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GERSTEN’S INJECTIVITY FOR SMOOTH ALGEBRAS OVER VALUATION RINGS

ARNAB KUNDU

Abstract

Gersten’s injectivity conjecture for a functor F of “motivic type”, predicts that given a semilocal, “non-
singular”, integral domain R with a fraction field K, the restriction morphism induces an injection of F (R)
inside F (K). We prove two new cases of this conjecture for smooth algebras over valuation rings. Namely,
we show that the higher algebraic K-groups of a semilocal, integral domain that is an essentially smooth
algebra over an equicharacteristic valuation ring inject inside the same of its fraction field. Secondly, we show
that Gersten’s injectivity is true for smooth algebras over, possibly of mixed-characteristic, valuation rings
in the case of torsors under tori and also in the case of the Brauer group.
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1 Gersten’s Injectivity Conjecture

Let C be an additive category, for example, the category of Abelian groups, and let S ⊆ CRings be a full
subcategory of the category of commutative, unital rings. Given a functor F : CRings → C, we say that F

satisfies Gersten’s injectivity for S, if for any semilocal, integral domain R ∈ S with a fraction field K, we
have an injection

F (R) F (K). (1.0.1)

Gersten’s injectivity conjecture imprecisely stated predicts the following.

Conjecture 1.1. A functor F of ‘motivic type’ satisfies Gersten’s injectivity for a subcategory S of ‘non-
singular’ rings.

Traditionally, for the subcategory Reg of regular rings, we expect Conjecture 1.1 to be true for the functor
of algebraic K-groups, the Milnor K-groups, the Hermitian Witt groups, the de Rham cohomology groups,
the étale cohomology groups with coefficients in the ℓ-th roots of unity, the motivic cohomology groups, etc.
Validity of a certain ‘effacement theorem’ (in the style of [CHK97, Theorem 2.2.7]) is at the foundation of
Conjecture 1.1 for each of above mentioned functors. Knowing that a functor F satisfies Gersten’s injectivity
has diverse practical benefits, in particular, the behaviour of such a functor F is influenced by its values on
fields. To provide background for our discussion, let’s briefly delve into Gersten’s conjecture.
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Digression: Gersten’s conjecture

Let Hi(−) denote one of the cohomology theories mentioned above. Gersten’s injectivity forms a valuable
part of Gersten’s conjecture, which, in essence, predicts that for a regular, Noetherian scheme X , the group
Hn(X) can be read off by calculating Hn−i(κ(x)), where 0 ≤ i ≤ n and κ(x) is the residue field of X at a
point x ∈ X of codimension i. Gersten’s conjecture has been extensively studied in the literature thanks to
its far reaching consequences and wide range of applications. Let us note some of them below.

◦ In the case of algebraic K-theory, Gersten’s conjecture illuminates the connection of the algebraic
cycles with algebraic K-theory (see Bloch’s formula proved in [Qui73, §7, Theorem 5.19]). Using
Bloch’s formula and the cup product structure on algebraic K-groups, one can readily define intersection
products of algebraic cycles in regular, Noetherian schemes (see [Gra78]).

◦ In the case of Milnor K-theory, Gersten’s conjecture paves the way to prove Levine’s generalised Bloch–
Kato conjecture for semi-local, equicharacteristic rings. Furthermore, one can deduce Beilinson’s con-
jecture from Gersten’s conjecture (see [Ker09], which simultaneously proves Gersten’s conjecture in the
equicharacteristic case).

◦ In the case of de Rham cohomology, Gersten’s conjecture can be used to verify Washnitzer’s conjecture
relating the filtration by coniveau with the same by hypercohomology (see [BO74, Corollary 6.9]).

Therefore, unsurprisingly, Gersten’s conjecture enjoys a pivotal role in the study of each of these functors.

Warmed up by the above digression, we turn our attention back to Conjecture 1.1. Given the significance of
the conjecture, it seems completely justified to question its purview. Hence, we may pose the following.

Question. Is there a larger category S ⊃ Reg of ‘non-singular’ rings for which we expect Gersten’s injectivity
to be satisfied by a functor F of ‘motivic type’?

As a matter of fact, the answer is yes. Indeed, thanks to Zariski’s local uniformisation conjecture (see,
for example, [Kun23, Conjecture 2.1.1]), which predicts that any valuation ring is ind-regular, and a limit
argument, any functor that commutes with filtered colimits and satisfies Conjecture 1.1 for Reg, also does
the same for the category SVal of essentially smooth algebras over valuation rings. However, as mentioned in
loc. cit., although expected to be true, Zariski’s conjecture is widely open. This leaves the possibility for a
challenge to prove Conjecture 1.1 unconditionally for SVal in the case of functors F for which Conjecture 1.1
is known to be true for a subcategory of Reg.

The purpose of this article is twofold. We prove Conjecture 1.1 in the case of two different classes of
functors, namely

◦ the higher algebraic K-groups, and

◦ the functor that classifies T -torsors and the functor that classifies T -gerbes, where T is some fixed torus.

We write the precise statements of the two theorems below before having separate discussions on each of
them later. Let V be a valuation ring and let R be a semilocalisation of a smooth V -algebra with a fraction
field F .

Theorem 1.2 (Corollary 3.12). If V contains a field, then we have an injection

Ki(R) Ki(F ), for all i.

Theorem 1.3 (Corollary 4.7). Given an R-torus T , we have injections

H1
ét(R, T ) H1

ét(F, T ) and H2
ét(R, T ) H2

ét(F, T ).

Plugging T = Gm in the displayed formula on the right, we get Gersten’s injectivity for SVal in the case
of Brauer groups.

Background and Remarks on Theorem 1.2

Let us start this subsection with a review of the known cases of Gersten’s conjecture (see [Qui73, §7, Con-
jecture 5.10]) in the case of algebraic K-theory.
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◦ Gersten in [Ger73, Theorem 1.3] used representation theoretic techniques to prove Gersten’s conjecture
for discrete valuation rings with a finite residue field. Sherman in [She82] generalised Gersten’s method
to prove the same for discrete valuation rings whose residue field is an algebraic extension of a finite
field.

◦ Quillen in [Qui73, §7, Theorem 5.11] proved Gersten’s conjecture for essentially smooth algebras over
a field. The key input is a certain ‘geometric presentation lemma’, which will appear in our discussion
later.

◦ Gillet and Levine in [GL87, Corollary 6] subsequently generalised Quillen’s method to the mixed-
characteristic. They showed that Gersten’s conjecture is true for all essentially smooth algebras over
discrete valuation rings if the same holds for all discrete valuation rings.

◦ Kelly and Morrow in [KM21, Theorem 3.1] recently proved Gersten’s injectivity for equicharacteristic
valuation rings. Their method is to pass to special classes of valuation rings that we already know are
ind-regular, so as to reduce to [Qui73, §7, Theorem 5.11].

In §3, our goal is to establish Theorem 1.2. The technique of the proof is based on the same of [GL87,
Theorem]. More precisely, we prove the following generalisation of loc. cit. Let V be a valuation ring and let
R be a semilocalisation of a smooth V -algebra. Suppose that P ⊂ Spec(R) is the subset that corresponds to
the generic points of the V -special fibre of Spec(R). Let us denote the semilocalisation of R at the primes in
P by RP .

Theorem 1.4 (Theorem 3.10). The canonical restriction induces an injection

Ki(R) Ki(RP), for all i.

Thanks to Lemma 2.13, the semilocal ring RP is a Prüfer domain (i.e., it’s an integral domain whose local
rings are valuation rings). As a consequence, Theorem 1.4 reduces the verification of Gersten’s injectivity for
Sval to that of semilocal Prüfer domains. Finally, we deduce Theorem 1.2 from [KM21, Theorem 3.1].

It is worth noting that, unlike in Theorem 1.2, the ring V in Theorem 1.4 is not assumed to be equichar-
acteristic. The main technical component of the proof of this theorem is Presentation Lemma 3.2, which
is a “geometric presentation lemma” in the style of Quillen in [Qui73, §7, Lemma 5.12] (see [Čes22Surv, be-
ginning of §4.1]). Gillet and Levine in [GL87, Lemma 1] proved a version of the presentation lemma over
mixed-characteristic, discrete valuation rings (cf. [Lüd22, Lemma 2.12] and [Čes22, Variant 3.7]). Employing
techniques from the proofs of [Čes22, Variant 3.7] and [Kun23, Proposition 6.4], we construct our version of
the presentation lemma (Presentation Lemma 3.2) over valuation rings of finite Krull dimension, generalising
[GL87, Lemma 1].

Background and Remarks on Theorem 1.3

Before delving into the discussion on Theorem 1.3, let us contextualise it. Conjecture 1.1 in the case of
the functors H1(−,Gm) = Pic(−) and H2(−,Gm) for regular rings was explored by Grothendieck in his
seminal paper [Gro68a]. He presented an étale cohomological interpretation of the well-known Brauer groups,
ultimately establishing Gersten’s injectivity by analysing the long exact sequence associated to a certain
‘divisor short exact sequence’. Subsequently, Colliot-Thélène and Sansuc [CS87] generalised these results to
the functors defined by non-split tori, establishing Gersten’s injectivity for them. Their key contribution lies
in the introduction of the concept of a particular class of isotrivial tori termed ‘flasque tori’, characterised
by simple Galois theoretic data. Remarkably, they demonstrated that any isotrivial tori can be resolved by
flasque tori. Recently, employing similar techniques, Guo [Guo22] proved Gersten’s injectivity for valuation
rings.

Inspired by the established techniques, in §4, our objective is to prove Theorem 1.3. The strategy is
roughly based on the proof of [CS87, Theorem 2.2]. Considering an R-torus T , the key steps are as follows:

◦ Firstly, leveraging the fact that T has a flasque resolution, denoted by E−, (refer to §4.5), an analysis
of the long exact sequence of cohomology associated to E− reduces to show Theorem 1.3 in the case
when T is flasque.
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◦ Thereafter, writing down the long exact sequence of cohomology with supports in a closed subscheme
and subsequently, applying the coniveau spectral sequence associated to the filtration by supports, we
further reduce to show the following vanishing statement of local cohomology in low degrees.

Theorem 1.5. Let p ⊂ R be a prime ideal. For a flasque R-torus T , there is vanishing

Hq
p(R, T ) = 0, for q ≤ 2.

◦ Finally, we establish purity for torsors under tori (see Proposition 4.3), which we derive as a consequence
of a weak version of the Auslander–Buchsbaum formula for smooth algebras over valuation rings (see
Lemma 4.2).

The results of this section appeared in the author’s thesis [Kun23, Chapter 4] and they were simultaneously
and independently obtained by Guo and Liu in [GL24].

Notations and conventions

Let I be an ideal in a ring A.

◦ The vanishing locus of I is denoted by V (I) ⊆ SpecA. If I is principal with generator, say t, then V (t)
denotes V (I).

◦ The maximal spectrum of A is denoted by MaxSpec(A) ⊆ SpecA.

◦ If I is prime, then the localisation of A at I shall be denoted by AI .

