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Abstract

A (generalized) topological space is called an iso-dense space if the
set of all its isolated points is dense in the space. The main aim of the
article is to show in ZF a new characterization of iso-dense spaces in
terms of special quasiorders. For a non-empty family A of subsets of a
set X, a quasiorder .A on X determined by A is defined. Necessary
and sufficient conditions for A are given to have the property that
the topology consisting of all .A-increasing sets coincides with the
generalized topology on X consisting of the empty set and all supersets
of non-empty members of A. The results obtained, applied to the
quasiorder .D determined by the family D of all dense sets of a given
(generalized) topological space, lead to a new characterization of non-
trivial iso-dense spaces. Independence results concerning resolvable
spaces are also obtained.
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1 Introduction

The set-theoretic framework for this paper is the Zermelo-Fraenkel system of
axioms ZF. The Axiom of Choice (AC) is not an axiom of ZF. The system
ZF+AC is denoted by ZFC.

We recall that a quasiorder (or, equivalently, a preorder) on a set X is a
reflexive and transitive binary relation on X. For a given a quasiorder . on
X, the family

τ [.] = {U ⊆ X : (∀x ∈ U)(∀y ∈ X)(x. y → y ∈ U)}

is a topology on X called the specialization topology from . (see [18, p.
195]).

Every family of subsets of a given set X determines a quasiorder on X in
the sense of the following definition:

Definition 1.1. Let A be a family of subsets of a set X. The binary relation
.

A
on X defined by the following rule:

(∀x, y ∈ X)(x.
A
y ↔ (∀A ∈ A)(x ∈ A → y ∈ A))

is called the quasiorder determined by A.

If τ is a topology on X, the quasiorder .τ has been considered by various
authors. It is usually called the specialization(or canonical) preorder of the
topological space 〈X, τ〉. Basic properties of specialization preorders can be
found in [18].

Every family of subsets of a set X is a base of a generalized topology on
X in the sense of the following definitions:

Definition 1.2. (i) A generalized topology on a set X is a family µ of
subsets of X such that ∅ ∈ µ and, for every subfamily U of µ,

⋃

U ∈ µ
(cf. [3]).

(ii) A strong generalized topology on a set X is a generalized topology µ on
X such that X ∈ µ (cf. [4, 7]).
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(iii) A base for a generalized topology µ on a set X is a subfamily B of µ
satisfying the following condition:

(∀U ∈ µ)(∀x ∈ U)(∃B ∈ B)x ∈ B ⊆ U

(cf. [6, 7]).

(iv) A generalized topological space is an ordered pair 〈X, µ〉 where X is
a set and µ is a generalized topology on X (cf.[3]). If µ is a strong
generalized topology on X, the generalized topological space 〈X, µ〉 is
said to be strong.

Strong generalized topologies are called supra topologies in [14]. A strong
generalized topology µ on X is a topology on X if and only if µ is closed
under finite intersections. Generalized topologies have been widely studied
by many mathematicians (see, for instance, [3, 5, 6, 4, 7, 10, 14, 15, 20]).

Definition 1.3. Let A be a family of subsets of a set X.

(i) The generalized topology determined by A is the family µ[A] defined as
follows:

µ[A] := {U ⊆ X : (∀x ∈ U)(∃A ∈ A)x ∈ A ⊆ U}.

(ii) The extended generalized topology determined by A is the family µ̃[A]
defined as follows:

µ̃[A] := µ[A] ∪ {V ⊆ X : (∃A ∈ A \ {∅})A ⊆ V }.

Let us notice that if A is a family of subsets of a set X, then A is a base
for the generalized topology µ[A] on X. Furthermore, if ∅ 6= A 6= {∅}, the
extended generalized topology µ̃[A] is strong.

In Section 3, given a non-empty family A of subsets of a set X such
that A 6= {∅}, we show necessary and sufficient conditions for A to have the
property that τ [.

A
] = µ[A] (see Theorem 3.7). We also give a number of

conditions under which τ [.µ̃[A]] = µ̃[A] (see Theorem 3.10). Some of our
results are relevant to the well-known characterization of Alexandroff spaces
via quasiorders. Let us recall the definition of an Alexandroff space, which
has its roots in [1].
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Definition 1.4. (Cf. [2, p. 17] and [18, Definition 8.1.1].) A topological
space X is called an Alexandroff space if, for every non-empty family U of
open sets in X, the set

⋂

U is open in X. The topology of an Alexandroff
space is called an Alexandroff topology.

In the light of [18, Theorem 8.3.3], we have the following characterization
of Alexandroff topologies:

Theorem 1.5. (Cf. [18, Theorem 8.3.3].) For every topology τ on a set X,
the following conditions are equivalent:

(i) τ is an Alexandroff topology;

(ii) there exists a quasiorder . on X such that τ = τ [.];

(iii) τ = τ [.τ ].

Before we pass to the body of this paper, in Section 2, we establish our
notation and terminology. At the end of Section 2, we give an illuminating
Example 2.12 which, together with Theorem 1.5, has motivated us to this
work. In Section 3, among other helpful things, we slightly modify Theorem
1.5 by observing that, for every generalized topology µ on a non-empty set
X, it holds that µ = τ [.µ] if and only if µ is an Alexandroff topology (see
Theorem 3.7).

In Section 4, we apply the results obtained in Section 3 to a new charac-
terization of iso-dense spaces. The term “iso-dense” was introduced in [13] in
the sense of the following definition:

Definition 1.6. Let X be a topological space and let Iso(X) be the set of
all isolated points of X.

(i) (Cf. [13].) The space X is called an iso-dense space if the set Iso(X)
is dense in X.

(ii) (Cf. [9, Chapter 1.3].) If Iso(X) = ∅, then X is called a dense-in-itself
(or crowded) space.

