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Bredon motivic cohomology of the real numbers

Bill Deng, Mircea Voineagu

Abstract

Over the real numbers with Z/2−coefficients, we compute the C2-equivariant Borel motivic
cohomology ring, the Bredon motivic cohomology groups and prove that Bredon motivic cohomology
of reals is a proper subring in RO(C2 ×C2)-graded Bredon cohomology of a point.

This generalizes Voevodsky’s computation of the motivic cohomology ring of the real numbers
to the C2-equivariant setting. These computations are extended afterwards to any real closed field.

Keywords. Motivic homotopy theory, equivariant homotopy theory, Bredon cohomology.

Mathematics Subject Classification 2010. Primary: 14F42, 55P91. Secondary: 55P42,
55P92.

Contents

1 Introduction 1

1.1 Equivariant motivic homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bredon motivic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 RO(C2)-graded Bredon cohomology of a point . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 RO(C2 × Σ2)-graded Bredon cohomology of a point 10

2.1 RO(C2 × Σ2)-graded Bredon cohomology groups of a point . . . . . . . . . . . . . . . . 10
2.2 RO(C2 × Σ2)-graded Bredon cohomology ring of a point . . . . . . . . . . . . . . . . . . 11
2.3 Topological C2 × Σ2-isotropy cofiber sequence . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Σ2-equivariant classifying spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The case b+ q < 0. 18

4 The case b ≥ 0, b+ q ≥ 0. 21

4.1 The case b ≥ 0 and b+ q < 0 revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Bredon motivic cohomology of EC2 23

6 Bredon motivic cohomology of the real numbers 29

6.1 Real closed fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1 Introduction

A fundamental principle of modern homotopy theory is that group actions on homotopical objects reveal
interesting and otherwise hard to find information about the underlying homotopical objects. Given
the importance of motivic stable homotopy theory and its relations with equivariant stable homotopy
theory (see for example [3], [2]), it is therefore important to study equivariant motivic stable homotopy
theory (see for example [15], [20], [5] [17]). Bredon motivic cohomology, given by the equivariant study
of Voevodsky’s motivic cohomology spectrum, was introduced in [19] and [20], and belongs to a larger
group of C2-motivic invariants, such as Hermitian K-theory or motivic real cobordism. Bredon motivic
cohomology also appears as the zero slice of the equivariant motivic sphere [12].
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Concrete computations in Bredon motivic cohomology are essential for applications of the theory
to other motivic and topological invariants. In many cases, these computations shed new light on the
well-known computations of classical motivic cohomology, and, as in the case of Bredon cohomology,
they are more difficult and contain more information about the underlying object, even in the case of
a trivial C2-action.

In [21], the second author together with J.Heller and P.A.Østvær computed completely the Bredon
motivic cohomology rings of the complex numbers and of EC2 (over the complex numbers). In this
paper, we compute the Bredon motivic cohomology of the real numbers and of EC2 (over the real
numbers). In particular, we generalize the classical motivic cohomology computation of Voevodsky of
the motivic cohomology of the real numbers by computing the Bredon motivic cohomology groups of
real numbers and by showing that the Bredon motivic cohomology ring of the real numbers is a subring
of the RO(C2 × Σ2)-graded Bredon cohomology of a point. Moreover, we show that the Borel motivic
cohomology ring of the real numbers is a Laurent/polynomial series over the RO(C2)-graded Bredon
cohomology of a point, generalizing and shedding new light on Voevodsky’s computation of the motivic
cohomology of BC2 (over the reals). Relating these motivic invariants to their equivariant topological
counterparts through realization we also obtain previously unknown results in equivariant topology,
especially about the periodicity of RO(C2 × Σ2) graded Bredon cohomology of EΣ2

C2.
One of the advantages of the computation in the complex case when compared with our paper is

that the one dimensional RO(C2)-graded cohomology of a point (computed originally by Stong and
used in [21]) is much simpler than the higher dimensional RO(C2 × Σ2)-graded cohomology of point
(computed by Holler and Kriz in [13] and used in this paper). This makes most of arguments in [21]
not to extend to our case. Another difficulty in the real case as opposed to the complex case is that
the C2 × Σ2 topological isotropy sequence that is needed here is more complicated than its complex
counterpart and to our knowledge, not previously studied. Both computations in the cases of real and
complex numbers (and therefore, by the usual rigidity theory, of real closed fields and algebraically
closed fields of characteristic zero) are part of the understanding of the hard to compute and largely
unknown Bredon motivic cohomology ring of an arbitrary field as well as of the C2-equivariant motivic
Steenrod algebra of cohomology operations.

Our computations are organized via modules over the RO(C2)-graded Bredon cohomology ring of
a point. Before presenting our computations, we recall this ring and introduce some notation used to
explain our results. We also recall some basics of equivariant motivic homotopy theory and Bredon
motivic cohomology.

1.1 Equivariant motivic homotopy theory

The stable equivariant motivic homotopy category SHC2(k) is the stabilization of Voevodsky’s category
of equivariant motivic spaces [5], with respect to Thom spaces of representations. We recall a few key
facts and the notation that we use in the case where G = C2. See [14] or [20] for details.

Let V = a + pσ be a C2-representation, where a denotes the a-dimensional trivial representation
and pσ is the p-dimensional sign representation. We write A(V ) and P(V ) for the C2-schemes Adim(V )

and Pdim(V )−1 equipped with the corresponding action coming from V . The associated motivic repre-
sentation sphere is

T V := P(V ⊕ 1)/P(V ).

Indexing is based on the following four spheres. There are two topological spheres S1, Sσ and two
algebro-geometric spheres St = (A1 \ {0}, 1) equipped with trivial action, and Sσ

t = (A1 \ {0}, 1)
equipped the C2-action x → x−1. We write

Sa+pσ,b+qσ := Sa−b ∧ S(p−q)σ ∧ Sb
t ∧ Sqσ

t .

In this indexing, we have T ≃ S2,1 and T σ ≃ S2σ,σ. The stable equivariant motivic homotopy cate-
gory SHC2(k) is the stabilization of (based) C2-motivic spaces with respect to the motivic sphere T ρ

corresponding to the regular representation ρ = 1 + σ.
We make use of two fundamental cofiber sequences in SHC2(k). The first is

C2+ → S0 → Sσ. (1.1) eqn:cof1
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The second is

EC2+ → S0 → ẼC2. (1.2) eqn:cof2

Here, EC2 is the universal free motivic C2-space. It has a geometric model, EC2 ≃ colimn A(nσ) \ {0},
see [9, Section 3]. The quotient EC2/C2 ≃ colimn (A(nσ) \ {0})/C2 is the geometric classifying space

BC2 constructed by Morel-Voevodsky [26] and Totaro [28]. Note that ẼC2 = colimn S
2nσ,nσ. In

particular, the maps S0 → T σ and S0 → Sσ induce equivalences

ẼC2
≃
−→ T σ ∧ ẼC2 and ẼC2

≃
−→ Sσ ∧ ẼC2,

see [20, Proposition 2.9].
Equipping a variety with the trivial action yields an embedding Smk → SmC2

k which induces a

functor SH(k) → SHC2(k).

1.2 Bredon motivic cohomology

Bredon motivic cohomology is represented in SHC2(k) by the spectrum MA associated to an abelian
group A, where MAn = Atr,C2

(T nρ) is the free presheaf with equivariant transfers, see [20] for details.
Here k is an arbitrary field and ρ denotes the C2 regular representation k[C2].

Definition 1.3 ([20]). The Bredon motivic cohomology of a motivic C2-spectrum E with coefficients
in an abelian group A is defined by

H̃a+pσ,b+qσ
C2

(E,A) = [E, Sa+pσ,b+qσ ∧MA]SHC2 (k).

If X ∈ SmC2

k we typically write

Ha+pσ,b+qσ
C2

(X,A) := H̃a+pσ,b+qσ
C2

(X+, A).

When A is a ring, then H⋆,⋆
C2

(X,A) is a graded commutative ring by [20, Proposition 3.24]. Specifically

this means that if x ∈ Ha+pσ,b+qσ
C2

(X,A) and y ∈ Hc+sσ,d+tσ
C2

(X,A), then

x ∪ y = (−1)ac+psy ∪ x.

Notice that when A = Z/2, the corresponding Bredon motivic cohomology is a commutative ring.
A few features of this theory, which we use are the following (see [20], [21]).

· If E is in the image of SH(k) → SHC2(k), i.e. it has “trivial action”, then there is an isomorphism
in integral bidegrees with ordinary motivic cohomology,

H̃a,b
C2

(E,A) ∼= H̃a,b(E,A).

· If X has free action, then there is an isomorphism in integral bidegrees with ordinary motivic
cohomology,

Ha,b
C2

(X,A) ∼= Ha,b(X/C2, A).

· H⋆,⋆
C2

(EC2, A) is (−2 + 2σ,−1 + σ)-periodic. The periodicity is given by multiplication with an

invertible element κ2 ∈ H2σ−2,σ−1
C2

(EC2, A) over real numbers. Over complex numbers, we denote

the invertible element with u ∈ H2σ−2,σ−1
C2

(EC2, A).

· Over complex numbers, Borel motivic cohomology ring is

H⋆,⋆
C2

(EC2,Z/2) ≃ M
C2

2 [τσ, u
±1]

with τσ ∈ H0,σ
C2

(EC2,Z/2) being the only nontrivial element. We write MC2

n := H∗+∗σ
Br (pt.,Z/n).

· The additive groups of Bredon motivic cohomology of a complex numbers are given by the below
diagram:
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b

q·σ

H⋆,⋆
C2

(EC2) H⋆
Br,C2

(pt)

H̃⋆,⋆
C2

(ẼC2)

τσ

1
ξ

µ

Figure 1: Regions of H⋆,b+qσ
C2

(C,Z/2) determined by EC2, Betti realization, and

ẼC2. The degrees of the displayed elements are |ξ| = (−2 + 2σ,−1 + σ), |µ| =
(0, 1− σ), |τσ| = (0, σ).TEST0

A point (b, q) in the Figure 1 is given by the graded Z/2-vector space ⊕a,p∈Z2Ha+pσ,b+qσ
C2

(C,Z/2). When
we say that the realization is an isomorphism for a point (b, q) we mean that the realization

Ha+pσ,b+qσ
C2

(C,Z/2) → Ha+pσ
Br (pt.,Z/2)

is an isomorphism for any choices of (a, p) ∈ Z2.
The map of sites SmC2

R
→ TopC2×Σ2 , given by X → X(C), where the set of complex points is

equipped with the analytic topology, extends to a functor Re : SHC2(R) → SHC2×C2 between the stable
equivariant motivic homotopy category over R and the classical stable equivariant homotopy category.
We refer to this functor as “Betti realization,” or simply “realization”.

The way the motivic spheres interact with the topological spheres through Betti realization is

Re(Sa+pσ,b+qσ) ≃ Sa−b+(p−q)σ+bǫ+qσ⊗ǫ.

Here we have the following nontrivial one dimensional C2 ×Σ2-representations: σ (C2 nontrivial action
for the first component), ǫ (C2 nontrivial action for the second component) and σ ⊗ ǫ. We have the
following four maps giving four C2 × Σ2-one dimensional irreducible representations

Z/2×Z/2 → Z/2 →֒ GL1(R)

given by (k1, k2) → ik1 + jk2 where i, j ∈ {0, 1} are fixed choices. Now σ is the choice (i, j) = (1, 0), ǫ
is the choice (i, j) = (0, 1) and σ⊗ ǫ is the choice (i, j) = (1, 1). The identity representation is given by
the choice (i, j) = (0, 0). The way Z/2 = {0, 1} embeds in GL1(R) is by sending 0 to multiplication by
1 and sending 1 to multiplication by −1.

By [20, Theorem A.29], Re(MA) ≃ HA, where HA is the equivariant Eilenberg-MacLane spectrum
associated to the constant Mackey functor A.

In particular, for any smooth C2-scheme over R there is a realization map

Re : Ha+pσ,b+qσ
C2

(X,A) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (X(C), A).
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Betti realization takes the cofiber sequences (1.1) and (1.2) to the corresponding ones in SHC2×Σ2 .
These are

C2+ → S0 → Sσ. (1.4) eqn:cof3

and

EΣ2
C2+ → S0 → ẼΣ2

C2. (1.5) eqn:cof4

The cofiber sequence 1.4 is associated to the C2×Σ2 representation σ; consequently we have by symmetry
two more similar topological cofiber sequences associated to the C2×Σ2 representations ǫ and σ⊗ǫ. The
same happens for the cofiber sequence 1.5; there are two other symmetric topological cofiber sequences
depending on which two one dimensional C2 × Σ2 representations are chosen. According to [20], over
the reals we have

Re(EC2) = EΣ2
C2,

where by Σ2 we denote the second copy of C2 in C2 × C2.

Here EΣ2
C2 is the Σ2-equivariant universal free C2-space. By construction we have that

EΣ2
C2 = colimnS(nσ + nσ ⊗ ǫ).

We write S(V ) for the unit sphere included in the disk D(V ) given by any actual C2×Σ2-representation
V . For a discussion of the cofiber sequence 1.5 in more detail see Section 2. Throughout this paper, we
refer to this cofiber sequence as the “C2 × Σ2 topological isotropy sequence”.