◦ If A is an integral domain, then the fraction field of A is denoted by Frac(A).

◦ An A-algebra is called essentially smooth if it can be obtained as the semilocalisation at finitely many
primes of a smooth A-algebra.

◦ Given an A-scheme X and an algebra a : A → A′, the base change of X along a is denoted by XA′ .

◦ If I is prime, the residue field of A at I is denoted by κ(I).
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2 Generalities on Prüfer Domains

In this section, we establish several foundational concepts regarding Prüfer domains. These rings play a
pivotal role in this article; for instance, they naturally emerge in the proof of the crucial technical foundation
of §Section 3, namely, Presentation Lemma 3.2. To establish this lemma, we rely on cut-and-paste type
techniques, aided by Lemmas 2.6 and 2.8, along with an approximation result, Lemma 2.11. Additionally,
the application of Lemma 2.13 recurs throughout the article (see Theorem 3.10 and Theorem 4.6).

We start with the definition of Prüfer domains.

Definition 2.1 ([Gil92, §22]). A Prüfer domain is an integral domain whose localisation at every prime
ideal is a valuation ring.

For equivalent definitions of Prüfer domains, see [Gil92, Theorem 22.1] and [Sta22, Tag 092S].
We state some permanence properties of Prüfer domains below.

Lemma 2.2. Given a Prüfer domain R, a prime ideal p ⊂ R and a multiplicative subset S ⊂ R, the following
are Prüfer domains :
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(a) the localisation S−1R, and

(b) the quotient R/p.

In Lemma 2.5, we will demonstrate that the concept of semilocal Prüfer domains coincides with another
significant class of rings known as the semilocal Krull domains (see Definition 2.3 below). We will take
advantage of this fact in Lemmas 2.6, 2.8 and 2.11.

Definition 2.3 (cf. [Mat86, Chapter 4, §12]). An integral domain R with a fraction field K is called a
semilocal Krull domain if there exist a nonempty finite set Λ and valuations rings {Rλ}λ∈Λ in K such that
R =

⋂
λ∈Λ Rλ, where the intersection is taken in K.

Remarks 2.4.

1. Definition 2.3 extends the one in loc. cit. because we allow non-discrete valuations.

2. Contrary to loc. cit., we restrict Definition 2.3 to the semilocal setting for simplicity. This particular
case will be adequate for our purposes.

Lemma 2.5. A Prüfer domain R is the intersection in Frac(R) of the valuation rings obtained by the
localisations at the maximal ideals. Additionally, if R is semilocal,

(a) for a subfield K ⊆ Frac(R), the intersection R∩K is a semilocal Prüfer domain with Frac(R∩K) = K
such that the canonical morphism MaxSpec(R) ։ MaxSpec(RK) is a surjection, and

(b) the ring R is the increasing union of its subrings that are semilocal Prüfer domain of finite Krull
dimension.

Proof. The first claim is a consequence of the fact that any integral domain is the intersection of its locali-
sations at the maximal ideals.

(a) : This is a consequence of [Mat86, Theorem 12.2] (or [BouCA, Chapter VI, §7, No. 1, Proposition 2]).
Indeed, by [Sta22, Tag 0AAV], the intersection Rm ∩ K is a valuation ring with fraction field K, for each
maximal ideal m ⊂ R. Therefore,

RK := R ∩K =
⋂

m∈MaxSpec(R)(Rm ∩K)

is a semilocal Krull domain with fraction field K, namely, there are a surjection MaxSpec(R) ։ MaxSpec(RK)
given by m 7→ mK := m ∩RK and an isomorphism (RK)mK

∼= Rm ∩K for each maximal ideal.
(b) : The fraction field K of R can be written as K =

⋃
K ′, the increasing union being taken over

subfields K ′ ⊂ K that are finitely generated extensions over the prime subfield F ⊂ K; as a consequence,
R =

⋃
(R ∩K ′). Thanks to (a), the semilocal Prüfer domain R′ := R ∩K ′ has fraction field K ′; therefore,

the fact that tr. degF(K
′) < ∞ ensures that R′ has finite Krull dimension ([BouCA, Chapter VI, Section 10,

Number 3, Corollary 1]). Therefore, we have exhibited R as an increasing union of subrings R′ that are
semilocal Prüfer domain of finite Krull dimension. Hence, we are done.

By Lemma 2.5, the notion of semilocal Krull domains coincides with the same of semilocal Prüfer domains.
Consequently, as a result of Lemma 2.2, the category of semilocal Krull domains is closed under localisations
and under quotients by prime ideals.

Lemma 2.6. Let R1 be a semilocal Prüfer domain with a maximal ideal m and a residue field k and let R2

be a semilocal Prüfer domain whose fraction field is k. The subring

R := R1 ×k R2 ⊆ R1

is a semilocal Prüfer domain whose residue field at p := m ∩R is k. Moreover, the semilocalisation of R at
p and the maximal ideals not containing p is R1 and R/p ∼= R2.

Proof. We begin by establishing that R is a semilocal Prüfer domain. According to Lemma 2.5, this is
equivalent to demonstrating that it is a semilocal Krull domain. The same lemma shows that the rings R1

and R2 are semilocal Krull domains. To prove that R itself is a semilocal Krull domain, we can, without
loss of generality, reduce to the case where R1 and R2 are valuation rings. Indeed, this reduction is possible
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thanks to the fact that intersections of rings commute with products of rings. The claim when R1 and R2

are valuation rings follows from [FK18, Chapter 0, Proposition 6.4.1(1)] (cf. [Sta22, Tag 088Z]).
Therefore, it suffices to demonstrate that p ⊂ R satisfies the remaining claims. Since, by [Sta22, Tag

0B7J], we have that Spec(R) = Spec(R1) ⊔Spec(k) Spec(R2), the claim that R/p ∼= R2 follows. Furthermore,
the same coproduct description of Spec(R) demonstrates that the semilocalisation of R at p and the maximal
ideals not containing p is R1. Thus, the proof is complete.

Remark 2.7. Given a ring R, we may produce a graph with vertices in Spec(R), where two vertices are joined
by an edge if either is an immediate specialisation of the other. For example, the graph of a valuation ring
R is a path with two endpoints, which corresponds to the zero and the maximal ideal of R respectively.
Consequently, by the compatibility of forming this graph with localisation of rings, it is clear that the graph
of a Prüfer domain is a connected, acyclic graph. Conversely, an application of Lemma 2.6 demonstrates that
any finite, connected, acyclic graph may be recursively realised as the graph of a semilocal Prüfer domain of
finite Krull dimension.

Lemma 2.8. Given a semilocal Prüfer domain R of finite Krull dimension, a prime ideal p ⊂ R and an
element a ∈ R such that V (a) = {q ∈ Spec(R) | q ) p}, the canonical morphism

R (R[ 1a ])×(R[ 1
a
]/(pR[ 1

a
])) (R/p) is an isomorphism.∼ (2.8.1)

Remarks 2.9.

1. Since R has finitely many prime ideals, such an a always exist thanks to prime avoidance [Sta22, Tag
00DS].

2. The element a is chosen such that R[ 1a ] is the semilocalisation of R at p and the maximal ideals not
containing p. In particular, pR[ 1a ] ⊂ R[ 1a ] is a maximal ideal.

Proof of Lemma 2.8. The claim (2.8.1) when R is a valuation ring is the content of [FK18, Chapter 0,
Proposition 6.4.1(1)]. Therefore, without loss of generality, we may assume that R is not a valuation ring.
Since R is an integral domain, we have that R ⊆ R[ 1a ]; consequently, the canonical morphism in claim (2.8.1)
is an injection. We need to show that this morphism is a bijection. Letting R′ := (R[ 1a ]) ×(κ(p)) (R/p), by
[Sta22, Tag 0B7J], in similar vein as the proof of Lemma 2.6, we have that

Spec(R′) = Spec(R[ 1a ]) ⊔Spec(κ(p)) Spec(R/p).

However, the latter topological space is homeomorphic to Spec(R). Therefore, the maximal ideals (in reality,
all the prime ideals) of R′ and R correspond to each other. Moreover, by Lemma 2.2, each multiplicative
factor of R′ = (R[ 1a ]) ×(κ(p)) (R/p) is a semilocal Prüfer domain. As a result, by Lemma 2.6, we get that
R′ itself is a semilocal Prüfer domain. Since the maximal ideals of R′ and R correspond and each ring is
a semilocal Krull domain (Lemma 2.5), to verify that the morphism in claim (2.8.1) is an isomorphism, it
suffices to ensure that their localisations at each maximal ideal are equal ([Mat86, Theorem 12.2] or [BouCA,
Chpater 6, Section 7, Number 1, Proposition 2]). We verify this claim below. Let m ⊆ R be a maximal ideal.
If m 6⊇ p, we get that

(R′)(mR′) = (R[ 1a ])(mR[ 1
a
]) = Rm.

Therefore, it remains to verify the case when m ⊇ p. In this case,

(R′)(mR′) = (R[ 1a ])(mR[ 1
a
]) ×(κ(p)) (R/p)(m/p) = Rp ×(κ(p)) (Rm/(pRm)).

Given that, by hypothesis, Rm is a valuation of finite rank (whose spectrum forms a finite linear chain), the
second equality follows from the fact that (R[ 1a ])(mR[ 1

a
]) = (Rm)[

1
a ] = Rp. On the other hand, the valuation

ring case of the claim (2.8.1) produces the equality

Rp ×(κ(p)) (Rm/(pRm)) = Rm.

As a result, we get that Rm = (R′)mR′ , as claimed. Thus, we are done.
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The following is an input in the proof of Lemma 2.11 below.

Lemma 2.10. Let R be an integral domain, let m ⊂ R be a maximal ideal with a residue field k, and let
ℓ ⊆ k be a subfield. Suppose that ϕ : R ։ k is the canonical surjection. The subring

Rℓ := {r ∈ R | ϕ(r) ∈ ℓ} is an integral subdomain such that Rℓ = Frac(Rℓ) ∩R.

Proof. Let R′
ℓ := Frac(Rℓ) ∩ R and ℓ′ := ϕ(R′

ℓ). To demonstrate that Rℓ = R′
ℓ, it suffices to prove that

R′
ℓ ⊆ Rℓ. Applying ϕ, it is equivalent to show that ℓ′ ⊆ ℓ. This follows since ℓ is a field and since

R′
ℓ ⊆ Frac(Rℓ).

We are now ready to prove a generalisation of Lemma 2.5(b), which can be recovered by setting p = (0)
in Lemma 2.11(ii). We introduce some terminology below for convenience.

Given a semilocal Prüfer domain R, a set of prime ideals P = {pr ⊂ R} and a subring R′ ⊆ R, we say that
R′ is finitely generated at P if the residue field of R′ at pr ∩ R′ is finitely generated over its prime subfield,
for each pr ∈ P .

Lemma 2.11. Let R be a semilocal Prüfer domain of finite Krull dimension with a fraction field K and let
P := {pr ⊂ R} be a set of prime ideals.

(i) Given a subfield K ′ ⊆ K, if R is finitely generated at P, then same is true for the subring R′ := R∩K ′.