Let us remark that, by [13, Proposition 5], every scattered space is iso-
dense. Clearly, every discrete space is iso-dense. Every compactification of
an infinite discrete space is iso-dense. Indiscrete spaces consisting of at least
two points are trivial dense-in-itself spaces.
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For the aims of Section 4, we extend, in Section 2, the concept of an iso-
dense space to generalized topological spaces having dense sets of isolated
points (see items (4) and (7) of Definition 2.1). In Section 4, given a general-
ized topological space X = 〈X, µ〉, we consider the family D(X) of all dense
subsets of X (see item (5) of Definition 2.1). Then the generalized topology
determined by D(X) is the family µ[D(X)] = D(X) ∪ {∅}. The generalized
topology µ[D(X)] is not necessarily a topology on X. The following two
questions arise:
Question 1.7. Under which conditions on a (generalized) topological space
X is µ[D(X)] a topology?
Question 1.8. Under which conditions on a (generalized) topological space
X is µ[D(X)] an Alexandroff topology?

Obviously, an answer to Question 1.8 is a partial answer to Question 1.7.
Our main goal is to answer Question 1.8 and apply it to a new characteriza-
tion of non-trivial iso-dense spaces in Section 4. To this aim, we pay attention
to the quasiorder .

D(X) and the topology τ [.
D(X)]. Theorems 4.8 and 4.9

are the main results of Section 4. Theorem 4.8 characterizes, in terms of
.

D(X), non-trivial iso-dense generalized topological spaces. Namely, we show
in Theorem 4.8 that, for every non-indiscrete generalized topological space X,
the following are all equivalent: (i) X is iso-dense, (ii) τ [.

D(X)] = µ[D(X)],
(iii) µ[D(X)] is an Alexandroff topology. This answers Question 1.8. We
also notice that, for every non-indiscrete but dense-in-itself generalized topo-
logical space X, the topology τ [.

D(X)] is discrete (see Theorem 4.7). We
modify these results to get a characterization of all non-indiscrete general-
ized topological spaces X having the property that the set of all not nowhere
dense singletons of X is both dense and open in X (see Theorem 4.9). This
leads to other necessary and sufficient conditions for a generalized topological
T1-space 〈X, µ〉 with µ 6= {∅} to be iso-dense (see Corollary 4.12).

Although the main results of Section 4 answer Question 1.8, they are
not satisfactory answers to Question 1.7. To give a little more light into
Question 1.7 in Section 5, we apply the following concept of a resolvable
space introduced by Hewitt in [11]:

Definition 1.9. (Cf. [11].) A topological space X is called a resolvable space
if there exists a pair of disjoint dense sets in X. Topological spaces which
not resolvable are called irresolvable spaces.

Both classes of resolvable and irresolvable topological spaces have been
widely studied in ZFC for years (see, e.g., [11], [17], [19] and [8]), but, to

5



the best of our knowledge, they have not been investigated in ZF so far.
We generalize Definition 1.9 to the concepts of a resolvable and an irresolv-
able generalized topological space (see items (13) and (14) of Definition 2.1).
Proposition 5.4 shows that if a non-indiscrete generalized topological space
X = 〈X, µ〉 is resolvable, then µ[D(X)] is not a topology. Therefore, to give
a satisfactory answer to Question 1.7, it is necessary to investigate the class
of irresolvable generalized topological spaces in ZF. To point out that the
situation of this class in ZF significantly differs from that in ZFC, we observe
that even the following statement “for every infinite set X and the cofinite
topology τcof(X) on X (see Definition 2.14), the space 〈X, τcof(X)〉 is resolv-
able”, known to be true in ZFC (see [19, p. 3]), is unprovable in ZF (see
Theorem 5.11 and Corollary 5.12). We leave deeper research on irresolvabil-
ity in ZF and a more satisfactory answer to Question 1.7 for another article.
For the convenience of readers, we include a short list of open problems in
Section 6.

2 Preliminaries

We use standard set-theoretic notation. For a set X, [X ]<ω is the set of all
finite subsets of X. The power set of X is denoted by P(X). The symbols R,
Z, N denote, respectively, the set of all real numbers, the set of all integers
and the set of all positive integers. The symbol ≤ stands for the standard
linear order on R.

All topological notions used in this article, if not introduced here, are
standard and can be found in [9] or [18].

Throughout this paper, if not stated otherwise, we denote (generalized)
topological spaces with boldface letters and their underlying sets with light-
face letters.

Definition 2.1. Let X = 〈X, µ〉 be a given (generalized) topological space.

1. Members of µ are said to be µ-open sets (or, simply, open sets in X).
A subset C of X such that X \ C is µ-open is said to be µ-closed (or
closed in X).

2. For a set E ⊆ X, clX(E) denotes the closure of E in X (that is, the
intersection of all µ-closed sets containing E), and intX(E) denotes the
interior of E in X (that is, the union of all µ-open sets contained in
E).
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3. A subset E of X is called nowhere dense in X (or, equivalently, µ-
nowhere dense) if intX(clX(E)) = ∅ (cf. [20]). The collection of all
µ-nowhere dense sets is denoted by ND(X).

4. We say that a point x ∈ X is an isolated point of X (or a µ-isolated
point) if {x} ∈ µ. The set of all µ-isolated points is denoted by Iso(µ)
or Iso(X).

5. A set D ⊆ X will be called µ-dense (or dense in X) if for every U ∈
µ \ {∅}, U ∩ D 6= ∅. The collection of all µ-dense sets is denoted by
D(X) or by D(µ).

6. DO(X) := µ ∩ D(X).

7. The space X is called an iso-dense (generalized) topological space if
Iso(X) ∈ D(X).

8. If Iso(X) = ∅, X is called a dense-in-itself (generalized) topological
space.

9. X is called a T0-space if, for every pair x, y of distinct points of X,
there exists U ∈ µ such that U ∩ {x, y} is a singleton (cf. [5, 14]).

10. X is called a T1-space if every singleton of X is µ-closed (cf. [5, 14]).

11. X is called an indiscrete space or trivial space if µ ⊆ {∅, X}.

12. X is called a discrete space if µ = P(X).

13. X is called a resolvable space if there exists a set D ∈ D(X) such that
X \D ∈ D(X). If X is a resolvable space, the generalized topology µ
is said to be resolvable.

14. X is called an irresolvable space if it is not a resolvable space. If X is an
irresolvable space, the generalized topology µ is said to be irresolvable.

