syn-
thetic counterpart (or at least that they can be preserved
in first order, would be interesting to see what corrections
one could expect to the Lorentz laws if one goes to higher
order fundamental differentials). The null potency of the
infinitesimal can be found in another part of the quan-
tisation prescription, namely in the BRST quantisation

where the BRST charge Q (which is in fact a bound-
ary operator if we think cohomologically) is null potent
(Q2 = 0) and could be seen as part of the infinitesmial
topos. The central charge governs the form of the stress
energy tensor in the BRST quantisation of the bosonic
string and in fact, if we denote a ghost field by b we can
see that

{Q, b} = T = TX + T ghost (44)

which means that the anti-commutator of the BRST null-
potent charge with a ghost field results in the stress en-
ergy tensor and the null-potency of the BRST charge
demands that the central charge measuring the confor-
mal anomaly can be ”regularised” (that means, properly
identified) by the ghosts, and then cancelled by shifting
the dimension of the background space to (in the bosonic
case) c = 26. This is common knowledge. What is not
common knowledge is that while the direct cause for this
is the incompatibility of the conformal symmetry with
the Lorentz symmetry in a quantum context, the less
direct cause of this is the existence of a null-potent dif-
ferential as interpreted in synthetic geometry. Yes, it is
true that the BRST charge is a boundary operator in a
cohomology theory, but we can as well see it as a dif-
ferential null-potent object from a synthetic geometric
point of view. Therefore, the deeper cause for the con-
formal anomaly is the incompatibility of the expected
conformal symmetry with the extended structure of the
field. This can be compensated in higher dimensions,
but it can also be compensated by introducing additional
structure to our infinitesimal object, or adding more in-
finitesimal objects that could solve the problem, while
keeping the dimension low. In a sense compactification
does that, but not in a very controlled way. The general
description is that one compactifies the extra dimensions,
therefore introducing a set of closed boundaries for each
compactified dimension, say, δ2i = 0 for all compactified
dimensions i = 1, ..., k and then one takes the limit in
which the radius of compactification is small. Taking the
limit is not a trivial operation, and the reason we ob-
tain no consistent low energy descriptions of strings is
basically because we take the limit wrong. But that is
a discussion for another article. Here I want to focus
on alternatives to this operation. Let us see what kind
of structure do we need to add in the form of synthetic
infinitesimals in order to make the theory compatible to
the desired symmetries in lower dimensions. Also, one
should be careful to consider that it is not a given that
the conformal symmetry needs to be maintained in the
same form once extended objects are introduced. After
all, it is also interesting to explore what the conformal
symmetry would amount to if we were to re-write it in
a manifestly formal group sense. In any case, let us re-
peat the BRST quantisation of the bosonic string and see
where we have to challenge conventional wisdom. As long
as our gauge algebra closes decently fine, and therefore is
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not directly field dependent we can write our action S[ϕ]
as a theory that respects the symmetries

δϕ =

∫
dµαϵ

αδαϕ = ϵδαϕ (45)

α simply denotes an index for spacetime coordinates and
dµ is our measure on the α-space. The small parameters
ϵα describe the symmetry. The gauge variation is

[δα, δβ ] = fγαβδγ (46)

and of course, fγαβ are considered field independent.

These structure constants describe the symmetry. For
diffeomorphisms we take α = y, and a vector ρ, so that
ϵα → ϵρ(y) with dµα = ddy. Given a scalar field, the
transformation will act like

δy,ρϕ(x) = −δd(x− y)∂ρϕ(x) (47)

and we obtain the diffeomorphism δϕ(x) =
−ϵρ(x)∂ρϕ(x). The commutator of two diffeomor-
phisms on ϕ is

[δy,ρ, δz,σ]ϕ(x) = δd(x− z)∂xσ [δd(x− y)∂ρϕ(x)]− (y, ρ↔ z, σ) =

=
∫
ddw[−δνρδd(w − z)∂σδ

d(x− y) + δνσδ
d(w − y)∂ρδ

d(x− z)]δw,νϕ(x)
(48)

which gives us the structure constants for diffeomor-
phisms of the form

f
(w,ν)
(y,ρ)(z,σ) = −δνρδd(w−z)∂σδd(x−y)+δνσδd(w−y)∂ρδd(x−z)