(ii) The ring R is a filtered union of semilocal Prüfer domains Rα of finite Krull dimension each of which
is finitely generated at P.

(iii) The field K can be written as a filtered union of subfields Kα ⊆ K so that each Rα := R∩Kα is finitely
generated at P.

Remark 2.12. [BouCA, Chapter VI, § 10, No. 3, Corollary 1] demonstrates that the transcendence degrees
of κ(pr) over their respective prime subfields are bounded, for all r, as soon as K is finitely generated over
its prime subfield. However, ensuring that κ(p) are also finitely generated is more delicate.

Proof of Lemma 2.11. First, we observe that (ii) is implied by (iii). Indeed, by Lemma 2.5(a), such subrings
Rα := R∩Kα are automatically semilocal Prüfer domains of finite Krull dimension. Therefore, it suffices to
demonstrate only (i) and (iii). We shall prove them by inducting on r.

The claims are trivial in the base case, i.e., when r = 0. Therefore, we may assume that r ≥ 1. As
inductive hypothesis, we suppose that both (i) and (iii) are true for all such R when r = n. As inductive
step, we shall prove both the claims when r = n+ 1. Let p ∈ P be a maximal element ordered by inclusion
and let a ∈ R be such that V (a) = {q ∈ Spec(R) | q ) p}. Since R has only finitely many prime ideals, the
element a exists by prime avoidance [Sta22, Tag 00DS] (cf. Remarks 2.9(1)). Thanks to Lemma 2.8,

R (R[ 1a ])×(κ(p)) (R/p) is an isomorphism.∼ (2.12.1)

Furthermore, R[ 1a ] is a semilocal Prüfer domain of finite Krull dimension whose residue field at the maximal
ideal pR[ 1a ] is κ(p) and R/p is a semilocal Prüfer domain of finite Krull dimension whose fraction field
is κ(p) (Lemma 2.2). Again, considering the fact that R has only finitely many primes, it follows that
Spec(Rp) ⊆ Spec(R) is a Zariski open. As a consequence, since both the claims are Zariski local in R, by
localising R at p, we may, without loss of generality, assume that R is a valuation ring with a maximal ideal
p ⊂ R. First, we prove (i).

(i) : Let K ′ ⊆ K be subfield. As a first case, we assume that P = {p}. Since R′ ⊆ R, the residue field
k′ of R′ at p ∩ R′ is a subfield of κ(p), which is finitely generated over its prime subfield. Consequently, by
[Bou03, Chapter V, §14, No. 7, Corollary 3], the same is true for k′. Thus, in this case, we are done.

Otherwise, the set P ′ := (P \ {p}) is nonempty. Let q be the maximal element in P ′ (the prime q is
unique because Spec(R) is totally ordered). Similar to (2.12.1), we have an isomorphism

R Rq ×(κ(q)) (R/q).∼

(2.8.1)
(2.12.2)

Letting q′ := q ∩ R′, since R′
q′ is a valuation ring that is dominated by Rq ∩ K ′, we obtain the equality

R′
q′ = Rq ∩ K ′. Let k′ be the residue field of R′ at q′. Since R is finitely generated at P , it follows that
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Rq (respectively, R/q) is finitely generated at P ′ (respectively, at {(p/q)}). Consequently, by the induction
hypothesis (respectively, by the r = 1 case proved above), the ring R′

q′ (respectively, the ring R′/q′) is finitely
generated at P ′ (respectively, at {(p/q)}). Therefore, the ring

R′ R′
q′ ×k′ (R′/q′)∼

(2.8.1)

is finitely generated at P , as required. The induction is thus complete and (i) is proven.

Finally, we prove (iii).

(iii) : In a similar vein as the proof of (i), as a first case, we assume that P = {p}. Letting F ⊆ κ(p) be
the prime subfield, we can write κ(p) as a filtered unions of subfields kβ ⊆ κ(p) which are finitely generated
over F. For each β, we let

Rβ := {r ∈ R | r mod p ∈ kβ} and Kβ := Frac(Rβ).

By Lemmas 2.10 and 2.5(b), the ring Rβ is a semilocal Prüfer domain of finite Krull dimension whose residue
field at the maximal ideal mβ := p ∩Rβ is kβ , for each β. Furthermore, the same lemmas prove the equality
Rβ = R ∩ Kβ, for each β. As a consequence, it suffices to check that

⋃
Kβ = K, which is true because⋃

kβ = k. Thus, in this case, we are done.
Otherwise, the set P ′ := P \{p} is nonempty. Similar to the proof of (i), let q be the maximal element in

P ′. By the induction hypothesis (respectively, by the r = 1 case proved above), the field K can be written as
a filtered union of subfields Kγ ⊆ K (respectively, subfields Kβ ⊆ K) such that Rγ := R ∩Kγ (respectively,
Rβ := R ∩Kβ) is finitely generated at P ′ (respectively, at {p}), for all γ (respectively, for all β). Possibly
by reindexing, we consider a mono-indexed cofinal collection {Kα} in the bi-indexed collection {Kβ ∩Kγ}
of subfields of K and we let

Rα := R ∩Kα, for each α.

Since {Kα} is a cofinal collection of {Kβ ∩Kγ}, letting α be an index, there exists some β and some γ (we
fix one such pair) so that Kα = Kβ ∩Kγ . Therefore, by definition, we get

Rα = Rβ ∩Kγ = Rγ ∩Kβ .

Applying (i) to Rγ (respectively, to Rβ), we obtain that Rα is finitely generated at P ′ (respectively, at {p}).
Combining the statements, it follows that Rα is finitely generated at P = P ′ ∪ {p}, as required. Thus, the
induction step is complete, and consequently, the claim is proven. Hence, we are done.

Below, in Lemma 2.13(1), we recall from [Kun23, Lemma 3.10] (cf. [Mor22, théorème A]) an intriguing
property of smooth algebras A over valuation rings V . Specifically, we demonstrate that the local rings of
A at the generic points of its R-fibres are also valuation rings. We will leverage this to ultimately reduce
Theorem 1.2 for A to a Gersten’s injectivity claim for the local ring of A at a generic point of its R-special
fibre (see Corollary 3.12).

Before stating Lemma 2.13, we introduce some notations for clarity. Given a ring R, we denote its Krull
dimension by dim(R). Given a finite set of primes P ⊆ Spec(A) of a ring A, we denote the semilocalisation
of A at the primes in P by AP . Given an extension e : R → S of rings and a subset P ⊂ Spec(S), let

FlatP(S/R) := {f ∈ S | V (f) ∩ P = ∅ and R → S/fS is flat}.

In terms of the previously introduced notations, for any extension e and subset P , it is noteworthy that
FlatP(S/R) is a filtered set.

Lemma 2.13.

(1) Given a valuation ring V , an integral domain A that is a smooth V -algebra, and a subset P of the set
P̃ of generic points of the V -special fibre of Spec(A), the morphism V → AP is faithfully flat extension
of semilocal Prüfer domains.

8



(2) Moreover, if dim(V ) < ∞, then there exists an affine open neighbourhood Spec(A′) ⊆ Spec(A) of P
such that we have

colimf∈FlatP(A′/V ) A
′[ 1f ] = A′

P .

Remark 2.14.

1. Although, our lemma is stated for a general P , the most interesting cases are when P is a singleton
set and when P = P̃ . In the former case, the proof of (1) below shows that, in fact, V → AP is an
extension of valuation rings which induces an isomorphism between the respective value groups.

2. It is worth noting that the R-special fibre of Spec(A) need not be connected, even when R is a discrete
valuation ring and R → A is étale. For example, when A is the integral closure of R is an unramified
extension L ⊇ Frac(R) ([Sta22, Tag 09E9]), the maximal ideals of A, which lie in the R-special fibre
of Spec(A), correspond to the extensions of valuations R ⊂ L centred on A ([Sta22, Tag 09E8]). In
particular, if R is not Henselian, such extensions of valuations need not be unique.

Proof of Lemma 2.13. We prove the claims simultaneously. We shall reduce, by the local structure of smooth
morphisms, to establishing the claims when A is étale, and when A is a polynomial algebra, in which we do
an explicit computation.

By the semilocal structure of smooth morphisms [SGA 1, Exposé II, théorème 4.10(ii)]2 (cf. [Sta22, Tag
052E]), there exist an integer n ≥ 0, a connected, affine, open neighbourhood Spec(B) ⊆ Spec(A) of P and
an étale morphism j : Spec(B) → Spec(V [x1, . . . , xn]). Since the claims are of Zariski semilocal in nature,
without loss of generality, we may assume that A = B. If V → A is étale, then n = 0, and, by [Sta22, Tag
0ASJ], claim (1) is true. Furthermore, if dim(V ) < ∞, the ring A is a semilocal Prüfer domain of finite
Krull dimension. Therefore, by prime avoidance [Sta22, Tag 00DS], Spec(AP ) ⊆ Spec(A) is an open subset.
Consequently, to demonstrate claim (2), it suffices to take A′ = AP . Thus, the claims are proven in the case
when n = 0.

Therefore, without loss of generality, we may assume that n ≥ 1. Since étale morphisms are of relative
dimension 0, it follows that j(p) is the generic point η of the V -special fibre of Spec(V [x1, . . . , xn]), for any
p ∈ P . As a consequence, letting V ′ := V [x1, . . . , xn] and p′ ⊂ V ′ be the prime corresponding to η, we have
a factorisation

V
g
−→ V ′

p′

h
−→ AP .

Thus, it is sufficient to show the claims are true for the morphism g. Indeed, supposing that the claims are
true for g, the proven n = 0 case applied to h implies that h ◦ g is a faithfully flat extension of semilocal
Prüfer domains, as required to show (1). Similarly, to prove claim (2), we note that there is an inclusion
Flat{p}(V

′/V ) ⊆ FlatP(A/V ) and base change the equality obtained by (2) for g along V ′ → A to obtain an
equality

Ap′ = colimf∈Flat{p′}(V
′/V ) A[

1
f ] = colimf∈FlatP(A/V ) A[

1
f ]. (2.14.1)

Finally, base changing the equality (2.14.1) along the open embedding Spec(AP) ⊂ Spec(A), we obtain the
required equality which shows (2). Therefore, without loss of generality, it suffices to establish the claims for
g.

In consequence, we may assume that A = V [x1, . . . , xn]. Let m ⊂ V be the maximal ideal and let
p := m[x1, . . . , xn]. Given the assumption, we have that P = {p}.

(1) : In fact, we shall demonstrate that V → Ap is a faithfully flat extension of valuation rings that
induces an isomorphism an isomorphism between the respective value groups. First, we prove that Ap is a
valuation ring. To do so, it suffices to verify that for any

t ∈ Frac(Ap) = Frac(V [x1, . . . , xn]), either t ∈ Ap or 1/t ∈ Ap.

