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BIGRADED PATH HOMOLOGY AND THE MAGNITUDE-PATH

SPECTRAL SEQUENCE

RICHARD HEPWORTH AND EMILY ROFF

Abstract. Two important invariants of directed graphs, namely magnitude homology
and path homology, have recently been shown to be intimately connected: there is a
magnitude-path spectral sequence or MPSS in which magnitude homology appears as
the first page, and in which path homology appears as an axis of the second page.
In this paper we study the homological and computational properties of the spectral
sequence, and in particular of the full second page, which we now call bigraded path
homology. We demonstrate that every page of the MPSS deserves to be regarded as
a homology theory in its own right, satisfying excision and Künneth theorems (along
with a homotopy invariance property already established by Asao), and that magnitude
homology and bigraded path homology also satisfy Mayer–Vietoris theorems. We
construct a homotopy theory of graphs (in the form of a cofibration category structure)
in which weak equivalences are the maps inducing isomorphisms on bigraded path
homology, strictly refining an existing structure based on ordinary path homology.
And we provide complete computations of the MPSS for two important families of
graphs—the directed and bi-directed cycles—which demonstrate the power of both the
MPSS, and bigraded path homology in particular, to distinguish graphs that ordinary
path homology cannot.
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1. Introduction

There is, by now, an abundance of homological invariants of directed graphs, includ-
ing path homology [24, 22], magnitude homology [28] and reachability homology [27]. In
the context of undirected graphs, even more invariants are applicable, including clique
homology [14, 40] and discrete cubical homology [5]. These theories have some notable
successes, such as work of Asao relating magnitude homology to curvature of metric
spaces [1]; work of Asao, Hiraoka and Kanazawa relating magnitude homology to girth
of graphs [1, 4]; work of Tajima and Yoshinaga developing a corresponding magnitude
homotopy type [45]; a version of discrete Morse theory relevant to path homology devel-
oped by Lin, Wang and Yau [38]; and path homology analogues of classical geometric
results developed by Kempton, Münch and Yau [33]. Many of these homology theories
possess formal properties analogous to the Eilenberg–Steenrod axioms, yet they tend
to disagree when evaluated on even simple classes of graphs. It is desirable, then, to
understand the relationships among them, where such relationships exist.

Asao has recently shown that two of these homology theories—namely magnitude ho-
mology and path homology—are indeed closely related, appearing on consecutive pages
in a certain spectral sequence [3]. We follow Di et al [15] in referring to that spectral
sequence as the magnitude-path spectral sequence or MPSS. Page 1 of the MPSS is ex-
actly magnitude homology, while page 2 contains path homology on its horizontal axis,
and the target of the spectral sequence is reachability homology [27]. The MPSS thus
encompasses three existing invariants of directed graphs and clarifies their relationships,
while adding infinitely many new ones. In particular, it extends path homology (the
horizontal axis of the second page) to a bigraded theory (the entire second page) that
we now call bigraded path homology.

The objective of this paper is to demonstrate the properties, strength and usefulness of
the MPSS, and of bigraded path homology in particular. Asao has shown that each page
of the MPSS has a homotopy-invariance property, whose strength increases as one turns
through the pages of the sequence [2]. Building on that observation, we demonstrate
that the spectral sequence as a whole possesses formal properties that justify calling
every page a homology theory for directed graphs—each one distinct, but systematically
related. Concerning the MPSS, our main results are as follows.

(A) Every page of the MPSS satisfies a Künneth theorem with respect to the box
product (Theorem 5.6).

(B) Every page of the MPSS satisfies an excision theorem with respect to a class of
subgraph inclusions first studied in [9] (Theorem 6.5).

We also provide a new and detailed proof of the fact (which appeared first in [15]) that
the spectral sequence preserves filtered colimits:

(C) Every page of the MPSS is a finitary functor on the category of directed graphs
(Proposition 7.4, proved in Appendix A).

In particular these three properties all hold for magnitude homology and bigraded path
homology. Additionally, magnitude homology and bigraded path homology each satisfy
a Mayer–Vietoris theorem (Theorems 6.6 and 6.8) that we are able to deduce from the
excision property using straightforward homological algebra.
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Figure 1. The directed cycle Zm and the bi-directed cycle Cm,n

The diversity of homological viewpoints on directed graphs has motivated a recent
drive towards consolidation using formal homotopy theory, and Section 7 of this paper
contributes to that development. In [9], Carranza et al prove that the category of
directed graphs carries a cofibration category structure for which the weak equivalences
are maps inducing isomorphisms on path homology. By specializing properties (A)–
(C) to bigraded path homology, we can prove that their structure admits a natural
refinement:

(D) The category of directed graphs carries a cofibration category structure in which
the cofibrations are those of [9] and the weak equivalences are maps inducing
isomorphisms on bigraded path homology (Theorem 7.2).

That this structure is indeed strictly finer than the one in [9] is demonstrated by complete
computations of bigraded path homology and the MPSS for two important families of
directed graphs. These are the directed cycles Zm for m ≥ 1, and the bi-directed cycles
Cm,n for m,n ≥ 1, depicted in Figure 1.

Path homology can only distinguish Z1 and Z2 (which it sees as ‘contractible’) from the
Zm for m ≥ 3 (which it sees as ‘circle-like’). Similarly, path homology cannot distinguish
any of the Cm,n from one another so long as max(m,n) ≥ 3. We find, however, that the
MPSS, and even bigraded path homology, can do much better:

(E) Bigraded path homology can distinguish all of the Zm for m ≥ 2 by inspecting
the bidegrees in which generators lie. Further, the MPSS of Zm characterises
m ≥ 1 as the first value of r for which the Er-page is trivial, i.e. concentrated in
bidegree (0, 0). (Theorem 8.2 and the subsequent paragraph.)

(F) The bigraded path homology of Cm,n depends only on the value ofm = max(m,n),
and for m ≥ 2 one can determine the value of m by inspecting the bidegrees in
which generators lie. Further, the MPSS of Cm,n characterises m ≥ 2 as the first
value of r for which the Er-page is trivial, i.e. concentrated in bidegree (0, 0).
(Proposition 9.2 and Theorem 9.3.)

We believe that the results (A)–(F) demonstrate clearly the theoretical and compu-
tational strength of the MPSS, and of bigraded path homology in particular. Indeed, it
appears that bigraded path homology shares many of the strengths and advantages of
path homology, whilst being a more sensitive and informative invariant. On a technical
front, our methods illustrate a useful principle: that properties of path homology are
frequently (though not always) ‘inherited’ from corresponding properties of magnitude
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homology—and that what holds true for either of these will often hold true throughout
the MPSS. Indeed, proofs of results about path homology that use the standard con-
struction of [24, 22] are often rather involved, and we believe that passage to the bigraded
theory and the MPSS can serve to clarify such proofs, rather than complicating them.

Moreover, it is our belief that the MPSS as a whole will eventually cast more light
on the homotopy theory of directed graphs. Elaborating on speculations made by Asao
in the introduction to [2], it is tempting to conjecture that the cofibration category we
describe may belong to a nested family of structures, one for each page of the sequence,
with r-homotopy (Definition 2.2) functioning as the relevant notion of homotopy for the
theory in which weak equivalences induce isomorphisms on the (r + 1)-page. Zooming
in a little, consider the excision result mentioned above, which shows that certain maps
of pairs obtained from cofibrations induce isomorphisms on the MPSS from the E1

page onwards. This is in contrast to the situation for homotopies, where r-homotopic
maps induce equal maps on the MPSS from only the (r + 1)-page onwards. We wonder
whether there may be a notion of r-cofibration, more general than the existing notion
of cofibration, which induces excision isomorphisms from the Er+1 page onwards; such
cofibrations might feature in a homotopy theory in which weak equivalences induce
isomorphisms on the (r + 1)-page. The development of this idea is left to future work.

Open questions. Magnitude homology, path homology and the MPSS are all relatively
new invariants, and as such there are many open questions and opportunities for further
research. Here, we highlight just a few that we anticipate will be fruitful:

• To what extent can entries of the MPSS be nonzero, and to what extent can this
be controlled? For example, given an arbitrary location Eri,j in the MPSS, can we

find a graph G for which Eri,j(G) 6= 0? And can the diameter of such G be chosen

to be r? (The answer to such questions will often be ‘no’, if only because the
MPSS is concentrated in a specific octant, but we anticipate further restrictions
still. Our computations for Zm, for instance, provide many examples, but still
only succeed in occupying bidegrees (a, b) for which a

2 |b if a is even, or a−1
2 |(b−1)

if a is odd.)
• To what extent can torsion appear in the MPSS, and to what extent can it
be controlled? For example, given a specific finitely-generated torsion abelian
group, and a specific location Eri,j in the MPSS, can we find a graph whose

MPSS features that torsion group in that location? (We do not know whether
this question has been investigated in full even for magnitude homology. Again,
the answer to this question will often be ‘no’, but the nature and extent of any
restrictions will themselves be of interest.)
• To what extent do the results and methods of this paper extend to the category
NMet of generalised metric spaces and short maps with distances in N ∪ {∞}?
(The usefulness of this category is made apparent in our Appendix A. We antic-
ipate that extending to this category will elucidate and facilitate any attacks on
‘realisation problems’ like the two above.)
• Kaneta and Yoshinaga gave, under certain conditions, a decomposition of mag-
nitude homology as a direct sum indexed by certain frames [32, Theorem 3.12].
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To what extent does this decomposition extend to the MPSS? In particular, how
does it interact with the differentials d1 of the MPSS?
• Is there a Mayer–Vietoris theorem applying to pages Er for r ≥ 3? (We prove
Mayer–Vietoris theorems for E1 and E2, which take the form of a short and
long exact sequence respectively, the latter obtained from the former by passing
to homology with respect to the d1 differential. However, applying homology
in a long exact sequence does not produce a long exact sequence, but rather a
spectral sequence converging to 0. A significant sub-question, then, is to identify
the relevant algebraic structures, generalising short and long exact sequences,
that will relate the Er-pages.)
• Are there versions of magnitude corresponding to the later pages of the MPSS
of a graph G that can be described directly from the graph, without reference to
homological algebra? (The notion of magnitude of a finite graph preceded the
introduction of magnitude homology, and has a simple and direct definition [36].)

Acknowledgements. We thank Yasuhiko Asao, Sergei O. Ivanov, Maru Sarazola and
Masahiko Yoshinaga for interesting and helpful conversations, and Jon Pridham for
pointing out the second example in Remark A.10. This work was partially supported by
JSPS Postdoctoral Fellowships for Research in Japan.

2. The magnitude-path spectral sequence

We begin by fixing terminology and notation concerning the categories of directed
graphs and metric spaces, before proceeding to describe the magnitude-path spectral
sequence. We will assume familiarity with spectral sequences in general, but for the
reader who is new to the subject, we recommend Sections 5.1 and 5.2 of [47], and
Section 2.1 of [39].

2.1. The category of directed graphs. This paper is concerned with directed graphs,
which are permitted to contain loops but not parallel edges. Thus, a directed graph G
consists of a set V (G) of vertices and a set E(G) ⊆ V (G) × V (G) of (directed) edges.
We depict an edge (x, y) by an arrow x → y. A (directed) path from a vertex x to a
vertex y in G is a sequence of consistently-oriented edges

x = x0 → x1 → · · · → xk = y.

(Note that we do not require the vertices in a path to be distinct.) A map of directed
graphs G → H is a function f : V (G) → V (H) such that for every edge x → y in G,
either f(x) = f(y) or there is an edge f(x) → f(y) in H (or both). The category of
directed graphs and maps of directed graphs is denoted by DiGraph.

We will also be interested in the category Met of (generalized) metric spaces and
short maps. A generalized metric space is a set X equipped with a function dX : X ×
X → [0,+∞] such that dX(x, x) = 0 for every x ∈ X and the triangle inequality is
satisfied. We will always call the function dX a metric, though it may not be separated
or symmetric. A short map is a function f : X → Y such that dY (f(x), f(x

′)) ≤ dX(x, x
′)

for every x, x′ ∈ X.
Every directed graph G carries a metric on its vertex set, in which d(x, y) is the

minimal number of edges in a directed path from x to y, or +∞ if no such path exists.
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This is called the shortest path metric on G. The operation of equipping a directed
graph with the shortest path metric extends to a functor

M : DiGraph →֒Met

which is full and faithful, making DiGraph into a full subcategory of Met.

2.2. Reachability chains and the length filtration. Throughout the paper we work
over a fixed commutative ground ring R. The reachability chain complex of a directed
graph G is the chain complex RC∗(G) of R-modules defined as follows. In degree k the
R-module RCk(G) has basis given by all tuples (x0, . . . , xk) of vertices of G in which
consecutive entries are distinct, and in which there is a directed path in G from each
entry to the next. The differential of RC∗(G) is given by

∂(x0, . . . , xk) =
k∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xk) (1)

where any term with repeated consecutive entries is omitted. Note that in the summand
(x0, . . . , x̂i, . . . , xk) a path between the adjacent terms xi−1 and xi+1 can be obtained by
concatenating a path from xi−1 to xi with one from xi to xi+1, these existing due to the
original assumption on (x0, . . . , xk). The reachability homology RH∗(G) of G is simply
the homology of RC∗(G), and was studied in detail in [27].

The length of a tuple (x0, . . . , xk) of vertices in G is defined, using the shortest path
metric, by

ℓ(x0, . . . , xk) = d(x0, x1) + · · · + d(xk−1, xk).

The triangle inequality guarantees that ℓ(x0, . . . , x̂i, . . . , xk) is at most ℓ(x0, . . . , xk).
This allows us to define a filtration

F0RC∗(G) ⊆ F1RC∗(G) ⊆ F2RC∗(G) ⊆ · · ·

of RC∗(G) by defining FℓRC∗(G) to be the subcomplex spanned by the generators of
length at most ℓ.

Remark 2.1. The reachability chains of a directed graph G can also be described as
the normalized simplicial chains of a certain simplicial set—a perspective that will be
useful in Section 4 and Appendix A. We follow [15, Section 1.2] in calling this simplicial
set the ‘(filtered) nerve’; it is defined as follows.

The nerve of G is the simplicial set N(G) whose set of k-simplices is

Nk(G) =

{
(x0, . . . , xk)

∣∣∣∣
x0 . . . xk ∈ V (G) and for 0 ≤ i < k there
exists a directed path from xi to xi+1 in G

}
.

(Observe that here we do not insist that adjacent terms be distinct.) For 0 ≤ i ≤ k the
face operator δi : Nk(G)→ Nk−1(G) discards the i

th vertex, and the degeneracy operator
σi : Nk(G)→ Nk+1(G) duplicates the i

th vertex. For each ℓ ∈ N, there is a sub-simplicial
set FℓN(G) of N(G) whose set of k-simplices comprises all tuples in Nk(G) of length at
most ℓ. These make N(G) into a filtered simplicial set called the filtered nerve of G.

Given a simplicial set A, we write N(A) or simply NA for the complex of normalized
simplicial chains on A; if A is filtered, we equip NA with the filtration defined by
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FℓNA = N(FℓA). The reachability complex of G is precisely the normalized complex of
simplicial chains in the nerve of G [27, Section 4]—

RC∗(G) = N(N(G))

—and with the filtration by length, this becomes an equality of filtered chain complexes.

To any filtered chain complex we can associate a spectral sequence that, roughly
speaking, allows us to understand the homology of the original complex in terms of the
homology of its filtration quotients. (For details, see Section 5.4 of [47], and Section 2.2
of [39].) In the case of the reachability chain complex with its length filtration, this
spectral sequence is called the magnitude-path spectral sequence, or MPSS for short, and
denoted by {Er∗,∗(G), d

r}r≥0. Since RC∗(−) and its filtration are functorial with respect
to maps of graphs, each group Eri,j(−) determines a functor from directed graphs to
R-modules. The MPSS was first mentioned, for undirected graphs, in the original paper
on magnitude homology [28, Remark 8.7], but it was Asao who first demonstrated its
importance in [3]. For more details on aspects of what follows, see [3] and Section 1
of [15].

2.3. The E0-page. The E0-page of the spectral sequence associated to a filtered chain
complex is given by the filtration quotients, and the differential d0 is induced from the
differential on the original complex. In the case of the MPSS, this recovers the magnitude
chains MC∗,∗(G) of a directed graph G [28]. This is the graded chain complex spanned
in bidegree k, ℓ by the generators of RC∗(G) that have degree k and length precisely ℓ,
and whose differential is given by (1), but with any terms of length less than ℓ omitted.
(Note in particular that the first and last terms of the sum are always omitted.) It is
easy to see that MC∗,ℓ(G) = FℓRC∗(G)/Fℓ−1RC∗(G), so that taking degree shifts into
account, we find that

E0
i,j(G) = FiRCi+j(G)/Fi−1RCi+j(G) = MCi+j,i(G)

with the magnitude chains differential.
Certain bounds on k and ℓ must be satisfied in order for magnitude chain groups

to be nonzero. It follows that the E0-page of the MPSS is concentrated in bidegrees
i, j for which i ≥ 0 and −i ≤ j ≤ 0; see Figure 2. If G has an upper bound on its
finite lengths, i.e. if there is K such that d(x, y) ≤ K or d(x, y) = ∞ for all vertices
x, y, then j is constrained to lie in the smaller range −K−1

K
· i ≤ j ≤ 0. And the terms

E0
i,−i = MC0,i(G) on the negative diagonal all vanish for i > 0. (See [28, Proposition 2.10]

and [37, Theorem 4.1].)
Observe that we are now working with two different kinds of bigrading, sometimes

on the same object. First, the bigrading of MCk,ℓ(G), which is well established in the
literature on magnitude homology, and which exactly picks out the homological degree
and length. Second, the bigrading of Eri,j(G), which has been established in the literature
on spectral sequences of this type since their classical times. Although it is awkward to
use two different bigradings, it seems that we are stuck with both. We will always use
notation to distinguish which bigrading system is at play, writing E1

i,j(G) on the one

hand and MCk,ℓ(G) on the other.
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E0
∗,∗(G) MC0,0(G) MC1,1(G)

MC0,1(G)

MC2,2(G)

MC1,2(G)

MC0,2(G)

MC3,3(G)

MC2,3(G)

MC1,3(G)

MC0,3(G)

. . .

· · ·

· · ·

· · ·

· · ·

0 1 2 3 4

0

−1

−2

−3

−4

d d

d

d

d

d

Figure 2. Page E0 of the MPSS is the magnitude chain complex.

2.4. The E1-page. The E1-page of the spectral sequence associated to a filtration is
precisely the homology of the associated filtration quotients. In the case of the MPSS,
this recovers the magnitude homology MH∗,∗(G) of the graph G, defined to be precisely
the homology of the magnitude chains, MHk,ℓ(G) = Hk(MC∗,ℓ(G)). Thus, taking the
degree shifts into account, we have

E1
i,j(G) = MHi+j,i(G),

which we depict as in Figure 3.