(49)
The partition function of our theory, that is, its quantum
form, will be

Z =

∫
[Dϕ]e−S[ϕ] (50)

The gauge symmetry can be introduced as a constraint
FA[ϕ] = 0 where A labels the components of the gauge
symmetry. A consistent gauge transformation must also
have a non-degenerate Jacobian, which implies that form-
wise the transition from one gauge configuration to an-
other linked by a gauge symmetry is well defined. Let us
denote the Jacobian of the transformation δαF

A[ϕ] then

Z =

∫
[Dϕ]δ(FA[ϕ])det(δαF

A[ϕ])e−S[ϕ] (51)

This imposes the gauge condition and makes sure that
the propagation of the gauge transformation on the co-
ordinates is done consistently, the determinant measur-
ing the linear first order deviation induced by the gauge
transformation on the fields. This is an overlooked im-
portant point though. The Jacobian behaves somewhat
like the tangent in simple one dimensional calculus, it is
an element of the derivative which we define, as we know
since forever, as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(52)

In synthetic geometry, the limit when h → 0 is some-
what different. The first derivative, as expressed in the

above simple formula makes the assumption of linear-
ity, namely that we can ignore higher powers of h, say
h2, which means basically that our derivative gives us
the best linear approximation of our function in a given
point. This is well known, it is the definition of what it
means to be a derivative in standard calculus. The Ja-
cobian doesn’t do much else, except that it does it for a
multivariate context. In fact, the Jacobian for a two form
gives us just the best linear two-form approximation of
the evaluation of our two form defined manifold in a cer-
tain parallelogram region. In gauge space, basically our
Jacobian gives us the best local linear approximation of
the gauge trajectory, and implements the required cor-
rection so that our path integral stays ”on path” given
the gauge transformation. However, this only works that
way if our fundamental object is a point, and hence the
limit h→ 0 can be taken in a trivial way. This does not
have to be so, and in fact in string theory it is not. So,
we had an object that we used in our limit, for which we
approximated that h2 = 0. The obvious choice is that of
h→ 0, but synthetic geometry teaches us that this is not
the only choice. In fact, in synthetic geometry we define
our infinitesimal as

∆ = {x ·R|x2 = 0} (53)

as a synthetic differential, which has the property that
any object in it, squared, produces zero. R here is not
the real line, but the synthetic smooth line. Obviously,
we see that here, the limit h→ 0 is not that trivial, and
that in fact there are several ways in which we can reach
to something that has the same property of being zero
when squared. The real reason for that limit was that 0
was the only element that could have been ignored when
taking the square. Synthetic geometry takes away this
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property. But in fact it is not only synthetic geometry
that takes it away. In cohomology, the closed boundary
operator has the same property δ2 = 0. So, going back
to our Jacobian, which is basically a matrix of first order
derivatives, we have to remember that the reason why we
have chosen it that way was because each of its deriva-
tives gave us the best possible linear approximation in
a given point, on a given direction. We also ignored all

possible higher order differentials in any of those direc-
tions by assuming that hxi → 0. Obviously, now, this
assumption must be relaxed, as hxi → ∆ where ∆ con-
tains a lot of objects that can be squared to zero. Let us
continue our standard derivation of BRST quantisation.
We introduce the ghosts bA, c

α, as well as a Lagrangian
multiplier field BA so that we re-write our action as

Z =

∫
[DϕDBADbADbaDcα]exp{−S[ϕ] + iBAF

A[ϕ]− bAc
αδαF

A[ϕ]} (54)

We implement gauge fixing, and include all ghosts, and
therefore we obtain the gauge symmetry in the form of a
fermionic global symmetry δB (BRST) together with the
propagating ghosts which encode the local parts of the
symmetry.