1.3 RO(C2)-graded Bredon cohomology of a point

We present our computations as modules over the RO(C2)-graded Bredon cohomology of a point. The
natural module structure is given by the fact that Betti realization induces an isomorphism of bigraded
rings

H⋆,0
C2

(R,Z/n) ∼= M
C2

n ,

and so H⋆,⋆
C2

(X,Z/n) is a module over MC2

n .

In fact, by [31], Betti realization is an isomorphism in weight zero, even with Z-coefficients. In
Section 4, we will study a more general case (q ∈ Z) than the proposition below (q = 0). Below, we see
the reason for the above isomorphism.

classic Proposition 1.6. ([29]) Ha,b(R,Z/2) ≃ Ha−b+bǫ
Br (pt,Z/2) for any a ∈ Z, b ≥ 0. Moreover, as rings,

H∗,∗(R,Z/2) = Z/2[x2, y2]

where the last expression is the positive cone of the Bredon cohomology of a point with deg(x2) = (1, 1)
and deg(y2) = (0, 1). The realization maps are strict monomorphisms if b+ 1 < a ≤ 0.

prop:ptiso Proposition 1.7. Let A be a finite abelian group and b ≥ 0. For any a, p ∈ Z, Betti realization induces
an isomorphism

Ha+pσ,b
C2

(R, A)
∼=
−→ Ha−b+pσ+bǫ

Br (pt, A).

Proof. If b ≥ 0, then Ha,b(R, A) → Ha−b+bǫ
Br (pt, A) is an isomorphism for all a ∈ Z according to

Voevodsky’s computation in Proposition 1.6. In particular, the result holds for p = 0. Using the
comparison long exact sequence produced from the realization of the cofiber sequence 1.1 and the five
lemma, the result holds for all p by induction.

The RO(C2)-graded Bredon cohomology groups of a point are shown in the diagram below. We
notice that both cones of the RO(C2)-Bredon cohomology of a point are parts of the RO(C2)-graded
Bredon cohomology of EC2 and ẼC2 (see for example [21]).
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a

p·σ

Ha+pσ
Br (EC2)

H̃a+pσ
Br (ẼC2)

1
α

θ

Figure 2: Regions of H∗+∗σ
Br (R,Z/2) determined by (parts) of the Bredon cohomol-

ogy of EC2 and ẼC2. The degrees of the displayed elements are |α| = −1 + σ,
|θ| = 2− 2σ.TEST

A point (a, p) in Figure 2 is given by a single Z/2 vector space Ha+pσ
Br (pt,Z/2). The diagonal in

Figure 2 is the line a+ p = 0. The positive cone R is the green region and it is a subring that can be
computed as Z/2[σ, α] with |σ| = σ and |α| = −1+σ. The negative coneNC is computed as Z/2{ θ

σnαm }
for n,m ≥ 0 and θ an element divisible by α and σ with the property that θ2 = θα = θσ = 0 and
|θ| = 2 − 2σ. Also, the cohomology class α in the RO(C2)-graded Bredon cohomology ring of EC2 is
invertible.

A detailed explanation of the above diagram is given in [21].
The RO(C2)-graded Bredon cohomology ring of a point was computed by Stong (unpublished), but

written accounts can be found in the Appendix of [4] and in Proposition 6.2 of [7]. This can be described
as:

Br Theorem 1.8. We have a M
C2

2 -algebra isomorphism

H∗+∗σ
Br (pt,Z/2) ≃ R⊕NC = Z/2[σ, α]⊕Z/2

{
θ

σnαm

}

with R a subring of H∗+∗σ
Br (pt,Z/2) and NC a M

C2

2 -submodule with zero products.

1.4 Our Results

One of the main results of this paper is the additive picture of the Bredon motivic cohomology groups
of the real numbers. As one can notice in Figure 3, apart from different Betti realizations in the blue
region (and different computations for the graded Z/2-vector spaces in the green and red cone), the
diagram is similar with the complex case computed in [21] and reviewed in Figure 1. This shows that
in both the complex and real cases the additive groups are only determined by parts of Bredon motivic
cohomologies of EC2 and ẼC2, along with the realization.

The classical computations of the motivic cohomology of the complex numbers and real numbers
(with Z/2-coefficients) can be understood as belonging to the blue region (more precisely to the line
q = 0, b ≥ 0), an area where all the Betti realizations are isomorphisms and to the segment b < 0, q = 0
where the Betti realizations can be a strict monomorphism or a trivial isomorphism.
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b

q·σ

H⋆,⋆
C2

(EC2) H⋆
Br,K(pt)

H̃⋆,⋆
C2

(ẼC2)

1
κ2

Figure 3: Regions of H⋆,b+qσ
C2

(R,Z/2) determined by EC2, Betti realization into the
RO(C2 × Σ2)-graded Bredon cohomology of a point (denoted by H⋆

Br,K(pt.)), and

ẼC2. The degree of the displayed element is |κ2| = (−2 + 2σ,−1 + σ).TEST1

A point (b, q) in the Figure 1 is given by the graded Z/2−vector space ⊕a,p∈Z2Ha+pσ,b+qσ
C2

(R,Z/2).

We can also view each point of the diagram as a M
C2

2 -module.

When we say that the realization is an isomorphism for a point (b, q) we mean that

Ha+pσ,b+qσ
C2

(R,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

is an isomorphism for any choices of (a, p) ∈ Z2.

In the white region of Figure 3, the Bredon motivic cohomology groups are zero. Multiplication
by κ2 gives the periodicity in the Bredon motivic cohomology of EC2; therefore, the multiplication by
κ2 is an isomorphism only in the green cone. The Bredon motivic cohomology of the real numbers
is isomorphic with the Bredon motivic cohomology of EC2 in the green cone, and it is isomorphic to
the reduced Bredon motivic cohomology of ẼC2 in the red cone. The blue region includes both the
computation of the motivic cohomology of R of V.Voevodsky [29] and the results in codimension 0, 1
and σ in the particular case R (or any real closed field), of the second author in [31].

Moreover, in Figure 3, we prove that the realization maps in the green cone and the red cone can
be identified with maps induced by the C2×Σ2-equivariant topological isotropy sequence. By studying
the C2 × Σ2-equivariant topological isotropy sequence in sections 2.3 and 3, we completely determine
the realization maps in the green and red cones.

Based on J.Holler and I.Kriz’s computation from [13], we also identify the value of the cohomology
groups in Figure 3 above the line b+q = 0. The value of the cohomology below the line b+q = 0 can be
determined from Voevodsky’s computation of the motivic cohomology of BC2 over reals ([30]). Using
Theorem 1.10 below (proved in Section 5), we can also compute these groups as RO(C2 × Σ2)-graded
Bredon cohomology groups therefore reducing the additive computation to [13]. This unexpected link
between Voevodsky’s computation and RO(G)-graded Bredon cohomology is discussed in Remark 5.13
from Section 5 (for G = C2 or C2 ×Σ2); it is essentially a consequence of the fact that there is a lot of
nontrivial information in the extra nontrivial representation indexes of Bredon motivic cohomology.

We prove the following theorem about the realization maps in Figure 3:
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Theorem 1.9. The Betti realizations

Ha+pσ,b+qσ
C2

(R,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt.,Z/2)

in the green cone are monomorphisms everywhere and isomorphisms if a ≤ 2b + 2 and the Betti re-
alizations in the blue region are isomorphisms everywhere. The realization maps in the red cone are
monomorphisms everywhere.

Thus, we completely compute the Borel motivic cohomology ring of the real numbers as a proper
subring of the RO(C2×Σ2)-graded Bredon cohomology of EΣ2

C2 (which we compute in [6] and mention
in section 3). The method for computing Borel motivic cohomology of the complex numbers in [21]
cannot be generalized to our case, but we found a different method that computes Borel cohomology
of both the real numbers and the complex numbers, therefore also reproving in a simpler and more
conceptual way the results of [21]. One of the main difficulties in the case of the real numbers as opposed
to the case of the complex numbers is that the Z/2-vector space dimensions of the RO(C2×Σ2)-graded
Bredon cohomology groups of a point (with Z/2-coefficients) are usually higher than 1.

We prove the following theorem in Section 5:

ocomp Theorem 1.10. We have the following ring isomorphism

H⋆,⋆
C2

(EC2,Z/2) ≃ M
C2

2 [x3, y3, κ
±1
2 ] →֒ H∗+∗σ+∗ǫ+∗σ⊗ǫ

Br (EΣ2
C2,Z/2),

with x3 in bidegree (σ, σ), y3 in bidegree (σ−1, σ) and κ2, the invertible element, in bidegree (2σ−2, σ−1).

The realization maps

Ha+pσ,b+qσ
C2

(EC2,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (EΣ2

C2,Z/2)

are isomorphic if a ≤ 2b + 2, and injective, but not surjective if a ≥ 2b + 3 (see Corollary 5.4). We
explain in Remark 5.11 and Remark 5.13 how V.Voevodsky’s computation of the motivic cohomology
of BC2 [30] can be embedded, for our choices of a field, in the Borel motivic cohomology ring of a point.

We notice that the multiplication by the generator τσ ∈ H0,σ
C2

(EC2C,Z/2) gives isomorphism over
the complex numbers, and is therefore important in the computation of Borel motivic cohomology ring
in [21]. However, in the real case this cohomology class is zero because H0,σ

C2
(EC2R,Z/2) = 0.

We computed the Bredon motivic cohomology ring of the real numbers as a subring in the RO(C2×
Σ2)-graded Bredon cohomology ring of a point. We consider

R = ⊕b≥0,b+q≥0H
⋆,b+qσ
C2

(R,Z/2)

the subring in H⋆,⋆
C2

(R,Z/2) given by the direct sum of the M
C2

2 -modules in the blue region of Figure 3
(which can be considered as a subring of the RO(C2 × Σ2)-graded Bredon cohomology of a point, and
is discussed in the last section) and

NC = ⊕b≥0,b+q<0H
⋆,b+qσ
C2

(R,Z/2),

the M
C2

2 -submodule in H⋆,⋆
C2

(R,Z/2) given by the direct sum of the M
C2

2 -modules in the red cone of
Figure 3.

The Bredon motivic cohomology of the real numbers is computed below in terms of these objects:

Theorem 1.11. We have an isomorphism of MC2

2 -algebras

H⋆,⋆
C2

(R,Z/2) ≃ (R, κ2)⊕NC

with κ2 in degree (2σ−2, σ−1) with (R, κ2) →֒ H⋆
Br(pt,Z/2) the subring of the RO(C2×Σ2)-graded Bre-

don cohomology of a point generated by R and the cohomology class k2 and with NC a M
C2

2 −submodule
having zero products.

The realization map is a monomorphism making the Bredon motivic cohomology ring of the real
numbers a nontrivial proper subring of the RO(C2 × Σ2)-graded Bredon cohomology ring of a point.
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In conclusion we have the following commutative diagram of commutative rings

H∗,∗(R,Z/2) H⋆
Br,C2

(pt,Z/2)

H⋆,⋆
C2

(R,Z/2) H⋆
Br,K(pt,Z/2)

The horizontal maps are given by the Betti realizations and the vertical maps by the canonical inclusions.

The motivic cohomology ring of the real numbers was computed by V.Voevodsky as the positive
cone of the RO(C2)-graded Bredon cohomology of a point and it is a subring of R. Voevodsky’s
monomorphism is represented by the upper horizontal Betti realization in the above diagram.

We can conclude that Bredon and Borel motivic cohomology groups of real numbers are completely
determined by the values of RO(C2×Σ2) graded Bredon cohomology groups of a point. In the same way,
we can conclude that Bredon and Borel motivic cohomology groups of complex numbers are completely
determined by the values of RO(C2) graded Bredon cohomology groups of a point.

At the end of the paper, we show that all the computations and results of this paper are valid if we
replace R by an arbitrary real closed field.

A brief outline of the paper is as follows. Sections 1 and 2 are devoted to the introduction and
preliminaries. The main computations of the Bredon motivic cohomology of a point are carried out
in Sections 3, 4 and 6. In Section 5 we discuss the Bredon motivic cohomology of EC2 over the real
numbers, which is usually called the Borel motivic cohomology of a point (or of real numbers).

Notation.

· We write Xk for a smooth scheme over k.

· K := C2 × Σ2 is the Klein four-group. We denote by Σ2 the second copy of C2.

· Ha+pσ,b+qσ
C2

(X,A) is the Bredon motivic cohomology of a C2-smooth scheme, with coefficients A.
All cohomology that appears in this paper is understood to be with Z/2

· Hn,q(X,A) is the motivic cohomology of a smooth scheme X . We only consider the case where
A = Z/2.

· Ha+pσ
Br (X,A) is the Bredon cohomology of a C2-topological space X with coefficients in the con-

stant Mackey functor A (generated by the classes x1, y1, θ1). If instead of σ we write ǫ, we mean the
same cohomology generated by x2, y2, θ2 (viewed as being embedded in the RO(C2 ×Σ2)-graded
Bredon cohomology of a point). We only consider the case where A = Z/2.

· Ha+pσ+bǫ+qσ⊗ǫ
Br (X,A) is the Bredon cohomology of a C2×Σ2-topological space X with coefficients

in the constant Mackey functor A. We only consider the case where A = Z/2. Sometimes we
write H⋆

Br,K(X,A) for the same cohomology, where K is the Klein four-group.