E1
∗,∗(G) MH0,0(G) MH1,1(G)

MH0,1(G)

MH2,2(G)

MH1,2(G)

MH0,2(G)

MH3,3(G)

MH2,3(G)

MH1,3(G)

MH0,3(G)

. . .

· · ·

· · ·

· · ·

· · ·

0 1 2 3 4

0

−1

−2

−3

−4

d1d1d1

d1d1

d1

Figure 3. Page E1 of the MPSS is magnitude homology.
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The differential d1 in the E1 term of the spectral sequence associated to a filtered chain
complex C∗ is given by applying the differential of C∗ to appropriate representatives [47,
5.4.6]. In the case of the MPSS, this amounts to the following.

• Take an element x ∈ MHi+j,i(G).
• Represent x by a cycle in MCi+j,i(G).
• Regard the cycle as an element of RCi+j(G). It is a combination of generators
of length i.
• Apply the differential of RCi+j(G) to obtain an element of RCi+j−1(G). This is
a combination of generators of length at most i− 1.
• Discard all generators of length i− 2 or less and regard the result as an element
of MCi+j−1,i−1(G). This element is a cycle.
• Then d1(x) is the associated homology class in MHi+j−1,i−1(G).

2.5. The E2-page and beyond. The E2-page of the MPSS does not admit so direct
a description as the preceding pages. Nevertheless, Asao showed that it contains an
important invariant, namely the path homology, as its horizontal axis:

E2
i,0(G) = PHi(G)

See [3, Theorem 1.2]. Though it is standard in some parts of the literature to denote
path homology simply by H∗, we write PH∗ to distinguish it more clearly from the other
homology theories at play.

Path homology has an important homotopy-invariance property [22, Theorem 3.3].
Asao showed that this extends to the rest of the E2-page and, with increasing strength,
to the subsequent pages, as we now explain.

Definition 2.2. Let f, g : G → H be maps of directed graphs, and let r ≥ 0. We say
there is an r-homotopy from f to g, and write f  r g, if every vertex x of G satisfies
d(f(x), g(x)) ≤ r. We say there is a long homotopy from f to g, and write f  ∞ g, if
every vertex x of G satisfies d(f(x), g(x)) <∞.

Thus, for example, there is a 1-homotopy from f to g if, for each x, either f(x) and
g(x) are equal or there is a directed edge from the former to the latter. In general, r-
homotopy (or long homotopy) is a condition on the pair of maps f and g which requires
the existence of certain paths in H, but does not demand us to make a particular choice
of such paths. The relation  r is not symmetric; nor, when r 6= 0,∞, is it transitive.
However, Asao proved the following, which we state explicitly here for future reference.

Proposition 2.3 (Asao [2, Theorem 1.3]). If there is an r-homotopy from f to g, then
the induced maps Es(f), Es(g) : Es∗,∗(G)→ Es∗,∗(H) are equal for s > r + 1.

In particular, this says that the entirety of the E2-term of the MPSS is invariant under
1-homotopy. (See also [3, Proposition 5.7] for this statement.) Meanwhile, reachability
homology is invariant under long homotopy:

Proposition 2.4 ([27, Theorem 4.6]). If there is a long homotopy from f to g, then the
induced maps RH∗(f),RH∗(g) : RH∗(G)→ RH∗(H) are equal.

The notion of r-homotopy and long homotopy give rise immediately to corresponding
notions of r-homotopy and long homotopy equivalence for pairs of directed graphs. In
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particular, one can define r-contractibility for any r ≥ 0. For this, note first that the
terminal object in the category DiGraph is the directed graph with a unique vertex;
we denote it by •. Its MPSS is trivial: for every r, the page Er(•) is concentrated in
bidegree (0, 0), where it is given by a single copy of the ground ring R.

Definition 2.5. Directed graphs G and H are said to be r-homotopy equivalent (re-
spectively, long homotopy equivalent) if there exist maps f : G ⇄ H : g such that g ◦ f
is related to the identity on G by a zig-zag of r-homotopies (resp. long homotopies) and
f ◦g is related to the identity on H by a zig-zag of r-homotopies (resp. long homotopies).
A directed graph G is said to be r-contractible if the terminal map G→ • is part of an
r-homotopy equivalence.

Corollary 2.6. If G and H are r-homotopy equivalent, then Es(G) ∼= Es(H) for all
s ≥ r + 1. �

For instance, if G has diameter r (meaning that r = supg,g′∈V (G) d(g, g
′)) then G is

r-contractible; it follows that its magnitude-path spectral sequence is trivial from page
Er+1 onwards. For recent progress in the study of r-homotopy equivalence for directed
graphs and metric spaces, we refer the reader to Ivanov [29].

2.6. The E∞-page. Let us now consider the E∞-page of the MPSS. The target of the
MPSS is the homology of the reachability chains from which it was constructed, i.e. the
reachability homology RH∗(G). In order to guarantee convergence, let us assume that
the graph G has an upper bound on its finite distances, i.e. that there is K such that
for each pair of vertices x, y either d(x, y) ≤ K or d(x, y) = ∞. Then the filtration of
RC∗(G) is bounded: in each degree n, FpRCn(G) vanishes for p ≤ n − 1, and coincides
with RCn(G) for p ≥ n ·K. (See page 123 of [47].) It follows that in each bidegree i, j
the terms Eri,j(G) are eventually independent of r, and that their common value E∞

i,j(G)

is isomorphic to the relevant filtration quotient of RH∗(G) in the filtration it inherits
from the length filtration:

E∞
i,j(G) = FiRHi+j(G)/Fi−1RHi+j(G).

Note that the above condition on G always holds for finite graphs. However, it seems
possible that other conditions on G may guarantee that the filtration is bounded, and
certainly other conditions besides boundedness can guarantee convergence of a spectral
sequence.

3. Bigraded path homology

We saw in the last section that the E2-page of the MPSS of a directed graph G contains
the path homology PH∗(G) as its horizontal axis, and that the entire page has the same
homotopy invariance property that PH∗(G) does, namely invariance under 1-homotopy.
This motivates the following definition.

Definition 3.1. Let G be a directed graph. The bigraded path homology of G, denoted
PH∗,∗(G), is defined by

PHk,ℓ(G) = E2
ℓ,k−ℓ(G) (2)

for all k, ℓ, so that we have
E2
i,j(G) = PHi+j,i(G)
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in precise analogy with the relationship between E1 and MH, and also

PHk,k(G) = PHk(G).

We may depict the former as in Figure 4. Just as the MPSS is functorial with respect
to maps of graphs, so the same holds for the bigraded path homology.

E2
∗,∗(G) PH0,0(G) PH1,1(G)

PH0,1(G)

PH2,2(G)

PH1,2(G)

PH0,2(G)

PH3,3(G)

PH2,3(G)

PH1,3(G)

PH0,3(G)

. . .

· · ·

· · ·

· · ·

· · ·

0 1 2 3 4

0

−1

−2

−3

−4

Figure 4. Page E2 of the MPSS is bigraded path homology.

We will see later in the paper that the bigraded path homology groups satisfy many
of the same formal properties as path homology, but that they contain strictly more
information.

Definition 3.2. Let X be a directed graph and let A be a subgraph of X. Then RC(A)
is a subcomplex of RC(X), and we define the relative reachability chains of the pair
(X,A) to be the quotient chain complex

RC(X,A) = RC(X)/RC(A).

We equip this with the filtration inherited from the filtration on RC(X), so that FℓRC(X,A)
is the image of FℓRC(X) in RC(X,A). This results in the relative magnitude path-spectral
sequence {Er(X,A), dr}r≥0 and associated magnitude chains, magnitude homology and
bigraded path homology groups of the pair, defined by

MCk,ℓ(X,A) = E0
ℓ,k−ℓ(X,A)

MHk,ℓ(X,A) = E1
ℓ,k−ℓ(X,A)

PHk,ℓ(X,A) = E2
ℓ,k−ℓ(X,A)

for all k, ℓ.

Recall that a subgraph A of X is said to be convex if for every pair of vertices a, a′ in
A we have dA(a, a

′) = dX(a, a
′) [36, Definition 4.2].
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Theorem 3.3 (Exact sequences of a pair). Let X be a graph and let A be a subgraph of
X. If A is convex in X, then there is a short exact sequence of magnitude chains:

0→ MC(A)→ MC(X)→ MC(X,A)→ 0 (3)

Consequently there is a long exact sequence of magnitude homology groups:

· · · → MH∗,∗(A)→ MH∗,∗(X)→ MH∗,∗(X,A)→ MH∗−1,∗(X,A)→ · · · (4)

If, in addition, there are no edges from X \ A into A, then (3) is split by a chain map,
(4) splits into short exact sequences, and we obtain a long exact sequence of bigraded
path homology groups:

· · · → PH∗,∗(A)→ PH∗,∗(X)→ PH∗,∗(X,A)→ PH∗−1,∗−1(X,A)→ · · · (5)

Proof. We begin with the proof that if A ⊆ X is convex, then we obtain the sequence (3).
Convexity means that the length of a generator of RC(A) does not depend on whether
we regard it as a generator of RC(A) or RC(X). The result can now be proved directly
from the explicit description of magnitude chains given in Section 2.3. Alternatively,
recall that a map of filtered chain complexes f : C → D is called strict if for each ℓ we
have f(FℓC) = f(C)∩FℓD. Note that the latter condition is equivalent to f−1(FℓD) =
FℓC + ker(f). If C →֒ D is a strict inclusion of chain complexes, then one obtains a
short exact sequence of filtration quotients:

0→
FℓC

Fℓ−1C
→

FℓD

Fℓ−1D
→

Fℓ (D/C)

Fℓ−1 (D/C)
→ 0

See [44, Section 0120] or [13, Lemme 1.1.9]. Our assumption ensures that the inclusion
map RC(A) →֒ RC(X) is strict, so the result follows from the last paragraph.

Applying homology to the short exact sequence (3) now gives the long exact se-
quence (4).

Let us assume for the rest of the proof that there are no edges into A from X \ A.
This ‘no-entry’ condition on A means that the only vertices of X that admit paths into
A are those that already lie in A. (In particular, the only paths in X between vertices of
A are those that lie wholly in A, so this condition alone ensures that A ⊆ X is convex.)

We now show that (3) is split. Observe that, by the no-entry condition, a generator
of MC(X) lies in MC(A) if and only if its final entry lies in A. Thus we may define a
map p : MC(X)→ MC(A) by the following rule.

p(x0, . . . , xk) =

{
(x0, . . . , xk) if xk ∈ A

0 if xk 6∈ A

Then p is a chain map because the differential of magnitude chains sends a generator
to a linear combination of generators with the same start and end points. And it is a
splitting because it sends the generators of MC(A) to themselves.

So we have shown that our stronger assumption gives us a splitting of (3). It follows
that the connecting maps of (4) vanish and (4) splits into short exact sequences. The
maps in these short exact sequences are obtained from maps of filtered complexes, and so
they commute with the differential d1 of the magnitude-path spectral sequence. In terms
of magnitude chains, the differential d1 has the form d1 : MH∗,∗(−)→ MH∗−1,∗−1(−), and
consequently we obtain the long exact sequence (5) with the specified degree shifts. �
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4. Eilenberg–Zilber theorems

This section and the next concern the behaviour of the pages of the magnitude-path
spectral sequence with respect to the box product of directed graphs.

Definition 4.1. The box product of directed graphs G and H is the directed graph
G�H with vertex set V (G�H) = V (G) × V (H), and ((g1, h1), (g2, h2)) ∈ E(G�H) if
either g1 = g2 and (h1, h2) ∈ E(H), or h1 = h2 and (g1, g2) ∈ E(G).

In this section we will prove two Eilenberg–Zilber-style theorems. The first of these,
Theorem 4.7, says that for any directed graphs G and H the filtered chain complex
RC(G�H) is naturally chain homotopy equivalent to the tensor product RC(G)⊗RC(H)
via filtration-preserving chain maps and chain homotopies. The second, Theorem 4.9,
relates the magnitude-path spectral sequence E(G�H) to the spectral sequences E(G)
and E(H) of the factors.

Before we can state those results formally and prove them (which we do in Section 4.2),
we must collect some terminology and facts concerning pairings and tensor products of
spectral sequences.

4.1. Pairings and tensor products of spectral sequences. First, let us briefly recall
the relevant facts about the homology of tensor products of ordinary chain complexes.
Given any chain complexes C and D over a ring R, there is a map

α : H∗(C)⊗H∗(D)→ H∗(C ⊗D) (6)

determined by [c] ⊗ [d] 7→ [c ⊗ d]. We shall refer to this map as the homology product.
If the ring R is a principal ideal domain (P.I.D.) and C happens to consist of flat R-
modules, then the classical Künneth theorem for chain complexes says that the homology
product fits into a short exact sequence, as follows.

Theorem 4.2 (Algebraic Künneth theorem). Let R be a P.I.D. and let C be a chain
complex of flat R-modules. Then, given any chain complex D of R-modules, we have for
each n ∈ N a short exact sequence

0→
⊕

k

Hk(C)⊗Hn−k(D)
α
−→ Hn(C ⊗D)→

⊕

k

Tor(Hk(C),Hn−k−1(D))→ 0

natural in D and with respect to chain maps C → C ′ where C ′ is also flat. The sequence
splits, but not naturally.

A proof of Theorem 4.2 can be found in [11, VI.3.3]. (The statement there is for
hereditary rings, which includes the case of P.I.D.s [11, p.13].)

The algebraic Künneth theorem has the following corollary.

Corollary 4.3. If C and D are chain complexes over a field, then the homology product
α : H∗(C)⊗H∗(D)→ H∗(C ⊗D) is an isomorphism. �

Now, fix a ground ring R (not necessarily a P.I.D.) and let E and ′E be any two
spectral sequences of R-modules. For each r ≥ 0, we can form the tensor product
Er ⊗ ′Er of bigraded R-modules—

(Er ⊗ ′Er)pq =
⊕

s+u=p
t+v=q

Erst ⊗
′Eruv
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—and endow it with the differential dr⊗(x ⊗ y) = drE(x) ⊗ y + (−1)s+tx ⊗ dr′E(y). In
general, the family (Er ⊗ ′Er, dr⊗)r≥0 need not be a spectral sequence, for, although the
homology product always provides a natural map

Er+1 ⊗ ′Er+1 ∼= H∗(E
r)⊗H∗(

′Er)
α
−→ H∗(E

r ⊗ ′Er),

this need not be an isomorphism. If the ring R is a field, however, then Corollary 4.3
implies we have a tensor product spectral sequence {Er ⊗ ′Er, dr⊗}.

Definition 4.4. Let E, ′E and ′′E be spectral sequences of R-modules. A pairing
φ∗ : (E, ′E) → ′′E is a sequence of maps of bigraded R-modules φr : Er ⊗ ′Er → ′′Er

with the following properties:

(1) Each φr is a chain map with respect to the differentials on page r.
(2) For every r this diagram commutes:

Er+1 ⊗ ′Er+1 ′′Er+1

H∗(E
r)⊗H∗(

′Er)

H∗(E
r ⊗ ′Er) H∗(

′′Er).

φr+1

∼=

α

H∗(φr)

∼=

If the ground ring R is a field, a pairing is precisely a map of spectral sequences.

Definition 4.5. Let A and B be filtered chain complexes. Their (filtered) tensor product
is the chain complex A⊗B equipped with the filtration in which

Fℓ(A⊗B) =
∑

s+t=ℓ

FsA⊗ FtB.

A chain map f : A ⊗ B → C is filtered if and only if for every s and t we have
f(FsA⊗ FtB) ⊆ Fs+tC. Any such map induces a map

⊕

p+q=n

FpA

Fp−1A
⊗

FqB

Fq−1B
→

FnC

Fn−1C

since f(Fp−1A ⊗ FqB) ⊆ Fp+q−1C and f(FpA ⊗ Fq−1B) ⊆ Fp+q−1C. It follows that

there is an induced map f : E0(A)⊗E0(B)→ E0(C). Indeed, f induces a map Er(A)⊗
Er(B) → Er(C) for every r, and these maps comprise a pairing of spectral sequences.
(For a detailed proof, see [26, Lemma 3.5.2].)

Lemma 4.6. Let A,B and C be filtered chain complexes over R. Any filtered chain map
f : A⊗B → C induces a pairing φ : (E(A), E(B)) → E(C) with φ0 = f . If R is a field,
then f induces a map of spectral sequences φ : E(A) ⊗E(B)→ E(C). �

We are now equipped to state and prove the Eilenberg–Zilber theorems.
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4.2. The Eilenberg–Zilber theorems. In Theorem 5.1 of [27], the classical Eilenberg–
Zilber theorem for simplicial sets is applied to prove that there is a chain homotopy
equivalence

∇ : RC(G)⊗ RC(H)⇄ RC(G�H) : ∆.

Here we extend this to an equivalence of filtered chain complexes, from which we will
obtain, via Lemma 4.6, an induced pairing of spectral sequences

∇∗ : E(G) ⊗ E(H)→ E(G�H).

Theorem 4.7 (Filtered Eilenberg–Zilber for the reachability chain complex). Let G
and H be directed graphs. Then RC(G) ⊗ RC(H) and RC(G�H) are chain homotopy
equivalent, via maps and chain homotopies that are natural and that respect the filtrations
of the two sides. The chain homotopy equivalence

∇ : RC(G)⊗ RC(H)→ RC(G�H)

can be described explicitly on generators as follows:

∇ ((g0, . . . , gp)⊗ (h0, . . . , hq)) =
∑

σ

sign(σ)((gi0 , hj0), . . . , (gir , hjr)). (7)

Here r = k+ k′, and σ runs over all sequences ((i0, j0), . . . , (ir, jr)) in which 0 ≤ is ≤ k,
0 ≤ js ≤ k′, and in which each term (is+1, js+1) is obtained from (is, js) by increasing
exactly one of the components by 1. The coefficient sign(σ) is defined to be (−1)n where
n is the number of pairs (i, j) for which i = ik =⇒ j < jk.

In the statement of Theorem 4.7, the sequences σ can be regarded as the paths in
Z2 from (0, 0) to (k, k′) that may only go upwards or to the right. With this in mind,
sign(σ) is (−1)n where n is the number of lattice points that are on or above the x-axis,
and strictly below the path itself. And if we regard each (gi, hj) as being a label on
lattice point (i, j), then the summand ((g0, h0), . . . , (gk, hk′)) associated to σ is precisely
the list of vertices visited by the path.