δBϕ = −icαδαϕ

δBBA = 0

δBbA = BA

δBc
α = i

2f
α
βγc

βcγ

(55)

which closes hence δ2B = 0 and therefore

iBAF
A[ϕ]− bAc

αδαF
A[ϕ] = δB(ibAF

A[ϕ]) (56)

making δB a symmetry of the action. But not so fast!
Our ghost fields are there to give us the linear corrections
induced by our gauge transformations. We re-expressed
the Jacobian to introduce them, and completed it in a
fully supersymmetric form. Those ghosts are bound to
having a unique zero, as expressed by standard calculus
based on fundamental point-like structures. This is not
the case when we replace our zeros with ∆. Therefore,
our ghosts can propagate not only in one single way to
preserve the best local linear approximation to the gauge
trajectory after gauge transformation, but in fact they
can follow any possible path allowed by the replacement
of our one single number h of the derivative, with the
object ∆. If we patch our space (or our gauge space)
with pieces of ∆ tiles, our Jacobian will allow for basi-
cally a lot more transformations. Each partial derivative
in our Jacobian will be associated with a whole set of in-
finitesimals that will have the possibility to be zero when
squared in various directions on the manifold. Therefore
our ghost fields will have a far more complex structure
than the simple fields we assumed them to be. To make
this clearer, suppose a function is f : Rn → Rm and

we have first order partial derivatives well defined. The
Jacobian will be of the form

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

... ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

... ∂f3
∂xn

... ... ... ...

∂fm
∂x1

∂fm
∂x2

∂fm
∂x3

... ∂fm
∂xn


(57)

This looks very simple only if we assume that there is
only one possible differential limit, namely zero. But
instead our limit is the differential object ∆ which has a
whole interval of elements that have the same property
like zero required in this context, namely that they are
having zero squares x2 = 0.
In order to have an idea about what this means in syn-

thetic geometry, we should probably remember the fact
that if we abandon the rule of excluded middle, as is the
case in synthetic geometry, the notion of linear depen-
dence is not so strict anymore. In particular, the exis-
tence of a non-zero Jacobian, allowing for the construc-
tion of our ghost fields and the propagation of the gauge
choices has an additional intermediate situation, which
has been completely ignored in classical geometry. The
Jacobian is clearly also a measure of linear dependence
of the partial derivatives of first order included. A trans-
formation that would imply a null Jacobian will basically
reduce one of the dimensions and would make the volume
element resulting after the transformation collapse along
one or several dimensions. We generally assume that this
doesn’t happen. However, in synthetic geometry there is
an alternative situation, when we have a set of vectors
that are not linearly free but are not linearly dependent
either. Therefore we have an interesting situation that
leads us to think at how and why string theory requires
extra dimensions. The obvious explanation which was
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the standard explanation up to now is that in order to
harmonise the Lorentz symmetry and the gauge symme-
tries for a string in the process of quantisation, the spe-
cific requirement for extra-dimensions emerged quite nat-
urally from the cancellation requirements of the anoma-
lies that are identified when ghost fields are used. How-
ever, the ghost fields have been created in the form of the
Jacobian determinants making assumptions about the in-
herent logic of the geometry and about the unambiguous
logical distinction between linear dependence and linear
independence. In synthetic geometry a ”middle” situa-
tion is in fact permitted, which leads to the annihilation
of the resulting anomaly not by means of additional di-
mensions of the underlying spacetime but by means of
the modification of the logic behind the geometry used.
Instead of classical logic, intuitionistic logic allows for an
intermediate situation in which the Jacobian transforma-
tion leading to the ghost fields systematically reduces the
dimensions whenever a need for their increase appears.
The reason for this reduction appears from the fact that
the idea of ”zero” is interpreted differently, not as a sin-
gle entity, but as a region or equivalence class which may
have structure and various topological and geometrical
properties itself.

Indeed, in order to complete our construction we had
to make use of ghost fields that behave like Grassmann
numbers, which do have this specific property, but that
was associated to the fact that we expected some form
of fermion degrees of freedom and hence were automat-
ically thinking at supersymmetry. Of course, BRST is
based on some form of supersymmetric completion of the
field structure, but the actual origin and cause for this
was not clearly understood. The role of the fermionic
ghosts was there to actually close the algebra in the
most general case adapted to the bosonic string. Of
course, more advanced prescriptions are known in the
case of the Batalin-Vilkoviski or field-anti-field prescrip-
tions, but that is of little importance now. From a syn-
thetic point of view, the requirement for a supersymmet-
ric structure during the BRST quantisation seems to be
related to the fact that the limit taken when studying an
extended object (the string) was taken in the same way
as when a point-like object was studied, and that limit
simply made no sense for a string. Let us continue by
defining a Noether current for the BRST symmetry, say
jB and a corresponding BRST charge, namely our QB

such that δB = i{QB , ·}Poisson. We can see QB now as a
Hermitian quantum operator (given the integration mea-
sure remains well defined) and we obtain Q2