· We have the convention that ⋆ denotes a RO(G)-grading, while ∗ denotes an integer grading. For

example, H⋆,⋆
C2

(X) = ⊕a,b,p,qH
a+pσ,b+qσ
C2

(X), H∗,∗(X) = ⊕a,bH
a,b(X) or

H∗,∗,∗,∗
Br (X) = ⊕a,b,p,qH

a+pσ+bǫ+qσ⊗ǫ
Br (X).

· We writeHBr
V ,HV

Br for the usual Mackey functors associated toHBr
V orHV

Br, with V aG−representation.

· SV is the topological sphere associated to the C2 × Σ2 representation V . For example, V can be
σ, ǫ or σ ⊗ ǫ.

· All C2-varieties are over R, and we view C2 as the group scheme C2 = Spec(R) ⊔ Spec(R).

· MC2

n := H∗+∗σ
Br (pt,Z/n).

· We denote by κ2 the invertible element in the Bredon motivic cohomology of EC2 as well as
its Betti realization in the RO(C2 × Σ2)-graded Bredon cohomology of EΣ2

C2 (which also gives
EΣ2

C2 its unique periodicity in its RO(C2 × Σ2)-graded Bredon cohomology).

Acknowledgement. The second author would like to thank J. Heller and P.A.Østvær for useful
discussions.
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2 RO(C2 × Σ2)-graded Bredon cohomology of a point

2.1 RO(C2 × Σ2)-graded Bredon cohomology groups of a point
rok

The RO(C2 × Σ2)-graded Bredon cohomology of a point with Z/2-coefficients was computed in [23].
The results were given in terms of Poincare series of graded C2-spaces and reproduced also in [10]
(however see the modification in Proposition 2.3 from [10]). We have the following:

Proposition 2.1. ([23]) Let l, n ≥ 0 and i, j ≥ 0. Let α and β two 1-dimensional irreducible C2 ×Σ2-PC
representations. The Poincare series for H−∗+V

Br (pt,Z/2) is
a) If V = 0 then 1.
b) If V = nα then 1 + x+ x2 + ...+ xn.
c) If V = −jα then x−n + ...+ x−3 + x−2.
d) If V = nα+ jβ then (1 + x+ ...+ xn)(1 + x+ ...+ xl).
e) If V = nα− jβ then (1 + x+ ...+ xn)(x−j + ...+ x−2).
f) If V = −iα− jβ then (x−n + ...+ x−2)(x−j + ...+ x−2).

When all three 1-dimensional irreducible representations are involved the answer is more complicated.
The following is the description of the Bredon cohomology groups of a point in the positive cone.

Proposition 2.2. ([23]) Let l,m, n ≥ 0. The Poincare series for H−∗+lα+mβ+nγ
Br (pt,Z/2) ispc

(1 + x+ ...+ xl)(1 + x+ ...+ xm) + x(1 + x+ ...+ xl+m)(1 + ...+ xn−1).

The following is the description of the Bredon cohomology groups of a point in the mixed cone of
type I:

Proposition 2.3. [23] Let k, l,m ≥ 1. If k ≤ l,m then the Poincare series for H−∗+lα+mβ−kγ
Br (pt,Z/2)caseMC1

is

(
1

xk
+ ...+

1

x
)(1 + x+ ...+ xk−2) + xk(1 + ...+ xl−k)(1 + ...+ xm−k).

In the case k > l the Poincare series for H−∗+lα+mβ−kγ
Br (pt,Z/2) is

1

xl+1
(1 + ...+ xl)(1 + ...+ xl−1) +

1

xk
(1 + ...+ xk−l−2)(1 + ...+ xl+m).

Swapping the role of l and m gives the case k > m.

The following is the description of the Bredon cohomology groups of a point in the mixed cone of
type II:

Proposition 2.4. [23] Let j, k, l ≥ 1. Then the Poincare series for H−∗+lα−jβ−kγ
Br (pt,Z/2) iscaseMC2

1

xj+k−l
(1 + ...+ xj−l−2)(1 + ...+ xk−l−2) +

1

xl+1
(1 + ...+ xl)(1 + ...+ xl−1),

if j, k ≥ l + 1 or

1

xj
(1 + ...+ xj−2)(1 + ...+ xl−k) +

1

xk
(1 + ...+ xl−1)(1 + ...+ xk−1)

if l ≥ k. Swapping the role of j and k gives the case l ≥ j.

The following is the description of the Bredon cohomology groups of a point in the negative cone:

Proposition 2.5. [23] Let i, k, j ≥ 1. Then the Poincare series for H−∗−iα−jβ−kγ
Br (pt,Z/2) isNC

1

xi+j+k
[(1 + x+ ...+ xj+k−2)(1 + ...+ xi−2) + xi−1(1 + ...+ xk−1)(1 + ...xj−1)].

We conclude with the following vanishing propositions. From Proposition 2.4 we have

cvan Proposition 2.6. If a > b ≥ −q > 0 then Ha+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2) = 0.

From Proposition 2.2 we have

cvan2 Proposition 2.7. If b, q ≥ 0 and a ≥ 1, then Ha+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2) = 0.
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2.2 RO(C2 × Σ2)-graded Bredon cohomology ring of a point

In this section we describe the positive cone of the RO(C2 × Σ2)-graded Bredon cohomology ring of a

point Ha+pσ+bǫ+qσ⊗ǫ
Br (pt,Z/2), as well as some cohomology classes that appear in this ring following

[8].

Positive Cone; i.e. p, b, q ≥ 0.

We have for V an actual C2 × Σ2-representation the following equality of Mackey functors:

πp(S
V ∧HZ/2) ∼= HBr

p (SV ;Z/2) ∼= HBr
p−V (pt;Z/2)

∼= H−p+V
Br (pt;Z/2).

Then we have the generators of the positive cones Z/2[xi, yi], i = 1, 2, 3, corresponding to the three
nontrivial one-dimensional C2 × C2 representations.

We denote by πG
∗ the top level of the Mackey functor given by the equivariant stable homotopy

group. The computations below follow from Proposition 2.2 and Proposition 2.1.

x1 ∈ πG
0 (S

0,1,0,0 ∧HZ/2) ∼= H0,1,0,0
Br (pt;Z/2) ∼= Z/2,

y1 ∈ πG
1 (S

0,1,0,0 ∧HZ/2) ∼= H−1,1,0,0
Br (pt;Z/2) ∼= Z/2,

x2 ∈ πG
0 (S

0,0,1,0 ∧HZ/2) ∼= H0,0,1,0
Br (pt;Z/2) ∼= Z/2,

y2 ∈ πG
1 (S

0,0,1,0 ∧HZ/2) ∼= H−1,0,1,0
Br (pt;Z/2) ∼= Z/2,

x3 ∈ πG
0 (S

0,0,0,1 ∧HZ/2) ∼= H0,0,0,1
Br (pt;Z/2) ∼= Z/2,

y3 ∈ πG
1 (S

0,0,0,1 ∧HZ/2) ∼= H−1,0,0,1
Br (pt;Z/2) ∼= Z/2,

θ1 ∈ πG
−2(S

0,−2,0,0 ∧HZ/2) ∼= H2,−2,0,0
Br (pt;Z/2) ∼= Z/2,

θ2 ∈ πG
−2(S

0,0,−2,0 ∧HZ/2) ∼= H2,0,−2,0
Br (pt;Z/2) ∼= Z/2,

θ3 ∈ πG
−2(S

0,0,0,−2 ∧HZ/2) ∼= H2,0,0,−2
Br (pt;Z/2) ∼= Z/2.

with the cohomological classes given by the only non-trivial element in each of the above abelian groups.
From Proposition 2.1 and Theorem 1.8, we have that

H∗+∗σ
Br (pt,Z/2) = Z/2[x1, y1]⊕Z/2

{
θ1

xn1

1 ym1

1

}
,

and

H∗+∗ǫ
Br (pt,Z/2) = Z/2[x2, y2]⊕Z/2

{
θ2

xn1

2 ym1

2

}
,

or

H∗+∗σ⊗ǫ
Br (pt,Z/2) = Z/2[x3, y3]⊕Z/2

{
θ3

xn1

3 ym1

3

}
,

are all nontrivial proper subrings in the RO(C2 × Σ2)-graded Bredon cohomology of a point.

Theorem 2.8. ([8]) The Mackey functor structure of the positive cone in π⋆HZ/2 is given by thepcon
Mackey functor of RO(C2 × Σ2)-graded rings

Z/2[x1,y1,x2,y2,x3,y3]
(x1y2y3+y1x2y3+y1y2x3)

Z/2[y1,x2,y2,x3,y3]
(x2y3+y2x3)

Z/2[x1,y1,y2,x3,y3]
(x1y3+y1x3)

Z/2[x1,y1,x2,y2,y3]
(x1y2+y1x2)

Z/2[y1, y2, y3]

where each restriction map is the identity on a generator of the domain that is also a generator of the
codomain and is zero on a generator otherwise. For example, the restriction of the x1 in the top level

is zero in Z/2[y1,x2,y2,x3,y3]
(x2y3+y2x3)

and is x1 in Z/2[x1,y1,y2,x3,y3]
(x1y3+y1x3)

and Z/2[x1,y1,x2,y2,y3]
(x1y2+y1x2)

. The transfer maps are

always zero.
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To describe the other parts of the RO(C2 × Σ2) Bredon cohomology ring of a point we need more
cohomology classes than those described above.

The computations below follow from Proposition 2.3, Proposition 2.4 and Proposition 2.5. We have
the following seven new nontrivial cohomology classes:

Θ ∈ πG
−3(S

0,−1,−1,−1 ∧HZ/2) ∼= H3,−1,−1,−1
Br (pt;Z/2) ∼= Z/2,

κ1 ∈ πG
1 (S

0,−1,1,1 ∧HZ/2) ∼= H−1,−1,1,1
Br (pt;Z/2) ∼= Z/2,

κ2 ∈ πG
1 (S

0,1,−1,1 ∧HZ/2) ∼= H−1,1,−1,1
Br (pt;Z/2) ∼= Z/2,

κ3 ∈ πG
1 (S

0,1,1,−1 ∧HZ/2) ∼= H−1,1,1,−1
Br (pt;Z/2) ∼= Z/2,

ι1 ∈ πG
−1(S

0,1,−1,−1 ∧HZ/2) ∼= H1,1,−1,−1
Br (pt;Z/2) ∼= Z/2,

ι2 ∈ πG
−1(S

0,−1,1,−1 ∧HZ/2) ∼= H1,−1,1,−1
Br (pt;Z/2) ∼= Z/2,

ι3 ∈ πG
−1(S

0,−1,−1,1 ∧HZ/2) ∼= H1,−1,−1,1
Br (pt;Z/2) ∼= Z/2.

These cohomological classes satisfy the following relationships. For each {i, j, k} = {1, 2, 3} (i.e. they
are all distinct), we have

ιiθi = Θ and κiθj = ιk,

θjθk 6= 0,

ιiθj = 0,

ιiκi = 0,

Θ2 = θiΘ = κiΘ = ιiΘ = 0,

ιiιj = 0,

and we can think of Θ as being divisible by θ1, θ2 and θ3, where

ιi =
Θ

θi
and κi =

Θ

θjθk
.

Then we can think of Θ as being infinitely divisible by xi, yi for i = 1, 2, 3.
By degree reasons, we have

Θxi = Θyi = 0

for all i ∈ {1, 2, 3} and similarly

ιixj = ιiyj = 0

for all i, j ∈ {1, 2, 3} with i 6= j. However, it is not true that κixi = κiyi = 0 for all i ∈ {1, 2, 3}.
For each {i, j, k} = {1, 2, 3}, we have the following relations

κixi = xjyk + yjxk,

κiyi = yjyk,

κ2
i 6= 0,

κiκj = y2k.

We cannot express κ2
i in terms of xi, yi and θi.

It is proved in [8] that the entire RO(C2 × Σ2)-graded Bredon cohomology ring of a point can be
expressed in terms of the above cohomology classes. See also [6] for a more explicit description of the
cohomology classes in this ring.
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2.3 Topological C2 × Σ2-isotropy cofiber sequence

We define EΣ2
C2 to be the Σ2-equivariant universal free C2-space (see [[22],VII.1]). By construction we

have that
EΣ2

C2 = colimnS(nσ + nσ ⊗ ǫ)

and we have a cofiber sequence

S(nσ + nσ ⊗ ǫ)+ → pt+ → Snσ+nσ⊗ǫ

which, by taking colimits, gives the following topological isotropy C2 × Σ2-sequence

EΣ2
C2+ → pt+ → ẼΣ2

C2.

According to [20] we have that EΣ2
C2 is the topological realization of EC2. This implies that the

Bredon cohomology of the C2×Σ2-space EΣ2
C2 has a −1+σ− ǫ+σ⊗ ǫ periodicity because the Bredon

motivic cohomology of EC2 is (2σ− 2, σ− 1) periodic [[20], Theorem 5.4]. According to the topological
realization, we also have that ẼΣ2

C2 has, in its reduced Bredon cohomology, periodicities σ and σ ⊗ ǫ

because the reduced Bredon motivic cohomology of ẼC2 is (0, σ) and (σ, 0) periodic [[20], Proposition

5.7]. This is because ẼΣ2
C2 is the Betti realization of ẼC2. The above isotropy cofiber sequence is

given by the realization of the motivic isotropy sequence

EC2+ → pt+ → ẼC2,

obtained from taking the colimits over the cofiber sequence

(A(nσ) \ {0})+ → pt+ → T nσ = Sσ ∧ Sσ
t .

