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ON CARDINAL INVARIANTS RELATED TO ROSENTHAL

FAMILIES AND LARGE-SCALE TOPOLOGY

ARTURO MARTÍNEZ-CELIS AND TOMASZ ŻUCHOWSKI

Abstract. Given a function f ∈ ωω , a set A ∈ [ω]ω is free for f if f [A]∩A is
finite. For a class of functions Γ ⊆ ωω , we define rosΓ as the smallest size of a

family A ⊆ [ω]ω such that for every f ∈ Γ there is a set A ∈ A which is free for
f , and ∆Γ as the smallest size of a family F ⊆ Γ such that for every A ∈ [ω]ω

there is f ∈ F such that A is not free for f . We compare several versions of
these cardinal invariants with some of the classical cardinal characteristics of
the continuum. Using these notions, we partially answer some questions from
[KMC21] and [BP22].

1. Introduction

A matrix M = (mk,n)k,n∈ω consisting of non-negative reals is called a Rosenthal
matrix if the set of sums {

∑
n∈N

mk,n : k ∈ ω} is bounded. Given ε > 0 and a
Rosenthal matrix M , an infinite subset A of ω ε-fragments M if for every k ∈ A
we have ∑

n∈A\{k}

mk,n < ε.

A family F of infinite subsets of ω is a Rosenthal family ([Sob19, Definition 1.3]) if
for any ε > 0 and every Rosenthal matrix M there is A ∈ F such that it ε-fragments
M .

The Rosenthal’s lemma ([Ros68], [Ros70]), an important result concerning se-
quences of measures (see [KMC21, Section 6] for the discussion of its classical forms
and uses), states in its combinatorial form that [ω]ω is a Rosenthal family (see e.g.
[Kup74] and [Sob19, Section 1]).

Rosenthal families have been recently studied in [Sob19], [KMC21] and [Rep22].
In [KMC21], the authors proved that every ultrafilter on ω is a Rosenthal family,
and that r is the smallest size of a Rosenthal family. Moreover, they found out a
connection of Rosenthal families with free sets.

We say that a set A ⊆ [ω]ω is free for a given f ∈ ωω if f [A] ∩A = ∅. It follows
a well-established combinatorial terminology (e.g., [KT06]) in which, given a set
mapping f : X → P(X), a set Y ⊆ X is called free if y /∈ f(y′) for any y, y′ ∈ Y . It
was proven in [KMC21, Theorem 23] that r is the smallest size of a family A ⊆ [ω]ω

such that for every f : ω → ω without fixed points there is an A ∈ A which is free
for f . Functions without fixed points correspond to Rosenthal matrices of zeros
and ones (see [KMC21, Section 2.2]).

Many of the classical cardinal invariants can be investigated using relational sys-
tems, introduced by Vojtáš in [Voj93] (see also [Bla10, Section 4]). By a relational
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2 ARTURO MARTÍNEZ-CELIS AND TOMASZ ŻUCHOWSKI

system we mean a triple
〈
A,B,R

〉
, where R ⊆ A× B is a binary relation on non-

empty sets A and B. For x ∈ A and y ∈ B, xR y is read as y R-dominates x. A
family X ⊆ A is R-unbounded if there is no element of B that R-dominates every
element of X , and Y ⊆ B is R-dominating if every element of A is R-dominated
by some element of Y . The cardinal d(R) is the smallest size of an R-dominating
family, and b(R) is the smallest size of an R-unbounded family. For example, for
the relation D = 〈ωω, ωω,≤∗〉 we have d(D) = d and b(D) = b. Another common
example is the relationR = 〈P(ω), [ω]ω, does not split〉, for which we have d(R) = r

and b(R) = s.
The previously stated characterization of r by free sets yields the following nat-

ural relational system: If we denote by f RA whenever A is free for f , then, the
dominating number of this relational system is r. Observe that b(R) = ω. Indeed,
for every a 6= b ∈ ω there is fa,b ∈ ωω without fixed points such that f(a) = b and
f(b) = a. The family {fa,b : {a, b} ∈ [ω]2} is R-unbounded. Instead, we will look
at the following modification of the relation R.

Definition 1.1. Let f ∈ ωω and A ⊆ [ω]ω. We say that A is *-free for f if f [A]∩A
is finite.

As with the relation R, the notion of *-free yields a natural relation R′: fR′A
if and only if A is *-free for f . One can easily show that d(R′) = d(R) and that
b(R′) is uncountable. In [KMC21], the authors also consider a restriction of this
relation, limiting the domain to finite-to-one functions in ωω. They proved that the
dominating number of this restriction, which they call ros(c0), is equal to min{d, r}
[KMC21, Theorem 32], and asked about the case when the relation is restricted to
only injective functions ([KMC21, Question 3]).

To investigate the mentioned question, we will consider the following scheme of
notions.

Definition 1.2. Given a property ϕ about functions of ωω, let

�ϕ =
{
f ∈ ωω : f has no fixed points and ϕ(f)

}
,

and let rosϕ = d
(〈
�ϕ, [ω]

ω, *-free
〉)
. In other words

rosϕ = min
{
|A| : A ⊆ [ω]ω and ∀f ∈ �ϕ ∃A ∈ A

(
f [A] ∩ A is finite

)}
.

For example, if ϕ is the trivial property, i.e., a property that all function satisfy
(which, from now on, will be denoted by ϕ = 1), or if ϕ is the property of being a
finite to one function (from now on ϕ = Fin-1), then the results from [KMC21] can
be restated as follows:

ros1 = r and rosFin-1 = min{d, r}.

If ϕ is the property of being a one-to-one function (ϕ = 1 − 1) then [KMC21,
Question 3] asks about the value of ros1-1. In this work we prove the following
result.

Theorem A. cov(M) ≤ ros1-1 ≤ min
{
d, r,ming∈ωω êg

}
and it is consistent with

ZFC that ros1-1 < min
{
d, r, non(N )

}
.

The cardinals êg are related to the notion of being eventually different inside a
compact set (the precise definition will be on Section 4). The proof follows from
Theorems 3.4, 4.3 and 5.4.
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We also show a close relationship between the relation of being *-free and some
of the cardinal invariants considered by T. Banakh in [Ban23], in which the author
studies some set-theoretical problems related to large-scale topology. Large-scale
topology (referred also as Asymptology [PZ07]) studies properties of coarse spaces,
which were introduced independently in [PB03] and [Roe03]. The cardinal ∆ is
defined as the smallest weight of a finitary coarse structure on ω that contains
no infinite discrete subspaces (for the definitions and more information about the
subject, we refer the reader to [BP22]). In [Ban23], the author found the following
two combinatorial characterizations of ∆, where Sω denotes the permutation group
of ω and Iω ⊆ Sω is the set of involutions of ω (i.e. permutations that are their
own inverse) that have at most one fixed point.

Theorem 1.3 (Banakh).

∆ = min
{
|F| : F ⊆ Sω and ∀A ∈ [ω]ω ∃f ∈ F

(
|{x ∈ A : x 6= f(x) ∈ A}| = ℵ0

)}

= min
{
|F| : F ⊆ Iω and ∀A ∈ [ω]ω ∃f ∈ F

(
|f [A] ∩A| = ℵ0

)}
.

The author also considered the dual cardinal invariant, denoted by ∆̂:

∆̂ = min
{
|A| : A ⊆ [ω]ω and ∀h ∈ Iω ∃A ∈ A (|h[A] ∩ A| < ℵ0)

}
.

In [Ban23, Section 3 and 7], the author relates ∆ and ∆̂ with other classical
cardinal invariants of the continuum:

Theorem 1.4 (Banakh).

max{b, s, cov(N )} ≤ ∆ ≤ non(M),

cov(M) ≤ ∆̂ ≤ min{d, r, non(N )}.