Remark 2.2. Let µ be a given generalized topology on a set X and let τ
be the coarsest topology on X containing µ. Then every µ-isolated point
is τ -isolated. A point x ∈ X is τ -isolated if and only if there exists U ∈
[µ∪{X}]<ω\{∅} such that {x} =

⋂

U . Every τ -dense subset of X is µ-dense.
A subset D of X is τ -dense if and only if, for every U ∈ [µ ∪ {X}]<ω \ {∅},
⋂

U 6= ∅ implies D ∩
⋂

U 6= ∅.
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Remark 2.3. For a generalized topological space X, the family D(X)∪{∅} is a
generalized topology but not necessarily a topology. Clearly, D(X)∪{∅} is a
topology if and only if, for every pair A,B of dense sets in X, the intersection
A ∩ B is either empty or dense in X.

In view of Remark 2.3, the following question is equivalent to Question
1.7.

Question 2.4. Under which conditions on a (generalized) topological space
X is the intersection of any two dense sets in X either empty or dense in X?

If a generalized topological space X is not strong, DO(X) ∪ {∅} is not a
topology on X. The following example shows that even for a strong gener-
alized topological space X, the generalized topology DO(X) ∪ {∅} need not
be a topology.

Example 2.5. For X = {1, 2, 3}, let µ = {∅, X, {1, 2}, {2, 3}} and X =
〈X, µ〉. Then DO(X) ∪ {∅} = µ is not a topology. Since the sets {2} and
{1, 3} are dense in X, the generalized topological space X is resolvable.

The following proposition is immediate.

Proposition 2.6. Let X = 〈X, µ〉 be a strong generalized topological space
such that, for every U ∈ µ and every D ∈ DO(X), U ∩ D ∈ µ. Then
DO(X) ∪ {∅} is a topology on X. In particular, for every topological space
X, DO(X) ∪ {∅} is a topology on X.

In the notation of [18, Definition 8.5.1], for a given set X and its subset
S,

Super(S) := {U ∈ P(X) : S ⊆ U} ∪ {∅}.

The family Super(S) is an Alexandroff topology on X called the topology of
surpersets of S. If S is a non-empty subset of X and X = 〈X, Super(S)〉,
then X is irresolvable, D(X) ∪ {∅} = Super(S) and D(X) is closed under
finite intersections. The following proposition holds.

Proposition 2.7. For every (generalized) topological space X, D(X) ⊆
Super(Iso(X)). Furthermore, a non-indiscrete (generalized) topological space
X is iso-dense if and only if

Super(Iso(X)) = D(X) ∪ {∅}.
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Proposition 2.7 also leads to Question 1.8 motivating this research. As
we have already mentioned in Section 1, an answer to Question 1.8 is given
in Section 4.

Since Alexandroff topologies are determined by quasiorders, we need to
have a look at quasiorders. All one needs to know about quasiorders to
understand the forthcoming sections can be found in [18, Chapter 8] and
[16]. We establish our notation and terminology below.

Definition 2.8. Let . be a quasiorder on a set X.

1. For every x ∈ X,

↑ [., x] := {y ∈ X : x. y} and ↓ [., x] := {y ∈ X : y.x}.

2. For all x, y ∈ X, x ≈ y means that x. y and y.x.

3. A subset P of X is said to be .-increasing (respectively, .-decreasing)
if, for all x, y ∈ X such that x ∈ P and x. y (respectively, y.x), we
have y ∈ P .

4. An element a ∈ X is called .-maximal (respectively, .-minimal) if
↑ [., m] = {a} (respectively, ↓ [., a] = {a}).

5. An element a ∈ X is called weakly .-maximal (respectively, weakly
.-minimal) if, for every x ∈ X such that a.x (respectively, x. a),
we have x ≈ a.

6. The dual quasiorder from . is the quasiorder .d defined as follows:

(∀x, y ∈ X)(x.d y ↔ y.x).

7. The dual specialization topology from . is the topology τ [.d].

Remark 2.9. Let . be a given quasiorder on a set X. The specialization
topology τ [.] consists of all .-increasing sets. The dual specialization topol-
ogy τ [.d] consists of all .-decreasing sets. Obviously, Iso(τ [.]) is the set of
all .-maximal elements, and Iso(τ [.d]) is the set of all .-minimal elements.

Remark 2.10. If . is a partial order, the notions of a weakly .-maximal
element and a .-maximal element are equivalent (so are the notions of a
weakly .-minimal and a .-minimal element).
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Figure 1: An iso-dense space X for which D(X) ∪ {∅} is a topology.

Remark 2.11. Given a quasiorder . on a set X, the relation ≈ is an equiv-
alence relation. One can define a partial order � on the set X/≈ of all
equivalence classes of ≈ as follows: for all a, b ∈ X/≈, a � b if and only if, for
each x ∈ a and each y ∈ b, x. y (see [18, Theorem 8.2.2]). Then an element
m ∈ X is weakly .-maximal (respectively, weakly .-minimal) if and only
if the equivalence class [m]≈ of ≈ containing m is �-maximal (respectively,
�-minimal).

The following example suggests some of the problems we consider.

Example 2.12. Consider the partial order on R defined as follows. For all
x, y ∈ R, x. y if and only if there exists n ∈ Z such that either x, y ∈
[2n− 1, 2n] and y − x ≥ 0 or x, y ∈ [2n, 2n+ 1] and x− y ≥ 0, as suggested
in the figure below.
Every .-increasing set contains a .-maximal element 2n, so every non-empty
τ [.]-open set intersects the set M = {2n : n ∈ Z} of all .-maximal elements.
Thus, M is dense in 〈R, τ [.]〉. Since M = Iso(τ [.]), the space 〈R, τ [.]〉 is
iso-dense. Therefore D(τ [.]) ∪ {∅} = Super(Iso(τ [.])). In this case, the
collection of all τ [.]-dense sets is closed under finite intersections, and, for
every element x ∈ R, there exists a .-maximal element m such that x.m.

Let us briefly summarize what happens in a general situation similar to
that in Example 2.12.

Proposition 2.13. Let 〈X,.〉 be a quasiordered set, and let M be the set of
all .-maximal elements. If, for every x ∈ X, there exists m ∈ M such that
x.m, then M = Iso(τ [.]), the space 〈X, τ [.]〉 is iso-dense, and D(τ [.]) ∪
{∅} is the Alexandroff topology Super(M).