B = 0. Let us

be even more specific and single out the types of transfor-
mations we need in our action functional. We have three
independent types of transformations: two reparametri-
sation symmetries and the Weyl scaling, and therefore we
will consider the independent components for the gauge
transformations as

h++(σ), h−−(σ), h+−(σ) (58)

The usual gauge choice made to construct a gauge slice
that takes into account a particular choice for each of the
three functions above would be

hαβ = eϕηαβ (59)

leading to 0 = h++ = h−− in light cone coordinates.
Given world sheet reparametrisations we have

σ+ → σ+ + ξ+

σ− → σ− + ξ−
(60)

we have the gauge conditions

δh++ = 2∇+ξ+

δh−− = 2∇−ξ−

(61)

Basically we have the formula for the transforma-
tion of the metric tensor under infinitesimal coordinate
reparametrisations

δhαβ = ∇αξβ +∇βξα (62)

where we have the covariant derivative based on the
Christoffel connection as

∇αξβ = ∂αξβ − Γγ
αβξγ (63)

We can write this using the group of the reparametrisa-
tions of the worldsheet G with the measure of integration
Dg over the group manifold and making the notation
hg for the transformed metric by the reparametrisation
g. Then the standard gauge fixing procedure implies in-
troducing a unity in the form of the path integral that
formalises the gauge fixing required

1 =

∫
Dg(σ)δ(hg++)δ(h

g
−−)det(

δhg++

δg
)·det(

δhg−−
δg

) (64)

and we put it into the partition function as

Z =

∫
Dg(σ)

∫
Dh(σ)DX(σ)e−S[h,X]δ(hg++)δ(h

g
−−)det(

δhg++

δg
) · det(

δhg−−
δg

) (65)
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With a change of variables h′ = hg we see that the ac-
tion only depends on h and g in a combination defined
by hg and hence by h′ and the integral over the group
measure contributes with an infinite multiplicative factor
only. The determinants are usually written in the follow-
ing way, as integrals over anti-commuting ghosts c− and
antighosts b−−

det(
δh′++

δg
) =

∫
Dc−(σ)Db−−(σ)exp{−

1

π

∫
d2σc−∇+b−−}

(66)
and the other determinant is an integral over the ghost
c+ and the anti-ghost b++

det(
δh′−−
δg

) =

∫
Dc+(σ)Db++(σ)exp{−

1

π

∫
d2σc+∇−b++}

(67)
We use the delta function in the partition function to
solve for h in terms of the conformal factor ϕ and write
everything briefly

Z =

∫
Dϕ(σ)

∫
DX(σ)Dc(σ)Db(σ)e−S(X,b,c) (68)

The decoupling of ϕ is linked to the cancelling of the
conformal anomaly in the Virasoro algebra, which indi-
cates an incompatibility between the three symmetries
involved in the quantum description. With this mind-
set, the cancellation of this anomaly is only possible (for
the bosonic string) in 26 background spacetime dimen-
sions. However, we can see clearly that the determinants
here are Jacobians that give us linear approximations for
our transformations and rely on the existence of a single
differential limit (zero). That is not true for extended ob-
jects. Therefore our construction of the determinants as
path integrals over ghost fields as written above is insuffi-
cient. The situation is of course complicated by the fact
that we do not have first order derivatives but instead
first order functional dependences, and hence functional
derivatives. But this complication is only minor. Instead
of having a infinitesmial ∆ defined in terms of a null

squared interval, we have it represented in terms of func-
tional forms. Given a manifold M representing smooth
functions ρ and the functional F , F :M → R we have∫