We prove the following vanishing theorem for the above topological C2 × Σ2-isotropy sequence:

isov Theorem 2.9. The H⋆
Br(pt,Z/2)-module map induced by the above topological isotropy sequence

H̃a+pσ+bǫ+qσ⊗ǫ
Br (ẼΣ2

C2) → Ha+pσ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

is the zero map for all a, b ∈ Z and p, q ≥ 0. The H⋆
Br(pt,Z/2)-module map

H̃a+pσ+qσ⊗ǫ
Br (ẼΣ2

C2) → Ha+pσ+qσ⊗ǫ
Br (pt,Z/2)

is the zero map for all a and p, q not both negative or a ≤ 3 and p, q are arbitrary.

Proof. Let V = a + bǫ and take W = a′ + b′ǫ with a′, b′ ≥ 0 such that V + W is an actual Σ2-
representation. Denote by F (X,Y ) the Σ2-space of nonequivariant maps with the conjugacy action for
two pointed Σ2-spaces X and Y . We study the map

H̃V
Br(ẼΣ2

C2) = [ẼΣ2
C2, F (SW ,M ⊗ SV+W )]K → H̃V

Br(pt+) = [pt+, F (SW ,M ⊗ SV+W )]K

induced by the isotropy map pt+ → ẼΣ2
C2. But this last map factors through the map

pt+ →֒ Sσ →֒ Sσ+σ⊗ǫ →֒ ẼΣ2
C2

so the above cohomology map factors through [Sσ, F (SW ,M ⊗ SV+W )]K . But the target has trivial
C2-action so the cohomology map factors through [Sσ/C2, F (SW ,M ⊗ SV+W )]K . But Sσ/C2 = I,
which is contractible, implying that

H̃V
Br(ẼΣ2

C2) = [ẼΣ2
C2, F (SW ,M ⊗ SV+W )]K → H̃V

Br(I) = [Sσ/C2, F (SW ,M ⊗ SV+W )]K = 0 →

→ H̃V
Br(pt+) = [pt+, F (SW ,M ⊗ SV+W )]K

so the topological isotropy map is zero in cohomology for indexes a+ bǫ, a, b ∈ Z. The first statement
of the theorem is implied by the periodicity of ẼΣ2

C2; i.e. through multiplication by the x1 and x3
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classes from the Bredon cohomology ring of a point described above. For example, multiplication with
x1 gives

H̃a+bǫ
Br (ẼΣ2

C2)
0

//

x1
≃
��

Ha,b
Br (pt,Z/2)

x1

��

H̃a+σ+bǫ
Br (ẼΣ2

C2) // Ha+σ+bǫ
Br (pt,Z/2).

The last case of the theorem is symmetric in p and q. Suppose for example that p = −n < 0 and q ≥ 0.
By multiplication with x3 as above we can assume that q = 0. Let a > 3 (by periodicity and the fact

that H̃a+0σ+0ǫ+0σ⊗ǫ
Br (ẼΣ2

C2) = 0 if a ≤ 3, we conclude that H̃a+pσ+qσ⊗ǫ
Br (ẼΣ2

C2) = 0 for any p, q ∈ Z,
so the map is zero). Then

H̃a−nσ
Br (ẼΣ2

C2) = [ẼΣ2
C2, F (Snσ,M ⊗ Sa)]K → H̃V

Br(pt+) = [pt+, F (Snσ,M ⊗ Sa)]K .

We describe the action of C2 × Σ2 on Sσ+σ⊗ǫ = S(1 ⊕ σ ⊕ σ ⊗ ǫ). Denote by a the nontrivial element
of C2 and b the nontrivial element of Σ2. Then ab is the nontrivial element of the diagonal subgroup ∆.
Then a(x, y, z) = (x,−y,−z), b(x, y, z) = (x, y,−z) and ab(x, y, z) = (x,−y, z). When we restrict to the
action on Sσ⊗ǫ = S(1⊕σ⊗ǫ) then a(x, 0, z) = (x, 0,−z), b(x, y, z) = (x, 0,−z) and ab(x, 0, z) = (x, 0, z).
In conclusion ∆ acts trivially on Sσ⊗ǫ. Also

I = Sσ⊗ǫ/C2 = Sσ⊗ǫ/Σ2 = Sσ⊗ǫ/K

because C2 and Σ2 act in the same way on Sσ⊗ǫ. Because Σ2 acts trivially on F (Snσ,M⊗Sa) it implies
that C2 acts as ∆ on this space.

Now the map pt+ → ẼΣ2
C2 factors as

pt+ →֒ Sσ⊗ǫ →֒ Sσ⊕σ⊗ǫ →֒ ẼΣ2
C2

and consequently we have a factorization of the topological isotropy map

H̃a−nσ
Br (ẼΣ2

C2) → [Sσ⊗ǫ, F (Snσ,M ⊗ Sa)]K → H̃a−nσ
Br (pt+).

But the homotopy group of pointed maps is zero i.e.

[Sσ⊗ǫ, F (Snσ,M ⊗ Sa)]K = [Sσ⊗ǫ/Σ2, F (Snσ,M ⊗ Sa)]K = [I, F (Snσ,M ⊗ Sa)]K = 0.

It implies the second statement of the theorem.

2.4 Σ2-equivariant classifying spaces

Let BΣ2
C2 be the Σ2-equivariant classifying space. It is constructed as

BΣ2
C2 = EΣ2

C2/C2 = colimnS(nσ + nσ ⊗ ǫ)/C2.

It is the realization of
BC2 = EC2/C2 = colimn(A(nσ) \ 0)/C2,

the classifying space of C2 over the field of real numbers. The RO(Σ2)-graded Bredon cohomology of
BΣ2

C2 is given below:

Theorem 2.10. ([24],[16]) We have thatcomp1

H∗+∗ǫ
Br (BΣ2

C2,Z/2) = H∗+∗ǫ
Br (pt)[c, b]/(c2 = x2c+ y2b)

where |c| = ǫ and |b| = 1 + ǫ and x2, y2 ∈ H⋆
Br(pt,Z/2) are the usual classes in the degrees ǫ and ǫ − 1

respectively.

The motivic cohomology of BC2 over the field of real numbers is computed below:
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Theorem 2.11. ([30]) We have thatcomp2

H∗,∗(BC2,Z/2) = H∗,∗(R,Z/2)[s, t]/(s2 = τt+ ρs)

where |s| = (1, 1) and |t| = (2, 1), τ ∈ H0,1(R,Z/2) = Z/2 and ρ is the class of [−1] ∈ H1,1(R,Z/2) =
Z/2.

It is obvious that the realization map

Ha,b(BC2,Z/2) → Ha−b+bǫ
Br (BΣ2

C2,Z/2)

is an isomorphism for any a ∈ Z such that a ≤ 2b. The realization map sends

s → c,

t → b,

τ → y2,

ρ → x2.

The way we choose the generator s in Theorem 2.11 is the following: it is the unique element s ∈
H1,1(BC2,Z/2) such that the restriction to H1,1(pt,Z/2) is zero and the Bockstein homomorphism

δ : H̃1,1(−,Z/2) → H̃2,1(−,Z) sends δ(s) = t. We choose t to be the Euler class of the line bundle on
BC2 corresponding to the tautological representation of µ2.

gap Lemma 2.12. We have that

Ha+bǫ
Br (BΣ2

C2,Z/2) = 0

when b = a− 1 or b = a− 2.

Proof. We know that

Ha+bǫ
Br (BΣ2

C2,Z/2) =
Ha+bǫ

Br (pt,Z/2)[c, b]

(c2 = y2b+ x2c)
,

so every generator can be obtained by multiplying an element α ∈ H⋆
Br(pt,Z/2) with either bn or cbn.

If α is in the positive cone, the possibilities are bounded by the products bn along the line a = b, and if
α is in the negative cone, the possibilities are bounded by the products θ2cb

n, along the line b = a− 3.
This is shown in the diagram below.
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-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

θ2cb
n

bn

a

b
Ha,b

Br (BΣ2
C2;Z2)

1

x2y2

x2
2

x3
2

x4
2

y2x2

y2x
2
2

y2x
3
2

y22

y22x2

y22x
2
2

y32

y32x2y42

θ2c

θ2

θ2
x2

θ2
x2

2

θ2
y2

θ2
y2x2

θ2
y2

2

Figure 4TEST3

comp3 Corollary 2.13. If a ≤ b+ 2, b < 0 then

Ha,b
Br (BΣ2

C2,Z/2) = 0.

If b = 0 then
H̃a

Br(BΣ2
C2,Z/2) = 0

if a ≤ 2.

In conclusion we have

cr Corollary 2.14. The realization maps are isomorphisms

Ha,b(BC2,Z/2) ≃ Ha−b+bǫ
Br (BΣ2

C2,Z/2),

for any a, b ∈ Z such that a ≤ 2b.

We have that
H∗,∗(BC2,Z/2) ≃ Z/2[τ, ρ][s, t]/(s2 = τt + ρs),

because the motivic cohomology of the real numbers agrees with the positive cone of the RO(C2)-graded
Bredon cohomology of a point (see Proposition 1.6).

Looking to Figure 4, we see that this ring is represented by elements in the upper cone starting from
the diagonal line given by the powers of b. The lower cone that is in the lower half plane a > b is not
included in the image of the realization maps from Corollary 2.14.

Considering Wq = A(qσ) \ {0}, q > 0, which has a free C2-action, we have that H∗,∗
C2

(Wq ,Z/2) is

generated over the motivic cohomology of a point by sti, ti with 0 ≤ i ≤ q − 1 because of [30] and
Proposition 2.15. Thus we have over a field k of characteristic zero

H∗,∗
C2

(Wq ,Z/2) ≃ H∗,∗(k)[s, t]/(s2 = τt+ ρs, tq)
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and the target of the realization maps over reals is in

H∗,∗
Br (P (Rq+qσ),Z/2) ≃ H∗,∗

Br (pt)[c, b]/(c
2 = x2c+ y2b, b

q = 0)

computed in [[24],Theorem 4.11]. In conclusion the realization maps are isomorphisms

Ha,b
C2

(Wq ,Z/2) ≃ Ha−b+bǫ
Br (S(qσ + qσ ⊗ ǫ)/C2,Z/2),

for any a, b ∈ Z such that a ≤ 2b.

-4 -3 -2 -1 0 1 2 3 4
0

1

2

3

4
bq−1

a

b
Re(H∗,∗

C2
(Wq,Z/2)) ⊂ H∗,∗

Br (P (Rq+qσ),Z/2)

1

x2y2

x2
2

x3
2

x4
2

y2x2

y2x
2
2

y2x
3
2

y22

y22x2

y22x
2
2

y32

y32x2y42

Figure 5TEST6

In conclusion, the Bredon motivic cohomology in integer indexes of Wq is represented in Figure 4
as the truncation of the upper half plane along the line (q, b) with b ≥ 0 with the realization described
in Figure 5.

The following proposition implies tq = 0 for dimension reasons. Notice that if k < n then tk ∈
H2k,k

C2
(Wq ,Z/2) ≃ H2k,k

C2
(BC2,Z/2) is nonzero from [30].

v2n Proposition 2.15.

H2b,b
C2

(W−q,Z/2) = 0

for b ≥ −q > 0 and any field k of characteristic zero.

Proof. Let x1 ∈ Hσ,0(k) ≃ Z/2 and x3 ∈ Hσ,σ(k) ≃ Z/2 the non-zero generators ([31], Proposition 4.3)
and x1x3 6= 0 from the cofiber sequence 1.1. Write k2 for the invertible element of degree (2σ− 2, σ− 1)
in the Bredon motivic cohomology of EC2.

We have that

0 → H2b,b
C2

(k,Z/2) → H2b,b
C2

(W−q ,Z/2) → H̃2b+1,b
C2

(T−qσ,Z/2) → 0

and the first term is zero if b ≥ −q > 0. It implies that H2b,b
C2

(W−q,Z/2) ≃ H̃2b+1,b
C2

(T−qσ,Z/2). We

have that k2t ∈ H2σ,σ
C2

(EC2,Z/2) = H2σ,σ
C2

(k,Z/2) ≃ Z/2 from [[31],Proposition 3.3, Proposition 4.2]

and 1.1, with k2t nonzero. Because x1x3 ∈ H2σ,σ
C2

(k,Z/2) is nonzero it implies k2t = x1x3. Then we
have the following commutative diagram:

H2b+2qσ,b+qσ
C2

(k,Z/2) //

(x1x3)
−q

��

H2b+2qσ,b+qσ
C2

(EC2,Z/2) = Z/2(kq2t
b+q)

(k2t)
−q

��

H2b,b
C2

(k,Z/2) = 0
0

// H2b,b
C2

(BC2,Z/2) = Z/2(tb)

It implies that the right vertical map is an isomorphism and then the upper horizontal map is zero.
From the isotropy sequence we have then

0 → Z/2 = H2b+2qσ,b+qσ
C2

(EC2,Z/2)
≃
→ H̃2b+1+2qσ,b+qσ

C2
(ẼC2,Z/2) = Z/2 → H2b+1+2qσ,b+qσ

C2
(k,Z/2) → 0

which implies that H2b+1+2qσ,b+qσ
C2

(k,Z/2) = 0 = H̃2b+1,b
C2

(T−qσ,Z/2). This concludes the proof.