In Section 5, to discuss some difficulties with getting a satisfactory answer
to Question 1.7 in ZF, we apply cofinite topologies and amorphous sets.
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Definition 2.14. For a set X, let

τcof (X) = {∅} ∪ {U ⊆ X : X \ U ∈ [X ]<ω}.

The topology τcof(X) is called the cofinite topology on X.

Definition 2.15. An infinite set X is called an amorphous set if, for every
infinite subset Z of X, the set X \ Z is finite. (See [12, Note 57].)

Remark 2.16. Form 64 of [12] is the statement: There are no amorphous sets.
Since there are models of ZF in which Form 64 of [12] is false, it may happen
in ZF that there are amorphous sets. For instance, Form 64 of [12] is false
in Monro’s Model III (model M37 in [12]). Every statement proved to be
equivalent to Form 64 of [12] in ZF is independent of ZF.

In Theorem 5.11, we show three new statements equivalent to [12, Form
64] in ZF. We conclude with the independence results in Corollary 5.12.
Apart from the independence results, all other results of this work are ob-
tained in ZF.

3 The quasiorders and generalized topologies

determined by families of sets

Throughout this section, we assume that A is a non-empty family of subsets
of a set X such that A 6= {∅}. The main aim of this section is to compare
the generalized topologies µ[A], µ̃[A], τ [.

A
] and τ [.µ̃[A]] (see Definitions 1.1

and 1.3). The following illuminating example shows that these topologies
can be pairwise distinct.

Example 3.1. Let X = {1, 2, 3, 4} and A = {{1, 2}, {2, 3, 4}}. In this case,
we have the following:

(i) µ[A] = {∅, X} ∪ A and µ̃[A] = µ[A] ∪ {{1, 2, 3}, {1, 2, 4}};

(ii) ↑ [.
A
, 1] = {1, 2}, ↑ [.

A
, 2] = {2}, ↑ [.

A
, 3] =↑ [.

A
, 4] = {2, 3, 4};

(iii) τ [.
A
] = µ[A] ∪ {{2}};

(iv) ↑ [.µ̃[A], 1] = {1, 2}, ↑ [.µ̃[A], 2] = {2}, ↑ [.µ̃[A], 3] = {2, 3} and
↑ [.µ̃[A], 4] = {2, 4};
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(v) τ [.µ̃[A]] = µ̃[A] ∪ {{2}, {2, 3}, {2, 4}};

(vi) µ[A], µ̃[A], τ [.
A
] and τ [.µ̃[A]] are all irresolvable.

Definition 3.2. (i) I(A) :=
⋂

(A \ {∅}).

(ii) For every x ∈ X, BA(x) := {A ∈ A : x ∈ A}.

(iii) If x ∈ X is such that BA(x) 6= ∅, then IA(x) :=
⋂

BA(x).

We state several simple facts in the following proposition.

Proposition 3.3. 1. µ̃[A] = {∅} ∪ {U ⊆ X : (∃A ∈ A \ {∅})A ⊆ U}.

2. I(A) = I(µ[A]) = I(µ̃[A]).

3. I(A) ∈ µ[A] if and only if I(A) ∈ µ̃[A].

4. For every x ∈ X, we have BA(x) 6= ∅ if and only if Bµ[A](x) 6= ∅.

5. For every x ∈ X, if BA(x) 6= ∅, then Bµ̃[A](x) 6= ∅ and

Iµ̃[A](x) ⊆ IA(x) = Iµ[A](x).

Proposition 3.4. 1. For all x, y ∈ X, we have:

x.
A
y ↔ BA(x) ⊆ BA(y).

2. .µ̃[A] ⊆ .
A
= .µ[A] .

3. For every x ∈ X such that BA(x) 6= ∅, we have IA(x) =↑ [.
A
, x].

4. For every z ∈ I(A), I(A) =↑ [.
A
, z]. In consequence, I(A) ∈ τ [.

A
].

5. µ[A] ⊆ τ [.
A
].

Proof. We omit the elementary, simple proofs of (1)–(4). Since τ [.
A
] is a

topology, for the proof of (5), it suffices to show that A ⊆ τ [.
A
]. Consider

any non-empty set A ∈ A and any z ∈ A. It is easily seen that ↑ [.
A
, z] ⊆ A,

so A ∈ τ [.
A
].

The following lemma is widely known and can be deduced immediately
from [18, Theorem 8.3.6] by considering the identity function on X.
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Lemma 3.5. Let . and .∗ be quasiorders on a set X. Then .∗ ⊆ . if and
only if τ [.] ⊆ τ [.∗].

Theorem 3.6. 1. τ [.
A
] = τ [.µ[A]] ⊆ τ [.µ̃[A]].

2. The equality τ [.
A
] = τ [.µ̃[A]] holds if and only if .

A
⊆ .µ̃[A].

Proof. This follows directly from Proposition 3.4(2) and Lemma 3.5.

Now, we are in a position to state the main results of this section.

Theorem 3.7. The following conditions are all equivalent:

(i)
⋃

A = X and, for every x ∈ X, IA(x) ∈ µ[A];

(ii) τ [.
A
] = µ[A];

(iii) µ[A] is an Alexandroff topology on X.

Proof. Of course, if µ[A] is a topology on X, then
⋃

A = X. Thus, it follows
from items (3) and (5) of Proposition 3.4 that conditions (i) and (ii) are
equivalent. Since τ [.

A
] is an Alexandroff topology, (ii) implies (iii). It is

obvious that (iii) implies (i).

Corollary 3.8. If the family A is finite, then τ [.
A
] = µ[A] if and only if

µ[A] is a topology on X.

Theorem 3.9. If I(A) = ∅, then the topology τ [.µ̃[A]] is discrete.

Proof. Let x ∈ X and V = ↑ [.µ̃[A], x]. Clearly, V ∈ τ [.µ̃[A]] and x ∈ V .
Suppose that t ∈ V \ {x}. Assuming that I(A) = ∅, we can fix U ∈ A \
{∅} such that t /∈ U . Then W = U ∪ {x} ∈ µ̃[A], x ∈ W but t /∈ W ,
which contradicts the fact that x.µ̃[A] t. This contradiction shows that V =
{x}. Hence {x} ∈ τ [.µ̃[A]] and, in consequence, the topology τ [.µ̃[A]] is
discrete.