To prove Theorem 4.7, we will make use of a filtered variant of the classical Eilenberg–
Zilber theorem. The classical theorem says that we have, for any simplicial sets A and
B, the Eilenberg–Zilber map ∇ : NA ⊗NB → N(A × B) and the Alexander–Whitney
map ∆: N(A×B)→ NA⊗NB, which satisfy ∆◦∇ = IdNA⊗NB , and a chain homotopy
SHI between ∇◦∆ and IdN(A×B). (For details, see Section 5 of [16] or Section 2 of [18];
in particular the latter reference contains explicit descriptions of ∆, ∇ and SHI.) For
present purposes, it is important to know that if A and B are filtered, then all these
maps are automatically filtration-preserving.

Lemma 4.8. Let A and B be filtered simplicial sets. We equip their product A×B with
the filtration given by Fℓ(A×B) =

⋃
i+j=ℓ FiA×FjB. Then the Alexander–Whitney map

∆: N(A×B)→ NA⊗NB, the Eilenberg–Zilber map ∇ : NA⊗NB → N(A×B), and
the chain homotopy SHI between ∇◦∆ and IdN(A×B) are all filtration-preserving. Thus,
NA⊗NB and N(A×B) are chain homotopy equivalent as filtered chain complexes.

Proof. Observe that Fp[NA ⊗ NB] is the span of the images of the maps N(FiA) ⊗
N(FjB)→ N(A) ⊗N(B) for i+ j = p, and Fp[N(A ×B)] is the span of the images of
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the maps N(FiA × FjB) → N(A ⊗ B) for i + j = p. Thus we can prove that ∆, say,
preserves filtrations by showing that the following diagram commutes:

N(FiA× FjB) N(FiA)⊗N(FjB)

N(A×B) N(A)⊗N(B).

∆

∆

But this is an immediate consequence of the naturality of ∆. The proof that ∇ and SHI
are filtration-preserving is similar. �

We now prove Theorem 4.7. The proof makes use of the fact that the shortest path
metric on the box product G�H coincides with the ℓ1-metric on the product of the
vertex sets:

dG�H((g0, h0), (g1, h1)) = dG(g0, g1) + dH(h0, h1) (8)

for each (g1, h1), (g2, h2) ∈ V (G)× V (H). (See, for example, [15, Corollary 1.3].)

Proof of Theorem 4.7. By Remark 2.1 and Lemma 4.8, there is a chain homotopy equiv-
alence of filtered chain complexes

RC(G) ⊗ RC(H) = N(N(G)) ⊗N(N(H))⇄ N(N(G) ×N(H)). (9)

It remains to identify N(N(G) ×N(H)) with N(N(G�H)) = RC(G�H).
In fact, N(G) × N(H) and N(G�H) are isomorphic as filtered simplicial sets. This

is Proposition 1.4 in [15], but for clarity we give some details here. The isomorphism of
simplicial sets N(G) ×N(H) ∼= N(G�H), given by

((g0, . . . , gk), (h0, . . . , hk))↔ ((g0, h0), . . . , (gk, hk)),

was established in the proof of Theorem 5.1 of [27]; we just need to show that the
tuple ((g0, h0), . . . , (gk, hk)) lies in filtration p if and only if the same is true of the pair
((g0, . . . , gk), (h0, . . . , hk)). But this follows from the fact that

ℓ((g0, h0), . . . , (gk, hk)) = ℓ(g0, . . . , gk) + ℓ(h0, . . . , hk),

which holds since, by (8), we have

ℓ ((g0, h0), . . . , (gk, hk)) =

k−1∑

m=0

dG�H((gm, hm), (gm+1, hm+1))

=

k−1∑

m=0

(dG(gm, gm+1) + dH(hm, hm+1))

=

k−1∑

m=0

dG(gm, gm+1) +

k−1∑

m=0

dH(hm, hm+1)

= ℓ(g0, . . . , gk) + ℓ(h0, . . . , hk).

Thus we have an isomorphism of filtered chain complexes

N(N(G) ×N(H)) ∼= N(N(G�H)) = RC(G�H),

and this, combined with (9), proves the theorem. �
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From Theorem 4.7 we can derive an Eilenberg–Zilber-type theorem for the magnitude-
path spectral sequence of the box product, as follows. In Section 5 we will use this result
to prove Künneth theorems for each page of the MPSS.

Theorem 4.9 (Eilenberg–Zilber for the MPSS). For any directed graphs G and H there
is a pairing of spectral sequences

∇∗ : (E(G), E(H)) −→ E(G�H)

which is natural in G and H, and for which ∇0 is a chain homotopy equivalence.

Proof. Theorem 4.7 gives us a map of filtered chain complexes

∇ : RC(G)⊗ RC(H)→ RC(G�H)

natural in G and H. From this, via Lemma 4.6, we obtain the pairing of spectral
sequences

∇∗ : (E(G), E(H)) −→ E(G�H)

in which the map ∇0 of the E0-terms is the map of filtration quotients induced by
∇. Since ∇’s homotopy inverse ∆ and the chain homotopy SHI are also filtration-
preserving, they both descend to the filtration quotients, making ∇0 a chain homotopy
equivalence. �

Remark 4.10. Though the box product is sometimes referred to as the cartesian product
of directed graphs, it is not the categorical product inDiGraph. The categorical product
of G and H is their strong product : the directed graph G H whose vertices are elements
of V (G)× V (H), with ((g1, h1), (g2, h2)) ∈ E(G H) if g1 = g2 and (h1, h2) ∈ E(H); or
h1 = h2 and (g1, g2) ∈ E(G); or (g1, g2) ∈ E(G) and (h1, h2) ∈ E(H). The shortest path
metric on G H coincides with the ℓ∞-metric on the product of the vertex sets:

dG H((g0, h0), (g1, h1)) = max{dG(g0, g1), dH(h0, h1)}

for each (g0, h0), (g1, h1) ∈ V (G)× V (H).
Just as in the case of the box product, there is an isomorphism of simplicial sets

N(G) ×N(H) ∼= N(G H), given by

((g0, . . . , gk), (h0, . . . , hk))↔ ((g0, h0), . . . , (gk, hk)).

(This is part of Theorem 5.1 in [27].) However, this is not an isomorphism of filtered sim-
plicial sets: while the function N(G)×N(H) → N(G H) is always filtration-preserving,
its inverse usually is not.

5. Künneth theorems

In general, one obtains a Künneth theorem for some homology theory by combining
an appropriate Eilenberg–Zilber theorem with the classic algebraic Künneth theorem for
chain complexes. The Eilenberg–Zilber theorem usually establishes a chain homotopy
equivalence, so is in some sense as good as can be hoped. However, relating the homology
of a tensor product of chain complexes with the tensor product of the homologies entails
loss of information, as quantified by the relevant Tor term in the algebraic Künneth
theorem.

Our Eilenberg–Zilber theorem for the magnitude-path spectral sequence (Theorem 4.9)
is, in this setting, as good as can be hoped: a pairing of spectral sequences that is a chain
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homotopy equivalence on the initial term. However, in order to access, say, the E2-term
E2(G�H), we need to take homology twice, and therefore potentially twice encounter
the discrepancies expressed by the Tor terms. It may be the case that there is a general
framework for encapsulating and understanding these cascading errors in the setting of
a spectral sequence, but in the present paper our approach is to make assumptions in
order to ensure that no such cascades arise.

Our strongest Künneth theorem holds under the assumption that R is a field. In
this case, the pairing ∇∗ in Theorem 4.9 is a map of spectral sequences. Since ∇0 is a
quasi-isomorphism, it follows that ∇r is an isomorphism

Er(G)⊗ Er(H)
∼=
−→ Er(G�H)

for every r ≥ 1. This gives the following result.

Theorem 5.1 (Künneth theorem for the MPSS over a field). Fix a ground ring R which
is a field. Then for every pair of directed graphs G and H there is a map of spectral
sequences

E(G)⊗ E(H)→ E(G�H)

natural in G and H and consisting of isomorphisms from E1 onwards. �

In particular, Theorem 5.1 gives us Künneth isomorphisms for magnitude homology
and bigraded path homology with coefficients in a field. In the absence of the assumption
that R is a field, we can still obtain Künneth theorems of the usual form in magnitude
homology and in the original path homology, as we see in the next two results.

Specialized to undirected graphs, the following theorem recovers Theorem 5.3 of [28].
It is in turn a special case of the Künneth formula for the magnitude homology of
generalized metric spaces [42, Theorem 4.6], which extends that for classical metric
spaces proved as Proposition 4.3 in [7].

Theorem 5.2 (Künneth theorem for magnitude homology). Fix a ground ring R which
is a P.I.D. For any directed graphs G and H there is short exact sequence

0→
⊕

i+j=k
a+b=ℓ

MHi,a(G)⊗MHj,b(H)→ MHk,ℓ(G�H)

→
⊕

i+j=k−1
a+b=ℓ

Tor(MHi,a(G),MHj,b(H))→ 0,
(10)

natural in G and H.

Proof. Apply the algebraic Künneth theorem (Theorem 4.2) to the tensor product chain
complex E0(G) ⊗ E0(H). Then use the quasi-isomorphism ∇0 : E0(G) ⊗ E0(H) →
E0(G�H) to replace the middle term—the result is a short exact sequence relating
E1(G), E1(H) and E1(G�H). Now use the identification E1

p,q(−) = MHp+q,p(−) to
replace these with MH(G), MH(H) and MH(G�H), and re-index appropriately. �

Using Theorem 5.2 we can recover two known Künneth formulae for ordinary path
homology with respect to the box product: [23, Theorem 4.7] and [30, Theorem 9.5].
(The latter applies to more general objects than graphs.)

First, we record a fact that will be useful here and later.
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Lemma 5.3. Fix a ground ring R which is a P.I.D. Let G be any directed graph. For
every k ∈ N, the R-module MHkk(G) is freely generated.

Proof. Since MCk+1,k(G) = 0 for every k, we have MHkk(G) = ker(∂kk), which is a
submodule of the free R-module MCkk(G). �

Theorem 5.4 (Künneth theorem for ordinary path homology). Fix a ground ring R
which is a P.I.D. For any directed graphs G and H there is a short exact sequence

0→
⊕

i+j=k

PHi(G)⊗PHj(H)→ PHk(G�H)

→
⊕

i+j=k

Tor(PHi(G),PHj−1(H))→ 0,
(11)

natural in G and H.

Proof. Recall from Section 2.5 that the ordinary path homology of a directed graph is
the diagonal of its bigraded path homology or, equivalently, the horizontal boundary
row on page E2 of the magnitude-path spectral sequence:

PHi(G) = PHi,i(G) = E2
i,0(G).

Applying the algebraic Künneth theorem in the horizontal boundary row of page E1

gives the short exact sequence

0→
⊕

i+j=k

PHii(G)⊗PHjj(H)→ Hk

(
E1

∗0(G)⊗ E
1
∗0(H)

)

→
⊕

i+j=k

Tor(PHii(G),PHj−1,j−1(H))→ 0;

the claim is that the middle term is isomorphic to PHkk(G�H). To see this, we can use
the Künneth formula for magnitude homology.

Consider the Künneth sequence for magnitude homology (10) in the case k = ℓ. Since
MHpq(−) vanishes for p > q, the first term

⊕
MHia(G)⊗MHjb(H) reduces in this case

to just the part involving diagonal terms, i.e. those terms where a = i and b = j. For
the same reason, the third term

⊕
Tor(MHia(G),MHjb(H)) reduces to just those terms

in which a = i and b = j − 1, or a = i − 1 and b = j. Thus, in all cases the Tor
term features a diagonal group MHii(G) or MHjj(H) as one of its arguments. Since the
diagonal magnitude homology modules are always free (Lemma 5.3), it follows that the
third term vanishes in this case, yielding for every k an isomorphism

⊕

i+j=k

MHii(G)⊗MHjj(H)
∇1

−−−→
∼=

MHkk(G�H).

Since MHii(G) ⊗MHjj(H) = E1
i0(G) ⊗ E

1
j0(H), taking homology gives

Hk

(
E1

∗0(G)⊗ E
1
∗0(H)

)
∼= Hk (MH∗∗(G�H)) = PHkk(G�H),

as claimed. �

Looking at the entire second page of the magnitude-path spectral sequence yields a
Künneth formula for bigraded path homology. However, to access this we need to make
a flatness assumption.
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Theorem 5.5 (Künneth theorem for bigraded path homology). Fix a ground ring R
which is a P.I.D., and let G be a directed graph with flat magnitude homology. Then for
any directed graph H there is a short exact sequence

0→
⊕

i+j=k
a+b=ℓ

PHi,a(G)⊗PHj,b(H)→ PHk,ℓ(G�H)

→
⊕

i+j=k
a+b=ℓ

Tor(PHi,a(G),PHj−1,b−1(H))→ 0,
(12)

natural in H and with respect to maps G → G′ where G′ also has flat magnitude ho-
mology. If R is a field then for every pair of directed graphs G and H there is an
isomorphism

PHk,ℓ(G�H) ∼=
⊕

i+j=k
a+b=ℓ

PHi,a(G) ⊗ PHj,b(H), (13)

natural in G and H.

Proof. Since G has flat magnitude homology—meaning that for every p, q the R-module
E1
pq(G) = MHp+q,p(G) is flat—we can apply the algebraic Künneth theorem in each row

of E1(G) ⊗ E1(H) to obtain, for each p and q, a short exact sequence

0→
(
E2(G) ⊗ E2(H)

)
pq
−→ Hp

(
(E1(G)⊗ E1(H))∗q

)

→
⊕

m+u=p
n+v=q

Tor(E2
mn(G), E

2
u−1,v(H))→ 0, (14)

which has the claimed naturality in G and H. The assumption that G has flat magnitude
homology ensures that in the statement of Theorem 5.2 the Tor term vanishes, so that
using the identification E1

pq(−) = MHp+q,p(−) we obtain a natural isomorphism

(E1(G)⊗ E1(H))p,q = (MH(G) ⊗MH(H))p+q,p ∼= MH(G�H)p+q,p = E1(G�H)p,q.

Using this isomorphism we may replace the middle term of (14) withHp(E
1(G�H)∗,q) =

E2
p,q(G�H). Using the identification E2

pq(−) = PHp+q,p(−) and reindexing appropri-
ately, this yields the required short exact sequence (12).

Over a field, the flatness assumption is guaranteed to be satisfied and the torsion term
in (12) vanishes, yielding the isomorphism (13). �

Our final Künneth formula holds throughout the magnitude-path spectral sequence,
though only under more restrictive flatness assumptions.

Theorem 5.6 (Künneth theorem for the MPSS over a P.I.D.). Fix a ground ring R
which is a P.I.D. Let G and H be directed graphs, and suppose that there is s ≥ 1 such
that, for each 0 ≤ r < s, each term of Er(G) is flat. Then for 1 ≤ r < s the map ∇r is
an isomorphism ⊕

m+u=p
n+v=q

Ermn(G)⊗ E
r
uv(H)

∼=
−−→ Erpq(G�H),
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while ∇s fits into a short exact sequence

0→
⊕

m+u=p
n+v=q

Esmn(G)⊗E
s
uv(H)

∇s

−−→ Espq(G�H)

→
⊕

m+u=p
n+v=q

Tor(Esmn(G), E
s
u−s+1,v+s−2(H))→ 0

which is natural in H and with respect to maps G → G′ for G′ satisfying the same
flatness property as G.

Proof. We prove this by induction on s ≥ 1. The case s = 1 is just the Künneth theorem
for magnitude homology (Theorem 5.2); the case s = 2 follows from that theorem and
the Künneth theorem for bigraded path homology (Theorem 5.5). Now we take s > 2
and assume the statement holds for all r < s.

For 1 ≤ r < s, the map on page r is the composite

Er(G) ⊗ Er(H) Er(G�H)

H(Er−1(G)) ⊗H(Er−1(H))

H(Er−1(G)⊗ Er−1(H)) H(Er−1(G�H))

∼=

∇r

α

H(∇r−1)

∼=

where α is the homology product. By the assumptions of the theorem, Er−1(G) and
Er(G) both consist of flat R-modules, so the algebraic Künneth theorem tells us that
α has the claimed naturality and is an isomorphism. By the inductive assumption, the
map H(∇r−1) is an isomorphism and has the claimed naturality too. It follows that the
same holds for ∇r.

Applying the algebraic Künneth theorem on page Es−1, to the chain complex lying
along each line of slope −(s− 1)/(s − 2), yields for each p, q a short exact sequence

0→ (Es(G)⊗ Es(H))pq
α
−→ H

(
(Es−1(G)⊗ Es−1(H))pq

)

→
⊕

m+u=p
n+v=q

Tor(Esmn(G), E
s
u−s+1,v+s−2(H))→ 0,

which has the claimed naturality. We may use the isomorphism H(∇s−1) to replace the
middle term by Esp,q(G�H), obtaining the short exact sequence

0→ (Es(G)⊗ Es(H))pq
H(∇s−1)◦α
−−−−−−−→ Espq(G�H)

→
⊕

m+u=p
n+v=q

Tor(Esmn(G), E
s
u−s+1,v+s−2(H))→ 0.

Since ∇s = H(∇s−1) ◦ α, this completes the proof. �
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6. Excision and Mayer–Vietoris theorems

This section contains three key results. We will prove an excision theorem which holds
for every page of the magnitude-path spectral sequence from E1 onwards (Theorem 6.5).
From the excision theorem we are able to derive a Mayer–Vietoris theorem for magnitude
homology (Theorem 6.6) and for bigraded path homology (Theorem 6.8).

It is well known from the literature on both magnitude homology and path homology
that Mayer–Vietoris theorems do not hold for arbitrary unions of graphs. Rather, one
needs to assume that the union in question is ‘nice’ in some appropriate sense. Indeed,
here we follow [9] in considering pushouts (rather than unions) along a class of subgraph
inclusions termed cofibrations. (This terminology will be justified in Section 7.) Thus,
we begin in Section 6.1 with a recollection on cofibrations. Then in Section 6.2 we state
our main results, leaving the lengthy proof of Theorem 6.5 to Section 6.3.

6.1. Cofibrations. The maps we call ‘cofibrations’ are essentially the same as those
defined in [9, Definition 2.8], except that we have reversed the directions of edges. This
superficial modification and the reasons for it are explained in Remark 6.4. The definition
runs as follows.

Definition 6.1. Let X be a directed graph, and A ⊆ X a subgraph. The reach of A,
denoted rA, is the induced subgraph of X on the set of all vertices that admit a path
from some vertex in A.

Definition 6.2 ([9, Definition 2.8]). A cofibration of directed graphs is an induced
subgraph inclusion A →֒ X for which:

(1) There are no edges from vertices not in A to vertices in A.
(2) For each x ∈ rA there is a vertex π(x) ∈ A with the property that

d(a, x) = d(a, π(x)) + d(π(x), x) for every a ∈ A.