2Even though [SGA 1, Exposé II, théorème 4.10(ii)] concerns only the Zariski local structure of smooth morphisms, we can
establish their Zariski semilocal structure with a slight modification of the proof in loc. cit.
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Let t = f/g ∈ Frac(Ap), where f, g ∈ A. Using the valuation on V , we define val(f) ∈ V (resp., val(g) ∈ V )
to be the element, which is well defined up to a unit in V , such that f/val(f) ∈ A\p (resp., g/val(g) ∈ A\p).
If val(g) | val(f), then t ∈ Ap, otherwise, 1/t ∈ Ap, and we are done. It remains to show that the morphism

ϕ : Frac(V )×/V × → Frac(A)×/A×
p of value groups is an isomorphism.

Since ϕ is injective, it suffices to show that ϕ is surjective. In a similar vein as the previous arguments, given
t ∈ Frac(A)×, there exists u ∈ Frac(V )× such that t/u ∈ A×

p . Thus, (1) is proven.

(2) : Since, by definition, Ap = colimf∈A\{p}A[
1
f ], it is enough to show that A \ {p} ⊆ Flat{p}(A/V ). In

other words, given f ∈ A \ {p}, we need to demonstrate that V → A/fA is flat. As V is a valuation ring, it
is equivalent to prove that such an f satisfies that A/fA is V -torsion free. Letting f ∈ A \ {p}, suppose that
v ∈ V and a, b ∈ A be any elements such that va = bf . In order to establish that A/fA is V -torsion free, we
need to show that either v = 0 or a ∈ fA. Therefore, further assuming that v 6= 0, it is sufficient to prove
that a ∈ fA. Adopting a notation of the above paragraph and keeping in mind that f 6∈ p, we conclude that
v divides val(bf) = val(b). As a consequence, b′ := b/v ∈ A, whence we deduce that a = b′f , as required.
Thus, (2) is also proven, and hence, we are done.

3 Gersten’s Injectivity of G-theory

In this section, our goal is to prove Theorem 3.10. Although the anatomy of its proof is based on the proof
of [GL87, Theorem], considerable amount of customisation is needed to upgrade the arguments to the non-
Noetherian setting. Already, since the spectra of valuation rings contain more points than their discrete
counterparts, the construction of Presentation Lemma 3.2, which is the principal technical ingredient in
this section, is surprisingly more delicate than we expect (cf. [GL87, Lemma 1] and [Lüd22, Lemma 2.12]).
We assemble our version of the presentation lemma by synthesising the proofs of [Čes22, Variant 3.7] and
[Kun23, Proposition 6.4]. In conclusion of this section, and as an application of Theorem 1.4, we extend the
result in [GL87, Theorem] to demonstrate that a functor F , which satisfies the criteria outlined in Defini-
tion 3.8—namely, it commutes with filtered colimits of rings, is a localizing invariant, and has pushforwards
along finite morphisms—satisfies Gersten’s injectivity for smooth algebras over equicharacteristic valuation
rings (Corollary 3.12).

In preparation for Presentation Lemma 3.2, let us state a straightforward consequence of [Čes22, Propo-
sition 3.6].

Lemma 3.1. Given a field k, an affine, smooth k-scheme X of pure relative dimension d > 0, points
x1, . . . , xn ∈ X and a nowhere dense, closed subscheme Y →֒ X, there exist affine opens x1, . . . , xn ∈ U ⊆ X
and S ⊆ Ad−1

k and a smooth k-morphism π : U → S of relative dimension 1 such that π|Y ∩U is finite.

Proof. We shall deduce the claim via a direct application of loc. cit. At the cost of shrinking X to an open,
affine neighbourhood of x1, . . . , xn, we may assume that there is a closed embedding X →֒ Am

k , and thus,
by composing with a chosen open embedding Am

k →֒ Pm
k , we obtain an embedding ι : X →֒ Pm

k . We define
X (respectively, Y ) to be the schematic closure of ι (respectively, the same of Y ⊂ X). The fact that Y is
dense in Y ensures that codimX(Y ) = codimX(Y ) ≥ 1. Moreover, the same fact implies that Y \ Y does not
contain any generic point of Y . As a consequence, it follows that codimX(Y \ Y ) ≥ 2. Therefore, the claim
follows by putting (X,X, x1, . . . , xn ∈ X,Y ) in loc. cit.

Presentation Lemma 3.2. Given

◦ a semilocal Prüfer domain R of finite Krull dimension,

◦ an affine, smooth R-scheme X of pure relative dimension d > 0,

◦ points x1, . . . , xn ∈ X and

◦ an R-flat, closed subscheme Y →֒ X that does not contain any component of the R-fibres of X ,

there exist affine opens x1, . . . , xn ∈ U ⊆ X and S ⊆ Ad−1
R and a smooth R-morphism π : U → S of relative

dimension 1 such that π|Y ∩U is quasi-finite.
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For brevity, such a morphism π (along with the data of U and S) will be called a presentation of X over
R.

Proof. Let C ⊆ SpecR be the closed subscheme of closed points and let XC be the fibre of X over C.
Since Lemma 3.1 takes care of the case when R is a field, without loss of generality, we may assume that
C ( SpecR.

Case 1: We suppose further that each xi specialises to a point in XC . Because of this assumption, we
may replace xi with one of its specialisations that are closed points in XC (we use the fact that XC is a
Jacobson scheme in order to specialise each xi to a closed point in XC) to assume further that each xi ∈ XC

is closed. Thanks to Lemma 3.1, there exist affine opens

x1, . . . , xn ∈ U ′ ⊂ XC and S′ ⊂ Ad−1
C and a smooth C-morphism π′ : U ′ → S′

such that π′|YC∩U ′ is quasi-finite (in fact, we can ensure that the latter is finite, but we will not require it for
the proof of the claim). Let I be the ideal of vanishing of XC →֒ X and let Ũ ⊂ X be an open subset such
that Ũ ∩XC = U ′. By lifting sections along OŨ ։ OŨ/(I |Ũ ), we define a morphism π̃ : Ũ → Ad−1

R . Since Ũ
is R-finite type and R-flat, it is R-finitely presented (by [RG71, Première partie, théorème 3.4.6] and by the
fact that R is an integral domain). Thanks to the fibrewise criterion of flatness [Sta22, Tag 039C], π̃ is flat
at each xi, whence thanks to the fibrewise criterion of smoothness [Sta22, Tag 01V8], π̃ is smooth at each
xi. Therefore, after shrinking Ũ , we may assume that π̃ is smooth. The openness of the quasi-finite locus
[Sta22, Tag O1T1] implies that there exists an open subset U1 ⊂ Y containing Y ∩π−1(π(xi)), for all i, such
that π|U1 is quasi-finite. We choose affine opens π(x1), . . . , π(xn) ∈ S ⊆ π(Ũ \ (Y \ U1)) and U ⊆ π−1(S).

Case 2: In general, some of the points among x1, . . . , xn might not specialise to a point of XC , say
y1, . . . , ym. Let P ⊆ Spec(R) be the images of y1, . . . , ym. We shall tailor X in such a way that each yi
specialises to XC , effectively replacing the original X with this customised version. For this purpose, we
use an ingenious trick due to Česnavičius in the proof of [Čes22, Variant 3.7]. In this regard, thanks to
Lemma 2.11(ii) and a limit argument, without loss of generality, we may assume that the residue field κ(p)
of R at each p ∈ P is finitely generated over its prime subfield. By, for example, [Kun23, Lemma 6.1], each
field κ(p) is a fraction field of a regular domain Ap that is smooth over Fp or Z. Moreover, each Ap is of
positive Krull dimension, since otherwise K is a finite field, in which case, it contradicts our assumption that
R is not a field. By localising Ap and possibly by selecting a local R-projective embedding of X , we may
assume that

1. the scheme Xκ(p) spreads out to a smooth Ap-scheme Xp that is fibrewise of pure dimension d (see
[Sta22, Tag 01V8] and [EGA IV3, théorème 12.1.1(iv)]),

2. each point yi lying over p spreads out to an Ap-finite, closed subscheme in Xp, and

3. the closed subscheme Yκ(p) spreads out to an Ap-flat, closed subscheme Yp such that Yp is Ap-fibrewise
of codimension ≥ 1 in Xp (see [Sta22, Tag 039C] and [EGA IV3, théorème 12.1.1(v)]).

Now that we have constructed the objects above for each p ∈ P , let us proceed with the customization of X .

Method: Simultaneously,

◦ we shall iteratively glue R with a discrete valuation ring A′
p whose fraction field is κ(p) at each p ∈ P

to ultimately produce a semilocal Prüfer domain R̃ of finite Krull dimension R̃, and

◦ we shall iterative glue X with an A′
p-scheme Xp whose generic fibre is Xκ(p) at each p ∈ P to ultimately

produce an R̃-scheme X̃ which has the property that each yi specialises to a point of the R̃-special fibre
of X̃.

Once this is done, we apply the already proven Case 1 to R̃ and X̃ (Case 1 applies thanks to our construction
of R̃ and X̃) to obtain a presentation π̃ of X̃ over R̃. Given that a presentation of X over R is Zariski
semilocal around x1, . . . , xn, considering the open embedding j : Spec(R) →֒ Spec(R̃), we can perform a base
change of π̃ along j to obtain a presentation π of X over R, as required.
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Consequently, it suffices to construct such R̃ and such X̃. We proceed iteratively, incrementally considering
primes p ∈ P ordered by their height. We fix a prime p ∈ P of height n. By abuse of notation, let R be
the semilocal Prüfer domain (respectively, the R-scheme X) constructed by applying the procedure called
Method to all q ∈ P of height < n. Following Method, we shall construct R̃ by gluing R with a discrete
valuation ring A′

p at p and X̃ by gluing X with an A′
p-scheme Xp whose generic fibre is Xκ(p). Let a ∈ R

be a element whose vanishing set is {q ∈ Spec(R) | q ) p}. As observed in Lemma 2.8, thanks to prime
avoidance [Sta22, Tag 00DS], such an a always exists because R has finitely many prime ideals. By (2.8.1),
we may write

R R[ 1a ]×κ(p) (R/p).∼

Given that Ap is of positive Krull dimension, it has infinitely many primes of height 1, permitting us to
choose such a prime r ⊂ A so that the localisation A′

p, which is necessarily a discrete valuation ring, of Ap at
r is different from each of the localisations of R/p. Choosing such a prime r ⊂ A, we substitute Ap with A′

p

and consider R′ := (R/p) ∩ Ap, where the intersection is taken in κ(p). Thanks to Lemma 2.5, the ring R′

is a semilocal Prüfer domain of finite Krull dimension with fraction field κ(p). We define R̃ by the following
diagram

R̃ R[ 1a ]×κ(p) R
′.∼ (3.2.1)

Lemma 2.6 ensures that R̃ is a semilocal Prüfer domain of finite Krull dimension. It remains to construct
X̃, which we do below. Over the open cover Spec(R/p) and Spec(Ap) of Spec(R′)

◦ we glue XR/p and Xp along Xκ(p) to obtain a smooth R′-scheme X ′ that is fibrewise of pure dimension
d, and

◦ we glue YR/p and Yp along Yκ(p) to obtain an R′-flat, closed subscheme Y ′ ⊂ X ′ which is R′-fibrewise
of codimension ≥ 1.

By construction, each yi lying over p specialises to a point in an R′-special fibre of X ′. Finally, we define X̃.
Thanks to [Sta22, Tag 0B7J] and [Sta22, Tag 0D2I](1),

◦ we glue XR[ 1
a
] and X ′ along Xκ(p) to obtain an R̃-flat scheme X̃ that is fibrewise of pure dimension d,

and

◦ we glue YR[ 1
a
] and Y ′ along Yκ(p) to obtain an R̃-flat, closed subscheme Ỹ ⊂ X̃ which is R̃-fibrewise of

codimension ≥ 1.

Thanks to the fibrewise criterion of smoothness [Sta22, Tag 01V8], it follows that X̃ is R̃-smooth. By
construction, the property that each yi lying over p specialises to a point in an R̃-special fibre of X̃ continues
to be true. Therefore, we may apply Case 1 to (R̃; X̃; x1, . . . , xm; Ỹ ) to obtain a presentation of X̃ over R̃,
as required. This concludes the proof.

Remarks 3.3.

(1) Even though for the sake of demonstrating Theorem 3.10, we are only interested in a special case of
Presentation Lemma 3.2, namely, when R is a valuation ring, the reason to state Presentation Lemma 3.2
in its current generality is not merely curiosity. As a matter of fact, our proof, more precisely, Case 2
of our proof forces us to modify R via cute-and-glue tailoring (Lemmas 2.6-2.8). As a result, Prüfer
domains naturally appear there during this process.

(2) There are significant differences between the statements of [Kun23, Proposition 6.4] and Presentation
Lemma 3.2. Although our assumption that Y is R-flat, as opposed to a fibrewise smoothness condition
imposed on Y in loc. cit., makes our proof easier than there, a drawback is that we can only ensure that
π|Y ∩U is quasi-finite, instead of finite. Quasi-finiteness is sufficient for the proof of Theorem 3.10 thanks
to the ‘linearity of G-theory’, which greatly simplifies the arguments. Indeed, following the clever idea
in the proof of [GL87, Theorem], after base changing along π (cf. (3.11.1)), we employ Zariski’s main
theorem [Sta22, Tag 00Q9] to enlarge our scheme, so that essentially π|Y ∩U may be assumed to be
finite (cf. (3.11.2)), at least in some vague sense.

While working with non-Noetherian rings, we constantly need to make the distinction between finite type
objects and finitely presented ones over them. This is vital, for example, especially while using Noetherian
approximation techniques, where we require finitely presented, and not just finite type. Coherent rings,
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which we introduce below, form an important class of rings where this disparity between finite type and
finite presentation reduces. Thankfully, rings in Sval are coherent, which permits us to adapt some of the
techniques from [GL87].

3.4. Coherence. Given a scheme X , an OX -module F is called coherent if it is of finite type and for
every open U ⊆ X and every finite collection si ∈ F (U), i = 1, . . . , n, the kernel of the associated morphism⊕

i=1,...,n OU → F is of finite type ([Sta22, Tag 01BV]). A coherent OX -module is finitely presented, and
therefore, quasi-coherent ([Sta22, Tag 01BW]). A scheme X is called locally coherent if OX is a coherent
module over itself ([GR18, Definition 8.1.54]). A ring A is called coherent if any finitely generated ideal of A
is finitely presented ([Sta22, Tag 05CV]).

A scheme X that is locally of finite presentation over a Prüfer domain R is locally coherent. Indeed,
since the property of being locally coherent is Zariski local, it suffices to check that any ring A that is a
finitely presented R-algebra is coherent. Let f : A′ := R[x1, . . . , xn] ։ A be a presentation of A such that
ker(f) ⊂ A′ is a finitely generated ideal. Since ker(f) ⊂ A′ is finitely generated, it is enough to show that the
ring A′ is coherent. Letting I ⊂ A′ be a finitely generated ideal, we shall show that I is a finitely presented
A′-module. Putting X = SpecA′, S = SpecR and M = Ĩ in [RG71, Première partie, théorème 3.4.6] (by
[BouCA, Chapter I, §2.4, Proposition 3(ii)], [Sta22, Tag 090Q] and the fact that flatness is a local property
[Sta22, Tag 0250], the R-torsion-free module I is flat), we obtain that I is a finitely presented A′-module,
showing that A′ is coherent.

In Theorem 3.10, we give a sufficient list of axioms for a functor F to satisfy Gersten’s injectivity for
Sval. This list is entirely motivated by our proof, and in no way necessary. Demonstratively, even though the
functors in §4 satisfy Gersten’s injectivity, they violate our list of axioms. A functor F that satisfies our list
of axioms shall be termed a G-theory-like functor (see Definition 3.8 below).

3.5. G-theory-like Functor. Let CRings be the category of commutative, unital rings, let S be a stable
∞-category and let F : CRings → S be a covariant functor. We suppose that S has a suitable notion of
homotopy groups πq(−) which commute with filtered colimits, for all integer q. For example, S could be
the ∞-category of ‘spectra’3 (see [HA, §1.4.3]).

Definition 3.6. The functor F is said to satisfy localisation for a subcategory S ⊆ CRings if given any
diagram

Z X Ui j

of affine schemes such that U = X \Z, i is a finitely presented, closed immersion and j is an open immersion
between spectra of rings in S, there exist

◦ a pushforward morphism i∗ : F (Z) → F (X), and

◦ an exact triangle

F (Z) F (X) F (U).
i∗ j∗

A functor F that satisfies localisation for a category does not see nilpotents in the same. More precisely,
such a functor F applied to the canonical morphism A ։ Ared, where the latter is the reduced ring of the
former, is an isomorphism. We shall use this fact in the proof of Theorem 3.10 without mention.

Given a small exact category C, let K(C) denote its ‘Quillen K-theory’ spectrum4 defined in [Qui73,
§2]. Given a ring R, let K(R), termed its algebraic K-theory, denote the Quillen K-theory of the category
Proj(R) of finite type, projective R-modules. On the other hand, given a coherent ring R, let G(R), termed
its G-theory, denote the Quillen K-theory of the category Coh(R) of R-finitely presented modules.

By Quillen’s dévissage theorem [Qui73, §5, Theorem 4], it follows that the canonical inclusion Proj(R) →֒
Coh(R) induces an isomorphism

K(R) ∼= G(R) when R ∈ Sval,

3Indeed, in this case, the homotopy groups are represented by suspensions of the ‘sphere spectrum’ S, which is a compact object
(see [HA, Corollary 1.4.4.6]).

4Although Quillen [Qui73, §2] initially defined the algebraic K-theory as a space using his Q-construction, Waldhausen [Wal85,
1.5 and Appendix 1.9] demonstrated that the algebraic K-theory is actually an “infinite loop space” (in the sense of Adams [Ada78,
§1.4]). Consequently, according to op. cit. §1.7, the algebraic K-theory can be regarded as a spectrum (cf. [TT90, 1.5.2 and
Theorem 1.11.2]).
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i.e., when R is a smooth algebra over a valuation ring. Indeed, for such a ring R, finitely presented R-modules
admits a finite length resolution by finite type, projective R-modules. From the displayed isomorphism above,
it follows that

G-theory satisfies localisation for Sval (see [AMM22, Proposition 2.5]).

The rationale behind naming this section “Gersten’s Injectivity of G-theory” instead of “Gersten’s Injectivity
of K-theory” becomes evident upon examining the proof of Theorem 3.10. It is apparent that Coh(R), rather
than Proj(R), plays the key role in the proof. Let Coh be the 2-category of additive categories of the form
Coh(R), for some coherent ring R.

Definition 3.7. A functor K : Coh → S is said to satisfy the additivity property if given any two coherent
rings R and S as well as additive functors f, g : Coh(R) → Coh(S), we have an equivalence of functors
K(f) +K(g) ∼= K(f + g).

Quillen in [Qui73, §3, Corollary 1 to Theorem 2] shows that the algebraic K-theory satisfies the additive
property.

Definition 3.8. The functor F is called G-theory-like if it satisfies the following properties, namely, if

(i) it commutes with filtered colimits of rings,

(ii) it satisfies localisation for Sval, and

(iii) there exist a functor K that satisfies the additivity property and a functorial isomorphism F (R) ∼=
K(Coh(R)), for any coherent ring R.

From the preceding remarks, it follows that G-theory is an example of a G-theory-like functor. For the
subsequent discussion, we define the functors Fq(−) := πq(F (−)), for each integer q.
Remark 3.9. By our assumption, the homotopy functors πq(−) commute with filtered colimits, for all q.
Consequently, if F (−) commutes with filtered colimits of rings, the functors Fq(−) will also commute with
filtered colimits of rings, for all q.

We are now ready to state and prove a generalisation of Theorem 1.4, which is recovered by plugging
F (−) = K(−), the algebraic K-theory of rings.

Theorem 3.10. Suppose that F is a G-theory-like functor. Given

◦ a valuation ring R,

◦ an integral domain A that is a smooth R-algebra,

◦ a faithful R-algebra A that is the semilocalisation of A at finitely many primes, and

◦ the subset P ⊂ Spec(A) of primes that correspond to generic points of the R-special fibre of Spec(A),

the pullback morphism induces an injection Fi(A) →֒ Fi(AP), for all i.

Remarks 3.11.

(1) Modulo the technicalities, the proof follows the arguments in [GL87], which are, in itself, mixed-
characteristic adaptations of Quillen’s ([Qui73, §7, Theorem 5.11]). By an application of Defini-
tion 3.8(i)-(ii), we reduce to show that F applied to j : Y →֒ X is the zero morphism, where X :=
Spec(A) and Y is roughly the spreading out of Spec(A/p). We then use Presentation Lemma 3.2 to
further reduce to the case when j is the vanishing locus of a principal ideal and has a retraction. Finally,
in this case, we employ Definition 3.8(iii) to conclude.

(2) We recall that the R-special fibre of Spec(A) need not be connected, even when R is a discrete valuation
ring and R → A is étale (see Remark 2.14(2)).

Proof of Theorem 3.10. Firstly, we shall reduce to the case when R is of finite Krull dimension. Thanks to
Lemma 2.5(b), the ring R can be written as filtered colimit of valuation rings Rα of finite Krull dimension.
Since A is V -smooth, it is V -flat and V -finite type. Consequently, A is R-finitely presented ([RG71, Première
partie, théorème 3.4.6]). Therefore, possibly by reindexing, the smooth algebra R → A descends to a
smooth algebra Rα → Aα ([Sta22, Tag 0C0B]), for all α. We suppose that x1, . . . , xn are the set of points
corresponding to the semilocalisation A → A. Let Aα be the semilocalisation of Aα at the images of the
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points x1, . . . , xn under the morphism Spec(A) → Spec(Aα). Let pα ⊂ Aα be a prime that corresponds to
the generic point of the Rα-special fibre of Spec(Aα). Since the filtered colimit of Aα (respectively, (Aα)pα

)
is A (respectively, Ap) and Fi(−) commutes with filtered colimits of rings (Definition 3.8(i)), for all i, it
suffices to show that the pullback morphism induces an injection Fi(Aα) →֒ Fi((Aα)pα

), for each α and for
all i. As a consequence, without loss of generality, we may assume that R = Rα. In particular,

we may assume that R is of finite Krull dimension.