For x, y ∈ X such that x.
A
y and y.

A
x, we write x ≈A y.

Theorem 3.10. Suppose that I(A) 6= ∅. Then I(A) is the set of all weakly
.

A
-maximal elements and the following conditions are all equivalent:

(i) τ [.µ̃[A]] = µ̃[A];
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(ii) I(A) ∈ µ[A];

(iii) µ̃[A] = Super(I(A));

(iv) µ̃[A] is an Alexandroff topology.

Furthermore, the set I(A) is dense in τ [.µ̃[A]].

Proof. It is obvious that every element of I(A) is weakly .
A
-maximal. Fur-

thermore, we can fix x0 ∈ I(A). We notice that, for every x ∈ X, we have
x.

A
x0. Hence, if m ∈ X is a weakly .

A
-maximal element, then m ≈A x0, so

m ∈ I(A) because for the element x0 we have both x0.A
m and x0 ∈ I(A).

This shows that I(A) is the set of all weakly .
A
-maximal elements.

Now, let us assume that (i) holds. By Proposition 3.4(4), I(µ̃[A]) ∈
τ [.µ̃[A]]. Since I(A) = I(µ̃[A]) by Proposition 3.3(2), we have I(A) ∈
τ [.µ̃[A]]. It follows from (i) that I(A) ∈ µ̃[A]. By Proposition 3.3(3),
I(A) ∈ µ[A]. Hence (i) implies (ii).

Since I(A) 6= ∅, it is obvious that (ii) implies (iii).
Suppose that (iii) holds. Let ∅ 6= U ∈ τ [.µ̃[A]] and let x ∈ U . Put

Vx = I(A) ∪ {x}. It follows from (iii) that Vx ∈ µ̃[A]. One can easily
check that ↑ [.µ̃[A], x] = Vx. Hence Vx ⊆ U because x ∈ U ∈ τ [.µ̃[A]].
Since Vx ∈ µ̃[A], we deduce that U ∈ µ̃[A]. Therefore, τ [.µ̃[A]] ⊆ µ̃[A].
Proposition 3.4(5) completes the proof that (iii) implies (i). In this way, we
have shown that conditions (i)–(iii) are all equivalent. Of course, (iii) implies
(iv). Assuming that (iv) holds, we obtain that I(A) ∈ µ̃[A]. Thus, we infer
from Proposition 3.3(3) that I(A) ∈ µ[A]. Hence (iv) implies (ii) and, in
consequence, conditions (i)–(iv) are all equivalent.

That I(A) is dense in τ [.µ̃[A]] follows from the equivalence of (i) and
(iii).

Corollary 3.11. If I(A) 6= ∅ and τ [.
A
] = µ[A], then τ [.µ̃[A]] = µ̃[A].

Proof. Assuming that I(A) 6= ∅ and τ [.
A
] = µ[A], we deduce from Theorem

3.7 that µ[A] is an Alexandroff topology. This implies that I(A) ∈ µ[A].
Theorem 3.10 completes the proof.

The following example shows that the equality τ [.µ̃[A]] = µ̃[A] need not
imply τ [.

A
] = µ[A].
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Example 3.12. Suppose that X is a set with at least two elements. Let
x0 be a fixed element of X and let A = {{x0}}. Then µ[A] = {∅, {x0}}
is not a topology on X, so τ [.

A
] 6= µ[A]. One can also notice that .

A
=

{〈x0, x0〉} ∪ ((X \ {x0}) × X), so τ [.
A
] = {∅, X, {x0}}. We have I(A) =

{x0} and µ̃[A] = Super(I(A)). By Theorem 3.10, τ [.µ̃[A]] = µ̃[A]. That
τ [.µ̃[A]] = µ̃[A] can be also deduced from the following equality: .µ̃[A] =
{〈x, y〉 ∈ X ×X : y ∈ {x0, x}}.

Theorem 3.13. Suppose that I(A) 6= ∅ and τ [.
A
] = µ̃[A]. Then .

A
=

.µ̃[A].

Proof. It follows from Proposition 3.4(4) that I(A) ∈ µ̃[A]. By Proposition
3.3(3), I(A) ∈ µ[A]. Hence, by Theorem 3.10, τ [.µ̃[A]] = µ̃[A]. This,
together with the equality τ [.

A
] = µ̃[A], implies that τ [.µ̃[A]] = τ [.

A
].

By Lemma 3.5, .
A
= .µ̃[A].

Remark 3.14. Considering Theorem 3.9, it is natural to ask what happens
when X is a non-empty set and A = {∅}. In this case, I(A) is not defined,
µ[A] = {∅} = µ̃[A], .µ̃[A] = X ×X, so τ [.µ̃[A]] is the indiscrete topology on
X.

By replacing the quasiorders involved in our results with their duals, one
can easily obtain dual versions of the results.

4 A characterization of iso-dense spaces

The main goal of this section is to apply the results of Section 3 to our
investigation of iso-dense spaces via suitable quasiorders. We use the notation
introduced in Definitions 1.1, 1.3, 2.1 and 3.2.

Let us recall that, given a generalized topological space X = 〈X, µ〉,
Iso(X) is the set of all isolated points of X, and D(X) is the collection of all
dense sets in X. Then

µ[D(X)] = µ̃[D(X)] = D(X) ∪ {∅}.

For the collection DO(X) of all dense open sets of X, the generalized
topology µ[DO(X)] = DO(X) ∪ {∅} need not be a topology on X (see
Example 2.5). We notice that

µ̃[DO(X)] = {∅} ∪ {U ∈ P(X) : intX(U) ∈ D(X)}.
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In view of the assumptions of Section 3 and Definition 3.2(i), the sets
I(D(X)) and I(DO(X)) are defined only when D(X) 6= {∅} 6= DO(X).

As in Definition 2.1(3), we denote by ND(X) the collection of all nowhere
dense sets in X.

In Remarks 4.1 and 4.2 below, we show what happens with indiscrete
generalized topologies.