For the following theorem, the cardinals eg are related to the notion of being
infinitely equal inside a compact set (the precise definition will be on Section 4).

Theorem B. We have supg∈ωω eg ≤ ∆ and ∆̂ ≤ ming∈ωω êg. It is consistent

with ZFC that max
{
b, s, cov(N )

}
< ∆, and it is consistent with ZFC that ∆̂ <

min
{
d, r, non(N )

}
.

This partially answers [BP22, Problem 2.3] and [BP22, Problem 2.5]. The proof
follows from Corollary 3.3 and Theorems 4.3, 5.4, 5.5.

In order to prove this theorem, we will study the dual cardinal invariants of rosϕ,
which will be called ∆ϕ. These are defined in the following way.

Definition 1.5. Given a property ϕ about functions of ωω, let ∆ϕ = b
(〈
�ϕ, [ω]

ω, *-free
〉)
.

In other words,

∆ϕ = min
{
|F| : F ⊆ �ϕ and ∀A ∈ [ω]ω ∃f ∈ F

(
|f [A] ∩A| = ℵ0

)}
.

Clearly, we have ros1-1 ≤ rosFin-1 ≤ ros1 and ∆1 ≤ ∆Fin-1 ≤ ∆1-1. These

families of cardinal invariants are closely connected with ∆ and ∆̂: by Corollary

3.3 we have ∆ = ∆bijective = ∆1-1 and ∆̂ = rosbijective = ros1-1. The part about
consistency results in Theorem B about ∆ follow from the following result, proved
in Theorems 4.3 and 5.5.

Theorem C. It is true that supg∈ωω eg ≤ ∆1-1 and it is consistent with ZFC that

max
{
b, s, supg∈ωω eg

}
< ∆1-1.
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The structure of the paper is as follows: In Section 2 we prove the lower and
upper bounds for the invariants ∆1 and ∆Fin-1, using similar ideas than the ones

in [KMC21] for ros1 and rosFin-1. Section 3 is devoted to prove that ∆ and ∆̂ is
equal to a certain class of ∆ϕ and rosϕ, respectively, with ϕ as the property of
being injective being the most representative example of that class. In Section 4,
we relate ∆1-1 and ros1-1 to some cardinal invariants closely related to infinitely
equal and eventually different reals in some compact sets. In the last section, we
provide some consistency results concerning ∆1-1 and ros1-1.

Our notation is standard and follows [BJ95] and [Bla10]. The reader can find the
definitions of the classic cardinal invariants d, b, s, r, cov(M), non(M), add(M),
cof(M), cov(N ) and non(N ) in [Bla10].

2. ∆1 and ∆Fin-1.

In [KMC21], the authors prove that ros1 = r and that rosFin-1 = min{d, r}. In
this section, we will prove a similar version, but not exactly the same, of the dual
of those results. One of the main tools that it is used to prove that ros1 ≥ r is
the fact that, if κ < r and S ⊆ [ω]ω is a family of sets such that |S| = κ, then
there is a partition ω =

⋃
n∈ω Pn such that for each S ∈ S and each Pn, S ∩ Pn is

infinite, and r is the smallest cardinal to have such property (which the authors of
[KMC21] call nowhere reaping). It is not clear that the dual of that property is s.
This issue was already addressed in [FKV18]. In the Section 8 of that work, the
authors introduce a cardinal invariant, closely related to s: Let P be the family of
partitions of ω into ℵ0 many infinite sets.

smix = min{|S| : S ⊆ P and ∀A ∈ [ω]ω ∃P = (Pk)k∈ω ∈ S ∀k ∈ ω (|A ∩ Pk| = ℵ0)}

Clearly s ≤ smix. By the remark on the last paragraph, the dual of smix is
r, however, it is not known if smix = s. The proof of the following proposition
implicitly appears in [FKV18, Proposition 7.3.(iii)].

Proposition 2.1 (Farkas, Khomskii, Vidnyánszky). smix ≤ non(M)

Proof. Consider the space P = {f ∈ ωω : ∀n ∈ ω (f−1(n) is infinite)} of partitions
of ω into ω many infinite sets. Notice that P ⊆ ωω is Polish. Let κ < smix and let
F = {fα : α ∈ κ} ⊆ P . Then, there must be an infinite set A ⊆ ω such that for all
α ∈ κ there is an n ∈ ω such that f−1(n) ∩ A is finite. For every k, n ∈ ω the set
Ek

n = {f ∈ P : |f−1(n) ∩ A| ≤ k} is a closed nowhere dense subset of P . It follows
that F is meager, since we have F ⊆

⋃
n,k∈ω Ek

n. �

We prove that this invariant is an upper bound for ∆1. The proof is analogous
to the proof of the dual inequality (see [KMC21, Lemma 17]).

Proposition 2.2. ∆1 ≤ smix.

Proof. Let Sω be a family of partitions of ω into ω many infinite sets witnessing
the definition of smix. We will build a set of functions F ⊆ � such that for every
A ∈ [ω]ω there is f ∈ F such that f [A] ∩ A is infinite. For every partition P =
(Pn)n∈ω ∈ Sω we define the following function fP : ω → ω:

fP (k) =

{
n, if n 6= k ∈ Pn,

k + 1, otherwise.
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It follows that fP is a function without fixed points. Let F = {fP : P ∈ Sω}. If
A ∈ [ω]ω then there exists a P = (Pn)n∈ω ∈ Sω such that

∣∣A ∩ Pn

∣∣ = ω for all
n ∈ ω. Then, for every n ∈ ω we have:

f−1
P

[
{n}

]
⊇
(
Pn\{n}

)
∩ A 6= ∅,

which implies n ∈ fP [A] for all n ∈ ω, and so fP [A] = ω. In particular, fP [A] ∩ A
is infinite. �

For our next result, we will use the following well-known theorem, whose proof
can be found in [Kat67].

Theorem 2.3. For every f ∈ � there is a partition ω = A0 ∪ A1 ∪ A2 such that
f [Ai] ∩Ai = ∅ for all i ∈ {0, 1, 2}.

The following is a direct corollary from the previous theorem and the fact that
s is the smallest size of a family of partitions into 3 sets such that for every infinite
X ⊆ ω there is a partition in the family such that every part intersects X in an
infinite set (see e.g. [FKV18, Section 8]).

Proposition 2.4. s ≤ ∆1.

Proof. Let F = {fα : α < κ} ⊆ � with κ < s. We will see that there is an infinite
A ∈ [ω]ω such that fα[A] ∩ A is finite for every α ∈ κ. For each α < κ pick a
partition ω = Aα

0 ∪ Aα
1 ∪ Aα

2 such that fα
[
Aα

i

]
∩ Aα

i = ∅ for i ∈ {0, 1, 2}.
The family {Aα

i : α ∈ κ} is not a splitting family, so there must be an infinite
B ⊆ ω such that, for every α < κ, we have that B ⊆∗ Aα

iB
for exactly one iB ∈

{0, 1, 2}. Therefore, for all α ∈ κ, fα[B] ∩B ⊆∗ fα[A
α
iB
] ∩ Aα

iB
= ∅. �

As a consequence, we get that ∆1 is in between s and smix, raising the following
question:

Question 1. Is it true that s = ∆1 = smix?

We will now turn our focus on ∆Fin-1: For our next proposition, we will need
a well-known characterization of b. Let I and J be interval partitions of ω. The
partition I dominates the partition J if for almost all I ∈ I there is a J ∈ J such
that J ⊆ I. The following widely known theorem appears in [Bla10, Theorem 2.10]:

Theorem 2.5. b is the smallest amount of interval partitions of ω that are not
dominated by a single interval partition. d is the smallest size of a dominating
family of interval partitions.