Secondly, if A is of R-relative dimension 0, then it is R-étale. In this case, A is a semilocal Prüfer domain
and A = AP . Thus, the claim is trivial. Therefore, we may assume that A is of R-relative dimension d > 0.

Thanks to Lemma 2.13(2), we have an equality

AP = colimf∈FlatP(A/R) A[
1
f ].

Similar to above, since Fi(−) commutes with colimits of rings, for any i, it suffices to show that Fi(A) →֒
Fi(A[

1
f ]), for all i and for each f ∈ FlatP(A/R). Since F satisfies localisation and it can be written as

F = K ◦ Coh (see Definition 3.8(ii) and (iii)), it suffices to show that the morphism induced by applying
F (−) to the pushforward morphism Coh(A/(f)) → Coh(A) is zero. Let x1, . . . , xn ∈ Spec(A) be the points
corresponding to the semilocalisation A → A. Possibly by shrinking Spec(A) to an affine neighbourhood of
x1, . . . , xn and by spreading out, we may assume that f ∈ A, whence the openness of the flat locus [Sta22,
Tag 0399] implies that, by further shrinking Spec(A), we may suppose that R → A/(f) is flat. Since, by
assumption, f does not vanish at the generic points of the R-special fibre of Spec(A), the closed subscheme
i : Y := Spec(A/(f)) →֒ X := SpecA does not contain any R-fibre of the target scheme ([Sta22, Tag 0D4H]).
Thus, applying Presentation Lemma 3.2, at the cost of shrinking X further, we get a smooth R-morphism
π : X → Ad−1

R of relative dimension 1 such that π|Y is quasi-finite. Following the proof of [Qui73, §7,
Theorem 5.11], we define C := Y ×

A
d−1
R

X , i.e., we define C via the pullback diagram given below.

C

Y

X

Ad−1
R

πc

q

π|Y

s
i

(3.11.1)

The section s, which is induced by i, is a closed immersion as c is affine. However, by definition, q is
only quasi-finite, and not finite. This is the price we pay in mixed characteristic, as opposed to Quillen’s
presentation lemma [Qui73, §7, Lemma 5.12], where π|Y can even be arranged to be finite. To deal with
this shortcoming, for the rest of the proof we follow [GL87, §2, proof of Theorem]. Thanks to [SGA 1,
corollaire 4.17], the section s of the smooth morphism c is a regular immersion. Consequently, at the cost of
shrinking X , we may assume that the ideal of vanishing of s(Y ) ⊂ C is principal, say with a generator g. By
Zariski’s Main Theorem [Sta22, Tag 00QB], there exists an open immersion u : C →֒ C̄ with an extension of
q, i.e., a finite morphism q̄ : C̄ → X . We define s̄ := u ◦ s. The diagram is depicted below.

CY X

C̄

q

q̄

c

i

s̄

s

u

(3.11.2)

We observe that s̄ is a monomorphism that is also proper. Indeed, as s̄ is a morphism from a proper X-scheme
to a separated X-scheme, it is proper. Thus, it follows that s̄ is a closed immersion ([Sta22, Tag 04XV]). We
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need to show that F (−) applied to i∗ : Coh(Y ) → Coh(X) is the zero functor. Thanks to the fact that both
s̄ (since it’s a closed immersion) and q̄ are finite, it follows that each gives rise to a pushforward morphism
between categories of coherent modules. Consequently, the equality i = q̄ ◦ s̄ induces an isomorphism of
functors i∗ ∼= q̄∗ ◦ s̄∗. Therefore, it is enough to show that F (s̄∗) ∼= 0. On the other hand, the equality
c ◦ s = idY furnishes the isomorphism s∗ ◦ c∗ ∼= idCoh(Y ). As a consequence, it suffices to show that F (−)
applied to s̄∗ ◦ s∗ : Coh(C) → Coh(C̄) is the zero functor. Let Z := (C̄ \ C) be endowed with any closed
subscheme structure. Admitting the fact that the ideal I of vanishing of Z ⊂ C̄ is finitely generated (we
prove this below in Claim 1), by localisation (Definition 3.8(ii)), we have an exact triangle

F (Z) F (C̄) F (C).

Therefore, it suffices to show that F (−) applied to F := s̄∗ ◦ s∗ ◦ u∗ is the zero functor. We can further
assume that the ideal I of vanishing of s̄(Y ) ⊂ C̄ is principal (we also prove this below in Claim 1), say with
generator g̃. Since g̃ ∈ R := OC̄(C̄) is a nonzerodivisor, it induces an isomorphism R ∼= I of R-modules.

Assuming C̄ is coherent (we prove this in Claim 2), it follows that the exact sequence 0 → I → R →
A/(f) → 0 induces a short exact sequence of functors Coh(C̄) → Coh(C̄) given by

0 idCoh(C̄) idCoh(C̄) F 0,
g̃

where we have invoked the isomorphism R ∼= I to write the left morphism. Finally, thanks to the additivity
(Definition 3.8(iii)) of F (−), the above displayed exact sequence demonstrates that F (F ) ∼= 0, as required.
Thus, we are done modulo the claims made above, which we prove below.

Let us introduce some notations for convenience before proving the first claim. Specialising each xi

to a closed point in X , we may, without loss of generality, assume that each xi is a closed point. Let
S := {x1, . . . , xn}, let T := q−1(S) and let T̄ := q̄−1(S). Since C ⊂ C̄, by definition, we have that T ⊂ T̄ .
On the other hand, as q̄ is finite, we conclude that T̄ is a finite set.

Claim 1: Without loss of generality, we may assume that both I and I are principal.
Proof: Firstly, we establish that I can be assumed to be principal. We semilocalise C̄ at T̄ (resp., C at

T ) to obtain RT̄ (resp., RT ). Notably, Spec(RT ) ⊆ Spec(RT̄ ) is an open subscheme. By prime avoidance
[Sta22, Tag 00DS], we select an element z ∈ I RT̄ such that z does not vanish at yi, for each yi ∈ T .
Consequently, according to the definition, we have

V (z) = Z ∩ Spec(RT̄ ).

Hence, by replacing I RT̄ with zRT̄ , we may assume that I RT̄ is principal. To show that I itself may be
assumed to be principal, it is enough to spread out z to a element of R. By spreading out, there exist an
open neighbourhood U ⊆ C̄ of T̄ and an element

z̃ ∈ OC̄(U) such that V (z̃) = Z ∩ U .

We define W := q(C \ U). We observe that W ⊆ X is a closed subset since q is finite, and thus, a closed
morphism. Then, we select a nonempty, affine open subset X ′ ⊆ (X \ W ). Finally, we replace diagram
(3.11.2) with its base change along X ′ →֒ X (and by abuse of notation, refer to the objects with their
respective names) to obtain an element z̃ ∈ R whose vanishing locus is Z, as required. This completes the
proof.

It remains to show that I can be assumed to be principal. Let T1 := s̄(Y ) ∩ T̄ . In similar vein as the
above, prime avoidance [Sta22, Tag 00DS] furnishes an element t ∈ IRT̄ such that t does not vanish at yi,
for each yi ∈ (T̄ \ T1). In consequence, by definition, we have

V (t) = Y ∩ Spec(RT̄ ).

Therefore, by substituting IRT̄ with tRT̄ , we may assume that IRT̄ is principal. A spreading out argument
similar to above yields a nonempty, affine open subset X ′ ⊆ X . Upon base changing diagram (3.11.2) along
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X ′ →֒ X (and by abuse of notation, referring to the objects with their respective names), we obtain an
element t̃ ∈ R whose vanishing locus is s̄(Y ), as required. Thus, the claim is proven.

We prove the second claim below.
Claim 2: The scheme C̄ is coherent.
Proof: It is enough to show that C̄ is R-finitely presented. By [RG71, Première partie, théorème 3.4.6],

it suffices to verify that it is R-flat. Since R is a valuation ring, it is equivalent to verify that C̄ is R-torsion
free. However, by the finer version of Zariski’s Main Theorem [Sta22, Tag 00QB], we know that R ⊆ OC(C),
where the larger ring is R-torsion free because C is R-flat. Thus, the claim is proven.

We are finally ready to establish the promised Gersten’s injectivity in the case of K-theory (Theorem 1.2).
By applying Theorem 3.10 and employing standard reductions, the proof of the corollary below reduces to
[KM21, Theorem 3.1].

Corollary 3.12. Let R be a semilocal Prüfer domain and let A be an integral domain that is the semilo-
calisation of a smooth R-algebra at finitely many primes. If R contains a field, then the pullback morphism
induces an injection Ki(A) →֒ Ki(Frac(A)), for all i.

Proof. Similar to the beginning of the proof of Theorem 3.10, by a limit argument, we may, without loss of
generality, assume that R is of finite Krull dimension. Let F := Frac(R) and let AF := A ⊗R F . Thanks
to [Qui73, §7, Theorem 5.11], the restriction map induces an injection Ki(AF ) →֒ Ki(Frac(A)), for each i.
Consequently, it suffices to show that the restriction map induces an injection Ki(A) →֒ Ki(AF ), for each i.

As a first case, we suppose that the claim is true when R is a valuation ring. With this assumption, we
shall show that the claim is true in general. To do so, we induct on

d(R) :=
∑

m∈MaxSpec(R)

dim(Rm).

Let m ⊂ R be a maximal ideal and suppose that a ∈ R is an element such that V (a) = {m} (such an a
exists thanks to prime avoidance [Sta22, Tag 00DS]). Therefore, by definition, Spec(R) \ {m} = Spec(R[ 1a ]).
Proceeding inductively, it suffices to show that Ki(A) →֒ Ki(A[

1
a ]), for each i. Thanks to localisation

[AMM22, Proposition 2.5], we obtain a morphism of exact triangles

G(A/(aA)) K(A) K(A[ 1a ])

G(Am/(aAm)) K(Am) K(Am[
1
a ]).

However, the canonical morphism induces an isomorphism A/(aA) ∼= Am/(aAm), demonstrating that the
right square is Cartesian. As Rm is a valuation ring, by our assumption, the lower left horizontal morphism is
zero. Consequently, it follows that the upper left horizontal morphism is also zero, establishing the required
injection. Thus, in this case, the proof is complete.

As a consequence, it remains to establish the claim when R is a valuation ring. Let P ⊂ Spec(A) be the
subset of primes that correspond to the generic points of the R-special fibre of Spec(A). By Theorem 3.10,
we have Ki(A) →֒ Ki(AP ), for each i. Since Frac(AP ) = Frac(A), without loss of generality, we can assume
that A = AP . Moreover, under this assumption, thanks to Lemma 2.13(1), the ring A is a Prüfer domain.
Using an induction argument similar to the one above, we reduce the problem to showing the claim when A
is a valuation ring. In this case, the required injectivity is the content of [KM21, Theorem 3.1].