3. The case b+ q < 0. 18

3 The case b+ q < 0.

The following proposition is used in the red cone of Figure 3:

tilde Proposition 3.1. If b ≥ 0 and b+ q < 0 then Ha+pσ,b+qσ
C2

(R,Z/2) ≃ H̃a+pσ,b+qσ
C2

(ẼC2,Z/2).

Proof. The proposition follows from the motivic isotropy sequence and the fact that

Ha+pσ,b(EC2,Z/2) = 0

if b < 0. We also use the periodicity of the Bredon motivic cohomology of EC2 to obtain

Ha+pσ,b+qσ
C2

(EC2,Z/2) = H
a+2q+(p−2q)σ,b+q
C2

(EC2,Z/2) = 0

if b+ q < 0.

vanr Proposition 3.2. ([[21],Prop. 2.8]) If b ≤ 0 and b+ q < 0 then Ha+pσ,b+qσ
C2

(R,Z/2) = 0.

Proof. This follows from the motivic isotropy sequence and the known periodicities. This proposition
is true for any C2-equivariant scheme X .

x Proposition 3.3. a) The realization maps

H̃a,b
C2

(ẼC2,Z/2) ≃ H̃a−b+bǫ
Br (ẼΣ2

C2,Z/2)

are isomorphisms for a ≤ 2b+ 1 and any b ∈ Z. Moreover

H̃a,b
C2

(ẼC2,Z/2) = 0

if a > 2b+ 1 or b ≤ 0.
b) The red cone of Figure 3 is a M

C2

2 -submodule of

H̃∗,∗
C2

(ẼC2,Z/2) ≃ H̃∗,∗
C2

(Σ1BC2,Z/2)[σ
±1, ǫ±1]

with invertible cohomology classes σ of degree (σ, 0) and ǫ of degree (0, σ).

Proof. We have that BC2 → pt admits a section, which makes the isotropy motivic sequence split (in
integer indexes), giving a short exact sequence

0 → H∗,∗
C2

(pt,Z/2) → H∗,∗
C2

(BC2,Z/2) → H̃∗+1,∗
C2

(ẼC2,Z/2) → 0.

This gives an isomorphism H̃∗,∗
C2

(ẼC2,Z/2) ≃ H̃∗,∗
C2

(Σ1BC2,Z/2). We also have a commutative diagram

H̃a+1,b
C2

(ẼC2,Z/2)
∼=

//

��

H̃a,b
C2

(BC2,Z/2)

��

H̃a+1−b+bǫ
Br (ẼΣ2

C2,Z/2)
∼=
// H̃a−b+bǫ

Br (BΣ2
C2,Z/2)

where the right vertical map is an isomorphism if a ≤ 2b (see Corollary 2.14). When a ≥ 2b+2 or b ≤ 0
we have that

H̃a,b
C2

(ẼC2,Z/2) = 0

from [[21], Prop. 2.7 and Prop. 2.9].
According to Proposition 3.1, we have that the groups in the red cone of Figure 3 are isomorphic to

the reduced Bredon motivic cohomology of ẼC2. It is obvious that

H̃∗,∗
C2

(ẼC2,Z/2) ≃ H̃∗,∗
C2

(Σ1BC2,Z/2)[σ
±1, ǫ±1]

according to the discussion above and the periodicities of the latest cohomology.
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We know that over any field k of characteristic zero we have H̃a,b
C2

(ẼC2,Z/2) = 0 for a ≤ 1 [[20],
Lemma 4.2].

We have for a ≤ 2b+ 1, b+ q < 0 the diagram

H̃a+pσ,b+qσ
C2

(ẼC2,Z/2)
∼=

//

∼=��

Ha+pσ,b+qσ
C2

(R.,Z/2)

��

H̃
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (ẼΣ2

C2,Z/2) // H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

If a > 2b+1, b+q < 0 then the upper horizontal map is zero because it is an isomorphism of two groups
that are zero. It implies that the right vertical realization maps are either trivial monomorphisms (the
domain is zero) or they coincide with an induced map in the topological isotropy sequence.

According to the periodicity of the Bredon cohomology of ẼΣ2
C2 and the proof of Proposition 3.3

we have

H̃
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (ẼΣ2

C2,Z/2) ≃ H̃a−b+bǫ
Br (ẼΣ2

C2,Z/2) ≃ H̃a−b−1+bǫ
Br (BΣ2

C2,Z/2).

The latest group is reviewed in Theorem 2.10. From Corollary 2.13 we conclude that

H̃a+pσ+qσ⊗ǫ
Br (ẼΣ2

C2,Z/2) = 0

if a ≤ 3 and any p, q ∈ Z.
In conclusion, we have the following corollary about the realization maps in the red cone of Figure

3:

itilde Corollary 3.4. Let b + q < 0, p ∈ Z. The realization maps

Ha+pσ,b+qσ
C2

(R,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

are trivial monomorphisms (the domain is zero) if a > 2b+ 1 or a ≤ 1 or b ≤ 0. When a ≤ 2b+ 1, the
displayed realization maps coincide with the C2 × Σ2-isotropy sequence maps

H̃
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (ẼΣ2

C2,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2).

The next theorem says that all realization maps from Corollary 3.4 are monomorphisms.

ncinj Theorem 3.5. The connecting map in the topological C2 × Σ2-isotropy sequence

δ : Ha+pσ+bǫ+qσ⊗ǫ
Br (EΣ2

C2) → H̃a+1+pσ+bǫ+qσ⊗ǫ
Br (ẼΣ2

C2)

vanishes when both 1− b ≤ a ≤ b+ 1 and b + q < 0.

Proof. We know that all the generators in H⋆
Br,K(EΣ2

C2) are of the form

α =
θ2

xn2

2 ym2

2

xn1

1 xn3

3 ym1

1 ym3

3 κn
2 or xn2

2 ym2

2 xn1

1 xn3

3 ym1

1 ym3

3 κn
2 ,

where ni,mi ≥ 0 and n ∈ Z. This is because, using Theorem 2.9 and the topological C2 × Σ2 cofiber
sequence one has

H⋆
Br,K(EΣ2

C2) =
H∗+∗ǫ

Br (pt)[x3, y3, x1, y1, κ
±1
2 ]

(κ2y2 = y1y3, κ2x2 = x1y3 + x3y1)

as in [6].
We have from the topological C2 × Σ2-isotropy sequence that if n > 0

Hn−nσ+nǫ−nσ⊗ǫ
Br (EΣ2

C2,Z/2) = Z/2(κ−n
2 )

δ
≃ H̃n+1−nσ+nǫ−nσ⊗ǫ

Br (ẼΣ2
C2,Z/2) = Z/2

(
Σbn

xn
1x

n
3

)
,

so δ(κ−n
2 ) = Σbn

xn
1
xn
3

. The isomorphism follows from the fact that Hn+1−nσ+nǫ−nσ⊗ǫ
Br (pt) = 0 (see Propo-

sition 2.4). Here, b is the class appearing in Theorem 2.10 and Σb is the corresponding class in the
cohomology of the suspension.
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If n ≥ 0, then α ∈ ker δ from Theorem 2.9. This is because it belongs to the image of the injective
map (in this range) given by H⋆

Br(pt) → H⋆
Br(EΣ2

C2).

Let n = −N where N > 0. If

α =
θ2

xn2

2 ym2

2

xn1

1 xn3

3 ym1

1 ym3

3 κ−N
2

then, because δ is a H⋆
Br,K(pt,Z/2)-module map, we have

δ(α) =
θ2

xn2

2 ym2

2

xn1

1 xn3

3 ym1

1 ym3

3

ΣbN

xN
1 xN

3

= xn1−N
1 xn3−N

3 · ym1

1 ym3

3 ·

(
θ2

xn2

2 ym2

2

ΣbN
)
.

If α lives in the range 1− b ≤ a ≤ b+ 1, then we must have that

ym1

1 ym3

3 ·

(
θ2

xn2

2 ym2

2

ΣbN
)

= 0,

since multiplication with y1 and y3 must eventually cross the gap along the line b = a−3 in H̃⋆
K(ẼΣ2

C2).
Indeed, we have that

∣∣∣∣
θ2

xn2

2 ym2

2

ΣbN
∣∣∣∣ = (A, 0, B, 0) = (N +m2 + 3, 0, N −m2 − n2 − 2, 0),

where B ≤ A− 5 < A− 3. But we know that α lives in the range a ≤ b+ 1, so A− 3−m1 −m3 < a =
A−m1 −m3 ≤ b+ 1 = B + 1. Then we have

A− 3 > B and A− 3 ≤ B +m1 +m3,

so A−m′
1 −m′

3 − 3 = B for some m′
1 ∈ [0,m1] and m′

3 ∈ [0,m3]. Then

y
m′

1

1 y
m′

3

3 ·

(
θ2

xn2

2 ym2

2

ΣbN
)

∈ H̃
A−m′

1
−m′

3
,m′

1
,B,m′

3

K (ẼΣ2
C2) = 0,

since by Lemma 2.12 H̃⋆
K(ẼΣ2

C2) = 0 along the line a− 3 = b. Thus,

δ(α) = xn1−N
1 xn3−N

3 · ym1

1 ym3

3 ·

(
θ2

xn2

2 ym2

2

ΣbN
)

= xn1−N
1 xn3−N

3 · y
m1−m′

1

1 y
m3−m′

3

3 y
m′

1

1 y
m′

3

3 ·

(
θ2

xn2

2 ym2

2

ΣbN
)

= 0.

If

α = xn2

2 ym2

2 xn1

1 xn3

3 ym1

1 ym3

3 κ−N
2 ,

then the condition b+ q < 0 implies that

n2 +m2 + n3 +m3 < 0,

which is false. Hence there are no non-vanishing α in the given range.

Remark 3.6. We use the vanishing result of Proposition 3.5 in the last section, but we can notice from
the above proof that there is also a vanishing for the larger range a ≤ b + 2, b + q < 0. The fact that
there is no lower bound for a in Proposition 3.5 follows also from Corollary 3.4.



21 4. The case b ≥ 0, b+ q ≥ 0.

4 The case b ≥ 0, b+ q ≥ 0.

We will prove that all the realization maps in the range b ≥ 0, b + q ≥ 0 are isomorphisms. Notice
that this is a generalization of the fact that the motivic cohomology of the real numbers has isomorphic
realization maps into the Bredon cohomology of a point when the weight is greater than or equal to
zero (Proposition 1.6).

2q Theorem 4.1. We have that if b ≥ 0, b+ q ≥ 0 then

Ha+2qσ,b+qσ
C2

(R,Z/2) ≃ Ha−b+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2).

If moreover a > 2b then Ha+2qσ,b+qσ
C2

(R,Z/2) = 0 and the codomain is also zero in this range for
any q ∈ Z.

Proof. We have that for an actual C2-representation V = b+ qσ, b, q ≥ 0 (see [[31], Proposition 3.4 and
Proposition 3.5]),

Ha+2qσ,b+qσ
C2

(R,Z/2) = Ha−2b
GNis(R, C∗z(V )Z/2).

From [27] we have a decomposition in motivic complexes in DM−(R)

C∗z(V )Z/2 = ⊕n−1
j=0 (Z/2(j)[2j]⊕Z/2(j)[2j + 1])⊕Z/2(n)[2n].

Applying cohomology as above we obtain that

Ha+2qσ,b+qσ
C2

(R,Z/2) ≃ ⊕q−1
j=0H

a+2j,j+b(R,Z/2)⊕Ha+2j+1,j+b(R,Z/2)⊕Ha+2q,q+b(R,Z/2).

In particular, if a > b, q ≥ 0 then Ha+2qσ,b+qσ
C2

(R,Z/2) = 0; its target is zero in this case from
Proposition 2.7.

Applying the realization functor to the above decomposition of complexes we obtain a decomposition
in the topological target, giving a decomposition for the RO(C2 ×Σ2)-graded Bredon cohomology of a
point:

Ha−b+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2) ≃ ⊕q−1

j=0H
a−b+j,j+b
Br (pt,Z/2)⊕Ha−b+j+1,j+b

Br (pt,Z/2)⊕Ha−b+q,b+q
Br (pt,Z/2).

Notice that the realization from Proposition 1.6 applies to each term of the direct sum because
b, q ≥ 0. The statement of the theorem follows now in the case b, q ≥ 0.

We have that

Wn = A(nσ) \ 0+ → S0 → T nσ =
A(nσ)

A(nσ) \ 0

is an equivariant C2-motivic cofiber sequence that gives a long exact sequence in Bredon motivic coho-
mology.

Notice that T nσ = Snσ ∧ Snσ
t = S2nσ,nσ ([20]) and for q < 0 we have by definition that

Ha+2qσ,b+qσ
C2

(R,Z/2) = H̃a,b
C2

(T−qσ,Z/2).