Remark 4.1. For a non-empty set X, let µ = {∅} and X = 〈X, µ〉. Then the
generalized topological space X is resolvable. Furthermore, D(X) = P(X) =
ND(X), {∅} = DO(X) = µ[DO(X)] = µ̃(DO(X)) and Iso(X) = ∅. We
notice that

.
D(X) = {〈x, y〉 ∈ X ×X : x = y} and .µ̃[DO(X)] = X ×X.

Therefore, τ [.
D(X)] = P(X) and τ [.µ̃[DO(X)]] = {∅, X}. Moreover, the set

I(D(X)) is defined, but I(DO(X)) is not defined. If X is a singleton, then
I(D(X)) = X. If X consists of at least two points, then I(D(X)) = ∅.

Remark 4.2. For a non-empty set X, let µ = {∅, X} and X = 〈X, µ〉. Then
D(X) = P(X) \ {∅}, ND(X) = {∅}, DO(X) = {X}, and µ̃[DO(X)] =
µ[DO(X)] = µ. If X is a singleton, then X is irresolvable and Iso(X) =
X = I(D(X)). If X consists of at least two points, then X is resolvable and
Iso(X) = ∅ = I(D(X)). Moreover, I(DO(X)) = X. We notice that

.
D(X) = {〈x, y〉 ∈ X ×X : x = y} and .µ̃[DO(X)] = X ×X.

Therefore, τ [.
D(X)] = P(X) and τ [.µ̃[DO(X)]] = µ.

Remark 4.3. Let X = 〈X, µ〉 be a non-indiscrete generalized topological
space. Since µ * {∅, X}, we have ∅ 6= X ∈ D(X) and ∅ 6=

⋃

µ ∈ DO(X), so
I(D(X)) and I(DO(X)) are both defined.

In the sequel, we consider non-indiscrete generalized topologies.

Proposition 4.4. For every non-indiscrete generalized topological space X,
the following conditions are satisfied:

(i) I(D(X)) = Iso(X); in consequence, the set I(D(X)) is open in X;

(ii) I(DO(X)) = {x ∈ X : {x} /∈ ND(X)};

(iii) Iso(X) ⊆ I(DO(X));
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(iv) if X is either a T1-space or an Alexandroff T0-space, then I(DO(X)) =
Iso(X);

(v) X is iso-dense if and only if µ[D(X)] = Super(I(D(X)).

Proof. Let X = 〈X, µ〉 be a non-indiscrete generalized topological space.
Since Iso(X) is a subset of every dense set in X, (iii) holds and Iso(X) ⊆
I(D(X)). Furthermore, if x ∈ X \ Iso(X), then the set X \ {x} is dense in
X and, therefore, I(D(X)) ⊆ X \ {x}. This implies that I(D(X)) ⊆ Iso(X).
Hence I(D(X)) = Iso(X). Thus, since Iso(X) is open in X, (i) holds.

(ii) Let x ∈ X be such that {x} ∈ ND(X). Then the set X \ clX({x})
is non-empty, dense and open in X, so I(DO(X)) ⊆ X \ clX({x}). This
implies that I(DO(X)) ⊆ {x ∈ X : {x} /∈ ND(X)}. To show that the
reverse inclusion also holds, consider any set D ∈ DO(X) and any x ∈ X
with {x} /∈ ND(X). Then the set V = intX(clX({x})) is a non-empty open
set in X. If x /∈ D, then clX({x}) ⊆ X \D and V ⊆ X \D. Since V ∩D 6= ∅,
we deduce that x ∈ D. Hence {x ∈ X : {x} /∈ ND(X)} ⊆ I(DO(X)). This
shows that (ii) holds.

(iv) Suppose that X is a T1-space. Since every singleton of X is closed in
X, it is easily seen that {x ∈ X : {x} /∈ ND(X)} = Iso(X).

Now, suppose that X is an Alexandroff T0-space. Consider any x0 ∈ X
such that {x0} /∈ ND(X). Let W0 =

⋂

{W ∈ µ : x0 ∈ W}. Since X

is an Alexandroff space, W0 ∈ µ. Since {x0} /∈ ND(X), we have x0 ∈
intX(clX({x0})). Therefore W0 ⊆ clX({x0}). Suppose that there exists y ∈
W0 \ {x0}. Since X is a T0-space and y ∈ clX({x0}), we have x0 /∈ clX({y}).
This implies that W0 ⊆ X \ clX({y}). But this is impossible for y ∈ W0.
The contradiction obtained shows that W0 = {x0}. Hence {x ∈ X : {x} /∈
ND(X)} ⊆ Iso(X). This, together with (ii) and (iii), shows that (iv) holds.

That (v) holds follows from (i) and Proposition 2.7.

Among other things, we indicate which of the spaces from the exam-
ples given below are resolvable. The following example shows that even
if an Alexandroff space is not indiscrete, it may happen that I(D(X)) 6=
I(DO(X)).

Example 4.5. Let X = {1, 2, 3}, µ = {∅, X, {1, 2}} and X = 〈X, µ〉. Then
X is a non-indiscrete resolvable space, I(D(X)) = ∅ and I(DO(X)) = {1, 2}.

We show in the following example that, for a non-indiscrete topological
T0-space X, it may happen that I(DO(X)) 6= Iso(X) and the set I(DO(X))
need not be open in X.
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Example 4.6. Let Y = {0, 1}, τ = {∅, Y, {0}} and Y = 〈Y, τ〉. Let X = Y
N.

The topological space X is a dense-in-itself T0-space which is not indiscrete.
We have Iso(X) = ∅. Let x0 ∈ {0, 1}N be defined by: for every n ∈ N,
x0(n) = 0. It is easily seen that {x0} = {x ∈ X : {x} /∈ ND(X)}. Hence, by
Proposition 4.4(ii), I(DO(X)) = {x0}. The set {x0} is both dense and not
open in X.

Of course, the space Y is irresolvable. To see that X is resolvable, for
every k ∈ N, we define elements yk of {0, 1}N as follows. For every n ∈ N,
we put:

yk(n) =











0 if n ≤ k,

1 if k < n and n is even,

0 if k < n and n is odd.

Let D = {yk : k ∈ N}. The sets D and {0, 1}N \D are both dense in X.
This shows that X is resolvable.