δF

δρ
(x)ϕ(x)dx = lim

h→0

F [ρ+ ϵϕ]− F [ρ]

h
(69)

where ϕ is an arbitrary function and h·ϕ is the small vari-
ation of ρ. Our differential is modified from representing
an interval ∆ where the condition h2 = 0 is verified, to a
region of our functional space where the small variation
of ρ namely h · ϕ has that property. Instead of having
a single such limit, we expand this limit into a domain
that is considered to be minimal and fundamental. This
amounts to the same conclusion as for the traditional Ja-
cobian: we don’t have only one possible way in which the
limit h → 0 can be taken, but instead we have h → ∆.
This gives us more possibilities to locally eliminate the
conformal anomaly, without the need for additional di-
mensions. Instead of considering only one way in which
the limit can be taken, in particular only one number that
is the infinitesimal limit (say zero) we can take a whole
domain of possible deformations of the ghost fields within
the domain where the square of our small parameter is
null. To make this clearer, if we consider a functional
F [f ] written as

F [f ] =

∫ b

a

L(x, f(x), f ′(x))dx (70)

in the standard way we consider f ′(x) = df
dx , however we

have seen that this description must be made valid for
all quantities that can be squared to zero in the interval
∆ that we use in synthetic geometry. Generalising, if f
is modified by the addition of a function δf we obtain

L(x, f + δf, f ′ + δf ′) (71)

and if we expand this in powers of our small quantity δf
the variation of the functional is well known

δF [f ] =
∫ b

a
(∂L∂f δf(x) +

∂L
∂f ′

d
dxδf(x))dx =

=
∫ b

a
(∂L∂f − d

dx
∂L
∂f ′ )δf(x)dx+ ∂L

∂f ′ (b)δf(b)− ∂L
∂f ′ (a)δf(a)

(72)

which we recognise as the start of the Lagrangian me-
chanics for field theory. However, this entire construc-
tion relies on the fact that again, even in this space, the
differential object δf is a single deformation and its limit
can be defined as going (in some integral sense) to a sin-

gle zero. This implies there is only one object that is
squared to become zero, and that object is zero. We
need the ghosts as, while we have the anti-commuting
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relations that they obey

{cm, bm} = δm+n

{cm, cn} = {bm, bn} = 0
(73)

as fermionic fields, they have the property that b2 = c2 =
0 which can be seen from the anti-commutation relations
namely

{cm, cm} = cm · cm + cm · cm = 2c2m = 0 (74)

This requirement appears to be a remnant from the fact
that we designed our construction in an implicit sense
like a synthetic geometric object, but we didn’t consider
that property in all instances, particularly not so when
we performed the path integral or designed our theory in
the usual Lagrangian way, by introducing Euler-Lagrange
equations. In all these instances, some information has
been lost regarding the way in which the infinitesimal
limit in the construction of the first order derivatives has
been taken. This is the actual reason why there exists
a conformal anomaly in 4 dimensions, and probably not
that the background space must necessarily be higher di-
mensional (which it could be, I don’t know, but certainly
the argument in favour of that will be much weaker after
this material is understood). By introducing the fun-
damental string while keeping our differential calculus
point-based, we only did half of the work, and obviously
encountered inconsistencies. Let us see what can be done
for the decoupling of the conformal factor ϕ. Let us con-
sider our Riemannian geometry for the case of the two
dimensional worldsheet. The conformal form is

hαβ = eϕηαβ (75)

We keep an Euclidean formulation, the rotation to
Minkowski being relatively easy

ds2 = eϕ(dσ2 + dτ2) (76)

and we write in terms of complex coordinates z = τ + iσ
and z̄ = τ − iσ. We define

t± = t0 ± it1

∂± = 1
2 (

∂
∂τ ∓ i ∂

∂σ )
(77)

with

h++ = h−− = 0

h+− = h−+ = 1
2e

ϕ
(78)

and

ds2 = eϕdz · dz̄ (79)

we can use the conformal factor to raise and lower the
indices

t+ = 1
2e

ϕt−

t− = 1
2e

ϕt+
(80)

In these complex coordinates a change z → z′ = f(z)
with f a holomorphic function of z will preserve the con-
formally flat form of the metric and given ρ = eϕ we
have