Because the realization maps

Ha,b
C2

(W−q,Z/2) ≃ Ha−b+bǫ
Br (S(−qσ ⊕−qσ ⊗ ǫ),Z/2)

are isomorphisms when a ≤ 2b it implies that

Ha+2qσ,b+qσ
C2

(R,Z/2) ≃ Ha−b+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

is an isomorphism if q < 0 and b+ q ≥ 0 and a ≤ 2b from the following diagram and 5-lemma:

Ha−1,b
C2

(R,Z/2) //

��

Ha−1,b
C2

(W−q ,Z/2) //

��

H̃a,b
C2

(T−q,Z/2) //

��

Ha,b
C2

(R,Z/2)

��

// Ha,b
C2

(W−q,Z/2)

��

Ha−b−1,b
Br (pt) // Ha−b−1,b

Br (S(−qσ − qσ ⊗ ǫ)) // H̃a−b,b
Br (S−qσ−qσ⊗ǫ) // Ha−b,b

Br (pt) // Ha−b,b
Br (S(−qσ − qσ ⊗ ǫ))
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Notice that if a > 2b then Ha+2qσ,b+qσ
C2

(R,Z/2) = 0 if q < 0 and b ≥ −q. This follows from [[21],
Proposition 2.9] if a ≥ 2b+ 2 and from Proposition 2.15 in the case a = 2b+ 1. But

Ha−b+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2) = 0

if a− b > b ≥ −q > 0 (see Proposition 2.6) so the realization maps are isomorphisms in this range. We
conclude that

Ha+2qσ,b+qσ
C2

(R,Z/2) ≃ Ha−b+qσ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

is an isomorphism if q < 0 and b+ q ≥ 0 which concludes the proof.

The next proposition settles the blue range of Figure 3.

posisom Theorem 4.2. Let b ≥ 0 and b+ q ≥ 0. Then the realization map is an isomorphism

Ha+pσ,b+qσ
C2

(R,Z/2) ≃ H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2).

Proof. We have the following diagram for p+ 1 = 2q:

H
a+(p+1)σ,b+qσ
C2

(R,Z/2) //

∼=
��

Ha+p+1,b+q(R,Z/2) //

∼=
��

Ha+1+pσ,b+qσ
C2

(R,Z/2) //

��

H
a+1+(p+1)σ,b+qσ
C2

(R,Z/2)
∼=
��

// Ha+p+2,b+q(R,Z/2)
∼=
��

H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

and conclude from five lemma, Proposition 4.1 and Proposition 1.6 the isomorphism of the realization
maps for p = 2q − 1 and arbitrary a. Downward induction concludes the theorem for p < 2q.

For the case p = 2q we use the diagram:

Ha−1+p,b+q(R,Z/2) //

∼=
��

Ha+pσ,b+qσ
C2

(R,Z/2) //

∼=
��

H
a+(p+1)σ,b+qσ
C2

(R,Z/2)

��

// Ha+p+1,b+q(R,Z/2) //

∼=
��

Ha+1+pσ,b+qσ
C2

(R,Z/2)
∼=
��

H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2)

// H⋆
Br(pt,Z/2).

Using five lemma, Proposition 4.1 and Proposition 1.6 we conclude that the realization maps are iso-
morphic for p = 2q + 1 and arbitrary a. Upward induction concludes the theorem for p > 2q.

4.1 The case b ≥ 0 and b+ q < 0 revisited

Consider the case b ≥ 0 and b+ q < 0. We notice from the proof of Theorem 4.1 that if q < 0 and b ≥ 0
we have a diagram

Ha−1,b
C2

(R,Z/2) //

��

Ha−1,b
C2

(W−q ,Z/2) //

��

H̃a,b
C2

(T−q,Z/2) //

��

Ha,b
C2

(R,Z/2)

��

// Ha,b
C2

(W−q ,Z/2)

��

Ha−b−1,b
Br (pt) // Ha−b−1,b

Br (S(−qσ − qσ ⊗ ǫ)) // H̃a−b,b
Br (S−qσ−qσ⊗ǫ) // Ha−b,b

Br (pt) // Ha−b,b
Br (S(−qσ − qσ ⊗ ǫ)).

It implies from 5-lemma that the realization maps

Ha+2qσ,b+qσ
C2

(R) → Ha−b+qσ+bǫ+qσ⊗ǫ
Br (pt.),

given by the middle vertical map above, are isomorphisms if a ≤ 2b+ 1.
If a ≥ 2b+ 2 the maps are trivially injective from [[21], Proposition 2.9] because the domain is zero.
Because of the periodicity (σ, 0) in this range for Bredon motivic cohomology of a point we conclude

the following:

ncinj2 Proposition 4.3. Let b ≥ 0 and b+ q < 0. Then the realization maps

Ha+pσ,b+qσ
C2

(R) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt.)

are monomorphisms if p ≤ 2q.
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In the case a ≥ 2b + 2 they are trivially monomorphisms. Proposition 4.3 is equivalent with part
of Proposition 3.5 in the view of Corollary 3.4. The above realization maps are monomorphisms in the
case p > 2q, a ≤ 2b + 1 from Proposition 3.5. In particular, it shows that the realization maps in the
red cone of Figure 3 are all monomorphisms.

ncc Remark 4.4. Some of the realization maps in the red cone of Figure 3 are strictly monomorphisms.
For example, in the case a = 2b + 1, according to Proposition 3.5, we have the following short exact
sequence:

0 → H̃2+ǫ−3σ⊗ǫ
Br (ẼC2

C2) = Z/2 → H2+ǫ−3σ⊗ǫ
Br (pt) = Z/2⊕Z/2 → H2+ǫ−3σ⊗ǫ

Br (EC2
C2) = Z/2 → 0,

thus the realization map in bidegree (3− 3σ, 1− 3σ) is a nontrivial monomorphism, not surjective.

If we compute the realization map in bidegree (3 − 2σ, 1 − 2σ) we see that it is an isomorphism.
Indeed, from Proposition 3.5, we have the following short exact sequence:

0 → H̃2+ǫ−2σ⊗ǫ
Br (ẼC2

C2) = Z/2 → H2+ǫ−2σ⊗ǫ
Br (pt) = Z/2 → H2+ǫ−2σ⊗ǫ

Br (EC2
C2) = 0 → 0.

5 Bredon motivic cohomology of EC2

In this section we completely compute the Bredon motivic cohomology groups and ring of EC2 over
the real numbers. The methods we use will also reprove in a different way the computation of Borel
motivic cohomology ring of the complex numbers given in [21].

2qEG Proposition 5.1. The realization map

Ha+2qσ,b+qσ
C2

(EC2,Z/2) → Ha−b+qσ+bǫ+qσ⊗ǫ
Br (EΣ2

C2,Z/2),

is an isomorphism for any a ≤ 2b + 2, b + q ≥ 0. For b + q < 0 or a ≥ 2b + 1 the realization map is
zero because the domain is zero.

Proof. According to the periodicity of the Bredon motivic cohomology of EC2 we have that

Ha+2qσ,b+qσ
C2

(EC2,Z/2) ≃ Ha+2q,b+q
C2

(EC2,Z/2) ≃ Ha+2q,b+q(BC2,Z/2).

Because of the vanishing of motivic cohomology (see [25]) we have that the above isomorphisms are zero
if b+ q < 0 or if a ≥ 2b+ 1. Also, because of Lemma 2.12 and the isomorphisms below, the codomains
are also zero when a = 2b+ 1 or a = 2b+ 2.

Looking to the realization maps for b+ q ≥ 0 and Corollary 2.14, we have the following diagram

Ha+2qσ,b+qσ
C2

(EC2,Z/2)

κ
q
2
∼=

//

��

Ha+2q,b+q
C2

(EC2,Z/2)

∼=
��

∼=
// Ha+2q,b+q(BC2,Z/2)

∼=
��

Ha−b+qσ+bǫ+qσ⊗ǫ
Br (EΣ2

C2,Z/2)

κ
q
2
∼=

// H
a−b+q+(b+q)ǫ
Br (EΣ2

C2,Z/2)
∼=
// H

a−b+q+(b+q)ǫ
Br (BΣ2

C2,Z/2).

The right vertical map is an isomorphism if a ≤ 2b+2 from Corollary 2.14 and 2.13. We notice that in
the case a = 2b+ 1 or a = 2b+ 2 both cohomologies of the right vertical map are zero. The horizontal
maps are isomorphisms from periodicity and properties of Borel motivic cohomology (see [20]). It
implies that the left vertical map is an isomorphism for a ≤ 2b+ 2 and b+ q ≥ 0.

Proposition 5.2. The realization map gives an isomorphism

Ha+pσ,b+qσ
C2

(EC2,Z/2) ≃ H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (EΣ2

C2,Z/2)

for any a ≤ 2b+ 2.
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Proof. We have the following diagram:

Ha−1+2qσ,b+qσ
C2

(EC2) //

∼=
��

Ha−1+2q,b+q(R) //

∼=
��

H
a+(2q−1)σ,b+qσ
C2

(EC2) //

��

Ha+2qσ,b+qσ
C2

(EC2)
∼=
��

// Ha+2q,b+q(R)
∼=
��

H⋆
Br(EΣ2

C2) // H⋆
Br(pt)

// H⋆
Br(EΣ2

C2) // H⋆
Br(EΣ2

C2) // H⋆
Br(pt)

The upper sequence is induced by the motivic C2-cofiber sequence

EC2+ ∧C2+ ≃ C2+ → EC2+ → EC2+ ∧ Sσ.

The lower sequence is induced by the C2×Σ2-equivariant cofiber sequence induced by the above cofiber
sequence through realization

EΣ2
C2+ ∧ C2+ ≃ C2+ → EΣ2

C2+ → EΣ2
C2+ ∧ Sσ.

Here we used that EC2 is non-equivariantly contractible and that the isomorphism from the motivic
cofiber sequence commutes with the realization (see [20]).

The middle map of the diagram is an isomorphism for a ≤ 2b + 2 by five lemma. Now downward
induction concludes that the middle map is an isomorphism for p ≤ 2q, a ≤ 2b+ 2. Upward induction
in the diagram below concludes the case p > 2q, a ≤ 2b+ 2.

Ha+2q,b+q
C2

(R) //

∼=
��

Ha+2qσ,b+qσ
C2

(EC2) //

∼=
��

H
a+(2q+1)σ,b+qσ
C2

(EC2) //

��

Ha+1+2q,b+q
C2

(R)
∼=
��

// Ha+1+2qσ,b+qσ
C2

(EC2)
∼=
��

H⋆
Br(pt)

// H⋆
Br(EΣ2

C2) // H⋆
Br(EΣ2

C2) // H⋆
Br(pt)

// H⋆
Br(EΣ2

C2)

The following theorem computes all of the Borel motivic cohomology of the real numbers.

Borel Theorem 5.3. Ha+pσ,b+qσ
C2

(EC2,Z/2) ≃ H
a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (pt,Z/2) for any b + q ≥ 0. It is

zero otherwise.

Proof. The proof follows from the following diagram for b + q ≥ 0. The upper box in Figure 6 is
commutative because the realization is a ring map, and the second box is commutative because it
is given by the realization applied to the isotropy sequences. The top left vertical and right vertical
isomorphisms follow from the corresponding periodicities. The bottom horizontal map follows from
Proposition 4.2. The left lower vertical map is an isomorphism from the motivic isotropy sequence
together with [[31], Proposition 4.3] which says that H̃a+pσ,0(ẼC2) = 0 for any a, p ∈ Z, and the (0, σ)

periodicity of the Bredon motivic cohomology ẼC2.

Ha+pσ,b+qσ
C2

(EC2,Z/2) H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (EC2

C2,Z/2)

H
a−2b+(p+2b)σ,(b+q)σ
C2

(EC2,Z/2) H
a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (EC2

C2,Z/2)

H
a−2b+(p+2b)σ,(b+q)σ
C2

(R,Z/2) H
a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (pt,Z/2)

≃κb
2

≃

≃

κb
2
≃

Figure 6TEST4
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EG Corollary 5.4. The realization map gives an isomorphism

Ha+pσ,b+qσ
C2

(EC2,Z/2) ≃ H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (EΣ2

C2,Z/2)

for any a ≤ 2b + 2 and a monomorphism (but not surjective) if a ≥ 2b + 3. Moreover if b < 0 and
a ≤ 2b+ 2 there is an identification of realization maps (in addition to the identification of groups) i.e.

Ha+pσ,b+qσ
C2

(R) Ha+pσ,b+qσ
C2

(EC2)

H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt) H

a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (EΣ2

C2)

≃

≃

≃

Figure 7TEST8

The horizontal maps are induced by the isotropy sequences. Notice that if b < 0 the Figure 7 shows
that the realization maps

Ha+pσ,b+qσ
C2

(R,Z/2) →֒ H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

are isomorphisms for a ≤ 2b+ 2 and monomorphisms for a ≥ 2b+ 3.

Proof. Because b < 0, from the motivic isotropy sequence we have that

Ha+pσ,b+qσ
C2

(R) ≃ Ha+pσ,b+qσ
C2

(EC2)

are isomorphisms.
The lower horizontal map in the Figure 7 is an isomorphism for a ≤ 2b + 2 and b < 0 from the

isotropy sequence and Corollary 2.13.
We can see from Figure 6 that the lower right vertical map is an isomorphism if a ≤ 2b+ 2 because

H̃a
Br(ẼΣC2,Z/2) = 0 if a ≤ 3 (Corollary 2.13). The monomorphism of the realization maps when

a ≥ 2b + 3 follows from Theorem 2.9 (b + q ≥ 0) and Figure 6. It follows that the realization maps
for the Bredon motivic cohomology of EC2 are isomorphisms if a ≤ 2b + 2 and monomorphisms for
a ≥ 2b+ 3. We conclude that the realization maps

Ha+pσ,b+qσ
C2

(R) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt)

are isomorphisms if a ≤ 2b+ 2 and b < 0. When a > 2b+ 3 and b < 0 these maps are monomorphisms
because in Figure 7 the right vertical maps are monomorphisms and the upper horizontal maps are
isomorphisms.