Remark 3.13. In effect, the proof of Corollary 3.12 demonstrates that if Gersten’s injectivity holds for all
valuation rings, it extends to all smooth algebras over valuation rings. However, the mixed-characteristic
counterpart of [KM21, Theorem 3.1] remains largely unexplored. Nevertheless, there are some preliminary
results in the case of perfectoid valuation rings (see [AMM22, Theorem 1.2]).
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4 Toral Case of Gersten’s Injectivity

In this section, unless otherwise stated, all the cohomology groups that appear are étale. Let X be a ‘non-
singular’ scheme and let j : U →֒ X be an open subscheme whose complement is of depth ≥ 2. Consider an
isotrivial X-torus T . The primary objective of this section is to establish Theorem 4.6. Our key technical tool
is a version of purity of torsors under tori (see (4.3.3)), which essentially provides a necessary and sufficient
condition for a T -torsor on U to extend globally over X . We prove this purity via an application of a weak
version of Auslander–Buchsbaum formula (4.3.1), which demonstrates that j∗ preserves reflexive sheaves.

To start, we recall the notion of reflexive sheaves.

4.1. Reflexive sheaves. Let X be a scheme. The dual F∨ of an OX -module F is defined to be the
OX -module HomOX

(F ,OX). A coherent OX -module F is called reflexive if for every x ∈ X , there is a
neighbourhood x ∈ U ⊂ X such that the canonical morphism

βF |U : F |U F |∨∨
U is an isomorphism.∼

Given a coherent OX -module F and a presentation

O⊕m
X O⊕n

X F 0, (4.1.1)

we can dualise to obtain a short exact sequence

0 F∨ O⊕n
X O⊕m

X . (4.1.2)

Therefore, by [Sta22, Tag 01BY], if X is a locally coherent scheme, then for a coherent sheaf (in particular,
reflexive) F , the dual F∨ is coherent.

In preparation for Proposition 4.3, we prove the following lemma, drawing inspiration from [GR18, Propo-
sition 11.3.8] and [CS79, Lemma 2.1].

Lemma 4.2. For a locally coherent scheme X, a quasi-compact open j : U →֒ X such that at each point
z ∈ Z := X \ U , we have5 depth(OX,z) ≥ 2, and a reflexive OX-module F , the restriction induces an
isomorphism

F j∗j
∗F .∼ (4.2.1)

Moreover, if X is reduced, for a reflexive OU -module G ,

the pushforward j∗G is a reflexive OX -module. (4.2.2)

Proof. (4.2.1) : Thanks to [ČS21, Lemma 7.2.7(b)], the restriction induces an isomorphism

OX j∗OU .
∼ (4.2.3)

We shall reduce to the special case F = OX . Since it is enough to show (4.2.1) locally, given a reflexive
OX -module F , we may assume that there is a presentation (4.1.1) of F∨, which can be dualised to obtain
a short exact sequence like (4.1.2). Since j∗ is left exact, this gives us a commutative diagram

0 F O⊕n
X O⊕m

X

0 j∗j
∗F O⊕n

X O⊕m
X ,

∼(4.2.3) (4.2.3)∼

from which we are reduced to the case when F = OX , and we are done.

5A module M over a local ring (A,m) has depthA(M) ≥ d, if there is an M -regular sequence x1, . . . , xd ∈ m; the depth of A is
depth

A
(A) (see [EGA IV1, Chapitre 0, Définition 15.1.7 and §15.2.2)]). There is no condition on the quotients being nonzero.
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(4.2.2) : In view of (4.2.1), it is enough to show that there exists a reflexive OX -module F such that
F |U= G . By [Sta22, Tag 0G41], there is a finitely presented OX -module F ′ such that F ′ |U= G . Thanks to
[Sta22, Tag 01BZ], keeping in mind that X is locally coherent, the OX -module F ′ is automatically coherent.
Taking F = F ′∨∨, we note that F |U= F ′∨∨ |U= G ∨∨ = G (using the fact that G is reflexive). It remains
to check that F is reflexive, for which we follow the proof of [Sta22, Tag 0AY4]. Since the result is local, it
can be assumed that X = SpecA is affine. Choosing a presentation

A⊕m → A⊕n → Γ(SpecA,F ′) → 0,

and dualising it, in order to conclude, it is sufficient to show the following claim.
Claim: Given an exact sequence

0 → M → M ′ → M ′′

of finitely presented A-modules, the module M is reflexive if M ′ and M ′′ are reflexive.
Proof: We suppose that M ′ and M ′′ are reflexive. Proceeding as in the proof of [Sta22, Tag 0EB8], we

shall show that M is reflexive. Double dualising the displayed short exact sequence in the claim and writing
down canonical morphisms, we get the following morphism of complexes

M M ′ M ′′

HomA(HomA(M,A), A) HomA(HomA(M
′, A), A) HomA(HomA(M

′′, A), A).α

By the assumption, the middle and the right vertical arrows are isomorphisms. We need to show that the
left vertical arrow is an isomorphism. It suffices to show that α is injective. We consider module Q defined
by the exact sequence HomA(M

′, A) → HomA(M,A) → Q → 0. Letting K be the total ring of fractions of A
(see [Sta22, Tag 00EW]), by the finite presentation property [Sta22, Tag 0583], tensoring the exact sequence
with K, we obtain the exact sequence

HomK(M ′ ⊗A K,K) → HomK(M ⊗A K,K) → Q⊗A K → 0.

However, since K is a product of fields, the injection M⊗AK →֒ M ′⊗AK is split, consequently, Q⊗AK = 0,
implying that Q is a torsion A-module. In that case, HomA(Q,A) = 0, ensuring that α is injective.

Given a flat (resp., smooth) group scheme G over a scheme S and an S-scheme S′, we let BG(S′) denote
the category of fppf locally (resp., étale locally) trivial G-torsors on S′. Likewise, let BG be the presheaf on
the category of S-schemes defined by S′ 7→ BG(S′) (see [Sta22, Tag 0048]).

We are now ready to prove our version of the Auslander–Buchsbaum formula (4.3.1). As a consequence,
we derive a categorical variant of the purity of torsors under tori (4.3.3).

Proposition 4.3. Let R be a Prüfer domain, let X be a smooth, integral R-scheme and let j : U →֒ X
be a quasi-compact open such that at each point x ∈ Z := X \ U with f(x) = y, we have dim(OXy ,x) +
min(1, dim(Ry)) ≥ 2. Then, for a locally free OU -module L of rank 1,

the pushforward j∗L is a locally free OX-module of rank 1, (4.3.1)

in particular, for any étale X-scheme X ′, the restriction induces an equivalence of categories

BGm(X ′) BGm(X ′ ×X U).∼ (4.3.2)

More generally, for an X-torus T and for any étale X-scheme X ′, the restriction induces an equivalence of
categories

BT (X ′) BT (X ′ ×X U),∼ (4.3.3)

in particular,

Hq(X ′, T ) ∼= Hq(X ′ ×X U, T ), for q ≤ 1. (4.3.4)
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Remark 4.4. The seemingly unusual inequality dim(OXy,x) +min(1, dim(Ry)) ≥ 2 serves a specific purpose:
ensuring that depth(OX,x) ≥ 2 at each point x ∈ Z. Relatedly, Prüfer domains are far from being Cohen–
Macaulay. In effect, as previously noted in §2, by prime avoidance [Sta22, Tag 00DS], for any valuation ring
V of finite Krull dimension, there exists an element a ∈ V so that V (a) = {m}, where m ⊂ V is the maximal
ideal.

Proof of Proposition 4.3. We show that depth(OX,z) ≥ 2, at any point z ∈ Z. Let f : X → SpecR.
Thanks to [EGA IV3, Théorème 11.3.8] (specifically, (c) =⇒ (a)), it suffices to argue that depth(OXf(z),z) +
min(1, dim(Rf(z))) ≥ 2. It follows from the hypothesis and the equality depth(OXf(z),z) = dim(OXf(z),z),
which is true because f is smooth.

We show the key claim, i.e., (4.3.1), below. The claim (4.3.2) is a consequence of (4.2.1) and (4.3.1).
Since the torus T trivialises étale locally on X , the claims (4.3.3) and (4.3.4) reduce to (4.3.2) by an étale
descent argument.

(4.3.1) : We follow the proof of [GR18, Proposition 11.4.1(iv)]. A complex of sheaves on X of abelian
groups that is concentrated in cohomological degree 0 with the 0-th term A shall be denoted by A [0].
Thanks to (4.2.2), the pushforward M := j∗L is a reflexive OX -module, and also, torsion-free and hence,
flat over R. Assuming that M [0] is a perfect OX -complex, the result follows. Indeed, letting det(M [0]) be
the determinant line bundle of M [0] (see [KM76, Theorem 1]), there is a sequence of isomorphisms

M j∗L j∗ det(L [0]) j∗j
∗(det(M [0])) det(M [0]),∼ ∼ ∼

∼

(4.2.1)

from which the result follows. We verify that M [0] is a perfect OX -complex. It suffices to assume that
X = SpecA is affine and to show that M [0] is quasi-isomorphic to a bounded complex of finite free A-
modules ([Sta22, Tag 0BCJ]). Let M := Γ(A,M ). By [Sta22, Tag 0G9A], it suffices to show that

ExtqA(M,N) = 0 for any finitely presented A-module N and any q ≫ 0 (4.4.1)

(the complex M [0] is pseudo-coherent because M is a coherent A-module). Using the finitely presented prop-
erty of the variableN in (4.4.1), it is enough to show that there exists an integer n such that proj.dimAp

(Mp) ≤
n for any prime p ⊂ A (see [Wei94, Lemma 3.3.8]). This follows from [GR18, Proposition 11.4.1(ii)] (or
[Guo22, Lemma 7.2(i)]), which shows that taking n = dimR(A) suffices. Hence, we are done.

(4.3.2) : Let j′ : U ′ := X ′ ×X U →֒ X be the inclusion. Since dimX(X ′) = 0, we obtain that (X ′, U ′)
satisfies the hypothesis of Proposition 4.3. We shall show that the pushforward j′∗ : BGm(U ′) → BGm(X ′),
which is well defined as a consequence of (4.3.1), is an inverse to the pullback j′∗ : BGm(X ′) → BGm(U ′).
Since the equality j′∗j′∗ = id follows from the definition, it suffices to show that for a line bundle L ∈
BGm(X ′), the restriction induces an isomorphism L

∼
−→ j′∗j

′∗L . However, this results from (4.2.1).

(4.3.3) : Let U ′ := X ′×XU . Thanks to [Sta22, Tag 04UK], BTX′ satisfies étale descent, consequently, the
same holds for the presheaf j∗BTU ′ . By [SGA 3II, Exposé X, Corollaire 4.5], there exists an étale surjection
X̃ → X ′ that splits T . In view of the étale descent property of BTX′ and j∗BTU ′ , it suffices to show that for
any étale X̃-scheme X ′′, the restriction induces an equivalence of categories BTX̃(X ′′)

∼
−→ BTX̃(X ′′ ×X′ U ′),

which is the content of (4.3.2).