By taking the end points of every piece, we can consider interval partitions as
infinite subsets of ω, and the domination relations translates to the following: A
set A ∈ [ω]ω dominates a set B ∈ [ω]ω if and only if for almost every n 6= m ∈ A
there are i 6= j ∈ B such that n ≤ i < j ≤ m. With this in mind, we will prove the
following proposition.

Proposition 2.6. b ≤ ∆Fin-1.

Proof. Let F = {fα : α < κ} ⊆ �Fin-1 with κ < b. For every α < κ, one can easily
construct an increasing function hα ∈ ωω such that

hα(n+ 1) > max
(
fα[{0, . . . , hα(n)}] ∪ f−1

α [{0, . . . , hα(n)}]
)
.
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For any α < κ we define an interval partition Iα =
{
[hα(i), hα(i + 1)): i ∈ ω

}
.

As κ < b, there must be an infinite set A ∈ [ω]ω such that if A = {ai : i ∈ ω}
is its increasing enumeration, then, for every α < κ and for almost all n ∈ ω,
[hα(k), hα(k + 1)) ⊆ [an, an+1) for some k ∈ ω. We will see that fα[A] ∩A is finite
for every α ∈ κ: Notice that, since for almost all n ∈ ω there is k ∈ ω such that
[hα(k), hα(k+1)) ⊆ [an, an+1), then an+1 ≥ hα(k+1), implying that an+1 is bigger
than any number of the form fα(ℓ) or an element of the set f−1

α (ℓ) for ℓ ≤ hα(k).
In particular, for almost all n ∈ ω we have an+1 > fα(ai),max f−1

α (ai) for i ≤ n.
This implies that fα[A] ∩A is finite. �

Therefore, as a conclusion we get that max{b,∆1} ≤ ∆Fin-1. We will now prove
the converse inequality, whose proof is inspired by the proof of the dual inequality
in [KMC21, Proposition 26].

Proposition 2.7. ∆Fin-1 ≤ max{b,∆1}.

Proof. Let G = {gβ : β < ∆1} ⊆ � be a family of functions such that for every
A ∈ [ω]ω there is g ∈ G satisfying

∣∣g[A] ∩ A
∣∣ = ω and let {Aα : α ∈ b} ⊆ [ω]ω such

that for every B ∈ [ω]ω there is α ∈ b such that for almost every n 6= m ∈ A there
are i 6= j ∈ B such that n ≤ i < j ≤ m. For every α ∈ κ consider Aα = {aαn : n ∈ ω}
with its increasing enumeration.

Let us define fα,β : ω → ω for each α < b and β < ∆1 by setting:

fα,β(i) =

{
gβ(i) if there is an n ∈ ω such that i, gβ(i) ∈ [aαn, a

α
n+1),

i+ 1 otherwise.

Clearly fα,β ∈ �Fin-1. We will show that the family F = {fα,β : α ∈ b, β ∈ ∆1} is a
witness for ∆Fin-1. Let A ∈ [ω]ω. Then, there is β ∈ ∆1 such that

∣∣gβ[A]∩A
∣∣ = ω.

It is easy to find a set B = {bj : j ∈ ω} ∈ [ω]ω such that for every i ∈ ω we have

gβ [[bi, bi+1) ∩ A] ∩ (A ∩ [bi, bi+1)) 6= ∅.

Then, find α < b such that there are infinitely many n 6= m ∈ A such that there
are i 6= j ∈ B such that n ≤ i < j ≤ m. Clearly, this implies that

gβ [[a
α
n, a

α
n+1) ∩A] ∩ (A ∩ [aαn, a

α
n+1)) 6= ∅

holds for infinitely many n ∈ ω. Finally, note that if

i ∈ gβ[[a
α
n, a

α
n+1) ∩ A] ∩ (A ∩ [aαn , a

α
n+1)),

then i, gβ(i) ∈ [aαn, a
α
n+1) and therefore fα,β(i) = gβ(i). In conclusion, the set

fα,β[A] ∩ A is infinite. �

As a corollary, we get the main result of this section.

Theorem 2.8. ∆Fin-1 = max{b,∆1}.

This implies that max{b, s} ≤ ∆Fin-1 ≤ max{b, smix}. The dual version of
this theorem was proven in [KMC21, Section 5], where the authors proved that
rosFin-1 = min{d, ros1}, and since r = ros1, then rosFin-1 = min{d, r}. We were
not able to prove the dual version this last equality, leaving us with the following
question.

Question 2. Is it true that max{b, s} = ∆Fin-1 = max{b, smix}?
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3. ∆1-1, ros1-1 and its relatives.

In this section, we will take a look at ∆1-1, ∆bijective, ∆involution and its dual ver-
sions (where ϕ = bijective is the property of being a bijective function and ϕ = invo-
lution is the property of being an involution). Since �involution ⊆ �bijective ⊆ �1-1 ⊆
�Fin-1 ⊆ �1, then ∆involution ≥ ∆bijective ≥ ∆1-1 ≥ ∆Fin-1 ≥ ∆1 and rosinvolution ≤
rosbijective ≤ ros1-1 ≤ rosFin-1 ≤ ros1 and as a consequence, max{b, s} ≤ ∆1-1

and min{d, r} ≥ ros1-1. The main goal of this section is to prove that ∆1-1 =

∆involution = ∆ and that ros1-1 = rosinvolution = ∆̂.
Before that, we must point out an easy remark about involutions that will be

used frequently: Involutions without fixed points may not exist, for example when
the domain has an odd amount of points. However, if the domain has an even
amount of points, or an infinite amount of points, it is always possible to construct
an involution. With this in mind, we will proceed to prove the following lemma.

Lemma 3.1. For every f ∈ �1−1 there are f̂0, f̂1, f̂2, f̂3 ∈ �involution, for every
A ∈ [ω]ω, if all fi[A] ∩ A are finite, then f [A] ∩A is finite.

Proof. First observe that if f and f ′ are such that f(k) 6= f ′(k) for finitely many
k ∈ ω then f [A]∩A is finite if and only if f ′[A]∩A is finite. Define an equivalence
relation R on ω: mRn if and only if there is an i ∈ Z such that m = f i(n). This
splits ω into (possibly finitely many) classes {Cn : n ∈ N}. We may categorize
these Cn in the following way:

• Cn is finite. In this case Cn can be enumerated as {ani : i ≤ kn} such that
f(ankn

) = an0 and for every i < kn, f(a
n
i ) = ani+1. Note that if Cn is finite,

then Cn has an odd number of elements, if and only if kn is even.
• Cn is infinite. We will distinguish two subcases:

– Cn is a cycle, i.e. for all i ∈ Cn there is j ∈ Cn such that f(j) = i.
In this case Cn can be enumerated as {ani : i ∈ Z} such that for every
i < Z, f(ani ) = ani+1.

– Cn is a semi-cycle, i.e. there is an i ∈ Cn such that for all j ∈
Cnf(j) 6= i. Notice that this i must be unique. In this case Cn can be
enumerated as {ani : i ∈ ω} such that for every i < Z, f(ani ) = ani+1.

Notice that, if x, y are such that f(x) = y, then there is an n ∈ ω such that either
x = ani and y = ani+1 for some i < kn (where kn = ∞ in case that Cn is infinite),
or x = ankn

and y = an0 . We have to split the proof into three cases:

Case 1. There is an even number of Cn such that |Cn| is odd, or there is an odd
number of Cn such that |Cn| is odd and there is an infinite Ck.

Note that, for such f , there is an f ′ ∈ �1−1 such that f(k) 6= f ′(k) for finitely
many k ∈ ω and f ′ has no Cn with an odd number of elements. So, without loss of
generality, we may assume that f itself has no Cn with an odd number of elements.

We will construct f̂0, f̂1, f̂2, f̂3 ∈ �involution by defining them in each restriction

f̂i ↾ Cn:

• Cn has an even number of elements. In this case, let f̂0(a
n
i ) = ani+1 and

f̂0(a
n
i+1) = ani whenever i < kn is even, let f̂1(a

n
i ) = ani+1, f̂0(a

n
i+1) = ani

when i ≤ kn is odd (we convene that ankn+1 = an0 ). Define f̂2 ↾ Cn, f̂3 ↾ Cn

to be any random involutions on Cn. It is clear that each f̂i is an involution
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without fixed points and, if x, y ∈ Cn and f(x) = y, then there is an i ≤ 1

such that f̂i(x) = y.

• Cn is a cycle. In a similar way, let f̂0(a
n
i ) = ani+1 and f̂0(a

n
i+1) = ani

whenever i ∈ Z is even, let f̂1(a
n
i ) = ani+1, f̂0(a

n
i+1) = ani when i ∈ Z is odd.

Define f̂2 ↾ Cn, f̂3 ↾ Cn to be any involutions on Cn. As in the previous

case, it is clear that each f̂i is an involution without fixed points and, if
x, y ∈ Cn and f(x) = y, then there is an i ≤ 1 such that fi(x) = y.

• Cn is a semi cycle. Let f̂0(a
n
i ) = ani+1 and f̂0(a

n
i+1) = ani whenever i ∈ ω

is even. Let f̂1(a
n
i ) = ani+1 and f̂1(a

n
i+1) = ani if i ≡ 1 mod 4 and for the

undefined (infinitely many) ani , define f̂1 in such a way that it is still an

involution. Let f̂2(a
n
i ) = ani+1 and f̂2(a

n
i+1) = ani if i ≡ 3 mod 4 and for

the undefined (infinitely many) ani , define f̂2 in such a way that it is still

an involution. Define f̂3 ↾ Cn to be any random involution on Cn. It is

clear that each f̂i is an involution without fixed points and, if x, y ∈ Cn

and f(x) = y, then there is an i ≤ 2 such that f̂i(x) = y.

It follows that each f̂i ∈ �involution and that for every x, y ∈ ω, if f(x) = y, then

there is an i ≤ 2 such that f̂i(x) = y. Therefore, if A ∈ [ω]ω and each fi[A] ∩ A is
finite, then necessarily f [A] ∩ A must be finite too.

Case 2. There is an odd number of Cn such that |Cn| is odd and the rest of the
Ci have an even amount of elements.

As in the previous case, it is possible to modify f in finite many values so
that there is a single Cn such that |Cn| is odd, so, without loss of generality C0

is the only one with an odd number of elements. Let D =
⋃

k∈ω C2k and let

E = C0∪
⋃

k∈ω C2k+1. ClearlyD and E are infinite sets. We will define f̂0, f̂1, f̂2, f̂3
using the following rules:

• f̂0 ↾ E, f̂1 ↾ E are random involutions on E, and f̂2 ↾ D, f̂3 ↾ D are random
involutions on D,

• for n 6= 0 and even, f̂0 ↾ Cn, f̂1 ↾ Cn are defined exactly as how they were
defined in Case 1,

• for odd n, f̂2 ↾ Cn, f̂3 ↾ Cn are defined as how f̂0 ↾ Cn, f̂1 ↾ Cn were defined
in Case 1.

After this, we have that each f̂i ∈ �involution and that for every x, y ∈ ω \ C0, if

f(x) = y, then there is an i ≤ 3 such that f̂i(x) = y. Then, if A ∈ [ω]ω and each
fi[A] ∩ A is finite, we have that f [A] ∩ A is finite.

Case 3. There are infinitely many Cn such that |Cn| is odd.
For Cn where Cn is either infinite or has an even amount of points, the func-

tions f̂i ↾ Cn are defined exactly as in Case 1. For each Cn such that it has
an odd number of elements, let Dn = Cn \ {ankn

}, En = Cn \ {an0} and let
Fn = {an0 , a

n
kn
} and let D = {ankn

: Cn has an odd amount of elements}, E = {an0 :
Cn has an odd amount of elements} and F = {ani : Cn has an odd amount of elements and 0 <
i < kn}. Clearly,D,E, F are infinite subsets of

⋃
{Cn : Cn has an odd amount of elements}

disjoint with Dn, En and Fn, respectively. For the rest of the proof, we will only
consider n such that Cn has an odd number of elements.
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• First, we will define f̂0(a
n
i ) = ani+1 and f̂0(a

n
i+1) = ani whenever 0 ≤ i < kn

is even. Clearly, this defines an involution on
⋃
Dn. Define f̂0 ↾ D to be

any involution on D.

• Then, define f̂1(a
n
i ) = ani+1 and f̂1(a

n
i+1) = ani whenever 0 < i ≤ kn is odd.

This defines an involution on
⋃
En. Define f̂1 ↾ E to be any involution on

E.
• Finally, define f̂2(a

n
kn
) = an0 and f̂2(a

n
0 ) = ankn

. This defines an involution

on
⋃

Fn. Define f̂2 ↾ F to be any involution on F . Let f̂3 be any involution
in
⋃
Cn.

As in Case 1, it follows that each f̂i ∈ �involution and that for every x, y ∈ ω, if

f(x) = y, then there is an i ≤ 2 such that f̂i(x) = y. So, if A ∈ [ω]ω and each
fi[A] ∩ A is finite, then f [A] ∩ A is finite. �

This lemma will be used to prove the first main result of this section.

Theorem 3.2. ∆1-1 = ∆involution and ros1-1 = rosinvolution.

Proof. We only need to prove that ∆1-1 ≥ ∆involution and that ros1-1 ≤ rosinvolution.
(∆1-1 ≥ ∆involution): Let {fα : α ∈ ∆1-1} be a witness for ∆1-1. Using the

previous lemma, for each α ∈ ∆1-1, it is possible to find f̂α
0 , f̂

α
1 , f̂

α
2 , f̂

α
3 such that,

for all A ∈ [ω]ω, if fα[A] ∩ A is infinite, then there is an i ∈ {0, 1, 2, 3} such that

f̂α
i [A] ∩ A is infinite. It follows that {f̂α

i : α ∈ ∆1-1, i ∈ {0, 1, 2, 3}} must be a
witness for ∆involution.

(ros1-1 ≤ rosinvolution): Let κ < ros1-1 and let {Aα : α ∈ κ} ⊆ [ω]ω, we will show
that this family is not a witness for rosinvolution. Since κ < ros1-1, there is a function
f ∈ �1−1 such that, for all α ∈ κ, f [Aα] ∩ Aα is infinite. Then, using the previous

lemma, there are f̂0, f̂1, f̂2, f̂3 ∈ �involution such that for every α ∈ κ there is an

iα ∈ {0, 1, 2, 3} such that f̂iα [Aα] ∩ Aα is infinite. For every α ∈ κ, one can easily

construct an interval partition Iα, such that, for every I ∈ Iα, f̂iα [I ∩A] ∩ (I ∩A)

has at least 2 elements of the form n, f̂iα(n). Since κ < ros1-1 ≤ rosFin-1 ≤ d, by
Theorem 2.5, there must be an interval partition J = {Jn : n ∈ ω} such that,
for all α ∈ κ, the set Dα = {n ∈ ω : Jn contains an interval from Iα} is infinite.
Additionally, we may assume that each |Jn| is odd. Since κ < ros1-1 ≤ rosFin-1 ≤ r,
there is a partition of ω = P0 ∪ P1 ∪ P2 ∪ P3 such that, for all α ∈ κ and all
i ∈ {0, 1, 2, 3}, Pi ∩Dα is infinite. Let

D = {n ∈ ω : n, f̂i(n) ∈ Jk for k ∈ Pi, i ∈ ω}.

Note that ω \D is infinite since each Jk has an odd number of elements. Observe
that, for all i ∈ ω and every k ∈ Pi, n ∈ D if and only if fi(n) ∈ D and therefore

the function f̂ ′ =
⋃

i∈{0,1,2,3}

⋃
k∈Pi

f̂i ↾ (Jk ∩ D) is an involution on D. Let

f̂ ∈ �involution be any function that extends f̂ ′. We will see that, for every α ∈ κ,

f̂ [Aα]∩Aα is infinite: Let α ∈ κ, so Piα ∩Dα is infinite. For every k ∈ Piα ∩Dα we

have that Jk contains an interval from Iα, thus f̂iα [Jk ∩A]∩ (Jk ∩A) has at least 2

elements of the form n, f̂iα(n). Finally, observe that n ∈ D, so f̂iα(n) = f̂(n) and

therefore f̂ [Jk ∩ A] ∩ (Jk ∩ A) 6= ∅. This implies that f̂ [A] ∩ A is infinite, which is
what we wanted to prove. �

Clearly, the previous equality holds for any property ϕ in between being one to
one and being an involution. In particular, ∆bijective = ∆1-1 and rosbijective = ros1-1.
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We will now relate these cardinal characteristics to the ones appearing in [Ban23]
and [BP22]. In those works, the authors considered a slight modification of ∆involution

and rosinvolution, where a single fixed point was allowed. Clearly an involution with
a single fixed point can be modified in a finite way to be a bijection: For instance,
if f is an involution such that n ∈ ω is its fixed point, and if m 6= n, then setting

f̂(n) = m, f̂(m) = f(n) and leaving the rest of f̂ the same as f yields a bijec-
tion without fixed points such that, for every A ∈ [ω]ω, f [A] ∩ A is infinite if and

only if f̂ [A] ∩ A is infinite. As a consequence, ∆involution ≤ ∆ ≤ ∆bijection and

rosinvolution ≥ ∆̂ ≥ rosbijection, giving the following as a consequence.

Corollary 3.3. ∆ = ∆1-1 and ∆̂ = ros1-1.

Proof. It follows from Theorem 3.2 and the remark above. �

We can now apply the results from [Ban23] to ∆1-1 to get the following.

Theorem 3.4. max{b, s, cov(N )} ≤ ∆1-1 ≤ non(M) and min{d, r, non(N )} ≥
ros1-1 ≥ cov(M).

Proof. This is a direct consequence of Corollary 3.3 and Theorem 1.4 (see [Ban23,
Theorems 3.2 and 7.1]). Alternatively one can use Proposition 2.4, Theorem 2.8,
the fact that rosFin-1 = min{d, r} ([KMC21, Theorem 27]), Proposition 3.5 and
Theorem 4.3. �

In the final section of this work, we will show the consistency of the strict ineqal-
ities max{b, s, cov(N )} < ∆1-1 and min{d, r, non(N )} > ros1-1. We do not know
the answer to the following question.

Question 3. Is it true that ∆1-1 = non(M) and ros1-1 = cov(M)?

The positive answer would provide negative answers to Problems 3.8, 8.11.(2) and
8.11.(3), appearing in [Ban23].

To conclude this section, we would like to take a look at the case where the func-
tions are strictly increasing (ϕ =increasing). Since all these functions are injective,
then it follows that ∆1-1 ≤ ∆increasing and ros1-1 ≥ rosincreasing. The following is
also easy to see.

Proposition 3.5. ∆increasing ≤ non(M) and rosincreasing ≥ cov(M).

Proof. The proof is similar to the proof of Proposition 2.1: It follows from the fact
that �increasing is Polish and the fact that, for every A ∈ [ω]ω, {f ∈ �increasing :
f [A] ∩ A is finite} is meager. �

There is nothing else we know about ∆increasing and rosincreasing, leaving us with
the following natural question.

Question 4. What are the values of ∆increasing and rosincreasing?

4. Eventually different and infinitely equal reals.

Recall that, given f, g ∈ ωω, f is infinitely equal to g, denoted by f =∞ g, if
f ∩g is infinite. This naturally yields a relational system E = 〈ωω, ωω,=∞〉 and, by
a well-known theorem of Bartoszyński [Bar87] and Miller [Mil82], d(E) = non(M)
and b(E) = cov(M) (see also [BJ95, Section 2.4]). We will make use of the following
bounded variation of this relation:
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Definition 4.1. Given a strictly increasing g ∈ ωω, the following is the g-bounded
version of the infinitely equal number.

eg = min
{∣∣F

∣∣ : F ⊆
∏

n∈ω

g(n) and ∀h ∈
∏

n∈ω

g(n) ∃f ∈ F (f =∞ h)
}
.

and its dual, the g-bounded version of the eventually different number:

êg = min
{∣∣F

∣∣ : F ⊆
∏

n∈ω

g(n) and ∀h ∈
∏

n∈ω

g(n) ∃f ∈ F (f ∩ h is finite)
}
.

These invariants have been widely studied in the literature, even in a much
more general setting ([Mil81, Section 2], [CM19]). Clearly eg ≤ non(M) and êg ≥
cov(M). Consistently, these invariants can have many different values (see [GS93]
and [OK14]). Another well-known fact about these invariants is their relation to
the ideal of sets of measure zero (see e.g. [OK14, Lemma 2] and [CM19, Theorem
3.21]) which we will prove for the sake of completeness of the paper:

Proposition 4.2. cov(N ) ≤ eg and non(N ) ≥ êg for every g ∈ ωω such that∑
n∈ω 1/g(n) < ∞.

Proof. Let λg be the standard product probability measure on
∏

n∈ω g(n) and let

f ∈ ωω. For every k ∈ ω we have λg

(
{h ∈

∏
n∈ω g(n) : h(k) = f(k)}

)
= 1/g(k).

Therefore, by the Borel–Cantelli lemma, we get that:

λg

({
h ∈

∏

n∈ω

g(n) : (h =∞ f)
})

= 0.

Thus, a family witnessing eg is also a witness for cov(N ). The second inequality
follows dually. �

As a conclusion, we have cov(N ) ≤ eg ≤ non(M) and cov(M) ≤ êg ≤ non(N ).
Another easy thing to see is that eg ≤ ef whenever g ≤∗ f , as if F is a witness
for ef then G = {min(h, g) : h ∈ F} is a witness for eg. By an analogous reason,
we have that êg ≥ êf whenever g ≤∗ f . By the result of Miller [Mil81, Theorem
2.3], the infimum of all êg is equal to non(SN ), where SN is the ideal of the sets
of strong measure zero on 2ω.

Our next goal will be to prove ∆1−1 ≥ eg and ros1−1 ≤ êg for every increasing
g ∈ ωω, which, by Proposition 4.2 and Theorem 3.2, improve the bounds ∆1−1 ≥
cov(N ) and ros1−1 ≤ non(N ) obtained in [Ban23, Lemma 3.7 and Lemma 7.4].

Theorem 4.3. ∆1−1 ≥ eg and ros1−1 ≤ êg for every g ∈ ωω.

Proof. Let g ∈ ωω be increasing. Before we begin the proof, we will build a couple
of interval partitions, functions and some claims that will help us with the proof.
First, pick an interval partition {In : n ∈ ω} of ω such that for every n ∈ ω we have:

|In| > 2 ·
∑

j<n

∏

i∈Ij

g(i).

Let us define a function F by setting F (n) =
∏

i∈In
g(i). By the condition for the

value of |In| we have

|In| > 2 ·
∑

j<n

F (j).

Let P = {Jn : n ∈ ω} be an interval partition of ω such that |Jn| = F (n) for every
n ∈ ω.
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For every f ∈ �1-1 let us define a function Sf : ω → [ω]<ω in the following way:

Sf (n) =

(
f
[ ⋃

i<n

Ji

]
∪ f−1

[ ⋃

i<n

Ji

])
∩ Jn ⊆ Jn.

Note that, by the injectivity of f we have

|Sf (n)| ≤ 2 ·
∑

i<n

|Ji| ≤ 2 ·
∑

j<n

F (j) < |In|.

Since |Jn| = F (n) there must be a bijection bn : Jn →
∏

i∈In
g(i), so bn[Sf (n)] is a

collection of functions in
∏

i∈In
g(i). We will need the following two observations.

Claim. Let h ∈
∏

n∈ω Jn. Then, for all f ∈ �1-1 such that for almost all n ∈ ω,
h(n) /∈ Sf (n), we have that f [A] ∩ A is finite, for A = h[ω].

Proof of the claim. Assume that n ∈ ω is such that h(n) ∈ f [A]. Then, there is an
m 6= n such that h(m) ∈ A such that f(h(m)) = h(n).

• if m < n, then h(n) ∈ f [
⋃

i<n Ji] and therefore h(n) ∈ Sf (n),

• if n < m then h(m) ∈ f−1[
⋃

i<m Ji] and therefore h(m) ∈ Sf (m).

Since h(i) ∈ Sf (i) only for finitely many i ∈ ω, then the conclusion follows. �

Claim. For every f ∈ �1-1 there is a function ℓf ∈
∏

n∈ω g(n) such that, for all
n ∈ ω and all h ∈ bn[Sf (n)], we have that (ℓf ↾ In) ∩ h 6= ∅.

Proof of the claim. This is a consequence of the fact that there are more points
in In than in bn[Sf (n)], so there is a function ℓf ↾ In ∈

∏
i∈In

g(i) such that

(ℓf ↾ In)∩ h 6= ∅ for all h ∈ bn[Sf (n)]. Clearly, f =
⋃

n∈ω ℓf ↾ In is the function we
are looking for. �

We are ready to prove our results. First, we will prove that ∆1−1 ≥ eg: Let
F = {fα : α < ∆1−1} ⊆ �1−1 witnessing ∆1−1. We will see that {ℓfα : α ∈ κ}
witnesses eg: Let h ∈

∏
n∈ω g(n) and let A = {b−1

n (h ↾ In) : n ∈ ω}. Clearly
A ∈ [ω]ω so there must be an α ∈ κ such that fα[A]∩A is infinite. Therefore, by the
first claim, there must be an infinite amount of n ∈ ω such that b−1

n (h ↾ In) ∈ Sfα .
For such n, by the second claim, we have that (ℓfα ↾ In) ∩ bn(b

−1
n (h ↾ In)) 6= ∅ and

therefore fα ∩ h is infinite.
Finally, we will prove that ros1−1 ≤ êg. Let κ < ros1−1, and let {hα : α ∈ κ} ⊆∏
n∈ω g(n). We will find a function ℓ ∈

∏
n∈ω g(n) such that ℓ ∩ hα is infinite for

all α ∈ κ, so {hα : α ∈ κ} cannot be a witness of êg. Let Aα = {b−1
n (hα ↾ In) : n ∈

ω} ∈ [ω]ω. Then, since κ < ros1−1 there must be an f ∈ �1-1 such that f [Aα]∩Aα

is infinite for all α ∈ κ. By the first claim, for all α ∈ κ there is an infinite amount
of n ∈ ω such that b−1

n (hα ↾ In) ∈ Sf . Using the second claim, we conclude that
ℓf ∩ hα is infinite for every α ∈ κ, which is what we were looking for. �

For our final result of this section, we will need to recall the following widely-
known result, which we prove for the sake of completeness of the paper.

Theorem 4.4. max{d, supg∈ωω eg} = cof(M) and min{b,ming∈ωω êg} = add(M).

Proof. By Miller’s theorem [Mil81, Theorem 1.2], max{d, non(M)} = cof(M) and
min{b, cov(M)} = add(M) (see also [Bla10, Theorem 5.6]). Thus, it is enough
to prove that max{d, sup(eg)} ≥ non(M) and min{b,min(êg)} ≤ cov(M). We
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are going to use the characterizations of non(M) and cov(M) as d(E) and b(E)
mentioned at the beginning of this section.

(max{d, sup(eg)} ≥ d(E)). Let {fα : α < d} be a dominating family in ωω of
strictly increasing functions. For every α < d, pick a witness Fα ⊆

∏
n∈ω fα(n) for

efα . Clearly
⋃

α<d
Fα is a witness for d(E) of the required size.

(min{b,min(êg)} ≤ b(E)). Let κ < min{b, ros1-1} and let {fα : α < κ} ∈ ωω.
Since κ < b, there exists g ∈ ωω strictly increasing such that fα ≤∗ g for every
α < κ, and so for each α < κ there is a finite modification f ′

α of fα satisfying f ′
α ∈∏

n∈ω g(n). As κ < êg, there is h ∈
∏

n∈ω g(n) such that for every α < κ, f ′
α =∞ h

for infinitely many n ∈ ω, thus fα =∞ h and therefore {fα : α < κ} is not an
E-unbounded family. �

As a corollary, we get the following result connecting ∆1-1 with cof(M), and
ros1-1 with add(M), respectively.

Corollary 4.5. max{d,∆1-1} = cof(M) and min{b, ros1-1} = add(M).

Proof. It follows from Theorems 3.4, 4.3 and 4.4. �

For our final result of this section, we will need some terminology. Recall that an
ideal (on ω) is a proper collection I ( P(ω) closed under finite unions and subsets.
Additionally, we will require that our ideals contains all singletons. An ideal I is
tall (or dense) if for every X ∈ [ω]ω there is an infinite I ∈ I such that I ⊆ X .
The following are two of the most common cardinal invariants related to tall ideals
on ω, originally introduced in [HHH07, Definition 1.1].

Definition 4.6. Let I be a tall ideal on ω, the covering number and the uniformity
number are given by

cov∗(I) = min
{
|A| : A ⊆ I and ∀X ∈ [ω]ω ∃A ∈ A (|A ∩X | = ℵ0)

}
,

non∗(I) = min
{
|X | : X ⊆ [ω]ω and ∀A ∈ I ∃X ∈ X (|A ∩X | < ℵ0)

}
.

Given an interval partition J = {Jn : n ∈ ω}, and a sequence of measures
µ̄ = {µn : n ∈ ω} such that µn is a measure on Jn, its value on singletons is at
most 1 and µn(Jn) ≥ n, the ideal EDµ̄ is defined in the following way:

EDµ̄ =
{
A ⊆ ω : ∃k ∈ ω ∀n ∈ ω

(
µn(Jn ∩ A) ≤ k

)}
.

One can easily see that all the ideals of the form EDµ̄ are tall, Fσ and both
cov∗(EDµ̄) and non∗(EDµ̄) are uncountable. In the literature, the ideal EDFin

is defined as an ideal on {〈m,n〉 : m ≤ n} generated by the graphs of functions of
ωω. Clearly ideal EDFin is of the form EDµ̄, where Jn is a set of size n and µn is
the counting measure on Jn for every n ∈ ω. In [HMAM10, Proposition 3.6], the
authors prove the following characterization of non(M) and cov(M).

Theorem 4.7 (Hrušák, Meza, Minami). cov(M) = min{d, non∗(EDFin)} and
non(M) = max{b, cov∗(EDFin)}.

Since ros1-1 ≤ d and ∆1-1 ≥ b, the question whether ros1-1 = cov(M) and ∆1-1

reduces to find out if ros1-1 ≤ non∗(EDFin) and ∆1-1 ≥ cov∗(EDFin). We were not
able to prove it for EDFin, but we were able to prove those inequalities for some
other ideal EDµ̄.

Theorem 4.8. There is an ideal of the form EDµ̄ such that ∆1-1 ≥ cov∗(EDµ̄) and
ros1-1 ≤ non∗(EDµ̄).
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Proof. Fix an interval partition {Jn : n ∈ ω} of ω such that |J0| = 1 and for every
n ∈ ω:

|Jn+1| = 2(n+ 1) ·
∑

k≤n

|Jk|.

For every n ∈ ω, define a measure µn on Jn by setting µ0(J0) = 0 and

µn+1({i}) =
1∑

k≤n |Jk|
for any n ∈ ω and i ∈ Jn.

We will show that, if µ̄ = 〈µn : n ∈ ω〉, then EDµ̄ is the ideal we are looking for.
First, we will need the following claims:

Claim. For every f ∈ �1-1, the set Bf ∈ EDµ̄, where

Bf =
⋃

n∈ω

(
Jn ∩

⋃

k<n

(
f [Jk] ∪ f−1[Jk]

))
.

Proof of the Claim. This follows from the following calculations:

µn(Bf ∩ Jn) = µn(Jn ∩
⋃

k<n

(
f [Jk] ∪ f−1[Jk])) =

=
|Jn ∩

⋃
k<n

(
f [Jk] ∪ f−1[Jk])|∑
k<n |Jk|

≤
2 ·
∑

k<n |Jk|∑
k<n |Jk|

≤ 2.

�

Claim. If X ⊆ ω is such that |X ∩ Jn| ≤ 1 and X ∩ Bf is finite, then f [X ] ∩X is
finite.

Proof. This proof is similar to the first claim of Theorem 4.3: We may assume that
|X ∩ Jn| = 1. Let {xk : k ∈ ω} be an enumeration of X such that xk ∈ Jk. Let
N ∈ ω be such that X ∩Bf ⊆ N . If m,n ∈ ω are such that xm, xn > N , then:

• if xm < xn then f(xm) ∈ f [
⋃

i<n Ji]. Since xn ∈ Jn \Bf , then xn 6= f(xm),

• if xm > xn then f−1(xn) ∈ f−1[
⋃

i<m Ji]. Since xm ∈ Jm \ Bf , then
xn 6= f(xm).

Therefore, for any xm, xn > N , xn 6= f(xm) so f [X ] ∩X is finite. �

We will now continue with the proof of the main Proposition.
(∆1-1 ≥ cov∗(EDµ̄)). Let {fα : α < κ} ⊆ �1-1, where κ < cov∗(ED(µn)). Then

{Bfα : α ∈ κ} ⊆ EDµ̄ so there must exist an X ∈ [ω]ω such that X ∩Bfα is finite
for each α < κ. By shrinking X , we may assume that |X ∩ Jn| ≤ 1. Then, by the
second Claim, for every α ∈ κ, fα[X ] ∩X is finite.

(ros1-1 ≤ non∗(EDµ̄)). Let {Xα : α ∈ non∗(EDµ̄)} be a witness for non∗(EDµ̄).
By shrinking each Xα, we may assume that, for each α ∈ non∗(EDµ̄) and each
n ∈ ω, |Xα ∩ Jn| ≤ 1. We will show that {Xα : α ∈ non∗(EDµ̄)} is a witness for
ros1-1: Let f ∈ �1-1. Then Bf ∈ EDµ̄, so there must be an α such that Bf ∩Xα is
finite. Then, by the second claim, f [Xα] ∩Xα is finite. �

To finish this section, we would like to point out that it is easy to see that, for
all sequences of measures µ̄ as in Definition 4.6, non∗(EDFin) ≤ non∗(EDµ̄) and
cov∗(EDFin) ≥ cov∗(EDµ̄) (a more general version of this statement can be found
in [HMAM10, Theorem 3.3]), raising the following question.
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Question 5. Is it consistent that non∗(EDFin) < non∗(EDµ̄) or cov∗(EDFin) >
cov∗(EDµ̄) for the sequence µ̄ obtained in Theorem 4.8?

5. Consistency results

The final section will be dedicated to prove consistency results around all the
cardinal invariants that we used in this work. We will start by looking at an
equivalent variant of having the Laver property.

Definition 5.1. A forcing P has the Laver property if for every P-name for a
function ġ such that there is f ∈ ωω such that

P 
 “ġ ≤ f”

then there is a function S such that, for all n > 1, S(n) < |n| and

P 
 “∀n > 1(ġ(n) ∈ S(n))”.

It is known that the Laver property is preserved under countable support itera-
tions of proper forcings (see [BJ95, Theorem 6.3.30]). For our next result, we will
be interested into looking at the behaviour of ros1−1 on extensions of forcings that
have the Laver property. For our cases, it would be enough to look at êg. The
following implicitly appears in [Kad97] (see also [Kad07]).

Proposition 5.2. Assume V satisfies CH and that P is a proper forcing that has
the Laver property. Let g ∈ ωω be strictly increasing. Then,

P 
 “V ∩
∏

n∈ω

g(n) witnesses both eg and êg”.

In particular, P 
 “eg = êg = ℵ1”.

Proof. Let ḟ be a P-name for a function in
∏

n∈ω g(n). We will show that there

are f̂ , f̄ ∈
∏

n∈ω g(n) such that P 
 “f̂ =∞ ḟ and f̄ ∩ ḟ is finite”: First, find
{In : n ∈ ω} an interval partition of ω such that |In| ≥ n. Use the Laver property
to find a function S such that S(n) is a family of functions from In to ω such

that P 
 “ḟ ↾ In ∈ S(n)” and |S(n)| < n for n > 1. Since |S(n)| < |In|, there

exists a function f̂n ∈
∏

j∈In
g(j) such that f̂n ∩ h 6= ∅ for every h ∈ S(n). So

if f̂ =
⋃
f̂n, then f̂ ∈

∏
n∈ω g(n) and P 
 “f̂ =∞ ḟ”, which finishes the first

part of the proof. To find f̄ , use the Laver property to find a function S such
that for all n > 1, |S(n)| < n and P 
 “ḟ(n) ∈ S(n)”. Since |S(n)| < n, there
exists a function f̄ ∈

∏
n∈ω g(n) such that, for each n > 1, f̄(n) 6= S(n). Therefore

P 
 “f̄ ∩ ḟ is finite”, which finishes the proof. �

For our next results, we will need the following widely known class of forcings.

Definition 5.3. Let X be either a filter, or [ω]ω. The Mathias forcing of X is the
following:

M(X ) = {〈s, A〉 : s ∈ [ω]<ω, A ∈ X},

and the order is defined by 〈s, A〉 ≤ 〈s′, A′〉 if and only if s′ ⊆ s, A′ ⊆ A and
s \ s′ ⊆ A′. M([ω]ω) is known simply as the Mathias forcing and is denoted by M.

Notice that, for all filters F , M(F) is a σ-centered forcing notion, thus ccc. M is
not ccc, but it is proper and has the Laver property (see for example [BJ95, Section
7.4.A]).

We are ready to show our first consistency result.
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Theorem 5.4. It is consistent with ZFC that ros1-1 < min{d, r, non(N )}.