We notice that we have the following exact sequence:

H̃a−2b,0
Br (ẼC2

C2) → H
a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (pt) → H

a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (EΣC2) → H̃a−2b+1,0

Br (ẼΣC2).

Moreover H̃n,0
Br (ẼΣC2) = 0 if n ≤ 3 and all the elements for n > 0 from

H̃n+1,0
Br (ẼC2

C2) ≃ H̃n,0
Br (BC2

C2)

are either zero or of the form θ2
xn′

2
ym
2

cpbq with bidegree (2+m+q,−2−n′−m+p+q) where p+q = 2+m+n′

and 2 + m + q ≥ 2 and p = 0, 1. One can notice that Σθ2cb ∈ H̃4,0
Br (ẼΣC2,Z/2) ≃ Z/2. Notice that

H̃n,0
Br (ẼΣC2,Z/2) 6= 0 if n ≥ 4 because we can always choose m,n′, p, q ≥ 0 such that m + q = n − 2

and p = 2 + n′ +m − q and p = 0, 1. Because the middle maps in the above long exact sequence are
injective it implies that

H̃a−2b,0
Br (ẼC2

C2) → H
a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (pt)
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is the zero map. This gives a split short exact sequence

0 → H
a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (pt) → H

a−2b+(p−q+b)σ+(b+q)σ⊗ǫ
Br (EΣC2) → H̃a−2b+1,0

Br (ẼΣC2) → 0.

This implies from Figure 6 that the realization maps of EC2 are not surjective if a ≥ 2b+ 3.

Corollary 5.4 describes the realization maps in the green cone of Figure 3. Theorem 5.3 computes
all of the groups in the green cone of Figure 3.

tcc Remark 5.5. The realization homomorphisms

Ha+pσ,b+qσ
C2

(R,Z/2) →֒ H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

are monomorphisms for a ≥ 2b+3, b < 0, b+ q ≥ 0 from Theorem 5.4. There are examples where these
realizations are strictly monomorphisms. For example

H−1,−2+2σ
C2

(R) ≃ Z/2 →֒ H1−2σ−2ǫ+2σ⊗ǫ
Br (pt) ≃ Z/2⊕Z/2,

as well as

H0,−2+2σ
C2

(R) ≃ Z/2 →֒ H2−2σ−2ǫ+2σ⊗ǫ
Br (pt) ≃ Z/2⊕Z/2,

with the computations following from Theorem 5.3 and Proposition 2.4. On the other hand

H1,−2+2σ
C2

(R) = 0 ≃ H3−2σ−2ǫ+2σ⊗ǫ
Br (pt) = 0,

so we can also have isomorphisms in this range. For non-trivial isomorphisms, we have for example

H1,−2+3σ
C2

(R) = Z/2 ≃ H3−3σ−2ǫ+3σ⊗ǫ
Br (pt) = Z/2.

cn Theorem 5.6. We have the following diagram over the complex numbers

Ha+pσ,b+qσ
C2

(EC2,Z/2) Ha+pσ
Br (EC2,Z/2)

H
a−2b+(p+2b)σ,(b+q)σ
C2

(EC2,Z/2) H
a−2b+(p+2b)σ
Br (EC2,Z/2)

H
a−2b+(p+2b)σ,(b+q)σ
C2

(C,Z/2) H
a−2b+(p+2b)σ
Br (pt,Z/2)

≃ub

≃

≃

≃ub

Figure 8TEST5

Here u is the cohomology class in degree (2σ − 2, σ − 1) that gives the periodicity in Borel motivic
cohomology over the complex numbers.

Proof. The arguments for Figure 8 are similar to those for Figure 6. The cohomology class u gives
the periodicity in the Bredon motivic cohomology of EC2 and its image through the realization map
induces the periodicity in the Bredon cohomology of EC2.

We see from Figure 8 that over the complex numbers τσ ∈ H0,σ
C2

(EC2,Z/2) (the only non-trivial
element in this group) gives a non-zero multiplication on Borel motivic cohomology of a point if b+q ≥ 0.
This is because it induces multiplication by 1 in the RO(C2) graded Bredon cohomology of a point in the
bottom right corner. Thus, we compute the Borel motivic cohomology ring over the complex numbers
to be

H⋆,⋆
C2

(EC2,Z/2) = M
C2

2 [τσ, u
±1].
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Remark 5.7. We see from Figure 8 that the gap at a = 2b+1 in Borel motivic cohomology of a point
noticed in [21] corresponds with the well known gap at a = 1 in the RO(C2) graded Bredon cohomology
of a point.

Over the real numbers the situation is different. If the weight b + q = 0 then a = 2b + 1 is a gap
corresponding to the gap in the Bredon cohomology of a point at a = 1 i.e.

H2b+1+pσ,b−bσ
C2

(EC2,Z/2) = 0

for any b ∈ Z. In the case where a ≥ 2b + 1, it vanishes if p − q + b ≥ −1 and it can be nontrivial if
p ≤ q − b− 2 and b+ q ≥ 1 (see Theorem 5.3).

As we will see below in Theorem 5.8, all the nontrivial elements in these groups are nilpotent, and
from Theorem 5.4 the realization maps are monomorphisms in this range.

We start analyzing the ring structure of Borel motivic cohomology of a point. First, we decide
which topological cohomological classes come from corresponding algebraic cohomological classes via
the realization maps.

We have that

x3 ∈ Hσ,σ
C2

(R,Z/2) ≃ Hσ⊗ǫ
Br (pt,Z/2) ≃ Hσ,σ

C2
(EC2,Z/2) ≃ Z/2

is the unique nontrivial class. Also

y3 ∈ Hσ−1,σ
C2

(R.,Z/2) ≃ H−1+σ⊗ǫ
Br (pt,Z/2) ≃ Hσ−1,σ

C2
(EC2,Z/2) ≃ Z/2

is the unique nontrivial class. It is also obvious that

y1 ∈ Hσ−1,0
C2

(R.,Z/2) ≃ H−1+σ
Br (pt,Z/2) ≃ Hσ−1,0

C2
(EC2,Z/2) ≃ Z/2

and
x1 ∈ Hσ,0

C2
(R.,Z/2) ≃ Hσ

Br(pt,Z/2) ≃ Hσ,0
C2

(EC2,Z/2) ≃ Z/2

are the unique nontrivial classes.
The cohomology groups of EΣ2

C2 in the above indexes are also isomorphic through the realization
because they fulfill the condition a ≤ 2b+ 2.

For example we have

x3 ∈ Hσ,σ
C2

(EC2,Z/2) Hσ,σ
C2

(R.,Z/2)

Hσ⊗ǫ
Br (EΣC2,Z/2) Hσ⊗ǫ

Br (pt,Z/2) ≃ Z/2

≃

≃≃

≃

We also have the following diagram:

κ2 ∈ H2σ−2,σ−1
C2

(EC2,Z/2) H2σ−2,σ−1
C2

(R.,Z/2)

H−1+σ−ǫ+σ⊗ǫ
Br (EΣC2,Z/2) H−1+σ−ǫ+σ⊗ǫ

Br (pt,Z/2) ≃ Z/2

≃

≃≃

≃

The top left corner is generated by the class κ2 and the bottom right corner is generated by its
image, which we also denote by κ2. In conclusion κ2 becomes invertible in the cohomology ring
H⋆

Br(EΣ2
C2,Z/2) because the realization is a ring map. We have

θ1κ2 = ι3 ∈ H0,σ−1
C2

(R,Z/2) ≃ H1−σ−ǫ+σ⊗ǫ
Br (pt,Z/2) ≃ Z/2.

The product is nontrivial because its realization is nontrivial.
We also have

θ1 ∈ H2−2σ,0
C2

(EC2,Z/2) H2−2σ,0
C2

(R.,Z/2)

H2−2σ
Br (EΣ2

C2,Z/2) H2−2σ
Br (pt,Z/2) ≃ Z/2

≃

≃≃

≃

The Bredon motivic cohomology ring of EC2 over the reals is computed in the following theorem as
a subring of the RO(C2 × Σ2)-graded Bredon cohomology of EΣ2

C2.
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compEG Theorem 5.8. We have the following diagram of commutative rings

H⋆,⋆
C2

(EC2,Z/2) H⋆
Br(EΣ2

C2,Z/2)

H⋆,0
C2

(R,Z/2)[x3, y3, κ
±1
2 ] M

C2

2 [x3, y3, κ
±1
2 ]

≃

≃

Thus,
H⋆,⋆

C2
(EC2,Z/2) ≃ M

C2

2 [x3, y3, κ
±1
2 ].

Moreover if p ≤ q− b− 2 the Bredon motivic cohomology of EC2 has all nonzero elements nilpotent.

Proof. Firstly, we have that H⋆,0
C2

(R,Z/2) ≃ H⋆,0
C2

(EC2,Z/2). Secondly, according to Proposition 5.3,

the Borel motivic cohomology ring, after multiplication with κ±1
2 , can be reduced to a cohomological ring

that is isomorphic (as rings) to the topological cohomology subring Ha+pσ+qσ⊗ǫ
Br (pt,Z/2) for a, p ∈ Z

and q ≥ 0.
We distinguish two cases: Case 1: p ≥ 0, and Case 2: p < 0.
Case 1: Let p, q ≥ 0. Then the groups are computed by the Poincare series (1 + x + x2 + ... +

xp)(1 + x + ... + xq) (see Theorem 2.1). It implies that the groups are zero if a > 0. We will prove
that all their generators are given by elements of the form xn1

1 ym1

1 xn2

3 ym2

3 with n1,m1, n2,m2 ≥ 0.
Since |x1| = (0, 1, 0, 0), |x3| = (0, 0, 0, 1), |y1| = (−1, 1, 0, 0) and |y3| = (−1, 0, 0, 1), the monomial
xn1

1 ym1

1 xn2

3 ym2

3 has degree (−m1 −m2, n1 +m1, 0, n2 +m2), and belongs to Ha+pσ+qσ⊗ǫ
Br (pt,Z/2). We

have that 0 ≤ m1 ≤ p and 0 ≤ m2 ≤ q. Notice that if we fix a pair (m1,m2), we have a unique element
in the Poincare sum containing ym1

1 ym2

3 such that a = −m1 −m2. Furthermore, a term ym1

1 ym2

3 in the
Poincare sum gives a unique pair (m1,m2) (order sensitive) in Ha+pσ+qσ⊗ǫ

Br (pt,Z/2) with n1 = p−m1

and n2 = q −m2.
Case 2: Let q ≥ 0 and p < 0. Then the groups are computed by the Poincare series (xp + ... +

x−2)(1 + x + ... + xq) (see Theorem 2.1). We will prove that all the elements in this case are given
by the generators θ1

x
n1

1
y
m1

1

xn2

3 ym2

3 . Here θ1 has degree (2,−2, 0, 0). A monomial θ1
x
n1

1
y
m1

1

xn2

3 ym2

3 has

degree (2 + m1 −m2,−2 − n1 − m1, 0, n2 + m2). It implies that 0 ≤ m2 ≤ q and 0 ≤ m1 ≤ −p − 2.
Any choice of a pair (m1,m2) in these intervals gives a unique monomial y−m1−2

1 ym2

3 and a unique
θ1

x
n1

1
y
m1

1

xn2

3 ym2

3 for a fixed choice of p ≤ −2, q ≥ 0. For p = −1 the groups are zero. The group is

nonzero if 2− q ≤ a ≤ −p.

The following corollary describes the M
C2

2 -module structure of the green cone in Figure 3.

aplic Corollary 5.9. We have the following M
C2

2 -module

⊕b<0H
a+pσ,b+qσ
C2

(EC2,Z/2) = κ2(M
C2

2 [x3, y3, κ2]).

Remark 5.10. Over the complex numbers or over the real numbers, all the elements inHa+pσ,b+qσ
C2

(EC2,Z/2)
for a ≥ 2b+ 1 are either zero or nilpotent. In particular over the complex numbers, all the realization
maps for a ≥ 2b+ 1 are zero because there are no nontrivial nilpotents in the RO(C2)-graded Bredon
cohomology of EC2, and the realizations are ring maps. This was proved with other methods in [21].

Vcomp Remark 5.11. We have the following ring structure on the motivic cohomology of BC2 (over the reals,
[30], reviewed in Theorem 2.11),

H∗,∗(BC2,Z/2) = H∗,∗(R,Z/2)[s, t]/(s2 = τt+ ρs).

