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A NOTE ON CONTINUOUS FUNCTIONS ON METRIC SPACES

SAM SANDERS

Abstract. Continuous functions on the unit interval are relatively tame from
the logical and computational point of view. A similar behaviour is exhibited
by continuous functions on compact metric spaces equipped with a countable
dense subset. It is then a natural question what happens if we omit the latter
‘extra data’, i.e. work with ‘unrepresented’ compact metric spaces. In this
paper, we study basic third-order statements about continuous functions on
such unrepresented compact metric spaces in Kohlenbach’s higher-order Re-
verse Mathematics. We establish that some (very specific) statements are
classified in the (second-order) Big Five of Reverse Mathematics, while most
variations/generalisations are not provable from the latter, and much stronger
systems. Thus, continuous functions on unrepresented metric spaces are ‘wild’,
though ‘more tame’ than (slightly) discontinuous functions on the reals.

1. Introduction

In a nutshell, we study basic third-order statements about continuous functions
on ‘unrepresented’ metric spaces, i.e. the latter come without second-order repre-
sentation, working in Kohlenbach’s higher-order Reverse Mathematics ([19]). We
establish that certain (very specific) such statements are classified in the second-
order Big Five of Reverse Mathematics, while most variations/generalisations are
not provable from the latter, and much stronger systems. Thus, we generalise the
results in [33] to metric spaces, but restrict ourselves to continuous functions.

We believe these results to be of broad interest as the logic (and even mathe-
matics) community should be aware of the influence representations have on some
of the most basic objects, like continuous functions on metric spaces, that feature
in undergraduate curricula in mathematics and physics.

Moreover, our results also shed new light on Kohlenbach’s proof mining program:
as stated in [20, §17.1] or [21, §1], the success of proof mining often crucially depends
on avoiding the use of separability conditions. By the results in this paper, avoiding
such conditions seems to be a highly non-trivial affair.

We provide some background and motivation for these results in Section 1.1 while
some foundational implications are discussed in Section 3. We formulate necessary
definitions and axioms in Section 1.2 and prove our main results in Section 2.

1.1. Motivation and background. We discuss the results of this paper in some
detail, assuming familiarity with the program Reverse Mathematics (RM in the be-
low), including Kohlenbach’s higher-order approach where [19, 33] provide suitable
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2 A NOTE ON CONTINUOUS FUNCTIONS ON METRIC SPACES

introductions. A general introduction to RM for the mathematician-in-the-street
may be found in [43], while [10, 42] are textbooks on RM.

Zeroth of all, second-order RM makes use of a rather frugal language in which
higher-order objects, like functions on the reals and metric spaces, are unavailable
and therefore need to be ‘represented’ or ‘coded’ by second-order objects. Kleene’s
second model ([22]) is based on the observation that continuous functions have
second-order representations and Kohlenbach establishes this fact for Baire and
Cantor space in relatively weak logical systems ([18, §4]). The analogous coding
result for the reals and the unit interval is established in [33], showing that the
RM of the Big Five does not depend on whether one uses second-order ‘codes for
continuous functions’ or ‘third-order functions that are continuous’.

First of all, building on the previous paragraph, Dag Normann and the author
show in [33, 40, 41] that many third-order theorems from real analysis about con-
tinuous and/or discontinuous functions on the reals, are equivalent to second-order

Big Five systems from RM, working in Kohlenbach’s base theory RCA
ω
0 . Moreover,

slight variations/generalisations of the function class at hand yield third-order the-
orems that are not provable from the Big Five and the same for much stronger
systems like Z

ω
2 + QF-AC

0,1 introduced in Section 1.2.

Secondly, in this paper, we study a different kind of generalisation: rather than
going beyond the continuous functions, we study properties of the latter on com-
pact metric spaces. Now, the study of the latter in second-order RM of course
proceeds via codes: a complete separable metric space is represented via a count-
able and dense subset, as can be gleaned from [42, II.5.1] or [5]. By contrast, we
use the standard textbook definition of metric space as in Definition 1.2 without
any additional data except that we are dealing with sets of reals. This study is not
just spielerei as avoiding separability is e.g. important in proof mining, as follows.

[. . . ] it is crucial to exploit the fact that the proof to be analyzed
does not use any separability assumption on the underlying spaces
[. . . ]. ([21, §1])

It will turn out that for [the aforementioned uniformity conditions]
to hold we -in particular- must not use any separability assumptions
on the spaces. ([20, p. 377])

Thirdly, in light of the previous two paragraphs, it is then a natural question
whether basic properties of compact metric spaces without separability conditions

are provable from second-order (comprehension) axioms or not. Theorem 2.2 pro-
vides a (rather) negative answer: well-known theorems due to Ascoli, Arzelà, Dini,
Heine, and Pincherle, formulated for metric spaces, are not provable in Z

ω
2 , a con-

servative extension of Z2 introduced in Section 1.2. We only study metric spaces
(M,d) where M is a subset of the reals or Baire space, i.e. the metric d : M2 → R

is just a third-order mapping. By contrast, some (very specific) basic properties of
metric spaces are provable form the Big Five and related systems by Theorem 2.3.

Fourth, the negative results in this paper are established using the uncountability
of R as formalised by the following principles (see Section 1.2 for details).

• NIN[0,1]: there is no injection from [0, 1] to N.
• NBI[0,1]: there is no bijection from [0, 1] to N.

In particular, these principles are not provable in relatively strong systems, like Z
ω
2

from Section 1.2. In Section 2.1, we identify a long and robust list of theorems
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that imply NBI[0,1] or NIN[0,1]. We have shown in [32,33,37] that many third-order
theorems imply NIN[0,1] while we only know few theorems that only imply NBI[0,1].
As will become clear in Section 2.2, metric spaces provide (many) elegant examples
of the latter. We also refine our results in Section 2.2, including connections to the
RM of weak König’s lemma and the Jordan decomposition theorem.

In conclusion, we show that many basic (third-order) properties of continuous
functions on metric spaces cannot be proved from second-order (comprehension)
axioms when we omit the second-order representation of these spaces. A central
principle is the uncountability of the reals as formalised by NBI[0,1] introduced
above. These results carry foundational implications, as discussed in Section 3.

1.2. Preliminaries and definitions. We introduce some definitions, like the no-
tion of open set or metric space in RM, and axioms that cannot be found in [19].
We emphasise that we only study metric spaces (M,d) where M is a subset of
N

N or R, modulo the coding of finite sequences1 of reals. Thus, everything can be
formalised in the language of third-order arithmetic, i.e. we do not really go much
beyond analysis on the reals.

Zeroth of all, we need to define the notion of (open) set. Now, open sets are
represented in second-order RM by countable unions of basic open balls, namely
as in [42, II.5.6]. In light of [42, II.7.1], (codes for) continuous functions provide
an equivalent representation over RCA0. In particular, the latter second-order rep-
resentation is exactly the following definition restricted to (codes for) continuous
functions, as can be found in [42, II.6.1].

Definition 1.1.

• A set U ⊂ R (and its complement U c) is given by hU : R → [0, 1] where we

say ‘x ∈ U ’ if and only if hU (x) > 0.
• A set U ⊂ R is open if y ∈ U implies (∃N ∈ N)(∀z ∈ B(y, 1

2N )(z ∈ U). A

set is closed if the complement is open.

• A set U ⊂ R is finite if there is N ∈ N such that for any finite sequence

(x0, . . . , xN ), there is i ≤ N with xi 6∈ A. We sometimes write ‘|A| ≤ N ’.

Now, codes for continuous functions denote third-order functions in RCA
ω
0 by

[33, §2], i.e. Def. 1.1 thus includes the second-order definition of open set. To be
absolutely clear, combining [33, Theorem 2.2] and [42, II.7.1], RCAω

0 proves

[a second-order code U for an open set ] represents an open set as in Def. 1.1.

Assuming Kleene’s quantifier (∃2) defined below, Def. 1.1 is equivalent to the exis-
tence of a characteristic function for U ; the latter definition is used in e.g. [28, 34].
The interested reader can verify that over RCAω

0 , a set U as in Def. 1.1 is open if
and only if hU is lower semi-continuous.

First of all, we shall study metric spaces (M,d) as in Definition 1.2, where M
comes with its own equivalence relation ‘=M ’ and the metric d satisfies the axiom
of extensionality on M as follows

(∀x, y, v, w ∈ M)
(

[x =M y ∧ v =M w] → d(x, v) =R d(y, w)
)

.

Similarly, we use F : M → R to denote functions from M to R; the latter satisfy

(∀x, y ∈ M)(x =M y → F (x) =R F (y)), (EM )

1We use w1
∗
to denote finite sequences of elements of N

N and |w| as the length of w1
∗
.
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i.e. function extensionality relative to M .

Definition 1.2. A functional d : M2 → R is a metric on M if it satisfies the

following properties for x, y, z ∈ M :

(a) d(x, y) =R 0 ↔ x =M y,
(b) 0 ≤R d(x, y) =R d(y, x),
(c) d(x, y) ≤R d(x, z) + d(z, y).

We use standard notation like BM
d (x, r) to denote {y ∈ M : d(x, y) < r}.

To be absolutely clear, quantifying over M amounts to quantifying over N
N or

R, perhaps modulo coding, i.e. the previous definition can be made in third-order
arithmetic for the intents and purposes of this paper. The definitions of ‘open set
in a metric space’ and related constructs are now clear mutatis mutandis.

Secondly, the following definitions are now standard, where we note that the
first item is called ‘Heine-Borel compact’ in e.g. [3, 5]. Moreover, coded complete
separable metric spaces as in [42, I.8.2] are only weakly complete over RCA0.

Definition 1.3 (Compactness and around). For a metric space (M,d), we say that

• (M,d) is countably-compact if for any (an)n∈N in M and sequence of ra-

tionals (rn)n∈N such that we have M ⊂ ∪n∈NB
M
d (an, rn), there is m ∈ N

such that M ⊂ ∪n≤mBM
d (an, rn),

• (M,d) is strongly countably-compact if for any sequence (On)n∈N of open

sets in M such that M ⊂ ