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We consider a periodically driven system where the high-frequency driving protocol consists of
a sequence of potentials switched on and off at different instants within a period. We explore the
possibility of introducing an adiabatic modulation of the driving protocol by considering a slow
evolution of the instants when the sequence of potentials is switched on/off. We examine how this
influences the long-term dynamics of periodically driven quantum systems. By assuming that the
slow and fast timescales in the problem can be decoupled, we derive the stroboscopic (effective)
Hamiltonian for a four-step driving sequence up to the first order in perturbation theory. We then
apply this approach to a rigid rotor, where the adiabatic modulation of the driving protocol is
chosen to produce an evolving emergent magnetic field that interacts with the rotor’s spin. We
study the emergence of diabolical points and diabolical loci in the parameter space of the effective
Hamiltonian. Further, we study the topological properties of the maps of the adiabatic paths in
the parameter space to the eigenspace of the effective Hamiltonian. In effect, we obtain a technique
to tune the topological properties of the eigenstates by selecting various adiabatic evolution of the
driving protocol characterized by different paths in the parameter space. This technique can be
applied to any periodic driving protocol to achieve desirable topological effects.

I. INTRODUCTION

Floquet engineering [1–4] of quantum systems has
emerged as a powerful tool to synthesize exotic phases of
matter [5–10], and has diverse applications in quantum
simulations using ultracold atoms [11–13] and realiza-
tions of artificial gauge fields [14–17]. The essential strat-
egy behind Floquet engineering relies on the fact that the
long-term evolution of a periodically driven quantum sys-
tem is governed by a static effective Hamiltonian, barring
an initial and final micro-motion. The approach involves
a choice of an undriven system and then suitably tailor-
ing the driving scheme to design effective Hamiltonians
with desired properties [18–20].

A class of systems involving the coupling of a spin with
a magnetic field is of great interest as they demonstrate
non-trivial topological properties [21–25]. The eigen-
states of such systems generally acquire a geometrical
phase [26–30] when slowly transported around a closed

path by varying the parameters R⃗ in its Hamiltonian

Ĥ(R⃗). Further, degeneracies in such systems with at
least two parameters also exhibit diabolical points with
double-cone-like structures at such points in the band
diagram [31–33]. In the traditional studies of adiabatic
evolution [34, 35], the parameter space usually comprises
of the constants, which are the strengths of the different
operators appearing in the Hamiltonian. It is not usually
possible to increase the number of parameters without
introducing new operators which thereby limits the com-
plexity of the dynamics. We suggest a novel method of
synthesizing a Hamiltonian where the number of param-
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eters can be increased without requiring any new basic
operators as the building blocks for the Hamiltonian.

We achieve this in two steps. Firstly, we consider a
suitably chosen static Hamiltonian and design a high-
frequency periodic driving protocol to engineer the de-
sired properties in an effective Hamiltonian [18–20]. Sec-
ondly, if the driving protocol is envisaged to be a sequence
of operators switched on/off over time slices within a full
period, we consider the switch on/off times of the oper-
ators as the relevant parameters. Since the slicing of the
time period can be done in innumerable ways, and the
switch on/off time appears in the effective Hamiltonian,
we can engineer a Hamiltonian in an enhanced param-
eter space corresponding to the large number of slices
of the time period. These parameters of the effective
Hamiltonian are then adiabatically evolved for interest-
ing geometric consequences.

We, thus, have two time scales in our problem: the fast
scale which generates the effective Hamiltonian, and the
slow scale, over which the protocol itself evolves. We note
that the strengths of the operators in the driving protocol
also appear in the effective Hamiltonian. However, we do
not consider these as our adiabatically evolving parame-
ters as is done in [34–36]. Thus, the strengths of the dif-
ferent potentials are held constant, whereas their switch
on/off times are our adiabatically evolving parameters.
Multi-frequency/quasi-periodic driving of quantum sys-
tems is usually studied using the notion of Floquet lattice
[37, 38]. However, the time scales involved in our anal-
ysis are so widely separated that we have decoupled the
two time evolutions in our analysis. We demonstrate our
method using the simplest spin system.

In this paper, we first consider a high-frequency driv-
ing of a spin-1/2 rotor with a protocol consisting of a
four-step sequence of potentials switched on and off at
different instants within a period. We further invoke a
much slower time scale for an adiabatic modulation of the
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driving protocol itself through a slow variation of the in-
stants when the sequence of potentials is switched on/off.
The choice of operators in the driving protocol produces
an evolving emergent magnetic field that interacts with
the rotor’s spin. We then look at adiabatic evolution in
the space of the parameters of the driving protocol, which
effectively maps to the evolution of the synthesized mag-
netic field. We study the emergence of diabolical points
and topological properties of adiabatic paths. The ge-
ometric phase picked up by the eigenstates during the
adiabatic evolution and its variation for different forms
of adiabatic protocols is subsequently studied. In effect,
we obtain a technique to tune the winding of the eigen-
states and the accumulated geometric phase by choosing
various adiabatic evolution of the driving protocol char-
acterized by diverse paths in the parameter space.

II. FORMALISM

A periodically driven quantum system is characterized

by a time-dependent Hamiltonian Ĥ(t) = Ĥ(t+T ), where
T is the driving period. We consider systems where the
full Hamiltonian can be written as a time-independent

base Hamiltonian Ĥ0 driven by a time-dependent exter-

nal potential V̂ (t) which acts as a time-periodic pertur-
bation to the system. The total Hamiltonian is, thus,
written as

Ĥ(t) = Ĥ0 + V̂ (t), with V̂ (t+ T ) = V̂ (t). (1)

The dynamics of such a system in an initial state |ψ(ti)⟩,
can described in the period ti → tf using the propagator

Û(ti, tf ) as |ψ(tf )⟩ = Û(ti, tf )|ψ(ti)⟩ where the unitary

operator Û is given by [18–20]

Û(ti, tf ) = e−iK̂(tf )e−iĤeff(tf−ti)eiK̂(ti). (2)

Here, K̂(t) is a time-periodic operator with period T

known as the micro-motion kick operator, and Ĥeff is a
time-independent effective Hamiltonian. The expressions
for the kick operator and the effective Hamiltonian can
be obtained using a perturbative expansion [18, 19] in
the limit of high driving frequency ω = 2π

T >> ω0, where
ℏω0 is the typical energy spacing of the base Hamiltonian

Ĥ0.
For high-frequency driving, the quantity 1/ω can be

treated as a perturbation parameter and the operators

Ĥeff and K̂(t) may be expanded as [18, 19]

Ĥeff = Ĥ0 +

∞∑
m=1

Ĥm

ωm
, and K̂(t) =

∞∑
m=1

K̂m(t)

ωm
. (3)

The effective Hamiltonian gives a stroboscopic descrip-
tion of the dynamics and can be engineered to produce
desirable properties [2, 3]. The above analysis can be ap-
plied to a specific class of driving protocols in which the

potential V̂ (t) is a piecewise constant function of time
with N pieces (or steps) in each period T . In this proto-

col Π : {V̂1, V̂2, . . . , V̂N}, the potentials V̂r are switched
on for a duration of T

N and then switched off sequentially
in each period T . Such equi-timed sequences of potentials
are studied extensively in [19].
Instead of considering equi-timed steps we introduce

two parameters (α, β) ∈ [0, 1] in a four-step protocol

Π(α, β) : {V̂1, V̂2, V̂3, V̂4} defined as:

V̂ (t) =



V̂1 0 ≤ t ≤ αT
2

V̂2
αT
2 ≤ t ≤ T

2

V̂3
T
2 ≤ t ≤ T (1+β)

2

V̂4
T (1+β)

2 ≤ t ≤ T

. (4)

These parameters fix the switch on/off time for the
potentials within a full period and hence characterize
the driving protocol along with the potentials them-
selves. To simplify our calculation, we impose a condition∑N

r=1 V̂r = 0. We shall use the protocol in Eq. (4) to en-
gineer effective Hamiltonians for high-frequency driving
of quantum systems.

FIG. 1. The protocol Π(α, β) parameterized by two parame-
ters α and β.

We follow the formalism in Appendix C of [19] where

the the perturbative terms Ĥm of the effective Hamil-

tonian Ĥeff are computed using the Fourier components
V (j) of the driving potential defined through

V (j) =
1

T

∫ T

0

V̂ (t)e−ijωtdt, (5)

These Fourier components depend on the parameters
(α, β) through their appearance in the integration lim-

its for V̂ (t) in Eq. (4). Consequently, this shall imprint

the parameters onto Ĥm.
The modulated effective Hamiltonian up to the first
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order is given by

Ĥeff = Ĥ0+
iπ

8ω

4∑
r,s=1
s>r

Prs (α, β)
[
V̂r, V̂s

]
+O

(
ω−2

)
, (6)

where the six bi-variate polynomials Prs are given by:

P12(α, β) = α(1− α), P13(α, β) = αβ(α− β),

P14(α, β) = α(1− β)(α− β − 1),

P23(α, β) = β(1− α)(α− β + 1),

P24(α, β) = (α− 1)(β − 1)(α− β),

P34(α, β) = β(1− β). (7)

We note that for (α, β) =
(
1
2 ,

1
2

)
this reduces to the equi-

timed four-step protocol [19]. For four-step protocols,

where (α, β) ̸=
(
1
2 ,

1
2

)
, additional commutators [V̂r, V̂s]

emerge as opposed to the case when (α, β) =
(
1
2 ,

1
2

)
where only commutators of the form [V̂r, V̂(r mod 4)+1]
appear in the effective Hamiltonian.

Similarly, the micro-motion kick operator up to the
first order may be obtained as

K̂(0) = − π

4ω

4∑
r=1

Qr (α, β) V̂r +O
(
ω−2

)
, (8)

where the four bi-variate polynomials Qr (α, β) are given
by

Q1 (α, β) = α (2− α) , Q2 (α, β) = (α− 1)
2
,

Q3 (α, β) = −β2, Q4 (α, β) =
(
β2 − 1

)
. (9)

We find that the polynomials Qr (α, β)s are either func-
tions of α or β. This is expected since the first-order
correction here is a sum over the potentials and not over
products of potentials like it is for the effective Hamil-
tonian. Thus, the factors α and β do not appear as a
product.

The effective Hamiltonian Ĥeff is obtained by averaging
over the high-frequency variation of the potential. The
fast-driving protocol can be morphed by changing (α, β)
through the changes in the values of the polynomials
Prs(α, β). We thus consider, another time scale >> ω−1

over which (α, β) evolve. This results in an adiabatic

evolution of Ĥeff(R⃗(τ)), where R⃗(τ) = (α(τ), β(τ)) ∈
[0, 1] × [0, 1] evolves smoothly and slowly in the param-
eter space. We use τ to indicate that we looking at
adiabatic variations different from the fast stroboscopic
time scale t varying over T . This is akin to Berry’s adi-
abatic evolution [27] of a Hamiltonian in the parameter

space, except that our parameters are now the character-
istics of a fast-driving protocol. The adiabatic evolution

R⃗(τ) = (α(τ), β(τ)) is a path in the 2D parameter space
[0, 1]× [0, 1] ⊂ R2. We parameterize this path by a con-
tinuous vector-valued map

R⃗ :[a, b] → [0, 1]× [0, 1]

τ 7→ (α(τ), β(τ)) . (10)

We are interested in the possibility that the eigenstates

of Ĥeff(R⃗(τ)) picks up nontrivial geometric phase under
such adiabatic evolution.

A. Driven rigid rotor

Adiabatic evolution of quantum Hamiltonian systems
[39, 40] in the parameter space is comprehensively inves-
tigated for undriven Hamiltonians, where the adiabatic
parameters are restricted to the parameters of the sta-
tionary Hamiltonian in the manner of Berry [27]. We
are interested in driven systems and aim to use the pa-
rameters of the driving protocol to induce adiabatic evo-
lution of an effective Hamiltonian. One of the simplest
systems demonstrating anholonomy is the two-level spin-
1/2 system, subjected to an external magnetic field, for
which the ground state picks up a non-zero Berry phase
on adiabatically varying the direction of the magnetic
field. This motivates us to engineer a driving protocol
that would give us an effective Hamiltonian like the an-
holonomy Hamiltonian of the two-state system. That is,
we desire that the engineered Hamiltonian is of the form
J ·B, where B is an effective magnetic field.
We choose our undriven system to be a rigid rotor with

spin J, such that Ĥ0 = J2

2I . We drive this system with a
protocol Π (α, β, ci) with the potentials given by:

V̂1 = c1Jx − c2Jy , V̂2 = c2Jy + c3Jz,

V̂3 = c4Jz − c1Jx , V̂4 = −(c3 + c4)Jz, (11)

where c1, c2, c3, c4 are suitable constants. It follows from
Eq. (6) that the first perturbative correction to the effec-
tive Hamiltonian will just be a linear combination of the
spin operators. We may interpret the coefficients of the
spin operators as the components of a synthetic magnetic
field B. For such a protocol, the effective Hamiltonian
and micro-motion kick operator takes the desired form

Ĥeff =
J2

2I
− π

8ω
J ·B and K̂ (0) = − π

4ω
J ·B′, (12)

where B and B
′
are given by

B =

c2c3 (−P12 + P14 − P24) + c2c4 (−P13 + P23 − P24 + P14)
c1c3 (−P12 + P14 − P34 − P23) + c1c4 (−P13 − P34 + P14)

c1c2 (P12 − P13 + P23)

 , B′ =

 c1 (Q1 − Q3)
c2 (Q2 − Q1)

c3Q2 + c4Q3 − (c3 + c4)Q4

 (13)
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FIG. 2. (a) The band structure of the effective Hamiltonian for the protocol with (c1, c2, c3, c4) = (1, 1, 1, 1). (b) The
magnitude of the synthetic magnetic field over the domain of parameters α and β.

FIG. 3. (a) The band structure of the effective Hamiltonian for the protocol with (c1, c2, c3, c4) = (0, 1, 0, 1). (b) The
magnitude of the synthetic magnetic field over the domain of parameters α and β. The dashed line (red) along the diagonal
corresponds to the loci of gapless points.

III. RESULTS

A. The Energy Spectrum

The eigenvalues of the effective Hamiltonian Ĥeff as a
function of the parameters (α, β) are given by E(α, β) =
±|B|. A choice of parameters (α, β), thus allows us to
tune the spectrum by causing level repulsion or reduc-
tion of the energy gap. The gapless degenerate points
are particularly important since they are topologically
protected.

It is well known that for a spin-1/2 Hamiltonian in
a 2-dimensional parameter space, the degeneracies of
the ground state form a sub-manifold of the parame-
ter space. These correspond to gapless diabolical points
and/or loci (joining the diabolical points) as studied in
[31, 32]. For (α, β) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, all the
polynomials Prs(α, β) = 0, whereby the magnetic field
vanishes. These points at the four corners of the pa-
rameter space where the bands touch are thus the dia-

bolical points for this system and remain preserved irre-
spective of our choice of constants (c1, c2, c3, c4) in the
protocol Π. We note that at these points, our four-step
protocol behaves like a two-step protocol since two of
the pulse sequences overlap with each other, resulting in
only two of the four potentials being switched on/off dur-
ing the driving period. Further, changing the constants,
(c1, c2, c3, c4) can not result in the creation of new dia-
bolical points. However, singular gapless lines connecting
these points may emerge for a suitable choice of these
constants.

We study two scenarios where: (i) there are only the
four isolated diabolical points (ii) there are additional di-
abolical curves connecting these points. One way of re-
alizing the first scenario is to choose the constants to be
(c1, c2, c3, c4) = (1, 1, 1, 1). While this choice is not spe-
cial by any means, it encapsulates some generic aspects
of the scenario. For example, when the constants are
all positive, the qualitative behavior is not different from
this.
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The Floquet engineered magnetic field B(α, β) for
(c1, c2, c3, c4) = (1, 1, 1, 1) is given by

B =

−6α2β + 5α2 + 6αβ2 − 5α− 3β2 + 3β
−2α2β + 3α2 + 2αβ2 − 3α+ 3β2 − 3β
−2α2β − α2 + 2αβ2 + α− β2 + β

 (14)

Figure 2(a) shows the two-band structure of the energy
spectrum as a function of the parameters. Figure 2(b)
shows the magnitude of the possible magnetic fields. The
magnitude of the magnetic field attains a maximum near
the center for (α, β) = (0.63, 0.38). The band structure
in the vicinity of the four diabolical points exhibits an
asymmetrical conical structure, as seen in Fig. 2(a).

It is, in general, possible to conceive of protocols where
we choose the values of (c1, c2, c3, c4) to generate gapless
loci along with the 4 diabolical points in the parameter
space. For example, a choice of (c1, c2, c3, c4) = (0, 1, 0, 1)
achieves this. Figure 3 shows the band diagram for this
case where the engineered magnetic field is of the form
B =

(
−2α+ 2α2 + 2β − 4α2β − 2β2 + 4αβ2

)
x̂. This

magnetic field vanishes not only at the four corners but
also along the line α = β. Figure 3(b) shows the magni-
tude of the magnetic field where we observe the gapless
loci connecting the diabolical points (0, 0) and (1, 1) along
the leading diagonal across the parameter space.

B. Adiabatic Paths

FIG. 4. A schematic diagram depicting the mapping of the
boundary of the parameter space to the unit sphere where
B̂ = (θ, ϕ), for (c1, c2, c3, c4) = (1, 1, 1, 1). The table lists the
magnetic field on each invariant line on the domain.

The ground state |χ⟩ of the effective Hamiltonian can
be represented by a point on (θ, ϕ) the unit Bloch sphere,

which corresponds to the direction B̂ of the engineered

magnetic field. Thus, an adiabatic evolution of the pa-

rameters R⃗ (τ) in the unit-square maps to a path r⃗ (τ)
traced by the unit vector n̂ = B/|B| on S2.
We are interested in the evolution of the eigenstate |χ⟩

on the Bloch sphere under a cyclic adiabatic evolution
of the parameters. The nature of this evolution will be
sensitive not only to the path in the parameter space,
but also to the strengths (c1, c2, c3, c4) of the various po-
tentials in the driving protocol Π. We shall first consider
the protocol with (c1, c2, c3, c4) = (1, 1, 1, 1) to study the
adiabatic evolution of eigenstates.
The boundary of the unit square parameter space are

the line segments α = 0, β = 0, α = 1 and β = 1. Fur-
ther, we have the leading diagonal α = β. We observe
that the direction of the magnetic field B̂ remains invari-
ant for the evolution of the parameters on any of these
segments. This is schematically represented in Fig. 4,
where these five directions are shown as five points on
the surface of a unit sphere. The existence of these sub-
spaces for which the magnetic field has the same direction
shall crucially provide us with a way to choose paths in
the domain of parameters such that the synthetic mag-
netic field returns to its original value after traversing
the path. The table in Fig. 4 shows the actual magnetic
fields having a constant direction. The rise and fall of
the magnitude of the magnetic field between the diaboli-
cal points at the ends along these lines form an inverted
parabolic shape symmetric about the center of the lines.
We investigate the possibility of having the eigenstate

|χ⟩ pick up a finite geometrical phase for a cyclic adia-
batic evolution of the parameters in the parameter space.
The geometric phase picked up is given by−Ω/2, where Ω
is the solid angle subtended by the closed path traversed
by n̂ on the Bloch sphere. It is, in principle, possible to
coherently interfere the states after their evolution along
two different paths as a way to detect this phase [41].
Thus, any back-and-forth evolution of (α, β) on each

of the four segments of the square boundary and also the
leading diagonal will not lead to any phase picked up by
|χ⟩ since they correspond to fixed directions of n̂. Fur-
ther, any closed path in the parameter space that crosses
any of these five segments more than once will correspond
to closed paths that cross itself on S2. The crossing point
on the sphere corresponds to the two points where n̂ is
the same owing to (α, β) lying on any of these five seg-
ments. Thus, closed paths in the parameter space that
cross these segments multiple times at different places
will lead to a winding of |χ⟩ on S2.
Figure 5 shows an adiabatic evolution of (α, β) which

touches the segments only once. The path is parameter-
ized as

R⃗(τ) =


(1− 2τ, 0.5) , 0 ≤ τ ≤ 0.25

(0.5, 1− 2τ) , 0.25 ≤ τ ≤ 0.5(
τ, 0.5−

√
τ − τ2

)
, 0.5 ≤ τ ≤ 1

and shown in Fig. 5(a). The evolution of the eigenstate
|χ⟩ on the Bloch sphere is shown in Fig. 5(d), which is a
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FIG. 5. (a) A path that does not cross any of the dashed segments more than once. (b) A path that crosses α = β twice at p1
and p2. (c) A path that crosses α = β twice at p1 and p4 and α = 1 twice at p2 and p3. Figures (d) , (e) and (f) depict the
corresponding evolution of the eigenstate |χ⟩ on S2 for each path on the left.

closed path that winds only once, owing to the fact that
the five segments in the parameter space are not crossed

multiple times by R⃗(τ). The solid angle subtended by the
closed path on the sphere is the non-zero Berry’s phase
picked up by the eigenstate under this evolution. Figure
5(b) shows a circular path in the parameter space given
by

R⃗(τ) =

(
1

2
+

1

2
cos(2πτ),

1

2
+

1

2
sin(2πτ)

)
, 0 ≤ τ ≤ 1.

This path crosses one of the five segments, namely the

leading diagonal at the points p1 and p2. Since p1 and p2
correspond to the same eigenstate p on S2, the path on S2

winds twice as R⃗ (τ) winds once in the parameter space as
shown in Fig. 5(e). In general, depending on the number
of times a simple closed path on the parameter space
intersects the dashed segments, we could have multiple
winding of the eigenstate on S2. The geometric phase
picked would depend on the orientation of the path on
S2 as it evolves. In principle, the path in the parameter
space can be constructed so that there is no net geometric
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phase picked up under such an evolution.
We next consider an open path p1 → p2 → p3 → p4

on the parameter space that corresponds to an adiabatic
evolution of the state with multiple winding, as shown in
Fig. 5(c) given by

R⃗(τ) =


(τ, 5τ − 1) , 0.25 ≤ τ ≤ 0.4(
τ, 25τ2 − 25τ + 7

)
, 0.4 ≤ τ ≤ 0.6(

τ,− 5
3τ + 2

)
, 0.6 ≤ τ ≤ 0.75

.

This path symmetrically intersects two of the dashed seg-
ments at p1, p4 and p2, p3 respectively. This would result
in the eigenstate winding twice on S2 as seen in Fig. 5(f).
Thus, even for an open path in the parameter space, we
can have the eigenstate cyclically trace a closed path on
S2 and pick up a phase in the process. The points p1 and
p4 lie on a contour of constant magnitude of the magnetic
field ∥B∥ = 1.24. This implies that both the magnitude
and the direction of the synthesized magnetic field return
to the initial value at the end of the evolution.

Let us now consider a driving protocol with
(c1, c2, c3, c4) = (0, 1, 0, 1). We have seen earlier that
this yields a synthetic magnetic field B = Bo(α, β)x̂.
The magnetic field always points towards the x̂ direc-
tion irrespective of (α, β), whereby the direction of the
engineered magnetic field shall remain very stable to any
change in these parameters. Since the magnetic field does
not change its direction, a cyclic evolution of (α, β) in the
parameter space shall not generate any geometric phase
for the eigenstates.

IV. DISCUSSION

A. Winding number

We have seen that for the protocol (c1, c2, c3, c4) =
(1, 1, 1, 1), a closed trajectory in the parameter space
that crosses the leading diagonal (the line α = β) or
any of the boundary lines shall cause the eigenstate of
the effective Hamiltonian to loop more than one on the
Bloch sphere. The winding number for the eigenstate is
then determined by the number of times the trajectory
crosses these lines. We have further established in the
last section that the energy cost of a trajectory is path-
dependent. Since ∆Eslow is a smooth function of the

path R⃗(τ), we claim that for two trajectories that are
almost the same, the energy cost shall also be almost the
same with a difference that shall be proportional to the
tiny difference of the path lengths. We demonstrate this
using the trajectory in Fig. 5(a)

In Fig. 6, the two closed paths MNOPQR and PQR
in the parameter space differ slightly. Thereby the en-
ergy costs for evolution along these paths will almost be
the same. However, the path MNOPQR crosses the di-
agonal line at two points, and thus, for this path, the
eigenstate shall have a winding number of two on S2.
This demonstrates that it is possible to generate higher

FIG. 6. Two closed paths MNOPQR and PQR in the pa-
rameter space which differ marginally. However, for path
MNOPQR the winding number of the eigenstate on S2 is
2, while for the path PQR it is 1.

winding numbers by smooth variation of the path in pa-
rameter space, which does not cost much energy. The
discrete jump of the winding number is reminiscent of
a phase transition [34, 36, 42] and may have topological
significance.

B. Generalized protocols and enhanced parameter
space

The slicing of the time period T using multiple pa-
rameters is the essence of our approach. The simplest
partitioning of a time period can be achieved using a sin-
gle parameter, as shown in Fig. 7. The protocol that
we have constructed in Eq. (4) is a simple extension of
this with two parameters. However, the two parameters
α and β vary in independent time intervals. We could
include the possibility of parameters varying in intervals
that overlap within the full period.
Thus, we can generalize the protocol to have N over-

lapping time spaces characterized by N − 1 parameters
(α1, α2, . . . , αN−1

) where each 0 ≤ αn ≤ 1 such that the
driving potential is given by:

V̂ (t) =



V̂1 f0T ≤ t ≤ f1T

V̂2 f1T ≤ t ≤ f2T

...
...

V̂n fn−1T ≤ t ≤ fnT

...
...

V̂N fN−1T ≤ t ≤ fNT

, (15)

where f0 = 0, fN = 1 and fn’s are given by the inclusion-
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exclusion principle as

fn =
∑

1≤i≤n

αi −
∑

1≤i<j≤n

αiαj +
∑

1≤i<j<k≤n

αiαjαk

+ · · · + (−1)
n+1

α1α2 · · ·αn (16)

FIG. 7. (a) Depicts the construction of our protocol through
two copies of a simpler single parameter protocol. (b) The
generalized protocol with N driving potentials and overlap-
ping time spaces.

The coefficients of the commutators [V̂r, V̂s] appear-
ing in the effective Hamiltonian in Eq. (6) are functions

Prs

(
α1, . . . , αN−1

)
which shall contain (fn)

3
as the high-

est order term. Thus, we could, in general, have expres-
sions of the form ∼ α3

1α
3
2 . . . α

3
N−1

. This is different from

the terms that we would get using the protocol in Eq. (4),
where at the highest order, we would have terms in the
expansion of (α+ β)

3
, but not α3β3. However, for the

generalized protocol Eq. (15) with N = 4, we have the
possibility of having terms like α3

1α
3
2α

3
3. The increased

degree of the multivariate polynomials for this general-
ized protocol thus points towards a greater number of
degeneracies in the effective Hamiltonian.

Hence, we can expect the band structure of the effec-
tive Hamiltonian obtained from this protocol to not only

be in a larger parameter space but also have an enriched
structure without requiring additional driving potentials.

C. Time scales

The problem at hand presents us with three time
scales. Firstly, we have the time scale ω−1

0 set by the en-

ergy spacing of the unperturbed Hamiltonian Ĥ0. Then,
we have the time period of the high frequency driving
ω−1 and finally we have the adiabatic time scale Ω−1.
In order for these timescales to be decoupled from each
other, we would expect that ω ≫ ωo ≫ Ω. For a quanti-
tative estimate of these timescales in the problem under
consideration, we resort to the various energy scales in
the problem.
We have already seen that ω0 is set by the matrix el-

ements ⟨m|Ĥ0|n⟩, where |m⟩, |n⟩ are eigenstates of Ĥ0.
The fast time scale is set by the average energy pumped
in one fast driving period

∆Efast =
ω

2π

∫ 2π/ω

0

⟨ψ|V̂ (t)|ψ⟩ dt, (17)

where, |ψ⟩ is some general state of the system. The
slow adiabatic time scale, likewise, is set by the time
it takes for the parameters to change in the parameter

space along some specified path R⃗(τ) = (α(τ), β(τ)) and
is given by

∆Eslow =

∫ 2π/Ω

0

dτ

〈
ψ

∣∣∣∣∣∇Ĥeff · dR⃗
dτ

∣∣∣∣∣ψ
〉
, (18)

where ∇ = (∂α, ∂β) is the gradient in the parameter
space.
If we consider the protocol in Eq. (4), with parame-

ters (c1, c2, c3, c4) = (1, 1, 1, 1) and start the time evolu-
tion from an initial point (α (τ0) , β (τ0)) in the parameter
space, we have ∆Efast = ⟨ψ|J · Bf |ψ⟩, where

Bf =
1

2

 α0 − β0
1− 2α0

3β0 − α0 − 1

 . (19)

Here, we have assumed that during this fast evolution,
the parameters do not change and remain fixed to their
initial values. For the same protocol, the energy cost for
the slow evolution is given by

∆Eslow =

∫ 2π
Ω

τ0

dτ

〈
ψ

∣∣∣∣J · B1 (τ)
dα (τ)

dτ
+ J · B2 (τ)

dβ (τ)

dτ

∣∣∣∣ψ〉 , (20)

with, B1 = − π

8ω

−12αβ + 10α+ 6β2 − 5
−4αβ + 6α+ 2β2 − 3
−4αβ − 2α+ 2β2 + 1

 , B2 = − π

8ω

−6α2 + 12αβ − 6β + 3
−2α2 + 4αβ + 6β − 3
−2α2 + 4αβ − 2β + 1

 ,
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where the integral is evaluated along a specified path

R⃗(τ) = (α(τ), β(τ)).
It follows from the conservation of energy that the en-

ergy cost for the slow evolution ∆Eslow is a large multiple
of the energy cost per fast driving cycle ∆Efast. Thus,
the adiabatic condition on the frequencies Ω and ω can
be obtained from the inequality, ∆Efast ≪ ∆Eslow.

D. Summary

In this work, we have formulated a method to adiabat-
ically modulate driving protocols in periodically driven
quantum systems. We began with a parametrized fast-
driving protocol and computed the perturbative correc-
tions to the effective Hamiltonian and the micro-motion
kick operators. Then, we induce a second, much slower
drive by an adiabatic variation of these parameters. We
study the effects of this variation through a simple rigid
rotor system. We note the presence of various diabol-
ical points and diabolical loci in the spectrum of this
Hamiltonian. We further deduce various properties of
the eigenspace of this Hamiltonian through its connec-
tion to the parameter space by constructing various adi-
abatic paths. We observe as a consequence of the above

connection that a small deformation to the path in the
parameter space could yield a new path in the Hilbert
space that is not homeomorphic to the original path on
the Hilbert space. Such small deformations that have
negligible energy cost may thereby bring about discrete
changes in the topological properties of the eigenstates.
We also provide a generalization of our parametrization
of the driving protocol, which could potentially yield a
much more enriched energy spectrum and distribution of
degeneracies in the parameter space. Finally, we com-
ment on the regime where our analysis is valid by com-
paring the different energy scales involved.
We conclude by noting that the method developed in

this work can be applied to any periodically driven sys-
tem, whereby the topological aspects pointed out by us
can find diverse ramifications in theoretical or experimen-
tal contexts.
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[9] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys-
ica Status Solidi Rapid Research Letters 7, 101 (2013),
arXiv:1211.5623 [cond-mat.mes-hall].

[10] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer,
D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Sza-
meit, Nature (London) 496, 196 (2013), arXiv:1212.3146
[physics.optics].

[11] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt,
M. D. Liberto, N. Goldman, I. Bloch, and
M. Aidelsburger, Nature Physics 16, 1058 (2020),
arXiv:2002.09840 [cond-mat.quant-gas].

[12] M. D. Reichl and E. J. Mueller, Phys. Rev. A 89, 063628
(2014), arXiv:1404.3217 [cond-mat.quant-gas].

[13] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov,
D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin,

and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011),
arXiv:1102.5367 [cond-mat.quant-gas].

[14] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero,
E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger,
Nature Physics 15, 1168 (2019), arXiv:1901.07103 [cond-
mat.quant-gas].

[15] M. Bukov, M. Kolodrubetz, and A. Polkovnikov, Phys.
Rev. Lett. 116, 125301 (2016), arXiv:1510.02744 [cond-
mat.quant-gas].

[16] P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Si-
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