According to Figure 6, we can identify τ = y1y3

κ2

, ρ = x1y3+y1x3

κ2

, s = y1x3

κ2

and t = x1x3

κ2

. We notice that
τ and t are the unique generators of their groups; for s, ρ we have 3 distinct choices of elements in

H−1+σ+σ⊗ǫ
Br (pt,Z/2) = Z/2(y1x3)⊕Z/2(x1y3),

and according to the relation s2 = τt+ ρs, the choice of ρ is unique.
There are two equally good choices for s: s = y1x3

κ2

and s = y3x1

κ2

. Notice that according to the
relations in the RO(C2 × Σ2)-graded Bredon cohomology ring of a point, we have that the realization
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takes ρ into x2 and τ into y2 (therefore justifying our previous notation in Lemma 2.12). This also
implies the following relations in the RO(C2 × Σ2)-graded Bredon cohomology of EΣ2

C2

κ2y2 = y1y3,

κ2x2 = x1y3 + y1x3,

and because in this range the ring mapH⋆
Br,K(pt,Z/2) →֒ H⋆

Br,K(EΣ2
C2,Z/2) is injective from Theorem

2.9, it implies that the above relations also hold in the RO(C2 × Σ2)-graded Bredon cohomology of a
point, giving an alternate proof of these relations from [8].

cbg Remark 5.12. We have that the motivic cohomology over C of BC2 ([30]) is

H∗,∗(BC2,Z/2) = H∗,∗(C,Z/2)[s, t]/(s2 = τt) = Z/2[s, t, τ ]/(s2 = τt).

Here s is in degree (1, 1), t is in degree (2, 1) and τ ∈ H0,1(C,Z/2). According to Figure 8, in the complex

case we can identify s = σα
u (because su = σα ∈ H−1+2σ

Br (pt)), t = σ2

u (because tu = σ2 ∈ H2σ
Br(pt)),

and τ = α2

u (because uτ = α2 ∈ H−2+2σ
Br (pt)) as the unique generators of their respective groups. Here

σ is in degree σ, and α is in degree σ− 1. Notice that in this case the relation s2 = τt becomes obvious.
The complex realization of τ is 1, so the relation uτ = α2 becomes Re(u) = α2, which is obvious in

the RO(C2)-graded Bredon cohomology of EC2.

repr Remark 5.13. The computation of the Borel cohomology of the complex and real numbers can be used
to independently compute the motivic cohomology of BC2 over the complex or real numbers. From the
above we identify the motivic cohomology ring of BC2 over the reals with a subring of

(⊕a∈Z,b≥0H
a+bσ+bσ⊗ǫ
Br (pt,Z/2))[k−1

2 ],

and therefore it is given by the following elements:

∑ xn1

1 ym1

1 xn2

3 ym2

3

κb
2

,

with ni,mi ≥ 0 and n1+m1 = b = n2 +m2. The non-trivial generators are chosen from those elements
with b = 1. See Remark 5.11.

In the complex case, the computation is simpler. The graded motivic cohomology group of BC2

over the complex numbers can be identified with

⊕a∈Z,b≥0H
a+2bσ
Br (pt,Z/2)

and is therefore given by the elements ∑ αnσm

ub

with n+m = 2b, n,m ≥ 0. The non-trivial generators are those elements with b = 1. See Remark 5.12.

6 Bredon motivic cohomology of the real numbers

In this section, we show that the Bredon motivic cohomology ring of the real numbers is a subring in
the RO(C2 × Σ2)-graded cohomology of a point, and find a decomposition into M

C2

2 -modules.
Let

R := ⊕b≥0,b+q≥0H
a+pσ,b+qσ
C2

(R,Z/2) →֒ H⋆,⋆
C2

(R,Z/2),

which is a cohomology subring on which the realization maps give an isomorphism (see the blue region
of Figure 3).

We know from Theorem 4.2 that R is ring isomorphic to a subring in the RO(C2 × Σ2)-graded
Bredon cohomology of a point. We have that the subring

R ≃ ⊕a,p∈Z,b≥0,b+q≥0H
a+pσ+bǫ+qσ⊗ǫ
Br (pt,Z/2)
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is given by a direct sum of four distinct pieces depending on the signs of p and q.
One piece that is contained above is simply the positive cone (see Theorem 2.8), which corresponds

to the case where p, q ≥ 0 (topological; the motivic relation is p ≥ q ≥ 0) i.e.

Z/2[x1, y1, x2, y2, x3, y3]

(x1y2y3 + y1x2y3 + y1y2x3)
.

Notice that f = x1y2y3 + y1x2y3 + y1y2x3 = 0 is a trivial relation on R because R also contains the
cohomological class κ1 ∈ H0,1+σ

C2
(R,Z/2). This is because one can write, according to the relations in

the RO(C2 × Σ2)-graded Bredon cohomology of a point [8] reviewed in Section 2.2, that

f = x1κ1y1 + y1x2y3 + y1y2x3 = x2y1y3 + x3y2y1 + x2y1y3 + x3y1y2 = 0.

We used the relations
κ1x1 = x2y3 + y2x3,

κ1y1 = y2y3,

which are also available in the subringR. In conclusion, the subringR contains the subringZ/2[x1, y1, x2, y2, x3, y3],
and, as a subring, the motivic cohomology ring of R, which is Z/2[x2, y2] (see Proposition 1.6). Besides
these classes, other important classes belong to R, including, for example, θ1, κ1, κ3, ι2.

From Corollary 5.4 we know that

M := ⊕b<0,b+q≥0H
a+pσ,b+qσ
C2

(R,Z/2)

is a M
C2

2 -submodule in the RO(C2×Σ2)-graded Bredon cohomology of a point with κ2 ∈ M . Corollary
5.9 shows that

M ≃ κ2(M
C2

2 [x3, y3, κ2]) →֒ H⋆
Br(pt,Z/2).

It implies that the direct sum P := R⊕M is a subring in the RO(C2 ×Σ2)-graded Bredon cohomology
of a point. Obviously, from the previous section’s discussion on motivic cohomology classes,

M
C2

2 [x3, y3] ⊂ R

and
κ2 /∈ R.

We obtain:

Proposition 6.1. We have the following isomorphism of rings

P ≃ (R, κ2) ⊂ H⋆
Br(pt,Z/2),

where (R, κ2) is the subring in H⋆
Br(pt,Z/2) generated by R and κ2.

We notice that θ1, ι3, κi ∈ P are nontrivial cohomology classes and θ2, θ3 /∈ P . For a review of these
cohomological classes see Section 2.2.

Let
NC := ⊕b≥0,b+q<0H

⋆,b+qσ
C2

(R,Z/2),

which is a M
C2

2 -submodule of the Bredon motivic cohomology of R, and also fits into an inclusion of
multiplicative maps

NC →֒ H̃⋆,⋆
C2

(ẼC2,Z/2) →֒ H̃⋆
Br(ẼΣ2

C2,Z/2).

We have that the quotient map

ẼΣ2
C2 → ẼΣ2

C2/C2
htpy
≃ ΣBΣ2

C2

induces an isomorphism of (non-unital) commutative rings

H̃∗+∗ǫ
Br (ẼΣ2

C2/C2) ≃ H̃∗+∗ǫ
Br (ΣBΣ2

C2).
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Therefore, NC has zero products, because Σ-suspension gives the commutative ring

H̃⋆
Br(ẼΣ2

C2) ≃ H̃∗+∗ǫ
Br (ΣBΣ2

C2)[x
±1
1 , x±1

3 ]

with zero multiplication.
The image of NC in H̃⋆

Br(ẼΣ2
C2,Z/2) is

NC ⊂ ⊕2≤a≤2b+1H̃
a−b+bǫ
Br (ΣBΣ2

C2,Z/2)[x
±1
1 , x±1

3 ] ≃ ⊕1−b≤a≤bH̃
a+bǫ
Br (BΣ2

C2,Z/2)[x
±1
1 , x±1

3 ].

This implies, using the Bredon cohomology of BΣ2
C2, that

NC ⊂ {xn
2y

m
2 Σ(bpc), xn

2 y
m
2 Σ(bp)}[x±1

1 , x−1
3 ],

the subset with the degree of x−1
3 given by q ≤ −b ≤ 0, where b is the degree of ǫ i.e.

NC = ⊕a≤2b+1x
−b−1
3 H̃a+bǫ

Br (ΣBΣ2
C2,Z/2)[x

±1
1 , x−1

3 ] =

= {x−n−m−p−2
3 xn

2 y
m
2 Σ(bpc), x−n−m−p−1

3 xn
2 y

m
2 Σ(bp)}[x±1

1 , x−1
3 ] =

= {(
x2

x3
)n(

y2
x3

)m
Σ(bpc)

(x3)p+2
, (
x2

x3
)n(

y2
x3

)m
Σ(bp)

(x3)p+1
}[x±1

1 , x−1
3 ].

Moreover, for a ≤ 2b+ 1, b ≥ 0, b+ q < 0 we have that

H̃a+pσ,b+qσ
C2

(ẼC2,Z/2)
∼=

//

∼=��

Ha+pσ,b+qσ
C2

(R,Z/2)

��

H̃
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (ẼΣ2

C2,Z/2) // H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (pt,Z/2)

and from Proposition 3.5 (see also Proposition 4.3) we obtain an injective multiplicative map

NC →֒ H⋆
Br,K(pt,Z/2),

with zero products in the domain.
We can now compute the Bredon motivic cohomology ring of R in the following theorem:

ft Theorem 6.2. We have an isomorphism of MC2

2 -algebras

H⋆,⋆
C2

(R,Z/2) ≃ (R, κ2)⊕NC

with κ2 in degree (2σ−2, σ−1), and (R, κ2) →֒ H⋆
Br(pt,Z/2) a subring, and NC is a M

C2

2 -module with
zero products. In particular, there is a ring monomorphism

H⋆,⋆
C2

(R,Z/2) →֒ H⋆
Br,K(pt,Z/2).

Notice that the negative cone of theRO(C2×Σ2)-graded cohomology ring of a point (where b, p, q < 0,
see Section 2.1) is completely outside the image of the realization map from Theorem 6.2 because of the
vanishing range of Bredon motivic cohomology from Proposition 3.2. The cohomological class Θ and
its quotients Θ

x
n1

1
y
m1

1
x
n2

2
y
m2

2
x
n3

3
y
m3

3

belong to this cone (see Section 2.1) and they are not in the image of

the realization map.
Also, according to Remark 5.5 and Remark 4.4, there are other topological classes outside the

negative cone that are not in the image of this realization map. Moreover the topological cohomological
classes ι1 and θ2 are not in the image of the realization map and do not belong to the negative cone or
to the examples in Remarks 5.5 and 4.4.

In [6] we prove a detailed description in terms of generators and relations of the decomposition of
Theorem 6.2.

We obtain from Theorem 6.2 or Theorem 1.7 the following interesting subrings:

Corollary 6.3. We have that
H∗+∗σ,∗

C2
(R,Z/2) ≃ M

C2

2 [x2, y2],

H∗+∗σ,∗σ
C2

(R,Z/2) ≃ M
C2

2 [x3, y3].
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6.1 Real closed fields

rc Theorem 6.4. Let k be a real closed field. Then

H⋆,⋆
C2

(R,Z/2) ≃ H⋆,⋆
C2

(k,Z/2),

H⋆,⋆
C2

(EC2,Z/2) ≃ H⋆,⋆
C2

(EC2k,Z/2).

Proof. Bredon motivic cohomology

F (U) = Ha+pσ,b+qσ
C2

(X × U)

is a homotopy invariant presheaf with equivariant transfers for any X a smooth C2-scheme ([19], [20])
over a field k of characteristic zero. In particular, the restriction of F to Sm/k is a pseudo pretheory
on Sm/k. From the main result of [1] (with the comment of [18], Theorem 4.18) we know that if k ⊂ R

is a real closed subfield then
F (U) ≃ F (UR)

for any smooth C2-scheme U over k, implying the result in the theorem. Let k be an arbitrary real
closed field and L = k[i] the corresponding algebraic closed field. We can write L = ∪Lα with Lα a
subfield of L of finite transcendence degree over Q and α ∈ A a well-order set and k = ∪kα where
kα = Lα ∩ k. In Theorem 2.20 [18] it is proved that kα is isomorphic to a real closed field embedded in
R. Using the above considerations, we conclude that for a C2-smooth scheme X we have

Ha+pσ,b+qσ
C2

(Xk) = colimαH
a+pσ,b+qσ
C2

(Xkα
) = Ha+pσ,b+qσ

C2
(XR).

For a real closed field k ⊂ R and X a C2-smooth scheme over k there is a cycle map

cyck : Ha+pσ,b+qσ
C2

(X,Z/2) → Ha+pσ,b+qσ(XR,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (X(C),Z/2).

Therefore, according to the proof of Theorem 6.4 and Theorem 6.2, we conclude that the Bredon motivic
cohomology ring of a real closed field embedded in R is, up to isomorphism, a nontrivial proper subring
in the RO(C2 × Σ2)-graded Bredon cohomology ring of a point.

We also conclude that the Borel motivic cohomology ring of a real closed field embedded in R is a
nontrivial subring in the RO(C2 × Σ2)-graded Bredon cohomology ring of EΣ2

C2.
In the case of a C2-smooth scheme over a real closed field k ⊂ R the range of isomorphism for cyck

is in general much more restricted. As a generalization of [[18], Theorem 4.18] and of [[11], Corollary
5.13] and according to [[20], Theorem 7.10] we obtain the following:

Corollary 6.5. Let X be a smooth scheme over a real closed field k embedded in R. Then the cycle
map cyck

cyck : Ha+pσ,b+qσ
C2

(X,Z/2) → H
a−b+(p−q)σ+bǫ+qσ⊗ǫ
Br (X(C),Z/2).

is an isomorphism if a+ p ≤ b+ q and a ≤ min{b− q, b} and a monomorphism if a+ p ≤ b+ q+1 and
a ≤ min{b− q, b}+ 1.
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