Theorem 4.7. For every non-indiscrete generalized topological space X, the
following conditions are satisfied:

(i) if X is dense-in-itself, then τ [.
D(X)] is the discrete topology on X;

(ii) if every singleton of X is nowhere dense in X, then τ [.µ̃[DO(X)]] is the
discrete topology on X.

Proof. Let us fix a non-indiscrete generalized topological space X.
(i) Suppose that X is dense-in-itself. Then Iso(X) = ∅, so τ [.

D(X)] is
discrete by Theorem 3.9 and Proposition 4.4(i).

(ii) Now, assume that all singletons of X are nowhere dense in X. Then
it follows from Proposition 4.4(ii) that I(DO(X)) = ∅. Hence, by Theorem
3.9, (ii) holds.

The following theorem characterizes non-indiscrete iso-dense generalized
topological spaces and is the first main result of this section.

Theorem 4.8. Let X = 〈X, µ〉 be a non-indiscrete generalized topological
space. Then the following conditions are equivalent:

(i) τ [.
D(X)] = µ[D(X)];

(ii) µ[D(X)] is an Alexandroff topology on X;
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(iii) X is iso-dense.

Proof. That conditions (i) and (ii) are equivalent follows from Theorem 3.7.
To show that (iii) implies (i), let us assume that the space X is iso-dense.

Then the set Iso(X) is non-empty and dense in X. By Proposition 4.4(i),
Iso(X) = I(D(X)). Hence, ∅ 6= I(D(X)) ∈ D(X). Furthermore, we know
that µ̃[D(X)] = µ[D(X)]. Thus, we can easily infer from Theorem 3.10 that
(i) holds.

Now, let us prove that (i) implies (iii). First, suppose that X is dense-in-
itself. Then, by Theorem 4.7, τ [.

D(X)] is the discrete topology on X. Since
X is not indiscrete, there exists U ∈ µ such that ∅ 6= U 6= X. Let C = X \U .
Then C /∈ µ[D(X)] but C ∈ τ [.

D(X)]. Hence, if (i) holds, the space X is not
dense-in-itself.

Let us assume that (i) is true. Then we have already shown that Iso(X) 6=
∅. It follows from Proposition 4.4(i) that I(D(X)) 6= ∅. Since µ̃[D(X)] =
µ[D(X)], we deduce from Theorem 3.10 that I(D(X)) ∈ D(X). Proposition
4.4(i) completes the proof.

The following theorem is the second main result of this section. It char-
acterizes non-trivial generalized topological spaces X such that the set of all
not nowhere dense singletons of X is both dense and open in X.

Theorem 4.9. Let X = 〈X, µ〉 be a non-indiscrete generalized topological
space. Then the following conditions are equivalent:

(i) τ [.µ̃[DO(X)]] = µ̃[DO(X)];

(ii) {x ∈ X : {x} /∈ ND(X)} ∈ DO(X);

(iii) µ̃[DO(X)] = Super({x ∈ X : {x} /∈ ND(X)});

(iv) µ̃[DO(X)] is an Alexandroff topology on X.

Proof. We know from Proposition 4.4(ii) that I(DO(X)) = {x ∈ X : {x} /∈
ND(X)}. That conditions (i) and (iv) are equivalent follows from Theorem
3.7. As in the proof of Theorem 4.8, we fix a set U ∈ µ such that ∅ 6= U 6= X,
and put C = X \ U . We notice that C /∈ D(X), so C /∈ µ̃[DO(X)].

Suppose that I(DO(X)) = ∅. Then Super(I(DO(X))) is discrete, so (iii)
is false. By Theorem 4.7, the topology τ [.µ̃[DO(X)]] is also discrete. Hence (i)
is also false. In consequence, each of the conditions (i) and (iii) implies that
I(DO(X)) 6= ∅. Of course, (ii) also implies that I(DO(X)) 6= ∅. Therefore,
that conditions (i), (ii) and (iii) are equivalent follows from Theorem 3.10.
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Remark 4.10. Let X be a non-empty set, µ = {∅} and X = 〈X, µ〉 (see
Remark 4.1). Then Iso(X) = ∅, but X is iso-dense and ∅ = {x ∈ X : {x} /∈
ND(X)} ∈ DO(X). However, since X /∈ µ, none of the conditions (i), (iii)
and (iv) of Theorem 4.9 is satisfied.

Remark 4.11. Let X be a non-empty set, µ = {∅, X} and X = 〈X, µ〉 (see
Remark 4.2). Then all the conditions (i)–(iv) of Theorem 4.9 are satisfied.

Corollary 4.12. Let X = 〈X, µ〉 be a T1-space such that µ 6= {∅}. Then
that X is iso-dense is equivalent to each of the conditions (i)-(iv) of Theorem
4.9.

Proof. If X consists of at least two points, then X is not indiscrete, so the
result follows from Theorem 4.9 taken together with items (ii) and (iv) of
Proposition 4.4.

Suppose that X is either empty or a singleton. Then, since µ 6= {∅}, we
have µ = {∅, X}, X is iso-dense and, in view of Remark 4.11, each of the
conditions (i)–(iv) of Theorem 4.9 is satisfied.

5 Final comments on Questions 1.7 and 1.8

Theorem 4.8 and Corollary 4.12 answer Questions 1.8 and 2.4, and can be
regarded as partial answers to Question 1.7. To search for a more satisfactory
answer to Question 1.7, one needs to consider the formulae Fd and F

T
d defined

as follows.

Definition 5.1. Let X = 〈X, µ〉 be a generalized topological space.

(i) Fd(X) and Fd(µ) denote the statement: for every pair A,B of dense
sets of X, the set A ∩ B is dense in X.

(ii) F
T
d (X) and F

T
d (µ) denote the statement: the generalized topology

µ[D(X)] is a topology on X.

Remark 5.2. (a) Note that FT
d (X) is equivalent to the statement: for every

pair A,B of dense sets of X, the set A ∩ B is empty or dense in X.
(See Remark 2.3.)