Proof. We force with Mω2
, the countable support iteration of length ω2 of the

Mathias forcing, over a model of CH. Since the Mathias forcing is proper and has
the Laver property, Mω2

is also proper and has the Laver property (by [BJ95,
Theorem 6.3.34]), thus Mω2


 “ros1-1 ≤ êg = ℵ1” by Proposition 5.2. On the
other hand, one can easily show that the generic real for Mathias forcing is reaping
and codes a dominating function, and so Mω2


 “ℵ2 = b ≤ min{r, d} = 2ℵ0” and
Mω2


 “ℵ2 = s ≤ non(N ) = 2ℵ0”. Alternatively, one can check the values in the
Mathias model in [BJ95, Model 7.6.11]. �

Let us note the values of eg and non∗(EDFin) in the Mathias model: By Propo-
sition 5.2, we have that, in the extension, eg = ℵ1, and by [HMAM10, Lemma 4.4],
it holds that non∗(EDFin) = ℵ1. The value of cov∗(EDFin) and ∆1-1 is ℵ2 in the
Mathias model, since they are both bounded below by s = ℵ2 (it follows from the
results in [HMAM10] concerning the ≤KB-minimality of EDFin among all ω-hitting
Fσ ideals).

Our next consistency result is the following.

Theorem 5.5. It is consistent with ZFC that ∆1-1 > max{b, s, cov(N )}.

Proof. We start with a model V of CH, and consider Pω2
, the finite support itera-

tion of length ω2 of the forcing M(F) with F = I∗, where I is the Fσ ideal obtained
in Theorem 4.8. Then, we have Pω2


 “ℵ2 ≤ cov∗(I) ≤ ∆1-1” (cf. [HHH07, Theo-
rem 4.5]). We only have to argue that Pω2


 “ℵ1 = b = s = cov(N )”:

• M(F) for an Fσ filter F preserves well-ordered unbounded families (see
either [Bre97, Theorem 3.1(Case 1)] or [GHMC14, Proposition 5]), and
so Pω2

does not add dominating reals, i.e. V ∩ ωω is unbounded in the
extension (see [BJ95, Lemma 6.5.7]), thus Pω2


 “b = ℵ1”,
• M(F) is a Souslin forcing, as defined in [IS88] (since F is Fσ), and so the
finite support iteration Pω2

does not add reaping reals, i.e. V ∩ [ω]ω is a
splitting family in the extension (see [IS88, Claim 3.6]), thus Pω2


 “s =
ℵ1”,

• M(F) is a σ-centered forcing notion for every filter F , and so the finite
support iteration Pω2

does not add random reals, i.e. N ∩V covers 2ω (see
[BJ95, Theorems 6.5.29 and 6.5.30]), so Pω2


 “cov(N ) = ℵ1”.

By all of this, it follows that Pω2

 “∆1-1 > max{b, s, cov(N )}”, so our proof is

complete. �

We would like to point out some remarks about the previous model. Since we are
forcing with finite support iteration, Cohen reals are always added, so cov(M) = ℵ2

in the extension, and therefore Pω2

 “ros1-1 = êg = non∗(EDµ̄) = ℵ2”. The fact

that Pω2

 “eg = ℵ1” follows from a general preservation theorem (see [CM19,

Theorem 4.16 and Example 4.17.(2)]).
In the previous theorem, instead of considering the ideal obtained in Theorem

4.8, one could take the ideal EDfin and everything would work mostly the same. The
only potential difference would be the value of ∆1-1, raising the following natural
question.

Question 6. Assume V satisfies CH, and force with the countable support iteration
of length ω2 of the forcing M(ED∗

fin). What is the value of ∆1-1 in the extension?
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We would like to finish this work by showing the consistency of ∆1-1 > cov∗(EDFin)
and the consistency of ros1-1 < non∗(EDFin). To achieve this, we will take a look
at a slight variation of Hechler’s forcing.

D = {T ⊆ ω<ω : T is a well-pruned tree with stem s,
for every t ∈ T , if s ⊆ t, then {n ∈ ω : t⌢〈n〉 /∈ T } is finite}

One can easily show that D is a σ-centered forcing notion and that the generic
real is a dominating real. We will need the following theorem, which is a direct
consequence of Theorem 12 and Lemma 16 in [BL11].

Theorem 5.6 (Brendle, Löwe). Let Pλ be the finite support iteration of length λ

of the forcing D. Then, for every Pλ-name of an infinite partial function ḟ such
that Pλ 
 “∀n ∈ domf (ḟ(n) ≤ n)” there is a sequence {fn : n ∈ ω} of partial
functions such that fn(m) ≤ m for all m,n ∈ ω, and for every y ∈ ωω ∩V , if fn∩y

is infinite for all n ∈ ω, then Pλ 
 “y ∩ ḟ is infinite”.

We are ready to show our last result of this work.

Theorem 5.7. Both ∆1-1 > cov∗(EDFin) and ros1-1 < non∗(EDFin) are consistent
with ZFC.

Proof. (Consistency of ∆1-1 > cov∗(EDFin)): Start with a model V of CH and force
with Pω2

, the finite support iteration of length ω2 of the forcing D. Since D adds
dominating real, then a simple reflection argument shows that Pω2


 “ℵ2 ≤ b ≤
∆1-1”, we only have to show that Pω2


 “EDFin ∩ V witnesses cov∗(EDFin)”: Let

Ẋ be a Pω2
-name for an infinite subset of {〈n,m〉 ∈ ω × ω : n ≤ m}. Without

loss of generality Ẋ is an infinite partial function. By Theorem 5.6, there is a
sequence {fn : n ∈ ω} of partial functions such that, for every y ∈ ωω ∩ V , if

for all n ∈ ω, fn ∩ y is infinite, then Pω2

 “y ∩ Ẋ is infinite”. Note that, since

non∗(EDFin) is uncountable, there is a function y ∈ EDFin such that fn ∩ y is

infinite for all n ∈ ω, so therefore Pω2

 “y ∩ Ẋ is infinite”, and as a consequence

Pω2

 “cov∗(EDFin = ℵ1)”.

(Consistency ros1-1 < non∗(EDFin)): Start with a model V of Martin’s Axiom
and 2ℵ0 = ℵ2, and force with Pω1

, the finite support iteration of length ω1 of the

forcing D. If {ḋα : α ∈ ω1} is the collection of dominant reals added on each

stage of the iteration, then Pω1

 “{ḋα : α ∈ ω1} is a witness of d” and therefore

Pω1

 “ros1-1 ≤ d = ℵ1”, so we only need to show that Pω1


 “non∗(EDFin) ≥ ℵ2”:

Let {Ẋα : α ∈ ω1} be a sequence of Pω1
-names for infinite subsets of {〈n,m〉 ∈

ω × ω : n ≤ m}. Without loss of generality, we may assume that each Ẋα is
a Pω1

-name for an infinite partial function. Then, we can use Theorem 5.6 to
find a family {fα

n : α ∈ ω1, n ∈ ω} of partial functions such that fα
n (m) ≤ m

and if y ∈ ωω ∩ V and fα
n ∩ y is infinite, then Pω1


 “y ∩ Ẋα is infinite”. Since
in V , ω1 < non∗(EDFin) (since Martin’s Axiom holds in V ), then there must be
an infinite function y ∈ EDFin such that fα

n ∩ y is infinite for each α ∈ ω1 and

n ∈ ω and therefore Pω1

 “∀α < ω1(y ∩ Ẋα is infinite)” i.e. Pω1


 “{Ẋα :
α ∈ ω1} is not a witness for non∗(EDFin)” and therefore Pω1


 “non∗(EDFin) ≥
ℵ2”. �

An alternative proof can be found in D. Meza’s Ph.D. thesis [MA09, Theorem
1.6.12].
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