(4.3.4) This follows from (4.3.3). Indeed, H0(X ′, T ) (resp., H0(U ′, T )) is the automorphism group of the
trivial torsor in BT (X ′) (resp., in BT (U ′)) and H1(X ′, T ) (resp., H1(U ′, T )) is the group of isomorphism
classes of objects in BT (X ′) (resp., in BT (U ′)).

With Proposition 4.3 proven, to state our main theorem, we now need to recall the notion of flasque tori.

4.5. Flasque Torus and Flasque Resolution. We recall some definitions from [CS87, §0.5]. Let G be a
finite group. A finitely generated, free Z-module P with a linear action of G is called a permutation module
if P admits a G-stable Z-basis. A finitely generated, free Z-module F with a linear action of G is called
flasque if

Ext1
Z[G](F ,P) = 0 or, equivalently, H1(G,HomZ(F ,P)) = 0,
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for any permutation Z[G]-module P . For example, the trivial Z[G]-module Z is a permutation module, and
as a consequence, for a flasque Z[G]-module F , we have Ext1Z[G](F ,Z) = 0.

Let X be a scheme. An X-torus T is called isotrivial if it is split by a finite étale surjection X̃ → X .
The character group of an X-torus T is the sheaf of abelian groups T∨ := HomX-gps(T,Gm,X). An isotrivial
X-torus T is called quasi-trivial (resp., flasque) if for any connected component Z ⊂ X , there exists a
connected, Galois, finite étale cover Z̃ → Z that splits T such that the induced Z[Gal(Z̃/Z)]-module T∨(Z̃)
is a permutation module (resp., is flasque) (see [CS87, Definition 1.2]). In fact, by op. cit. Lemma 1.1, any
connected, Galois, finite étale cover Z̃ → Z that splits T can be chosen in the previous definition, and the
choice of the closed subscheme structure on Z ⊂ X is irrelevant. As we might expect, the notions of flasque
and quasi-trivial tori are preserved under base change (cf., op. cit. Proposition 1.3). For a connected scheme
X , any quasi-trivial torus Q can be written as a finite product of Weil restrictions ResXi/X(Gm,Xi

), for finite
étale covers Xi → X (see [Čes22Surv, Lemma A.2.6]).

Thanks to [CS87, Proposition 1.3], given an isotrivial torus T on a scheme X whose connected components
are open (for example, a scheme which has finitely many connected components, like the spectrum of a
semilocal ring), there exists two different flasque resolutions of T , namely exact sequences

1 → F → Q → T → 1, where F is a flasque and Q is a quasi-trivial X-torus, and (4.5.1)

1 → T → F ′ → Q′ → 1, where F ′ is a flasque and Q′ is a quasi-trivial X-torus. (4.5.2)

We are now prepared to prove our main theorem. Before stating the theorem, let us outline the steps of
its proof. To show Gersten’s injectivity for a flasque A-torus F , standard reductions show that it is enough
to establish vanishing

H2
{z}(Az, F ) = 0 (4.5.3)

of the local cohomology at a point z ∈ Spec(A). If z is of codimension 1 or if it is the generic point of an
R-fibre of Spec(A), Lemma 2.13 shows that Az is a valuation ring. Therefore, in this case, (4.5.3) follows
from the results in [Guo22, §2]. Otherwise, our analysis shows that it follows from Proposition 4.3.

Theorem 4.6. Given a semilocal Prüfer domain R, an integral domain A that is R-essentially smooth, a
quasi-compact open U →֒ SpecA, and a flasque A-torus F ,

(i) the morphism H1(A,F ) → H1(U, F ) is surjective, and

(ii) the morphism H2(A,F ) → H2(U, F ) is injective.

Proof. We reduce to showing (i) and (ii) for integral domains that are R-smooth. Let A be an R-smooth,
integral domain such that A is a semilocalisation of A. Assuming that Theorem 4.6 holds for integral domains
of the form A[ 1f ], for some f ∈ A, a limit argument and the facts that étale cohomology commutes with
filtered colimits of rings (see [Sta22, Tag 09YQ]) and that colimits commute with cokernels will then show
that (i) is true for A. In a similar vein, we reduce to showing (ii) for rings of the form A[ 1f ], for some f ∈ A.
Thus, without loss of generality, we assume that A is R-smooth.

Again, thanks to Lemma 2.5(b), by a limit argument (see [Sta22, Tag 09YQ]), we may assume that R
has finite Krull dimension. Letting Z := SpecA \ U , an analysis of the long exact sequence of cohomology
with supports

· · · H1(A,F ) H1(U, F )

H2
Z(A,F ) H2(A,F ) H2(U, F ) · · ·

indicates that it suffices to establish that H2
Z(A,F ) = 0. On the other hand, since the R-fibres of Spec(A) are

Noetherian, the topological space Spec(A) itself is Noetherian. Therefore, thanks to the coniveau spectral
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sequence associated to the filtration by supports inside closed subschemes [ILO14, Exposé XVIII-A, §2.2.1]
(see also [Gro68b, Section 10.1])

Ep,q
1 :

⊕

z∈Z with dimAz=p

Hp+q
{z} (Az , F ) ⇒ Hp+q

Z (A,F ), (4.6.1)

we are reduced to establishing that

Hq
{z}(Az , F ) = 0, for each z ∈ Z and for all q ≤ 2. (4.6.2)

We first examine the following two cases, which readily follow from results in the literature.

◦ If z is a generic point of an R-fibre, then Lemma 2.13 shows that Az is a valuation ring. Indeed, letting
x be the image of z along SpecA → SpecR, the image of z in SpecAx is a generic point of the special
fibre over the valuation ring Rx. In this case, to prove (4.6.2), we again write a long exact sequence
of cohomology with supports. Ultimately, it follows from [Guo22, Lemma 2.3, Proposition 2.4 and
Corollary 2.5].

◦ If z is a point of codimension 1 in the generic fibre, then Az is an equicharacteristic discrete valuation
ring. In a similar vein as above, vanishing (4.6.2) follows.

Consequently, without loss of generality, we may assume that z is neither a generic point of an R-fibre of
Spec(A) nor it is a point of codimension 1 in the R-generic fibre. This assumption is important for our
eventual application of Proposition 4.3. Thanks to the local-to-global spectral sequence ([SGA 4II, Exposé
V, Proposition 6.5])

Ep,q
2 : Hp(Az ,H

q
{z}(Az , F )) ⇒ Hp+q

{z} (Az , F ),

it is enough to demonstrate that H
q
{z}(Az , F ) = 0, for all q ≤ 2. Letting Az be the strict Henselisation of Az

and by taking stalks, it is equivalent to show that Hq
{z}(Az , F ) = 0, for all q ≤ 2. An inspection of the long

exact sequence of cohomology with supports

0 H0
{z}(Az , F ) H0(Az , F ) H0(SpecAz \ {z}, F )

H1
{z}(Az , F ) H1(Az , F ) H1(SpecAz \ {z}, F )

H2
{z}(Az , F ) H2(Az , F ) · · ·

and the vanishing of the positive degrees of étale cohomology of strictly Henselian rings [Sta22, Tag 03QO]
proves that

H2
{z}(Az , F ) ∼= H1(SpecAz \ {z}, F ). (4.6.3)

In conclusion, it is left to show that Hq(SpecAz, F ) ∼= Hq(SpecAz \ {z}, F ), for q = 0 and q = 1. Since étale
cohomology commutes with cofiltered limits of schemes, by the definition of strict Henselisation, it remains to
apply Proposition 4.3 to X = SpecA,Z = {z} and T = F (since the topological space SpecA is Noetherian,
any open subset of SpecA is quasi-compact).

Finally, we are ready to establish Gersten’s injectivity in the case of H1(−, T ) as well as H2(−, T ), for a
torus T over a smooth algebra over a semilocal Prüfer domain. In other words, we prove a generalisation of
Theorem 1.3 below. By employing flasque resolutions of isotrivial tori, we derive this result as a consequence
of Theorem 4.6.

Corollary 4.7. For a semilocal Prüfer domain R, a semilocal, integral domain A that is R-essentially smooth
and an A-torus T ,
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(i) the morphism H1(A, T ) →֒ H1(K,T ) is injective, and

(ii) the morphism H2(A, T ) →֒ H2(K,T ) is injective.

Proof. (i) : Letting 1 → F → Q → T → 1 be a flasque resolution (4.5.1), we get the following morphism of
long exact sequences

· · · H1(A,Q) H1(A, T ) H2(A,F ) · · ·

· · · H1(K,Q) H1(K,T ) H2(K,F ) · · · .

θT
1 θF

2
(4.7.1)

Since Q is quasi-trivial, there are connected finite étale covers A → Ai such that Q ∼=
∏

ResAi/A(Gm). By
the fact that higher direct images vanish along finite morphisms [Sta22, Tag 03QP], the cohomology rewrites
itself as H1(A,Q) ∼=

∏
H1(Ai,Gm), and since all the rings Ai are semilocal (since an étale morphism is quasi-

finite), the cohomology vanishes thanks to the Hilbert theorem 90 [Mil80, Chapter III, Section 4, Proposition
4.9]. By a similar argument, the cohomology H1(K,Q) vanishes, and in view of (4.7.1), to prove (i), it is
enough to show that θF2 is injective. By using the fact that the étale cohomology commutes with filtered
colimits of rings, this is a consequence of Theorem 4.6.

(ii) : This time, letting 1 → T → F ′ → Q′ → 1 be a different flasque resolution (4.5.2), we get the
following morphism of long exact sequences

· · · H1(A,Q′) H2(A, T ) H2(A,F ′) · · ·

· · · H1(K,Q′) H1(K,T ) H1(K,F ′) · · · .

θT
2 θF ′

2

In a similar vein as above, since Q′ is quasi-trivial, it follows that H1(A,Q′) = H1(K,Q′) = 0. Consequently,
a similar argument as above shows that θF

′

2 is injective. Therefore, θT2 is injective, and we are done.

Remarkably, for a flasque torus F , the A1-invariance of H1(−, F ) follows as a direct consequence of
Corollary 4.7. This is encapsulated in the corollary below. This conclusion readily follows from the Noetherian
case studied in [CS87, Lemma 2.4].

Corollary 4.8. For a semilocal Prüfer domain R, a semilocal, integral domain A that is R-essentially
smooth, a flasque A-torus and a nonempty, quasi-compact open U ⊂ An

A, the composite morphism

H1(A,F ) → H1(An
A, F ) → H1(U, F ) is surjective.

Proof. Thanks to (i), the second morphism is surjective. Consequently, it reduces us to proving the surjec-
tivity of the first morphism. In fact, we shall show that

H1(A,F )
∼
−→ H1(An

A, F ).

Assuming that A is normal, by a limit argument, it is enough to show the displayed isomorphism for Noethe-
rian, normal domains, which is the content of loc. cit. Therefore, it remains to show that A is normal. This
follows from [Sta22, Tag 00GY, Tag 030A] and [SGA 1, Exposé I, théorème 9.5(i)] (cf. [Mil80, Chapter I,
Proposition 3.17(b)]).
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