ρ→ ρ′ = |dz
′

dz
|−2ρ (81)

and in general with nu upper and nl lower holomorphic
indices and n̄u upper and n̄l lower antiholomorphic in-
dices we have

t→ t′ = (
dz′

dz
)nu−nl(

dz̄′

dz̄
)n̄u−n̄lt (82)

where the exponents are the holomorphic and antiholo-
morphic conformal dimensions of the tensor t. Using
the standard covariant derivatives for tensors and the
Christoffel connection

Γγ
αβ =

1

2
hγδ(∂αhβδ + ∂βhαδ − ∂δhαβ) (83)

and the Riemann curvature tensor

Rγ
αβρ = ∂ρΓ

γ
αβ + Γϵ

αβΓ
γ
ρϵ − (β ↔ ρ) (84)

we have only two non-zero Christoffel connection terms
for the conformally flat metric

Γ+
++ = ∂+ϕ

Γ−
−− = ∂−ϕ

(85)

we can then write the action for a general worldsheet
metric and use the fields c+ and c− as components of a
vector field cα while the anti-ghost fields behave like bαβ

Sghost = − i

2π
d2σ

√
hhαβcγ∇αbβγ (86)

We notice that we introduced the ghost fields to detect
where the anomaly comes from, in a sense, to regularise
our action with respect to potential quantum (confor-
mal) anomalies. Indeed we found them, because we in-
troduced fermionic ghost fields, which are objects that
square to zero, by means of their anti-commutation laws,
at the level of their modes, but this has been done in a
limited way. However, not all of the structure emerging
from expanding our zero limit to our synthetic geometric
∆ interval has been taken into account. It is therefore
not terribly surprising that when one adds worldsheet su-
persymmetry and extends the fermionic fields the num-
ber of dimensions required by criticality diminishes from
26 to 10. The reduction however doesn’t quite follow
what happens in Nature. First, if we have an N = 1
supersymmetry on the worldsheet, we do obtain D=10
spacetime target dimensions for criticality, but when we
extend this to N = 2 worldsheet supersymmetry what



23

we obtain is the critical dimension D=2. Worse, N = 4
worldsheet supersymmetry leads to a negative critical di-
mension. In any case, this type of supersymmetry exten-
sion doesn’t seem to be the solution, and the alternative
worked upon until now, namely the compactification of
extra dimensions doesn’t seem to be very predictive ei-
ther. It seems as if something is missing in the quanti-
sation procedure via BRST, but it is quite insightful to
note that more supersymmetry (and additional fermionic
fields that amount to additional quantities that square to
zero) seem to impact the critical dimension. It is inter-
esting to observe that the null square property appears
in all these approaches: fermion modes square to zero
due to the anticommutation relations, the BRST charge
squares to zero because it is a closed boundary operator,
and compactification does exactly the same thing, it in-
troduces closed dimensions, which contribute each with
closed boundary operators. There are however more in-
teresting objects that produce such square zero results,
and they emerge from the existence of infinitesimals that
allow us to define the functional Jacobian as a generalised
local linearisation. In differential synthetic geometry the
infinitesimal is defined in terms of a line which is isomor-
phic to the smooth line R. Therefore it is easy to define
a concept of derivative as it would be just the map that
would send the extended infinitesimal that we defined as
a line to a number equivalent to the value of the tangent
in that point. Unfortunately strings as fundamental ob-
jects have much more structure and must be quantised.
Therefore we cannot simply define the Jacobian in the
same way we do it usually, also in synthetic differential
geometry. The fact that our fundamental infinitesimal
has quite significant structure by itself however requires
modifications of the ghost structure in order to accommo-
date it. First when we started using synthetic geometry
first order differentials, we lost some of the properties
and even the logical structure of usual geometry. Even
if we do not strictly adhere to the synthetic geometry
approach to associate to every differential object a line
object (because strings can vibrate for example) we can-
not employ a certain logical construction, like the law of
the excluded middle. In fact the geometrical construction
behind the existence of non-trivial differential objects is
the theory of toposes. Mathematically this is a very in-
teresting subject, but only some very specific aspects of
it will be used directly here. In any case, in bosonic
string quantisation, the conformal anomaly being made
manifest by ghost fields doesn’t necessary indicate that
the number of dimensions we are working with is wrong.
It can also indicate that the way we are considering the
extended objects and their gauge structure is wrong. In
fact, both may be wrong. There is hardly a way to fig-
ure that out without experimental evidence, but there is
reason to believe that there is an additional problem re-
lated to how we describe the quantisation prescription of
extended objects. There is an interesting way of looking

at synthetic geometry.