Before stating the theorems, we make a few remarks on the definition. First, note that
condition (1) is equivalent to saying that there are no paths in X from vertices outside
A to vertices inside A. This guarantees, in particular, that A is a convex subgraph of X.
Condition (2) says that X projects to A in the sense of Leinster [36, Definition 4.6] and
its precursor (also Leinster) [35, Definition 2.3.1]. As noted in [36], the vertex π(x) is the
vertex of A closest to x, and this determines π(x) uniquely. In particular, taking x = a
in condition (2) we see that π(a) = a for every a ∈ V (A). Thus, we have a projection
function π : V (rA)→ V (A). In general, though, π does not determine a map of graphs.

We are concerned in this section with the behaviour of cofibrations, and the homology
of pushouts along cofibrations. The category DiGraph is cocomplete, so in particular
it has all pushouts; this is explained in [9] before Lemma 1.10 (and in this paper after
Lemma A.1). Moreover, it is shown in [9, Proposition 2.13] that the class of cofibrations
is closed under pushout. That is, given a cofibration i : A→ X and an arbitrary map of
directed graphs f : A→ Y , the map j in the pushout diagram

A Y

X X ∪A Y

f

i j

g

(15)
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is also a cofibration.

Example 6.3 (A cone). Let I denote the following directed graph.

−1 0 +1
• • •

Given an arbitrary directed graph X, we define CX to be the directed graph obtained
from X�I by identifying the induced subgraph X�{+1} to a single vertex that we
denote simply +1. We think of CX as a form of ‘cone’ on X. We now identify X with
the induced subgraph of CX on the vertices of form (x,−1) for x a vertex of X, so that
we obtain the induced subgraph inclusion

X −֒→ CX.

This is a cofibration. To see this, we verify the two properties of Definition 6.2:

(1) Since there is no edge of I from 0 to −1, there are no edges of CX from CX \X
to X.

(2) The only paths in I that begin at −1 are the trivial path and the edge −1→ 0,
so that the reach rX of X is the induced subgraph on the vertices of the form
(x, 0) and (x,−1) for x a vertex of X. We then define π on such vertices by

π(x,−1) = π(x, 0) = (x,−1).

The required property of π then states that, for vertices x, y of X, and for
j = −1, 0,

d((x,−1), (y, j)) = d((x,−1), π(y, j)) + d(π(y, j), (y, j))

or in other words

d((x,−1), (y, j)) = d((x,−1), (y,−1)) + d((y,−1), (y, j)),

and this is immediately verified; see Equation (8).

Note also that CX is 1-contractible: the identity map CX → CX is 1-homotopic to the
constant map with value +1. Indeed, if we denote by d : CX → CX the map defined by
d(+1) = +1 and d(x, j) = (x,max{j, 0}) for x ∈ X and j = 0,−1, then one can check
that there are 1-homotopies from both the identity map, and the constant map, to d.
This example will be used later in Corollary 6.10.

Remark 6.4. As the observations after Definition 6.2 suggest, the definition of cofi-
brations in [9] is an adaptation, to the directed setting, of the notion of projecting
decomposition appearing in the literature on the magnitude and magnitude homology
of undirected graphs and metric spaces [35, 36, 28]. Our Definition 6.2 is taken directly
from Definition 2.8 of [9], except that we have reversed the directionality: A →֒ X is a
cofibration in the sense of this paper if and only if the corresponding map between the
transpose graphs—in which the direction of every edge has been reversed—is a cofibra-
tion in the sense of [9].

This superficial change means that Definition 6.2 can also be seen as a strengthening,
suited to this paper’s filtered techniques, of the notion of long cofibration of directed
graphs given in [27, Definition 6.2]: every cofibration in the sense of this paper is also
a long cofibration. As is shown in [27, Proposition 6.7], a long cofibration A →֒ X is
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precisely a map of directed graphs that induces a Dwyer morphism between the preorders
generated by A and X. The class of Dwyer morphisms contains all cofibrations in
the Thomason model structure on the category of small categories, which is Quillen
equivalent to the classical model structure on the category of simplicial sets [46, 12].
Thus, the theory being developed here and in Section 7 bears a close relationship to
more classical homotopy theoretic constructions. The details of that relationship remain
to be explored.

6.2. The excision and Mayer–Vietoris theorems. We can now state our excision
and Mayer–Vietoris theorems, which apply in the context of a pushout along a cofibra-
tion. Our Mayer–Vietoris theorems, which hold for magnitude homology and bigraded
path homology, are fairly direct consequences of the excision theorem and so we prove
them within this subsection. The excision theorem, on the other hand, applies to every
page of the MPSS, but its proof is intricate and so is deferred to the next subsection.

Recall from Definition 3.2 that, given any subgraph A ⊆ X, one can consider the rela-
tive magnitude-path spectral sequence {Er∗,∗(X,A), d

r}r≥0. Given a pushout of the form
in (15), our excision theorem says that the relative magnitude-path spectral sequence of
the pair (X,A) coincides with that of the pair (X ∪A Y, Y ).

Theorem 6.5 (Excision in the magnitude-path spectral sequence). Let i : A→ X be a
cofibration and let f : A → Y be an arbitrary map of directed graphs, so that we obtain
the pushout diagram of the form in (15). Then for all r ≥ 1 the induced map

Er∗,∗(X,A)
∼=
−−−→ Er∗,∗(X ∪A Y, Y )

is an isomorphism. In particular, on magnitude homology and bigraded path homology
we have

MH∗,∗(X,A)
∼=
−−−→ MH∗,∗(X ∪A Y, Y )

and

PH∗,∗(X,A)
∼=
−−−→ PH∗,∗(X ∪A Y, Y ).

In the classical topological setting, the excision theorem for spaces gives rise to the
Mayer–Vietoris sequence by ‘stitching together’, using a standard argument of homolog-
ical algebra, the long exact sequences of pairs of the form (X,A) and (X ∪A Y, Y ). The
same reasoning can be applied here to either the short exact sequences of magnitude
homology groups, or the long exact sequences of bigraded path homology groups, that
are associated to a pair by Theorem 3.3. That is how we obtain the next two theorems,
which give a short exact Mayer–Vietoris sequence for magnitude homology, and a long
exact Mayer–Vietoris sequence for path homology.

However, we are not at this time able to give a Mayer–Vietoris result for the Er-pages
for any r ≥ 3. Indeed, the snake lemma allows us to passed from short exact sequences
of chain complexes to long exact sequences of homology groups, and this is how we pass
from E1 to E2 in the proof of Theorem 3.3. But we do not know of any account of the
structure obtained from long exact sequences of chain complexes by taking homology,
and this prevents us from obtaining results of Mayer–Vietoris type on the later pages of
the MPSS.

We now state the theorems formally, before proceeding to the proofs.
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Theorem 6.6 (Mayer–Vietoris for magnitude homology of directed graphs). Suppose
given a cofibration i : A → X and any map f : A → Y , so that we have a pushout of
the form in (15). Then we have the Mayer–Vietoris sequence in magnitude homology of
directed graphs, in the form of a short exact sequence:

0→ MH∗,∗(A)
(i∗,−f∗)
−−−−−→ MH∗,∗(X)⊕MH∗,∗(Y )

g∗⊕j∗
−−−−→ MH∗,∗(X ∪A Y )→ 0 (16)

This sequence is split.

Remark 6.7. This theorem can be compared with the Mayer–Vietoris theorem for mag-
nitude homology of undirected graphs that appeared as Theorem 6.6 in Hepworth and
Willerton [28]. The result for undirected graphs applies in the presence of a projecting
decomposition; we refer the reader to [28, Definition 6.3] for the definition.

The category of undirected graphs embeds canonically into DiGraph by taking a
graph G and replacing each of its edges {x, y} by a pair of directed edges x ⇄ y.
However, given a projecting decomposition G = X ∪A Y , it is almost never the case
that the inclusion of A into X (or into Y ) induces, under this operation, a cofibration
in the sense of Definition 6.2. Indeed, that occurs only when X (respectively, Y ) is the
disjoint union of A and its complement, in which case the split exact sequence (16) holds
trivially for MH∗,∗(X ∪A Y ). On the other hand, there are many non-trivial examples
of projecting decompositions of undirected graphs; see, for example, Corollaries 4.13
and 4.14 of Leinster [36]. Thus, our Mayer–Vietoris theorem and that in [28] are quite
independent.

Theorem 6.8 (Mayer–Vietoris for bigraded path homology). Suppose given a cofibration
i : A→ X and any map f : A→ Y , so that we have a pushout of the form in (15). Then
we have the Mayer–Vietoris sequence in bigraded path homology, meaning that there is
a long exact sequence:

· · · → PH∗,∗(A)
(i∗,−f∗)
−−−−−→ PH∗,∗(X)⊕PH∗(Y )

g∗⊕j∗
−−−−→ PH∗,∗(X∪AY )

∂∗−→ PH∗−1,∗(A)→ · · ·

Theorem 6.5 is the hardest to prove of the three theorems in this section, and we
therefore leave its proof to the end of the section. The proofs of the other two theorems
are straightforward once we have excision, so we tackle them first.

Proof of Theorem 6.6, assuming Theorem 6.5. Extracting long exact sequences of Mayer–
Vietoris type from excision theorems is common in the algebraic topology literature.
Indeed, if we consider the commutative diagram

· · · MH∗,∗(A) MH∗,∗(X) MH∗,∗(X,A) · · ·

· · · MH∗,∗(Y ) MH∗,∗(X ∪A Y ) MH∗,∗(X ∪A Y, Y ) · · ·

i

f g ∼=

j

whose rows are obtained from Theorem 3.3, and identify every pair of third terms using
the excision isomorphism, then we may apply the result of exercise 38 of [25, p.159] to
obtain the following long exact sequence:

· · · MH∗,∗(A) MH∗,∗(X)⊕MH∗,∗(Y ) MH∗,∗(X ∪A Y ) · · ·
(i∗,−f∗) g∗⊕j∗
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Since the inclusion A ⊆ X satisfies the condition that there are no edges from X \A to
A, Theorem 3.3 shows that i∗ is split, and it follows that (i∗,−f∗) is also split, so that
we obtain the short exact sequence of the claim. �

Proof of Theorem 6.8, assuming Theorem 6.6. This is similar to the proof of Theorem 6.6,
except that one uses the long exact sequences of bigraded path homology groups obtained
from Theorem 3.3. We leave the details to the reader. �

Let us give here an immediate application of our excision theorem. A further appli-
cation will be seen in the more substantial computation in Section 9.

Definition 6.9. Let X be a directed graph. We define SX to be the graph obtained
from X by adding two new vertices, +1 and −1, together with an edge from each of the
new vertices to each vertex of X. Thus SX is a form of ‘unreduced suspension’ of X;
see Example 6.11 for an illustrative example.

The following result can be compared with Proposition 5.10 of Grigor’yan et al [21].

Corollary 6.10 (A suspension theorem). Let X be a nonempty directed graph, and
k, ℓ ≥ 0. Then there is a natural isomorphism

ker
(
PHk,ℓ(SX)→ PHk,ℓ(•)

)
∼= ker

(
PHk−1,ℓ−1(X)→ PHk−1,ℓ−1(•)

)
.

In particular, PHk,ℓ(SX) and PHk−1,ℓ(X) are naturally isomorphic unless k = ℓ = 0 or
k = ℓ = 1, in which case they differ only by a single summand of R.

Note that the kernels appearing in the statement could be called reduced bigraded
path homology groups by analogy with algebraic topology. Since reduced groups do not
appear elsewhere in the paper, we restrain ourselves from defining these in general.

Proof. Recall from Example 6.3 the graph I given by −1→ 0← +1, and the graph CX
obtained from X�I by identifying X�{+1} to a single vertex +1. We showed that the
inclusion X →֒ CX that identifies X with the subgraph X�{−1} is a cofibration. Now
define a map CX → SX sending X�{0} to X, X�{+1} to +1, and X�{−1} to −1.
Then we have a pushout square

X •

CX SX

where the right-hand map includes the one-vertex graph as the subgraph with single
vertex −1. Excision gives an isomorphism

PH∗,∗(SX, •) ∼= PH∗,∗(CX,X).

Next, the map PHk,ℓ(SX)→ PHk,ℓ(SX, •) induces an isomorphism

ker
(
PHk,ℓ(SX)→ PHk,ℓ(•)

)
∼= PHk,ℓ(SX, •).

This is seen by using the map of pairs (SX, •) → (•, •) to compare the associated long
exact sequences. Finally, the connecting morphism PHk,ℓ(CX,X) → PHk−1,ℓ−1(X)
induces an isomorphism

PHk,ℓ(CX,X) ∼= ker
(
PHk−1,ℓ−1(X)→ PHk−1,ℓ(•)

)
,



BIGRADED PATH HOMOLOGY AND THE MPSS 27

as one sees using the fact that CX → • induces an isomorphism in path homology
thanks to 1-contractibility of CX. The three isomorphisms obtained in this paragraph
are natural in X and, combined, they complete the proof. �

Example 6.11 (A family of spheres). Denote the empty graph by ∅, and for each n ≥ 0
let Sn denote the (n+1)-fold suspension Sn+1∅. The directed graph Sn is then analogous
to an ‘n-sphere’. (Indeed, it is the face poset of the regular CW decomposition of the
topological n-sphere by hemispheres.) Here we depict, from left to right, S0, S1 and S2,
with the new vertices ±1 labelled in each case:

•
+1

•
-1

•

•
+1

•

•

-1

•

•

•

•

•+1

•-1

The bigraded path homology of S0 is concentrated in bidegree (0, 0), where it is given
by R ⊕ R, so that ker

(
PH∗,∗(S

0) → PH∗,∗(•)
)
is a single copy of R concentrated in

bidegree (0, 0). Applying Corollary 6.10 and inducting on n, one finds that, for n ≥ 0,
ker

(
PH∗,∗(S

n)→ PH∗,∗(•)
)
is a single copy of R concentrated in bidegree (n, n). It then

follows, for n > 0, that PHk,ℓ(S
n) = 0 when k 6= ℓ, while

PHk,k(S
n) ∼=

{
R if k = 0, n

0 otherwise.

That is, for every n ≥ 0, the bigraded path homology of Sn is concentrated on the
diagonal, where it consists of a copy of the singular homology of the topological n-sphere.

6.3. Proof of the excision theorem. We now embark on the proof of the excision
theorem, Theorem 6.5. Our proof owes a significant debt to the proof in Section 9 of [28],
and indeed Lemma 6.14 is closely related to Lemma 9.2 of [28]. However, the overall
structure of the proof here is essentially different from that one, in order to cope with
the fact that the map f : A→ Y appearing in our pushout square (15) is not necessarily
the inclusion of an induced subgraph.

The proof of Theorem 6.5 is rather intricate, so we offer a sketch here. The objective
is to prove that

Er∗,∗(X,A)→ Er∗,∗(X ∪A Y, Y )

is an isomorphism for all r ≥ 1. Since an isomorphism of chain complexes induces an
isomorphism on homology, it is sufficient to prove that this is an isomorphism when
r = 1, and this, by the definition of magnitude homology of a pair, is equivalent to
showing that the map

MC∗,∗(X)

MC∗,∗(A)
−→

MC∗,∗(X ∪A Y )

MC∗,∗(Y )
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is a quasi-isomorphism. The map X → X∪AY induces a map X \A→ (X∪AY )\Y that
is in fact an isomorphism of directed graphs. By the five-lemma it is therefore sufficient
to show that the map

MC∗,∗(X)

MC∗,∗(A) +MC∗,∗(X \ A)
−→

MC∗,∗(X ∪A Y )

MC∗,∗(Y ) +MC∗,∗((X ∪A Y ) \ Y )

is a quasi-isomorphism. In order to prove this, we equip the domain and codomain with
compatible filtrations

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fℓ−1 =
MC∗,∗(X)

MC∗,∗(A) +MC∗,∗(X \A)

and

0 = F ′
0 ⊆ F

′
1 ⊆ · · · ⊆ F

′
ℓ−1 =

MC∗,∗(X ∪A Y )

MC∗,∗(Y ) +MC∗,∗((X ∪A Y ) \ Y )
,

so that we are reduced to proving that the induced maps of filtration quotients

Fi/Fi−1 −→ F ′
i/F

′
i−1 (17)

are all quasi-isomorphisms. It turns out that each of these filtration quotients has a
decomposition as a direct sum of suspensions of more elementary complexes that we
denote

A∗,ℓ(−,−) and A′
∗,ℓ(−,−)

respectively. These complexes all have very simple homology that can be computed
directly. With that computation in hand, it is then possible to verify directly that (17)
is an isomorphism on homology, which completes the proof.

We now embark on the proof in detail.

Definition 6.12. Let A →֒ X be a cofibration, let ℓ ≥ 0, let x ∈ X \ A and let a ∈ A.
Define A∗,ℓ(a, x) to be the subcomplex of MC∗,ℓ(X) spanned by those tuples (x0, . . . , xk)
for which x0 = a, xk = x and x1, . . . , xk−1 ∈ A.

Lemma 6.13. Suppose we are in the situation of Definition 6.12, and that a = π(x) and
ℓ = d(a, x). Then the homology of A∗,ℓ(a, x) is a single copy of R in degree 1, generated
by the homology class of the tuple (π(x), x).

Proof. Any generator of Ak,ℓ(π(x), x) has form (π(x), x1, . . . , xk−1, x). The length of
such a tuple satisfies

d(π(x), x) = ℓ(π(x), x1, . . . , xk−1, x)

≥ d(π(x), xi) + d(xi, x)

= d(π(x), xi) + d(xi, π(x)) + d(π(x), x)

where the second line follows from the triangle inequality, and the third follows from the
second property of a cofibration, using the fact that xi ∈ A. It follows that d(π(x), xi) =
d(xi, π(x)) = 0, so that xi = π(x). This can only happen if k = 1, and the result
follows. �

Lemma 6.14. Suppose we are in the situation of Definition 6.12, and that at least one
of a = π(x) and ℓ = d(a, x) fails. Then A∗,ℓ(a, x) is acyclic.
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Proof. Define a map

s : A∗,ℓ(a, x) −→ A∗+1,l(a, x)

by

s(x0, . . . , xk) =

{
(−1)k(x0, . . . , xk−1, π(xk), xk) if xk−1 6= π(xk),

0 if xk−1 = π(xk).

We claim that s is a chain homotopy from the identity of A∗,ℓ(a, x) to the zero map, or
in other words that

∂ ◦ s+ s ◦ ∂ = Id. (18)

This immediately shows that the homology of A∗,ℓ(a, x) is trivial, and the result follows.
Equation (18) is equivalent to the claim that

k∑

i=1

(−1)i∂is(x0, . . . , xk) +
k−1∑

i=1

(−1)is∂i(x0, . . . , xk) = (x0, . . . , xk) (19)

for each generator (x0, . . . , xk) of A∗,ℓ(a, x).
To begin we consider the case k = 1. In this case the only possible generator is

(a, x), but this is only present when ℓ = d(a, x). So by our assumption that we do
not have both a = π(x) and ℓ = d(a, x), we must have a 6= π(x). Then (19) becomes
−∂1s(a, x) = (a, x), which follows from the definition of s.

For the remainder of the proof we consider the case k ≥ 2. We have ∂is = −s∂i for
1 ≤ i ≤ k − 2, since then ∂i affects only the first k − 1 terms of a tuple, while s affects,
and depends upon, only the remaining terms. So (19) reduces to the claim that:

(−1)k−1 ∂k−1s(x0, . . . , xk)

+(−1)k ∂k s(x0, . . . , xk)

+(−1)k−1 s∂k−1(x0, . . . , xk) = (x0, . . . , xk)

(20)

We now divide into the following cases:

• Assume that xk−1 = π(xk).
Here we see immediately that the first two terms of (20) vanish by the defini-

tion of s. For the third term, we have

(−1)k−1s∂k−1(x0, . . . , xk) = (−1)k−1s(x0, . . . , xk−2, xk)

= (x0, . . . , xk−2, π(xk), xk)

= (x0, . . . , xk)

as required. The first of these equations holds because d(xk−2, xk−1)+d(xk−1, xk) =
d(xk−2, xk) by the defining property of π(xk), and the second holds since xk−2 6=
xk−1 = π(xk).
• Assume that xk−1 6= π(xk) and d(xk−2, xk−1) + d(xk−1, xk) > d(xk−2, xk).

Applying the defining property of π(xk) to the assumed inequality, we find
that we also have d(xk−2, xk−1) + d(xk−1, π(xk)) > d(xk−2, π(xk)) so that we
have ∂k−1(x0, . . . , xk−1, π(xk), xk) = 0 and the first term of (20) vanishes. The
assumed inequality also shows that ∂k−1(x0, . . . , xk) = 0 so that the third term
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of (20) vanishes. It remains to show that the second term of (20) is (x0, . . . , xk).
Thanks to the assumption xk−1 6= π(xk) we have

(−1)k∂ks(x0, . . . , xk) = ∂k(x0, . . . , xk−1, π(xk), xk) = (x0, . . . , xk−1, xk)

as required.
• Assume that xk−1 6= π(xk) and d(xk−2, xk−1) + d(xk−1, xk) = d(xk−2, xk).

By applying the defining property of π(xk) to the assumed equation, we get
d(xk−2, xk−1)+d(xk−1, π(xk)) = d(xk−2, π(xk)), and in particular xk−2 6= π(xk).
The first term of (20) is given by:

(−1)k−1∂k−1s(x0, . . . , xk) = −∂k−1(x0, . . . , xk−1, π(xk), xk)

= −(x0, . . . , xk−2, π(xk), xk),

where the first equation used the assumption xk−1 6= π(xk), and the second
equation used the fact that d(xk−2, xk−1) + d(xk−1, π(xk)) = d(xk−2, π(xk)) and
xk−2 6= π(xk). The second term of (20) is

(−1)k∂ks(x0, . . . , xk) = ∂k(x0, . . . , xk−1, π(xk), xk)

= (x0, . . . , xk−1, xk),

where again in the first equation we used the assumption xk−1 6= π(xk), and in the
second equation we used the defining property of π(xk) to see that d(xk−1, π(xk))+
d(π(xk), xk) = d(xk−1, xk). The third term of (20) is

(−1)k−1s∂k−1(x0, . . . , xk) = (−1)k−1s(x0, . . . , xk−2, xk)

= (x0, . . . , xk−2, π(xk), xk)

where in the first equation we used the assumption that d(xk−2, xk−1)+d(xk−1, xk) =
d(xk−2, xk), and in the second we used the fact xk−2 6= π(xk). So altogether, the
left hand side of (20) is

−(x0, . . . , xk−2, π(xk), xk) + (x0, . . . , xk−1, xk),+(x0, . . . , xk−2, π(xk), xk)

which is precisely (x0, . . . , xk) as required.

In all three cases above, the equation (20) holds. This completes the proof. �

Now we take a cofibration A →֒ X and study the chain complex

MC∗,∗(X)

MC∗,∗(A) +MC∗,∗(X \ A)

This quotient has a basis consisting of the tuples (x0, . . . , xk) of vertices of X that have
finite length and that do not lie entirely in A or entirely in X \ A. Since A →֒ X is
a cofibration, there are no paths from vertices of X \ A into A, and so any such tuple
satisfies x0, . . . , xi ∈ A and xi+1, . . . , xk ∈ X \A for some i in the range 0 ≤ i < k.

Definition 6.15. Let A →֒ X be a cofibration and let ℓ ≥ 0. Define a filtration

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fℓ−1 =
MC∗,ℓ(X)

MC∗,ℓ(A) +MC∗,ℓ(X \ A)
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by setting Fi to be the span of all those tuples (x0, . . . , xk) for which x0, . . . , xk−i ∈ A.
In other words, the final i entries of a tuple in Fi are allowed to be outside A, but no
more.

To see that the Fi are closed under the boundary map, observe that deleting an entry
of a tuple either preserves or reduces the number of its entries that lie in X \ A. And
to see that Fℓ−1 does indeed exhaust our chain complex, observe that an arbitrary tuple
(x0, . . . , xk) has at least its final term in X \ A and therefore lies in Fk−1, but that we
always have k ≤ ℓ.

Lemma 6.16. There is an isomorphism

Fi/Fi−1
∼=
−−→

⊕

a,(z1,...,zi)

ΣiA∗,ℓ−ℓ′(a, z1)

where the direct sum is over all a ∈ A and all tuples (z1, . . . , zi) of elements of X \ A
with ℓ(z1, . . . , zi) ≤ ℓ, and ℓ

′ is shorthand for ℓ(z1, . . . , zi).

Proof. Since Fi and Fi−1 are spans of generators, with those for the latter being a subset
of those for the former, the quotient Fi/Fi−1 has basis consisting of all those generators
that lie in Fi but not Fi−1. These are precisely the tuples for which x0, . . . , xk−i lie in A
(so that the tuple is in Fi), while xk−i+1 and all subsequent entries of the tuple do not (so
that the tuple does not lie in Fi−1). So we may write an arbitrary generator of Fi/Fi−1

in the form (x0, . . . , xk−i, z1, . . . , zi) where x0, . . . , xk−i ∈ A and z1, . . . , zi ∈ X \ A.
The boundary map on Fi/Fi−1 is, as usual, given by the alternating sum of all ways of

removing an element from a tuple, ignoring any terms for which the length is decreased.
If, in a tuple (x0, . . . , xk−i, z1, . . . , zi), it is one of the xj that is removed, then we find
that we still have the first k − i− 1 = (k − 1)− i terms in A. On the other hand, if one
of the zj is removed, then in this new tuple the first k − i = (k − 1) − (i − 1) terms lie
in A, so that the tuple lies in Fi−1 and therefore vanishes in Fi/Fi−1. From this, we see
that the differential of Fi/Fi−1 is given by the alternating sum of all ways to delete one
of the xj from a tuple (x0, . . . , xk−i, z1, . . . , zi), omitting any terms where the length is
decreased.

The last two paragraphs now enable us to form the required isomorphism

Fi/Fi−1
∼=
−−→

⊕

a,(y1,...,yi)

ΣiA∗,ℓ−ℓ′(a, y1)

by sending (x0, . . . , xk−i, z1, . . . , zi) ∈ Fi/Fi−1 to the element (x0, . . . , xk−i, z1) in the
summand indexed by x0 and (z1, . . . , zi). The first paragraph shows that this is a
bijection on generators, and therefore an isomorphism of graded R-modules, while the
second paragraph shows that it respects the differentials on both sides. �

Suppose now that we are given a pushout diagram

A Y

X X ∪A Y

f

i j

g
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in which i, and consequently j, are cofibrations. Since the square commutes, g sends
A ⊆ X into Y ⊆ X∪AY . And since (by construction—see Lemma 1.10 of [9]) g identifies
X \A with (X ∪A Y ) \ Y ⊆ X ∪A Y , we have an induced map

MC∗,∗(X)

MC∗,∗(A) +MC∗,∗(X \A)
−→

MC∗,∗(X ∪A Y )

MC∗,∗(Y ) +MC∗,∗(X ∪A Y \ Y )
. (21)

Lemma 6.17. The map (21) is a quasi-isomorphism.

Proof. Let us fix some ℓ ≥ 0 and restrict to length ℓ—that is, fix the second grading to
be ℓ.

The domain and codomain of (21) both admit the filtration of Definition 6.15. For
clarity, we denote the filtration of the domain by {Fi} and that of the codomain by
{F ′

i}. Similarly, both A →֒ X and Y →֒ X ∪A Y admit the complexes A∗,ℓ(−,−)
of Definition 6.12. Again for clarity, we will write the the complexes associated with
Y →֒ X ∪A Y as A′

∗,ℓ(−,−).

By construction, the induced map (21) preserves the filtration, and thus induces maps
on filtration quotients

Fi/Fi−1 −→ F ′
i/F

′
i−1. (22)

Since both filtrations terminate after ℓ− 1 steps, to prove the lemma it will be sufficient
to prove that each map (22) is a quasi-isomorphism. The domain and codomain of (22)
both admit the isomorphism of Lemma 6.16, so that (22) becomes a map

⊕

a,(z1,...,zi)

ΣiA∗,ℓ−ℓ′(a, z1) −→
⊕

y,(z1,...,zi)

ΣiA′
∗,ℓ−ℓ′(y, z1). (23)

It is straightforward to see—since the map g : X → X∪AY identifies X \A with X∪AY \
Y—that this map now sends the summand corresponding to a and (z1, . . . , zi) to precisely
the summand corresponding to f(a) and (z1, . . . , zi), and that on this summand it is given
by the evident induced map A∗,ℓ(a, z1)→ A′

∗,ℓ(f(a), z1). Lemma 6.14 shows that the only

summands that do not have vanishing homology are those of the form A∗,d(π(x),x)(π(x), x)
and A′

∗,d(f(π(x),x)(f(π(x)), x), and Lemma 6.13 shows that in these cases the induced map

A∗,d(π(x),x)(π(x), x)→ A′
∗,d(f(π(x)),x(π(x), x) is a quasi-isomorphism. This is sufficient to

complete the proof. �

Proof of Theorem 6.5. We wish to prove that the maps Er∗,∗(X,A) → Er∗,∗(X ∪A Y, Y )
are isomorphisms for r ≥ 1. These maps are induced by a map of filtered complexes, and
so it is enough to show that there is a quasi-isomorphism between the E0-pages, or in
other words that the map MC∗,∗(X,A)→ MC∗,∗(X∪AY, Y ) is a quasi-isomorphism. The
domain and codomain contain within them a copy of MC∗,∗(X\A) and MC∗,∗(X∪AY \Y )
respectively, and these subcomplexes are identified by the map in question. It is therefore
sufficient to prove that the map of quotients

MC∗,∗(X,A)

MC∗,∗(X \A)
−→

MC∗,∗(X ∪A Y, Y )

MC∗,∗(X ∪A Y \ Y )

is a quasi-isomorphism. But this map is precisely (21), which is a quasi-isomorphism by
Lemma 6.17. This completes the proof. �
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7. A cofibration category of directed graphs

In the drive to develop the formal homotopy theory of directed graphs, results so
far have mainly been negative: for various natural notions of weak equivalence, it is
known that no model structure can exist [20, 19, 10]. There has, however, been one
positive result. Carranza et al [9] exhibit a cofibration category structure on DiGraph

for which the weak equivalences are maps inducing isomorphisms on path homology.
A cofibration category structure is, roughly speaking, ‘one half’ of a model category
structure: it comprises a class of weak equivalences and a class of cofibrations, satisfying
axioms that enable the construction of homotopy colimits (but not homotopy limits).
This type of structure was first introduced in its dual form (then known as a category of
fibrant objects) by Brown in 1973 [8]; for a classical account, see Baues’ book [6]. Various
definitions of cofibration categories can now be found in the literature—we adopt the
one used in [9].

Definition 7.1 (Definition 1.33 in [9]). A cofibration category is a category C together
with two distinguished classes of morphisms, the class of weak equivalences and the
class of cofibrations, which satisfy axioms (C1)–(C6) below. An acyclic cofibration is a
morphism that is both a cofibration and a weak equivalence.

(C1) The class of cofibrations and the class of weak equivalences are each closed under
composition, and for every object X in C, the identity morphism IdX is an acyclic
cofibration.

(C2) The class of weak equivalences satisfies the 2-out-of-6 property : given a triple of
composable morphisms f : X → Y , g : Y → Z and h : Z → W , if g ◦ f and h ◦ g
are weak equivalences, then so are f, g, h and h ◦ g ◦ f .

(C3) The category C admits an initial object ∅, and every object X in C is cofibrant,
meaning that the unique morphism from the initial object to X is a cofibration.

(C4) The category C admits pushouts along cofibrations, and the pushout of an
(acyclic) cofibration is an (acyclic) cofibration.

(C5) For every object X in C, the codiagonal map X ⊔X → X can be factored as a
cofibration followed by a weak equivalence.

(C6) The category C admits all small coproducts.
(C7) The transfinite composite of (acyclic) cofibrations is again an (acyclic) cofibra-

tion.

Axioms (C1)–(C6) imply that the cofibrations and weak equivalences in a cofibration
category C satisfy various properties one would expect to hold in a model category. In
particular, every morphism in C can be factored as a cofibration followed by a weak
equivalence [8, p. 421], and the pushout of a weak equivalence along a cofibration is a
weak equivalence [8, Lemma I.4.2]. For further discussion of the definition, we refer the
reader to Section 1 of [9].

Theorem 4.1 in [9] says thatDiGraph carries a cofibration category structure in which
the cofibrations are those of Definition 6.2 and the weak equivalences are maps inducing
isomorphisms on path homology. Equipped with the results of the previous sections, we
will prove that that structure has a refinement, in which the weak equivalences are maps
inducing isomorphisms on bigraded path homology.
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Theorem 7.2 (A cofibration category for bigraded path homology). Fix a ground ring R
which is a P.I.D. The category DiGraph admits a cofibration category structure in which
the cofibrations are those in Definition 6.2 and the weak equivalences are morphisms
inducing isomorphisms on bigraded path homology.

Before proving the theorem, we record a remark, an example, and two auxiliary state-
ments that will be required for the proof.

Remark 7.3. The maps that induce isomorphisms on bigraded path homology are
strictly finer than those that induce isomorphisms on ordinary path homology, as the
examples of Section 8 demonstrate. Consider the directed cycles Zm, for m ≥ 3
(see Figure 1). Theorem 8.2 shows that for each i ≥ 0 there is exactly one j ≥ 0
for which PHi,j(Zm) is nonzero, and the first three cases are PH0,0(Zm), PH1,1(Zm) and
PH2,m(Zm). The first two of these are precisely the (ordinary) path homology groups
PH0(Zm) and PH1(Zm), and are the only nonzero path homology groups. On the other
hand, the third, PH2,m(Zm), is not an ordinary path homology group at all. Now take
n > m ≥ 3 and consider any map

Zn −→ Zm

that contracts precisely n−m edges. This does not induce an isomorphism of bigraded
path homology groups, because PH2,m(Zn) vanishes while PH2,m(Zm) does not. On the
other hand, it does induce an isomorphism on ordinary path homology groups. (The
latter can be seen by direct computation. Tracking through the proof of Theorem 8.12
shows that PH0,0(Zm) is a single copy of R represented by the reachability chain (v)
for any vertex v ∈ V (Zm), while PH1,1(Zm) is again a single copy of R represented by
the reachability chain

∑
(a,b)∈E(Zm)(a, b), and similarly for Zn. These representatives are

preserved by the map Zn → Zm.)

The proof of Theorem 7.2 follows the structure of the proof of Theorem 4.1 in [9]
closely, and makes use of several facts established in that paper. It also depends on
the Künneth theorem and the excision theorem for bigraded path homology proved in
Sections 5 and 6 of this paper, and on the fact that bigraded path homology is a finitary
functor on the category of directed graphs: it preserves filtered colimits.

Proposition 7.4. Fix a commutative ground ring R. For each r ≥ 1 and every p, q ∈ Z,
the functor Erpq(−) : DiGraph → ModR preserves filtered colimits. In particular this
holds for magnitude homology and bigraded path homology.

Proposition 7.4 is proved as Proposition 1.14 in [15]; for the interested reader, we give
an alternative and more detailed proof in Appendix A. Before proceeding to the proof
of Theorem 7.2, let us consider an application of the Proposition.

Example 7.5 (An infinite sphere). Recall from Example 6.11 the ‘sphere’-like directed
graphs Sn. By construction, each Sn is the suspension of Sn−1; in particular, Sn−1

includes into Sn, for each n > 0. This sequence of inclusions gives a filtered diagram

S0 → S1 → S2 → · · · (24)

in DiGraph, whose colimit we denote by

S∞ = colimNS
n.
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We can apply Proposition 7.4 to see that the bigraded path homology of S∞ is

PHk,ℓ(S
∞) =

{
R if k = ℓ = 0

0 otherwise,

analogous to the vanishing in positive dimensions of the singular homology of the infinite
topological sphere.

Indeed, we saw in Example 6.11 that the bigraded path homology of Sn consists of
two copies of R, one in bidegree (0, 0) and a second in bidegree (n, n). Thus PH0,0(S

n)
is a copy of R for all n ≥ 1, and the maps Sn−1 → Sn induce the identity on this, so that
we obtain PH0,0(colimNS

n) = colimNPH0,0(S
n) = R. And in any other bidegree (i, j)

there is at most one value of n for which PHi,j(S
n) is nonzero, so that the induced maps

PHi,j(S
n−1)→ PHi,j(S

n) all vanish, and PHi,j(colimNS
n) = colimNPHi,j(colimnS

n) = 0.

We require one more lemma. To state it, we recall that a directed graph G is called
diagonal if MHkℓ(G) = 0 whenever k 6= ℓ. (This definition was first made for undirected
graphs in [28], and is used in the context of directed graphs in [3], for instance.) Observe
that the terminal directed graph • is also the unit object for the box product: for every
directed graph H, we have •�H ∼= H ∼= H�•.

Lemma 7.6. Fix a ground ring R which is a P.I.D. Suppose G is 1-contractible and
diagonal. Let t : G → • denote the terminal map. Then, for any directed graph H, the
map of graphs t�Id: G�H → H induces an isomorphism on bigraded path homology.