(b) In general, even for a topological space X, F
T
d (X) need not imply

Fd(X). To see this, we assume that X is a set consisting of at least
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two points, τ = {∅, X} and X = 〈X, τ〉 (see Remark 4.2). For the
indiscrete resolvable space X = 〈X, τ〉, FT

d (X) holds but Fd(X) does
not.

The following proposition is straightforward.

Proposition 5.3. For every generalized topological space X, the following
conditions are satisfied:

(i) if X is iso-dense, then Fd(X) holds;

(ii) Fd(X) implies F
T
d (X).

Proposition 5.4. Let X = 〈X, µ〉 be generalized topological space such that
µ 6= {∅, X}. Then F

T
d (X) and Fd(X) are equivalent. Furthermore, if the

space X is resolvable and non-indiscrete, then F
T
d (X) is false.

Proof. If µ = {∅}, then both F
T
d (X) and Fd(X) are true, so equivalent.

Assume that µ 6= {∅}. Since µ 6= {∅, X}, we can choose a point x0 ∈ X
such that the set {x0} is not dense in X. Suppose that A,B is a pair of
disjoint dense sets in X. Let C = B ∪ {x0} and D = B ∪ {x0}. The sets
C and D are both dense in X but C ∩ D = {x0} is not dense in X. This
shows that if FT

d (X) holds, so does Fd(X); moreover, if X is resolvable, then
F

T
d (X) is false. Proposition 5.3(ii) completes the proof.

Corollary 5.5. For every generalized topological T0-space X, the statements
Fd(X) and Fd(Y) are equivalent.

Proof. Let X = 〈X, µ〉 be a generalized topological T0-space. If µ = {∅, X},
then X is either empty or a singleton, so F

T
d (X) and Fd(X) are both true.

If µ 6= {∅, X}, it suffices to apply Proposition 5.4.

Corollary 5.6. If X = 〈X, µ〉 is a generalized topological space such that
F

T
d (X) is true and Fd(X) is false, then the set X consists of at least two

points and µ = {∅, X}.

It follows from Proposition 5.4 that, for the space X from Example 4.6,
Fd(X) and F

T
d (X) are both false.

Proposition 5.7. Let X be a locally compact, dense subspace of a Hausdorff
topological space Y. Then the following conditions are satisfied:

(i) Fd(X), Fd(Y), FT
d (X) and F

T
d (Y) are all equivalent;
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(ii) X is resolvable if and only if Y is resolvable.

Proof. Let A,B ∈ D(Y) and C,D ∈ D(X). Then both A∩X and B∩X are
dense in X because X is open in Y (see [9, Theorem 3.3.9]). Furthermore,
since X is dense in Y, the sets C and D are both dense in Y. If C ∩D = ∅,
then Y is resolvable. If A ∩ B = ∅, then X is resolvable. Hence (ii) holds.

Let us prove that (i) is satisfied. To this aim, by Corollary 5.5, it suffices
to show that Fd(X) and Fd(Y) are equivalent. We observe that if Fd(X) is
true, then A∩B∩X is dense in X, so A∩B is dense in Y. Therefore, Fd(X)
implies Fd(Y).

Now, suppose that Fd(Y) is true. Then the set C ∩ D is dense in Y.
Therefore, since C ∩ D ⊆ X, the set C ∩ D is dense in X. Hence Fd(Y)
implies Fd(X). This completes the proof.

Corollary 5.8. For every Hausdorff compactification αR of the real line R
equipped with the natural topology, it holds that αR is resolvable and Fd(αR)
is false.

In the light of Proposition 5.4 and Corollary 5.6, a satisfactory answer to
the following question will be also a satisfactory answer to Question 1.7.

Question 5.9. Under which conditions on an irresolvable generalized topo-
logical space X is Fd(X) true?

Of course, for every iso-dense space X, Fd(X) is true; however, to be an
iso-dense space is not a necessary condition for an irresolvable generalized
topological space X to satisfy Fd(X). To investigate which non-trivial irre-
solvable generalized topological spaces X satisfy Fd(X) in ZF is a good topic
for extensive future research. Let us finish this article with the following the-
orems concerning cofinite topologies on infinite sets. We recall that, for any
set X, τcof (X) denotes the cofinite topology on X (see Definition 2.14).

Theorem 5.10. For every infinite set X, the following conditions are equiv-
alent:

(i) Fd(τcof(X)) is true;

(ii) the cofinite topology τcof (X) on X is irresolvable;

(iii) X is an amorphous set.
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Proof. We fix an infinite set X. That (i) implies (ii) follows from Proposition
5.4. If X is not amorphous, there exists an infinite subset D of X such that
X \ D is also infinite. Then both the sets D and X \D are τcof(X)-dense.
Hence (ii) implies (iii).

Assuming that (iii) holds, we consider any pair A,B of τcof (X)-dense sets.
Then both A and B are infinite subsets of X. Since X is amorphous, the
sets X \A and X \B are both finite. This implies that the set X \ (A∩B) =
(X \A)∪ (X \B) is finite. Since X is infinite, we infer that A∩B is infinite.
Therefore, A ∩ B is τcof (X)-dense. In consequence,(iii) implies (i).

The following theorem is an immediate consequence of Theorem 5.10 and
Proposition 5.4.

Theorem 5.11. It holds in ZF that the following statements are all equiva-
lent:

(i) there are no amorphous sets ([12, Form 64]);

(ii) for every infinite set X, τcof(X) is resolvable;

(iii) for every infinite set X, Fd(τcof(X)) is false;

(iv) for every infinite set X, FT
d (τcof (X)) is false.

Since Form 64 of [12] is known to be independent of ZF (see Remark
2.16), we deduce from Theorem 5.11 the following independence results:

Corollary 5.12. The statements (i)–(iv) of Theorem 5.11 are all indepen-
dent of ZF.

6 Open problems

We do not have satisfactory solutions to the following open problems.

1. Find necessary and sufficient conditions in ZF for an irresolvable (gen-
eralized) topological space X to satisfy Fd(X). (See Question 1.7 and
5.9.)

2. Find necessary and sufficient conditions in ZF for a generalized topo-
logical space X to be such that DO(X)∪ {∅} is a topology on X. (See
Example 2.5 and Proposition 2.6.)
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3. Verify which known ZFC-theorems on resolvable spaces are indepen-
dent of ZF.
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