DIMENSIONALITY AND SYNTHETIC
GEOMETRY

We have seen in the previous section that the con-
straint that demands a certain dimension for the back-
ground spacetime in string theory can be relaxed by ap-
plying synthetic arguments to the differential geometric
problem of quantisation of the string by means of the
method of BRST cohomology. String theory proper was
the first theory that demanded a certain dimension of the
background space for the consistent quantisation of a the-
ory with both Lorentz and internal gauge symmetry as
well as conformal symmetry on the worldsheet. This con-
straint that was previously unknown has been altered by
the modification of the internal logic and the structure of
the infinitesimal due to synthetic geometry. Therefore,
historically, we went from a situation in which the di-
mensions of spacetime were imposed on us from strictly
empirical observations (we can still only ”see” 3 spatial
and 1 time dimensions), through a situation in which the
extension of the fundamental objects from point parti-
cles to strings required a fixed higher spacetime dimen-
sion, to another situation in which the structure of the
algebra of infinitesimals and of synthetic differential ge-
ometry was capable of relaxing the conditions within the
BRST quantisation of string theory that led to the re-
quirement of a certain dimension for the background of
string theory. Thinking about this, we have to remem-
ber that string theory depends in its phenomenology on
the existence and very specific compactification of the
extra-dimensions. Otherwise stated, there is a lot of in-
formation in the extra dimensions that is suggesting that
many of the properties of the standard model that have
no clear explanation within the standard model can be
understood by the dynamics of, for example, flux com-
pactification. This is not new, from the Higgs mechanism
appearing from tachyon decays of intersecting D-branes,
to the hopeful explanation of lepton generations within
string phenomenology, in all cases extra dimensions and
their compactifications play a significant role in the un-
derstanding of possible standard model effects. If we are
to say that the choice of a certain dimension is not fixed in
synthetic geometry, then such determinations (granted,
incomplete, as string theory itself cannot yet pinpoint the
exact compactification that would lead to the standard
model, nor does it know whether such a compactification
would be special in any sense or not, see for example the
literature on string multiverses for an introduction on
this problem) should better exist in a synthetic descrip-
tion of the string. Indeed they do. However, this article
would expand considerably if I were to derive the re-
sults here. Sufficient to say that the work of Vinogradov
and his collaborators [11], [12] results in a categorifica-
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tion of geometry which then can be implemented for the
synthetic geometry described here. I strongly suspect
that the information related to compactification can be
transferred to the categorical properties of the differen-
tial geometry or the higher differential geometry involved
in the construction of synthetic string theory. Moreover,
the methods used there may provide even stronger con-
straints that would lead to narrowing down the standard
model as more necessary and less arbitrary when thinking
in terms of the multiverse. Such synthetic / categorical
constraints may originate from the map structure of the
Vinogradov category of differential equations. It is very
interesting to explore what constraints on possible syn-
thetic string constructions would emerge from that. An-
other interesting remark is that the information stored
in a traditional string theory through higher dimensions
and compactification may equally well (or even better)
be stored via a synthetic string theory through the coho-
mological properties emerging from the algebraic differ-
ential structure introduced. Therefore, such a synthetic
theory would give us a better way in which spacetime
dimensionality would emerge, namely from the homolog-
ical algebraic construction at the level of the infinitesimal
completion in synthetic differential geometry.

CONCLUSION

In this article I presented a series of motivations for
asking whether modified groups structures and a Syn-
thetic geometric interpretation can be used to explain
dualities and to obtain a string theoretical framework
in lower dimensions. I also showed that the origin of
dualities in string and gauge theory can be related to a
quantum interpretation of the structure of theories them-
selves, leading to a situation in which dualities are equiv-
alent with apparently distinct but formally inseparable
theories in a specific theory space. This is seen as a quan-
tum structure on top of our theory space that results in
new dualities linking apparently different theories.
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