Proof. By Lemma 5.3, the assumption that G is diagonal implies that its magnitude ho-
mology is free. We can therefore apply the Künneth theorem for bigraded path homology
(Theorem 5.5) to get, for every H, a short exact sequence involving PH(G) ⊗ PH(H)
and PH(G�H) and a Tor term. The assumption that G is 1-contractible implies
that its bigraded path homology is concentrated in bidegree (0, 0), where it is a sin-
gle copy of the ground ring R. Thus, the Tor term vanishes, leaving the isomorphism

α : PH(G) ⊗ PH(H)
∼=
−→ PH(G�H). The naturality of that isomorphism tells us that

this square commutes:

PH(G) ⊗ PH(H) PH(G�H)

I ⊗ PH(H) PH(H)

∼=

PH(t)⊗PH(Id) PH(t�Id)

∼=

where I = PH(•) is is the bigraded module given by a single copy of R in bidegree (0, 0).
Since the left leg is an isomorphism, the right leg is an isomorphism too. �

Proof of Theorem 7.2. First, recall that DiGraph is cocomplete. So axiom (C6) cer-
tainly holds, and in particular DiGraph admits an initial object (the empty graph) and
pushouts along cofibrations.

That the class of cofibrations is closed under composition and contains all identities
is proved as Proposition 2.10 in [9]; the corresponding fact for weak equivalences follows
immediately from the functoriality of bigraded path homology. This establishes axiom
(C1). Axiom (C2) is immediate from the corresponding fact for isomorphisms and the
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functoriality of bigraded path homology. Axiom (C3)—that all directed graphs are
cofibrant—follows immediately from the definitions.

For axiom (C4), consider a pushout diagram

A Y

X X ∪A Y

f

i j

g

in which i is a cofibration. Then j is also a cofibration, by Proposition 2.13 in [9].
In particular, our Theorem 3.3 applies to both (X,A) and (X ∪A Y, Y ), giving a long
exact sequence on bigraded path homology in both cases. If i is an acyclic cofibration,
so PH∗,∗(A) ∼= PH∗,∗(X), then the long exact sequence of the pair (X,A) tells us the
relative homology PH∗,∗(X,A) vanishes. The excision theorem (Theorem 6.5) says that
PH∗,∗(X ∪A Y,X) ∼= PH∗,∗(X,A) = 0 and it follows, by considering the long exact
sequence of the pair (X ∪A Y, Y ), that PH∗,∗(X ∪A Y ) ∼= PH∗,∗(Y ). This establishes
(C4).

To prove that axiom (C5) holds, let J denote the directed graph

−2 −1 0 1 2
• • • • •

and let ∂J denote the subgraph consisting of just the vertices labelled -2 and 2. Then the
inclusion ι : ∂J → J is a cofibration, and, for every X, the codiagonal map X ⊔X → X
factors as

X ⊔X = ∂J�X
ι�IdX−−−−→ J�X

t�IdX−−−−→ •�X = X (25)

where t is the terminal map. The first morphism here is a cofibration by Proposition
2.12 in [9], which says that the box product of cofibrations is a cofibration. To see that
the second morphism is a weak equivalence, observe that J is both 1-contractible and
diagonal. (Since it contains no paths of length greater than 1, its magnitude chains are
concentrated in bidegrees (0, 0) and (1, 1).) It follows from Lemma 7.6, then, that t�IdX
is a weak equivalence. This establishes (C5).

That the transfinite composite of cofibrations is again a cofibration is proved as Propo-
sition 2.16 in [9]; that the transfinite composite of weak equivalences is a weak equiva-
lence follows from Proposition 7.4 together with the fact that a transfinite composite of
isomorphisms is an isomorphism. This establishes (C7). �

8. Directed cycles

In this section we will explore in detail the magnitude-path spectral sequence of the di-
rected cycles. These examples, together with those in Section 9, will clearly demonstrate
the strength of the bigraded theory.

Definition 8.1. For m ≥ 1, let Zm denote the directed cycle of length m, i.e. a graph
with m cyclically ordered vertices, and with a single directed edge between adjacent
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vertices, consistently oriented:

•
Z1

•• Z2 •

•

•

Z3 •

•

•

•

Z4 •

•
•

•
•

Z5

Observe that each Zm has diameterm−1, so that all Zm are long homotopy equivalent
to one another and to the singleton, and in particular they all have trivial reachability
homology. In contrast, when we consider 1-homotopy, it is not difficult to see that for
m ≥ 2 no two of the Zm are 1-homotopy equivalent (whenm < n the only maps Zm → Zn
are constant, and for n > 2 the constant maps Zn → Zn are only 1-homotopic to other
constant maps). Nevertheless, for m ≥ 3 the Zm all have the same path homology,
namely a single copy of R in degrees 0 and 1. So path homology cannot distinguish
the different oriented cycles. In contrast, we will see that bigraded path homology can
distinguish all except for Z1 and Z2.

Theorem 8.2 (Magnitude homology, bigraded path homology, and MPSS of directed
cycles). Let m ≥ 3. Then the magnitude homology MH∗,∗(Zm) and bigraded path homol-
ogy PH∗,∗(Zm) are both concentrated in bidegrees of the form (2i,mi) and (2i+1,mi+1),
in each of which they are free of rank m and rank 1 respectively. Moreover, the MPSS of
Zm satisfies E2(Zm) = · · · = Em−1(Zm) while Em(Zm) is trivial, consisting of a single
copy of R in bidegree (0, 0).

In the case m = 1 the magnitude and bigraded path homology of Z1 are both trivial,
consisting of a single copy of R in bidegree (0, 0). In the case m = 2 the description
of the magnitude homology given in the theorem remains true, while the bigraded path
homology becomes trivial.

Corollary 8.3. The Er-page of the MPSS distinguishes all of the directed cycles Zm for
m ≥ r, and is trivial for m ≤ r. In particular, bigraded path homology distinguishes all
the directed cycles Zm for m ≥ 2.

Let us describe the MPSS of Zm and preview the work of the rest of the section; we
assume m ≥ 3 for simplicity. In Theorem 8.11 we will see that the magnitude homology
of Zm vanishes except for copies of Rm that occur in pairs, one in each total degree
of the spectral sequence, each pair being connected by the differential d1, as depicted
in Figure 5. This result is based on Theorem 8.6, which computes the homology of an
auxiliary chain complex, which we call the complex of partitions with upper bound. The
magnitude homology of Zm is then a direct sum of copies of the homology groups of
these complexes of partitions.

Returning to the E1 term, we will see in Theorem 8.12 that by computing the differ-
entials d1, it follows that the E2-term—or in other words, the bigraded path homology—
has the form depicted in Figure 6. The nonzero groups here lie in bidegrees of the form
(im,−i(m − 2)) and (im + 1,−i(m − 2)), and in particular these bidegrees mean that
the bigraded path homology of Zm determines m for m ≥ 3. Finally, the position of the
nonzero terms means that the only subsequent differential can be in the (m− 1)-page of
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Rm Rm

Rm Rm

Rm Rm

d1

d1

d1

0 1 m m+1 2m 2m+1

0

−(m−2)

−2(m−2)

E1
∗,∗(Zm)

Figure 5. The magnitude homology of the directed m-cycle.

R R

R R

R R

dm−1

dm−1

0 1 m m+1 2m 2m+1

0

−(m−2)

−2(m−2)

E2
∗,∗(Zm) = Em−1

∗,∗ (Zm)

Figure 6. The bigraded path homology of the directed m-cycle.

the spectral sequence. Since we know that the homology of the reachability complex is
trivial, the same must be true of the term Em = E∞, so that each dm−1 depicted must
be an isomorphism.

8.1. The complex of ordered partitions with upper bound.

Definition 8.4. Let ℓ ∈ Z. An ordered partition of ℓ is an ordered tuple (a1, . . . , ak) of
k ≥ 0 positive integers ai for which a1 + · · ·+ ak = ℓ.

In the last definition, observe that there is a unique ordered partition of ℓ = 0, namely
the empty tuple (), but that any ordered partition of ℓ > 0 must have k > 0 entries.
Note also that the definition admits the cases ℓ < 0, but that in these cases there are
no ordered partitions. (This apparently pointless decision will be useful in formulating
a later lemma.)
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Definition 8.5. Given ℓ,m ∈ Z with m ≥ 2, we let OP∗(ℓ,m) be the chain complex
of R-modules defined as follows. In degree k, OPk(ℓ,m) has basis given by the ordered
partitions (a1, . . . , ak) of ℓ such that ai < m for all i. The differential d vanishes for
k ≤ 1, and is given in degrees k ≥ 2 by summing adjacent entries,

d(a1, . . . , ak) =
k−1∑

i=1

(−1)i(a1, . . . , ai + ai+1, . . . , ak),

and omitting any terms in which the summed entry fails the requirement ai+ai+1 < m.

In the last definition, note that OP∗(ℓ,m) is defined—and vanishes—for ℓ ≤ −1, while
OP∗(0,m) has a single basis element () ∈ OP0(0,m), and OP∗(1,m) has the single basis
element (1) ∈ OP1(1,m).

We will see later that the magnitude homology of a directed cycle of size m has a
description in terms of the homology of the complexes OP∗(ℓ,m). Our aim now is to
compute that homology.

Theorem 8.6. Let ℓ,m, k ∈ Z with m ≥ 2 and k ≥ 0. Then Hk(OP(ℓ,m)) = 0, except
in the following cases.

• Let i ≥ 0. Then H2i(OP(mi,m)) is a copy of R generated by the element

[(1,m − 1, . . . , 1,m− 1)] = [(m− 1, 1, . . . ,m− 1, 1)],

where each tuple has 2i entries.
• Let i ≥ 0. Then H2i+1(OP(mi+ 1,m)) is a copy of R generated by the element

[(1,m− 1, . . . , 1,m − 1, 1)],

where the tuple has 2i+ 1 entries.

This theorem will be used as a black box in our computation of the magnitude homol-
ogy of the directed m-cycle. The remainder of this subsection is dedicated to the proof
of the theorem, which the reader might therefore wish to skip.

We will see that, modulo a degree shift of 2, H∗(OP(ℓ,m)) is in fact periodic in ℓ with
period m. This will allow us to prove the theorem by induction. We begin with the base
cases.

Lemma 8.7. For ℓ ≤ 1, the homology of OP∗(ℓ,m) is as follows:

• For ℓ < 0, H∗(OP(ℓ,m)) vanishes.
• For ℓ = 0, H∗(OP(ℓ,m)) is a single copy of R concentrated in degree 0, generated
by the class of the empty word ().
• For ℓ = 1, H∗(OP(ℓ,m)) is a single copy of R concentrated in degree 1, generated
by the class of the word (1).

Proof. These claims are immediate: OP∗(ℓ,m) vanishes for ℓ < 0, while each of OP∗(0,m)
and OP∗(1,m) has a single basis element, namely () and (1) respectively. �

Definition 8.8. Let ℓ ≥ 2 and m ≥ 2, and define a chain map φ : OP∗−2(ℓ −m,m) →
OP∗(ℓ,m) by

φ(a1, . . . , ak) = (1,m− 1, a1, . . . , ak).

It is straightforward to check that this is a chain map, thanks to the fact that 1+(m−1) ≥
m and (m− 1) + a1 ≥ m.
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Lemma 8.9. Let ℓ,m ≥ 2. Then φ : OP∗−2(ℓ−m,m)→ OP∗(ℓ,m) is a quasi-isomorphism.

Note that we include the cases 2 ≤ ℓ ≤ m, where the lemma tells us that OP∗(ℓ,m)
is acyclic.

Proof. Since φ is injective, it will suffice to show that its cokernel, which we denote by
C∗, is acyclic. Observe that Ck has basis given by the basis elements (a1, . . . , ak) of
OPk(ℓ,m) for which either a1 > 1, or a1 = 1 and a2 < m − 1. To prove that C∗ is
acyclic, we use the map s : C∗ → C∗+1 defined on basis elements as follows.

s(a1, . . . , ak) =

{
0 if a1 = 1

−(1, a1 − 1, a2, . . . , ak) if a1 > 1

We will show that s is a chain contraction, i.e. that sd+ ds is the identity map, and this
will complete the proof. Let us therefore fix a basis element (a1, . . . , ak) and show that
(sd+ ds)(a1, . . . , ak) = (a1, . . . , ak). We will do this in three separate cases, as follows.

Case 1. We begin with the case k = 1, so that the only possible basis element of C1

is (ℓ). (Even this element will not be present when ℓ ≥ m.) Then sd(ℓ) = s(0) = 0
and ds(ℓ) = −d(1, ℓ − 1) = (ℓ), so that (sd + ds)(ℓ) = (ℓ) as required. (Note that the
restriction to ℓ ≥ 2 was necessary since case 1 fails when ℓ = 1.)

Case 2. Let us assume now that k > 1, that a1 = 1 and that a2 < m − 1. Then
ds(a1, . . . , ak) = 0, while

sd(a1, . . . , ak) =
k−1∑

i=1

(−1)is(a1, . . . , ai + ai+1, . . . , ak)

= −s(a1 + a2, a3, . . . , ak)

= (a1, . . . , ak).

In the first line, the i-th term of the sum is omitted if ai + ai+1 ≥ m. This omission
only happens for i > 1, and in these cases the resulting partition has initial entry a1 = 1
and therefore vanishes under s, giving us the second line, and the third then follows
immediately since a1 + a2 > 1. Thus in this case sd + ds sends (a1, . . . , ak) to itself as
required.

Case 3. Let (a1, . . . , ak) be a basis element of Ck, and assume that 1 < a1 ≤ m− 1.
Then

sd(a1, . . . , ak) =
k−1∑

i=1

(−1)is(a1, . . . , ai + ai+1, . . . , ak)

= −s(a1 + a2, a3, . . . , ak) +

k−1∑

i=2

(−1)is(a1, . . . , ai + ai+1, . . . , ak)

= (1, a1 + a2 − 1, a3, . . . , ak) +

k−1∑

i=2

(−1)i+1(1, a1 − 1, . . . , ai + ai+1, . . . , ak)
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where the first term is omitted if a1 + a2 ≥ m, and the i-th term of each sum is omitted
if ai + ai+1 ≥ m. And

ds(a1, . . . , ak) = −d(1, a1 − 1, a2, . . . , ak)

= (a1, . . . , ak)− (1, a1 + a2 − 1, a3, . . . , ak)

+
k−1∑

i=2

(−1)i(1, a1 − 1, . . . , ai + ai+1, . . . , ak)

where the second term is omitted if a1 + a2 − 1 ≥ m, and the i-th term of the sum is
omitted if ai + ai+1 ≥ m. Thus when we compute (sd+ ds)(a1, . . . , ak) we find that the
sums cancel out, the question of which of their terms are omitted being the same in each
case, and that (a1, . . . , ak) always remains. Thus (sd + ds)(a1, . . . , ak) = (a1, . . . , ak)
will hold so long as we can show that the two potential terms (1, a1 + a2 − 1, a3, . . . , ak)
contribute 0 overall, the question being exactly when each one is omitted. If a1 + a2 ≥
m+1 then both of these terms are omitted; if a1+a2 ≤ m−1 then both are present and
cancel out; and if a1 + a2 = m then one is present and the other is not. But in this last
case we in fact have (1, a1+a2−1, a3, . . . , ak) = (1,m−1, a3, . . . , ak) = 0 because we work
in the cokernel of φ. This completes the proof that (ds + sd)(a1, . . . , ak) = (a1, . . . , ak)
in this case. �

Proof of Theorem 8.6. The two cycles listed in the first bullet point are homologous.
Indeed, let us define c ∈ OP2i+1(mi,m) to be the sum

c =

i∑

j=1

(1,m− 1, . . . , 1,m− 2, 1, . . . ,m− 1, 1),

where each tuple has 2i + 1 entries, and m− 2 appears in position 2j in the j-th term.
Then

dc = (1,m − 1, . . . , 1,m− 1)− (m− 1, 1, . . . ,m− 1, 1)

where now each tuple has 2i entries.
For ℓ ≤ 1 the theorem follows from Lemma 8.7, while for ℓ ≥ 2 we may repeatedly

apply Lemma 8.9 to one of the cases from Lemma 8.7 to obtain the result, including the
description of the generators. �

8.2. The magnitude homology of Zm. If x is a vertex of Zm, then we write x+ for
the next vertex in the cyclic order, and x− for the previous vertex. In other words, x±

are characterised by the existence of edges x− → x→ x+.

Definition 8.10. We define two families of classes in the magnitude homology of Zm
as follows.

• Given x ∈ V (Zm) and i ≥ 0, define κix ∈ MH2i,mi(Zm) by

κix = [(x, x+, . . . , x, x+, x)] = [(x, x−, . . . , x, x−, x)],

where the tuple has a total of 2i+ 1 entries.
• Given e ∈ E(Zm) and i ≥ 0, define λie ∈ MH2i+1,mi+1(Zm) by

λie = [(x, x+, . . . , x, x+)],

where e = xx+ and the tuple has a total of 2i+ 2 entries.
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In the spectral sequence grading, these classes lie in positions

κix ∈ E
1
mi,(2−m)i(Zm) and λie ∈ E

1
mi+1,(2−m)i(Zm).

Theorem 8.11. Let m ≥ 2. The magnitude homology MH∗,∗(Zm) is the free R-module
with basis given by the elements κix and λie for i ≥ 0, x ∈ V (Zm) and e ∈ E(Zm). In
particular, it is free of rank m in bidegrees of the form (2i,mi) and (2i+1,mi+1), and
it is zero in all other bidegrees.

Proof. Observe that if we fix a vertex x ∈ V (Zm) and a length ℓ ≥ 0, then the tuples
of the form (x0, . . . , xk), where x0 = x, k ≥ 0 and ℓ(x0, . . . , xk) = ℓ, span a subcomplex
MC∗(x, ℓ) of MC∗,ℓ(Zm). Moreover, observe that MC∗,ℓ(Zm) is the direct sum of the
MC∗(x, ℓ) for x ∈ V (Zm).

There is an isomorphism of chain complexes

MC∗(x, ℓ)
∼=
−−→ OP∗(ℓ,m)

defined by
(x, x1, . . . , xk) 7−→ (d(x, x1), d(x1, x2), . . . , d(xk−1, xk)).

That this is an isomorphism of R-modules follows immediately from the fact that, given
x ∈ V (Zm) and a ∈ {1, . . . ,m − 1}, there is a unique vertex y 6= x with d(x, y) = a.
That it is a chain map follows from the fact that, given x, y, z ∈ V (Zm), we have
d(x, y) + d(y, z) = d(x, z) if and only if d(x, y) + d(y, z) < m.

The isomorphism above identifies the elements

(x, x+, . . . , x, x+, x), (x, x−, . . . , x, x−, x) ∈ MC2i(x,mi)

with the elements

(1,m− 1, . . . , 1,m− 1), (m − 1, 1, . . . ,m− 1, 1) ∈ OP2i(mi),

and identifies the element

(x, x+, . . . , x, x+) ∈ MC2i+1(x,mi+ 1)

with
(1,m − 1, . . . ,m− 1, 1) ∈ OP2i+1(mi+ 1).

The theorem now follows directly from Theorem 8.6. �

8.3. Bigraded path homology.

Theorem 8.12. Let m ≥ 3. The bigraded path homology of Zm is the free R-module
with basis given by classes α2i, β2i+1 for all i ≥ 0, where

α2i ∈ E2
mi,−(m−2)i(Zm), β2i+1 ∈ E2

mi+1,−(m−2)i(Zm)

or equivalently

α2i ∈ PH2i,mi(Zm), β2i+1 ∈ PH2i+1,mi+1(Zm).

In particular, PH∗,∗(Zm) is free of rank 1 in bidegrees of form (2i,mi) and (2i+1,mi+1)
for i ≥ 0, and vanishes in all other bidegrees.

Lemma 8.13. Let m ≥ 3. If e = xy ∈ E(Zm), then d
1(λie) = κiy−κ

i
x. And if x ∈ V (Zm)

then d1(κix) = 0.



BIGRADED PATH HOMOLOGY AND THE MPSS 43

Proof. We have y = x+, so that

λie = [(x, x+, . . . , x, x+)] ∈ MH2i+1,mi+1(Zm)

and consequently

d1(λie) = [d(x, x+, . . . , x, x+)] ∈ MH2i,mi(Zm).

Here d(x, x+, . . . , x, x+) ∈ MC2i,mi(Zm) is the alternating sum of the tuples obtained by
omitting terms from (x, x+, . . . , x, x+). When we delete anything other than the first or
last term, we obtain a tuple with repeated consecutive entries, which therefore vanishes
in the magnitude chain group. Thus

d(x, x+, . . . , x, x+) = (x+, x, . . . , x, x+)− (x, x+, . . . , x+, x)

= (y, y−, . . . , y, y−)− (x, x+, . . . , x+, x)

so that, taking classes in MH2i,mi(Zm), we find d1(λie) = κiy − κ
i
x as required. Finally,

d1(κix) = 0 because it lies in a bidegree where magnitude homology vanishes. �

Proof of Theorem 8.12. Lemma 8.13 shows that the homology of E1
∗,∗(Zm) with respect

to d1 is freely spanned over R by the following homology classes, for each i ≥ 0:

(1) [κ2ix ] for any chosen vertex x of Zm. A different choice of vertex defines the same
homology class.

(2)
[∑

e∈E(Zm) λ
2i+1
e

]
.

We may now define α2i and β2i+1 to be the elements of E2
∗,∗(Zm) corresponding to these

classes under the isomorphism H(E1
∗,∗(Zm))

∼= E2
∗,∗(Zm). �

9. Bi-directed cycles

In this section we determine the magnitude-path spectral sequence for the bi-directed
cycles. Again, we find that the bigraded path homology contains strictly more informa-
tion than the path homology itself, but that in contrast with the case of oriented cycles,
it is not sufficient to determine graphs of this class up to isomorphism.

Definition 9.1. Let m and n be integers with m,n ≥ 1. The bi-directed cycle or
(m,n)-cycle Cm,n is obtained by taking directed intervals of length m and n, and then
identifying their initial points to a single point, and their final points to a single point.
Put differently, it is obtained from an unoriented m + n cycle by orienting a set of m
contiguous edges in one direction, and the remaining n edges in the opposite direction.
We often think of Cm,n as having its two intervals oriented from left to right, with the
interval of length m across the top, and the one of length n across the bottom, as follows:

• •

•

C2,1

• •

•

•

C2,2 • •

•
•

•

• •

C4,3
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Observe that Cm,n has both an initial and a terminal vertex; in our diagrams these are
the ones at the left and right respectively. Moreover, Cm,n has diameter m − 1 where
m = max(m,n).

Throughout the section we will use the letter m to denote max(m,n). The following
result tells us that the homological behaviour of Cm,n is largely determined by m alone.

Proposition 9.2. The bigraded path homology of Cm,n depends only on m = max(m,n).
More precisely, choose the shorter of the two directed intervals of Cm,n (or either one if
m = n), and contract all of its edges except the last, to obtain a map Cm,n → Cm,1. This
map is an isomorphism on bigraded path homology.

This proposition will be used to reduce our task to computing the MPSS for the
graphs Cm,1. Although it is possible to compute the MPSS for all Cm,n directly, that is
significantly more onerous, and in particular requires the tedious separation of the cases
m = n and m 6= n.

Theorem 9.3 (Bigraded path homology and MPSS of bi-directed cycles). Let m,n ≥
1 and assume further that m = max(m,n) ≥ 3. Then the bigraded path homology
PH∗,∗(Cm,n) is concentrated in bidegrees (0, 0), (1, 0) and (m,−(m−2)), in each of which
it is free of rank 1. Moreover, the MPSS of Cm,n satisfies E2(Cm,n) = · · · = Em−1(Cm,n)
while Em(Cm,n) is trivial, consisting of a single copy of R in bidegree (0, 0). If m = 1, 2
then the bigraded path homology is concentrated in bidegree (0, 0), where it is free of rank
1.

Corollary 9.4. The MPSS of Cm,n depends only on the value of m = max(m,n). The
Er-page of the MPSS of Cm,n determines m for m ≥ r, and is trivial for m ≤ r. In
particular, bigraded path homology determines the value of m for m ≥ 2.

In this section we will describe the MPSS for Cm,n from the E2-term onwards. In the
case m = 2, the bigraded path homology of Cm,n is trivial, consisting of a single copy of
R in degree (0, 0). For m ≥ 3, the bigraded path homology for Cm,n is given as follows:

R R

R

0 1 m

0

−(m−2)

dm−1

E2
∗,∗(Cm,n)

The MPSS is then determined by the value of the lone remaining differential, which
is dm−1 as shown. Since Cm,n has both initial and terminal vertices, its reachability
homology is trivial, and therefore E∞ vanishes in positive total degrees. Thus in Em−1,
the terms in degrees (1, 0) and (m,−(m − 2)) cannot survive, and dm−1 must therefore
be an isomorphism. (The apparent separation between the cases m = 2 and m ≥ 3 arises
because, when m = 2, the dm−1 differential takes place on the E1 page.) Thus, we see
that E2

∗,∗(Cm,n) determines the value of m via the placement of its nonzero groups. The
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MPSS of Cm,n also determines m as the first page that is trivial, i.e. concentrated in
degree (0, 0).

We now move to the proof of Proposition 9.2. We now assume without loss that
m ≥ n so that m = m. Let us write Am,n for the subgraph of Cm,n consisting of the first
n − 1 edges of the directed interval of length n, which in our diagrams we think of as
going across the bottom. To make it easier to visualise the arguments to come, it can
help to redraw Cm,n and Am,n in the following manner.

•

•• • •

• •

C4,3

A4,3

Lemma 9.5. Let m,n ≥ 1 with m ≥ n and m ≥ 2. Then the inclusion Am,n →֒ Cm,n
is a cofibration.

Proof. There are certainly no edges into Am,n from vertices not in Am,n, and so the first
condition of a cofibration holds. Observe that the reach of Am,n is then the whole of
Cm,n, since the initial vertex of Am,n can reach every other. We may now define π as
follows:

• Each vertex of Am,n is sent to itself.
• The terminal vertex of Cm,n is sent to the terminal vertex of Am,n.
• The remaining vertices of Cm,n are sent to the initial vertex of Am,n.

Observe that in all cases there is a path from π(x) to x. For example, in the case of C4,3

the map π identifies all vertices of the same colour in this diagram:

•

•• • •

• •

With respect to the given map π, we may now verify the second condition of a cofi-
bration, namely that

d(a, x) = d(a, π(x)) + d(π(x), x)

for x ∈ Cm,n and a ∈ Am,n. If a and x are, respectively, the initial and final vertices
of Cm,n, then there are two distinct paths from a to x, but the shortest distance is
always given by the path that travels through π(x) (the lower path), and consequently
the condition holds in this case. In all other cases there is at most one path from a to x,
and that path passes through π(x), so that the condition holds in these cases too. �

Proof of Proposition 9.2. We may assume that m ≥ n and m ≥ 2. Then the map from
the statement takes the form Cm,n → Cm,1, and fits into a pushout diagram

Am,n Am,1

Cm,n Cm,1

whose upper map collapses Am,n to Am,1, the latter being a single vertex. The maps
PH∗,∗(Am,n) → PH∗,∗(Am,1) are isomorphisms since Am,n → Am,1 is a 1-homotopy
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equivalence. And the maps PH∗,∗(Cm,n, Am,n) → PH∗,∗(Cm,1, Am,1) are isomorphisms
by the excision theorem, which applies since the vertical maps of our pushout are cofi-
brations. Then the long exact sequences of the pairs (Cm,n, Am,n) and (Cm,1, Am,1) are
related by a commutative ladder, and the last sentence allows us to apply the five lemma
to this ladder to obtain the result. �

Let us now turn to the MPSS of Cm,1 for m ≥ 2. To do so we need to establish
some notation. We write the vertices of Cm,1 as a0, . . . , am, with edges ai−1 → ai for
i = 1, . . . ,m, and a0 → am. So for C4,1 we have the following:

a0 am

a1

a2
a3

C4,1

Next, we define some magnitude homology classes.

Definition 9.6. We define magnitude homology classes

κx ∈ MH0,0(Cm,1), λe ∈ MH1,1(Cm,1), µ ∈ MH2,m(Cm,1),

for x ∈ V (Cm,1) and e ∈ E(Cm,1), by the rules

κx = [(x)], λe = [(a, b)], and µ = [(a0, ai, am)]

where e = ab. In the definition of µ one can make any choice of 1 < i < m; the value of
µ does not change. Note that in the spectral sequence grading we have

κx ∈ E
1
0,0(Cm,1), λe ∈ E

1
1,0(Cm,1), µ ∈ E1

m,−m+2(Cm,1).

We can now state our main result.

Theorem 9.7. Let m ≥ 2. The magnitude homology MH∗,∗(Cm,1) is the free bigraded
R-module with basis given by the κx, λe and µ for x ∈ V (Cm,1) and e ∈ E(Cm,1). The
differential d1 acts on these classes by the rules d1(κx) = 0, d1(λe) = κb − κa when
e = ab, and, if m = 2, d1(µ) = λa0,a1 + λa1,a2 − λa0,a2 .

We immediately obtain the following description of the bigraded path homology.

Corollary 9.8. If m > 2 then the bigraded path homology of Cm,1 consists of a single
copy of R in bidegrees (0, 0), (1, 0) and (m,−m + 2). If m = 2 then the bigraded path
homology of Cm,1 vanishes in positive degrees.

Let us turn to the proof of Theorem 9.7. For the final sentence of the statement we
have the following.

Lemma 9.9. The description of d1 in Theorem 9.7 holds.

Proof. The map d1 is obtained by applying the differential of the reachability complex
to any representative. Thus, for example, when m = 2 we have d1(µ) = d1[(a0, a1, a2)] =
[d(a0, a1, a2)] = [(a1, a2)− (a0, a2)+ (a0, a1)] = [(a1, a2)]− [(a0, a2)]+ [(a0, a1)] = λa1a2 −
λa0a2 + λa0a1 as claimed. The other cases are similar and left to the reader. �
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In order to give our proof of Theorem 9.7, we use the decomposition of magnitude
chains and magnitude homology by initial and final points of tuples, which we now recall.
(The decomposition is well known, and to the best of our knowledge its first explicit use
is in Section 5.4 of [32].) Let G be a directed graph. Let a, b be vertices of G, possibly
equal, and let ℓ ≥ 0. Then we write MC∗,ℓ(a, b) for the subcomplex of MC∗,ℓ(G) spanned
by all tuples of the form (x0, . . . , xk) with x0 = a and xk = b, and we write MH∗,ℓ(a, b)
for its homology. Note that MC∗,ℓ(a, b) is indeed a subcomplex of MC∗,ℓ(G), thanks to
the fact that omitting the first or last entries of a nondegenerate tuple always strictly
decreases its length. Then the magnitude chains and magnitude homology of G both
decompose as direct sums:

MC∗,∗(G) =
⊕

a,b∈V (G)

MC∗,∗(a, b), MH∗,∗(G) =
⊕

a,b∈V (G)

MH∗,∗(a, b)

Note that MC∗,∗(a, b) is nonzero if and only if d(a, b) <∞.
The description of MH∗,ℓ(Cm,n) for ℓ = 0, 1 is straightforward and left to the reader.

Compare, for example, with Proposition 2.9 of [28] or Theorems 4.1 and 4.3 of [37].
Therefore it remains to prove Theorem 9.7 in the case ℓ ≥ 2, which is given by the
following.

Lemma 9.10. Let ℓ ≥ 2. Then the groups MH∗,ℓ(ai, aj) for 0 ≤ i ≤ j ≤ m all vanish,
with the single exception of MH2,m(a0, am), which is a copy of the ring R spanned by the
class µ.

Proof. We first address the case where (i, j) 6= (0,m). The generators of MCk,∗(ai, aj)
are the tuples

(ai, ai1 , . . . , aik , aj)

for k ≥ 0 and i < i1 < · · · < ik < j, and in particular these all have length j − i. So we
may assume ℓ = j − i. Define s : MC∗,j−i(ai, aj)→ MC∗+1,j−i(ai, aj) by the rule

s(ai, ai1 , . . . , aik , aj) =

{
−(ai, ai+1, ai1 , . . . , aik , aj) if i1 6= i+ 1

0 if i1 = i+ 1.

Then (sd+ ds)(ai, ai1 , . . . , aik , aj) = (a0, ai1 , . . . , aik , am), and it follows that the homol-
ogy of MC∗,j−i(ai, aj) vanishes in all degrees.

Next we address the case of MC∗,∗(a0, am), whose generators are the tuples of the form
(a0, ai1 , . . . , aik , am) for k ≥ 1. (We no longer allow the case k = 0 because ℓ(a0, am) = 1
and we have assumed ℓ ≥ 2.) Any one of these has length m, and so we may assume
that ℓ = m. Define s : MC∗,m(a0, am)→ MC∗+1,m(a0, am) by the rule

s(a0, ai1 , . . . , aik , am) =

{
−(a0, a1, ai1 , . . . , aik , am) i1 6= 1

0 i1 = 1.

Then (sd + ds)(a0, ai1 , . . . , aik , am) is equal to (a0, ai1 , . . . , aik , am) except in the case
k = 1, i1 = 1, when it vanishes. It follows that the homology of MC∗,m(a0, am) vanishes
except for MC2,m(a0, am), which is generated by the class of (a0, a1, am), this class being
precisely µ. �
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Appendix A. Preservation of filtered colimits

It is proved in Proposition 1.14 of [15] that each page of the magnitude-path spectral
sequence is a finitary functor on the category of directed graphs. We have chosen to
include here an alternative (and much more detailed) proof of this fact, because we
believe it illuminates the construction of the MPSS, and because the lemmas in this
Appendix may be useful to others working with the pages of the sequence. In particular,
our proof makes clear that each page of the MPSS extends to a finitary functor on the
category NMet whose objects are metric spaces with integer distances—but not to a
finitary functor on the larger category Met (see Remark A.10).

Proposition 7.4. For each r ≥ 1 and every p, q ∈ Z, the functor

Erpq(−) : DiGraph→ModR

preserves filtered colimits. In particular this holds for magnitude homology and bigraded
path homology.

As our proof takes place in several stages, let us first outline the strategy. Recall that
an object X in a category C is called finitely presentable (or compact) if the covariant
functor it represents (the functor Hom(X,−) : C → Set) preserves filtered colimits.
Every directed graph with finitely many vertices is finitely presentable in DiGraph, so
in particular this is true of the ‘k-path graph’

p0 → p1 → · · · → pk.

It is readily seen that, for each k ∈ N, the kth diagonal piece of the filtered nerve—the
functor FkNk(−) : DiGraph → Set (see Remark 2.1)—is represented by the k-path
graph, and thus is finitary. This fact is exploited in Propositions 4.4 and 4.5 of [9] to
prove that ordinary path homology is a finitary functor.

To deal with the off-diagonal modules in bigraded path homology and the rest of the
spectral sequence, it is enough to prove that for each ℓ and k the functor FℓNk(−) from
DiGraph to Set is finitary. However, when k 6= ℓ, the functor FℓNk(−) is no longer
representable. (This can be seen, for example, by observing that it does not preserve
the categorical product; recall Remark 4.10.) Instead, to construct the set

FℓNk(X) = {(x0, . . . , xk) | xi ∈ X and
∑

d(xi, xi+1) ≤ ℓ}

for a given directed graph X, one needs to consider short maps into X from a big family
of generalized metric spaces: those of the form

p0 p1 · · · pk
d1

∞

d2

∞

dk

∞
(26)

where the distances di = d(pi−1, pi) are integers satisfying
∑
di = ℓ; we have d(pi, pj) =∑j

i+1 di for i ≤ j; and d(pi, pj) <∞ for j < i. We call these spaces straight paths.
Of course, there are in general more such maps than there are elements of FℓNk(X),

but that can be remedied by taking a quotient to identify those maps whose images
coincide inside X. We prove in Proposition A.6 that

FℓNk(−) ∼= colimDHom(d,−) (27)

where D is a diagram involving all straight paths d with k points and length at most ℓ.



BIGRADED PATH HOMOLOGY AND THE MPSS 49

Since colimits commute with colimits, to deduce from (27) that FℓNk(−) is finitary it
is enough to see that every straight path is finitely presentable. And that is the case—
but not in DiGraph (after all, most straight paths are not directed graphs). Nor is it
true in the much larger category Met of generalized metric spaces (see Remark A.8).
Rather, we show in Proposition A.7 that straight paths are finitely presentable in the
full subcategory of Met whose objects are spaces with integer distances.

One virtue of this rather long and involved proof is that it offers an alternative de-
scription of the filtered nerve as a particular colimit of especially ‘nice’ representable
functors; we anticipate that this description will prove technically useful in future work.
Another virtue is that by explaining why the MPSS is finitary as a functor on the cate-
gory of directed graphs, it also makes clear that (and why) this property does not extend
to the category of metric spaces, whose ‘spectral homology’—a natural extension of the
magnitude-path spectral sequence—is studied by Ivanov in [29].

A.1. Colimits in the category NMet. Recall from Section 2.1 that Met is the cat-
egory of generalized metric spaces and short maps. We denote by NMet the full sub-
category on objects whose metric takes values in N ∪ {+∞}. There is a chain of full
subcategory inclusions

DiGraph →֒ NMet →֒Met.

In fact, each of these is the inclusion of a coreflective subcategory, as the next lemma
shows.

Lemma A.1. The inclusions M : DiGraph →֒ NMet and ι : NMet →֒Met each have
a right adjoint.

Proof. We consider first the functor M . Given an object X of NMet, let Γ(X) be the
directed graph whose set of vertices is the set of points in X, with an edge x → y
whenever dX(x, y) = 1. This construction extends to a functor Γ: NMet→ DiGraph,
which we claim is right-adjoint to M .

Observe that for any G inDiGraph we have G = (Γ◦M)(G). Meanwhile, for anyX in
NMet, the identity on points determines a short map ǫX : (M ◦Γ)(X)→ X. To see this,
take any pair of points x, x′ in (M ◦Γ)(X); suppose d(M◦Γ)(X)(x, x

′) = n. By definition of
the shortest path metric, there exists a directed path x = x0 → · · · → xn = x′ in ΓX, and
by definition of Γ, we must have dX(xi, xi+1) = 1 for i = 0, . . . , n− 1. Thus, dX(x, x

′) ≤∑n−1
i=0 dX(xi, xi+1) = n = d(M◦Γ)(X)(x, x

′). The maps ηG = IdG : G → (Γ ◦M)(G) and
ǫX : (M ◦Γ)(X)→ X are automatically natural and satisfy the unit-counit identities, so
the claim follows.

Now define ⌈−⌉ : Met → NMet as follows. For each X in Met the space ⌈X⌉ has
the same points as X, with d⌈X⌉(x, y) = ⌈dX(x, y)⌉ for each x, y ∈ X. To see that this
indeed defines a metric, note that d⌈X⌉(x, x) = ⌈0⌉ = 0 for every x ∈ X, and for every
triple x, y, z ∈ X we have

⌈dX(x, y)⌉ + ⌈dX(y, z)⌉ ≥ ⌈dX(x, y) + dX(y, z)⌉ ≥ ⌈dX(x, z)⌉.

Meanwhile, given a short map f : X → Y we have

d⌈Y ⌉(f(x), f(y)) = ⌈dY (f(x), f(y))⌉ ≤ ⌈dX(x, y)⌉ = d⌈X⌉(x, y),

which shows that ⌈−⌉ is functorial.
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To see that ⌈−⌉ is right-adjoint to ι, observe that for each X in NMet, the identity on
points is an isometry ηX : X → ⌈ι(X)⌉, while for each X in Met, the identity on points
is a short map ǫX : ι(⌈X⌉) → X. These maps are automatically natural and satisfy the
unit-counit identities, so the statement follows. �

The category Met is, equivalently, the category of categories enriched in the poset
[0,+∞] with monoidal operation given by addition [34]. As [0,+∞] is cocomplete, Met

is cocomplete too [48, Corollary 2.14]. Lemma A.1 then implies that DiGraph and
NMet are both cocomplete, since the inclusion of a coreflective subcategory creates all
colimits that exist in the ambient category. In particular, NMet is closed under taking
colimits in Met.

We shall want an explicit description of colimits in Met. The following formula can
be extracted from the discussion in Appendix A of [17] or Lemma 3 in [31], for example.
(Both those references deal with symmetric metrics, but the proof in our setting is the
same.)

Given a diagram F : J →Met, we will write F (j) = Xj for each object j in J .

Lemma A.2. The colimit of a small diagram F : J → Met is constructed by first
taking the colimit in Set of the underlying sets:

∐
j∈J Xj/ ∼ where ∼ is the equivalence

relation generated by setting x ∼ x′ if x′ = F (φ)(x) for some morphism φ in J . The
colimit metric is then specified by

d([x], [y]) = inf

{
k−1∑

i=0

dXji
(x′i, xi+1)

}
(28)

where the infimum is taken over all tuples

(x′0, x1, x
′
1, . . . , xk−1, x

′
k−1, xk)

such that 0 ≤ k < ∞; we have x ∼ x′0, xk ∼ y, and xi ∼ x′i for each i; and each pair
(x′i, xi+1) belongs to one of the spaces Xji for some ji ∈ J . �

The important point for what follows is that, when it comes to filtered diagrams in
NMet, this formula for the colimit metric can be simplified.

Proposition A.3. Let F : J → NMet be a filtered diagram. Then for each [x], [y] ∈
colimJXj we have

d([x], [y]) = min

{
n

∣∣∣∣
there exist j ∈ J and x′, y′ ∈ Xj such that
[x] = [x′], [y] = [y′] and dXj

(x′, y′) = n

}
.

Proof. Given any small diagram J → NMet, the colimit metric is defined as in Lemma A.2,
but since the metric in each space Xj is valued in N ∪ {+∞}, the defining infimum is
actually a minimum. That is, if d([x], [y]) = n in the colimit, there must exist a tuple

(x = x0 ∼ x
′
0, x1 ∼ x

′
1, . . . , xk−1 ∼ x

′
k−1, xk ∼ x

′
k = y) (29)

such that each pair (x′i, xi+1) belongs to some Xji , and
∑
dXji

(x′i−1, xi) = n. We claim
that if J is filtered, then there is a tuple with k = 1 that will do the job.
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By the formula for filtered colimits in Set [44, Section 04AX], the equivalences in (29)
are witnessed by morphisms

j0 j1 · · · jk−1 jk

j01 j12 · · · jk−1,k

φ01 ψ01 φ01 φk−1,k ψk−1,k

in J such that F (φi,i+1)(xi) = F (ψi,i+1)(x
′
i) for each i. As J is filtered, this diagram has

a cocone: we can find an object j ∈ J and morphisms φi : ji → j for i = 0, . . . , k such
that, for each i,

F (φi)(xi) = F (φi+1)(x
′
i). (30)

Then [x] = [F (φ0)(x)] and [y] = [F (φk)(y)]; I claim that d(F (φ0)(x), F (φk)(y)) = n in
the space Xj. Indeed, we have

n = d([x], [y]) ≤ dXj
(F (φ0)(x), F (φk)(y))

≤
k−1∑

i=0

dXj
(F (φi)(xi), F (φi+1)(xi+1))

=

k∑

i=1

dXj
(F (φi)(x

′
i−1), F (φi)(xi))

≤
k∑

i=1

dXji
(x′i−1, xi) = n,

where the first inequality holds by definition of the colimit metric and the second by the
triangle inequality in Xj; the equality in line three follows from equation (30); and the
final inequality holds because each F (φi) is a short map. �

A.2. The filtered nerve as a colimit of representables. The nerve functor extends
naturally to a functor N∗(−) : NMet→ [∆op,Set], with

Nk(X) = {(x0, . . . , xk) | xi ∈ X and d(xi, xi+1) <∞ for each i}.

This simplicial set carries a filtration by length, as described in Remark 2.1: for each ℓ
and k, we define

FℓNk(X) =

{
(x0, . . . , xk)

∣∣∣∣∣

k−1∑

i=0

d(xi, xi+1) ≤ ℓ

}
.

We are going to exhibit the functor FℓNk(−) : NMet → Set as a certain colimit of
representables. Later we will see that each of the representables involved is finitary, and
it will follow that each piece of the filtered nerve is too.

The strategy of this section, and in particular the proof of Proposition A.6, is guided
by the proof of Proposition D.3.5 in [41].

Definition A.4. For each k, ℓ ∈ N, let

Pathk,≤ℓ =

{
d = (d1, . . . , dk) ∈ Nk

∣∣∣∣∣

k∑

i=1

di ≤ ℓ

}
.
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We equip this set with the partial order inherited from the product order on Nk; that
is, c ≤ d if and only if ci ≤ di for i = 1, . . . , k.

Regarded as a category in the standard way, Pathk,≤ℓ has an arrow c→ d if and only
if c ≤ d. For each k, ℓ ∈ N there is a functor P : Pathop

k,≤ℓ → NMet taking the tuple

d = (d1, . . . , dk) to the generalized metric space with k + 1 points p0, . . . , pk such that

• for 0 ≤ i ≤ j ≤ k we have d(pi, pj) =
∑j

k=i+1 dk, and
• for 0 ≤ j < i ≤ k we have d(pi, pj) =∞.

(Such a space was depicted in (26).) Given c ≤ d in Pathk,≤ℓ, the induced short map
P (d)→ P (c) is determined by pi 7→ pi. This functor is faithful and injective on objects,
but not full.

Definition A.5. The spaces in the image of the functor P : Pathop
k,≤ℓ → NMet will be

called straight k-paths of length ℓ, or just straight paths. Hereafter we will denote the
metric space P (d) by d.

The functor P : Pathop
k,≤ℓ → NMet induces a functor

ょP : Pathk,≤ℓ → [NMet,Set]

d 7→ Hom(d,−).

Note that this diagram is cofiltered—as Pathk,≤ℓ has an initial object, namely the tuple
(0, . . . , 0)—but not filtered (except, trivially, when k = 0).

Proposition A.6. For each k, ℓ ∈ N there is a natural bijection

colim
ょP

Hom(d,X)
∼=
−→ FℓNk(X)

specified by [d
f
−→ X] 7→ (f(p0), . . . , f(pk)).

Proof. As Set is cocomplete, colimits in [NMet,Set] can be computed pointwise. So,
fix an object X 6= ∅ in NMet. (For the empty space the proposition is trivial.)

First, let k = 0. For every ℓ, the poset Path0,≤ℓ has a unique element—the unique
element of the empty product N0—and the functor P : Pathop

0,≤ℓ →֒ NMet picks out the

singleton space, •. Thus,

FℓN0(X) = {(x0) | x0 ∈ X} ∼= Hom(•,X) = colim
ょP

Hom(d,X).

For the remainder of the proof we assume that k > 0.
By the general formula for colimits in Set, we have

colim
ょP

Hom(d,X) =
∐

d∈Pathk,≤ℓ

Hom(d,X)/ ∼

where ∼ is the equivalence relation generated by setting (f : c → X) ∼ (g : d → X) if
c ≤ d and g = f ◦h for the induced short map h : d→ c. That is, f ∼ g in the generating
relation if and only if g(pi) = f(h(pi)) = f(pi) for each i = 1, . . . , k. It follows that there
is a well defined function from the colimit to FℓNk(X) taking an equivalence class [f ] to
the tuple

Im(f) = (f(p0), . . . , f(pk))

of points in X.
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In the other direction, given a tuple x = (x0, . . . , xk) of points in X such that∑
d(xi, xi+1) ≤ ℓ, we can consider the straight k-path

s(x) = (d(x0, x1), . . . , d(xk−1, xk)) ∈ Pathk,≤ℓ

and the short map g : s(x) → X specified by g(pi) = xi. By design, Im(s(x)) = x.
Moreover, any short map f : d→ X factors through the straight k-path

s(Im(f)) = (d(f(p0), f(p1)), . . . , d(f(pk−1), f(pk))),

since d(f(pi−1), f(pi)) ≤ d(pi−1, pi) = di for each i. Thus, [s(Im(f))] = [f ]. �

A.3. Every page of the MPSS is a finitary functor. Having exhibited each functor
FℓNk(−) as a particular colimit of representables, the goal is to show that each of the
representing objects is finitely presentable.

Proposition A.7. Every straight path is finitely presentable in NMet.

Proof. For each natural number n ≥ 1, let ~n denote the space with two points a, b such
that d(a, b) = n and d(b, a) =∞. Each straight path d = (d1, . . . , dk) can be built by a

finite sequence of pushouts in NMet of the objects ~d1, . . . , ~dk over the singleton space •.
As the class of finitely presentable objects is closed under finite colimits, it will suffice
to show that • and each space ~n is finitely presentable.

Let J be a filtered category and F : J → NMet a functor. Write Xj = F (j) for each
j ∈ J . The bijection

colimJHom(•,Xj) ∼= Hom(•, colimJXj)

is immediate from the construction of colimits in NMet (Lemma A.2). Meanwhile, for
each n ≥ 1, the universal property of the colimit provides a function

u : colimJHom(~n,Xj)→ Hom (~n, colimJ(Xj))

[(x, y)j ] 7→ ([xj ], [yj ]).

The goal is to prove that this is a bijection.
First, observe that if x, x′ ∈ Xi and y, y

′ ∈ Xj are such that d(x, x′) ≤ n and d(y, y′) ≤
n, and we have [x] = [y] and [x′] = [y′] in colimJ(Xj), then [(x, x′)] = [(y, y′)] in
colimJHom(~n,Xj). Indeed, the relations x ∼ y and x′ ∼ y′ are witnessed by maps

i j i

k k′
φik φjk φjk′ φik′

in J such that F (φik)(x) = F (φjk)(y) and F (φik′)(x
′) = F (φjk′)(y

′). As J is filtered,

this diagram has a cocone; let p be its apex and i
φ
−→ p

ψ
←− j two of its legs. A brief

diagram chase shows that F (φ)(x) = F (ψ)(y) and F (φ)(x′) = F (ψ)(y′) in Xp, which
says that (x, x′) and (y, y′) coincide under the induced maps

Hom(~n, φ) : Hom(~n,Xi)→ Hom(~n,Xp)← Hom(~n,Xj) : Hom(~n, ψ).

Hence, [(x, x′)] = [(y, y′)].
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Now, consider the map u : colimJHom(~n,Xj) → Hom (~n, colimJ(Xj)). To define a
function in the other direction, take ([xj ], [xj′ ]) ∈ Hom (~n, colimJ(Xj)). By Proposi-
tion A.3, the distance d([xj ], [xj′ ]) is attained by some pair x, x′ in one of the spaces Xi

such that [xj] = [x] and [xj′ ] = [x′]. If x, x′ ∈ Xi and y, y
′ ∈ Xk both attain the distance,

then [x] = [xj ] = [y] and [x′] = [xj′ ] = [y′] in colimJ(Xj), so by the previous paragraph
we have [(x, x′)] = [(y, y′)] in colimJHom(~n,Xj). It follows that there is a well defined
function

r : Hom (~n, colimJ(Xj))→ colimJHom(~n,Xj)

([xj ], [xj′ ]) 7→ [(x, x′)i]

where the pair x, x′ ∈ Xi has been chosen to attain the distance d([xj ], [xj′ ]).
To see this is a bijection, take any ([xj ], [xj′ ]) ∈ Hom(~n, colimJ(Xj)). Then

(u ◦ r)([xj ], [xj′ ]) = u([(x, x′)]) = ([x], [x′])

where, by definition of the map r, we have [x] = [xj ] and [x′] = [xj′ ]. Thus, u ◦ r = Id.
Meanwhile, given any [(x, x′)] ∈ colimJHom(~n,Xj) we have

(r ◦ u)([(x, x′)]) = r([x], [x′]) = [(y, y′)]

where, by definition of the map r, we have [y] = [x] and [y′] = [x′]. It follows that
[(x, x′)] = [(y, y′)], and hence that r ◦ u = Id. �

Remark A.8. The natural analogue of Proposition A.7 does not hold inMet, where the
infimum defining the metric on a colimit need not be attained. This can be illustrated
by the following example, based on Remark 2.5 of [43]. Fix n ∈ N>0, and for each
m ∈ N>0 let Xm denote the space with two points a, b such that d(a, b) = n + 1

m
and

d(b, a) = +∞. There is a filtered diagram X1 → X2 → X3 → · · · in Met, in which
every map is the identity on points. This diagram has as its colimit the space ~n, but the
identity on ~n does not factor through any of the colimit maps Xm → ~n. Thus, ~n is not
finitely presentable.

Proposition A.9. For each k, ℓ ∈ N, the functor FℓNk(−) : NMet→ Set is finitary.

Proof. For any filtered diagram I → NMet we have

FℓNk(colimI(Xi)) ∼= colim
ょP

Hom(d, colimI(Xi))

∼= colim
ょP

(colimIHom(d,Xi))

∼= colimI

(
colim

ょP
Hom(d,Xi)

)

∼= colimI(FℓNk(Xi)),

where the first and last isomorphisms are given by Proposition A.6, the second by Propo-
sition A.7, and the third by the commuting of colimits with colimits. �

With this, we can complete the proof.

Proof of Proposition 7.4. As homology commutes with filtered colimits in ModR, it is
enough to prove the statement for r = 1, i.e. that the magnitude homology functor
MHkℓ(−) = E1

ℓ,k−ℓ(−) : DiGraph→ModR preserves filtered colimits.
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The free R-module functor, being a left adjoint, preserves all small colimits; together
with Proposition A.9 and Lemma A.1, this implies that

R · FℓNk(−) : DiGraph→ModR

preserves filtered colimits. For a given directed graph X, the R-module of unnormalized
magnitude chains [37, Definition 5.7] in bidegree (k, ℓ) is the quotient

M̃Ckℓ(X) =
R · FℓNk(X)

R · Fℓ−1Nk(X)
.

Since colimits commute with colimits, it follows that M̃Ckℓ(−) preserves filtered colimits.

Since MHkℓ(−) ∼= Hk(M̃Ckℓ(−)) [37, Remark 5.11] and homology commutes with filtered
colimits, this completes the proof. �

Remark A.10. Since the filtered nerve extends naturally from DiGraph to NMet,
the same is true for the magnitude-path spectral sequence. Our proof of Proposition 7.4
shows, in fact, that for each r ≥ 1 and p, q ∈ Z, the functor

Erpq(−) : NMet→ModR

preserves filtered colimits.
Magnitude homology can be extended further still: it is defined for arbitrary gener-

alized metric spaces (and indeed for a much broader class of enriched categories; see
[37]). However, magnitude homology is not finitary as a functor on Met. To see this,
consider the filtered diagram described in Remark A.8. For each m ∈ N>0 we have
MH1,ℓ(Xm) = R when ℓ = n+ 1

m
and 0 otherwise, so that colimN>0

MH1,ℓ(Xm) vanishes
for every ℓ. On the other hand colimN>0

Xm = ~n, and MH1,n(~n) = R 6= 0.
Thus, magnitude homology is finitary on the ‘combinatorial’ category DiGraph, but

is no longer finitary after extending to the ‘continuous’ category Met. This is analogous
to the situation for topological spaces: singular homology is finitary on the ‘combina-
torial’ category of simplicial complexes and simplicial maps (because there it can be
computed using simplicial homology, for which the finitary property can be proved di-
rectly), but fails to be finitary on the ‘continuous’ category of topological spaces and
continuous maps. To see that singular homology is not finitary on spaces, one can con-
sider for example the system of circles {R/ 1

n
Z}n∈N, indexed by the natural numbers

under divisibility, and equipped with the evident quotient maps R/ 1
m
Z→ R/ 1

n
Z when-

ever m|n. In this case the colimit of the circles is the indiscrete space R/Q, which has
vanishing first singular homology, while the colimit of the first singular homology groups
of the R/ 1

n
Z is Q.
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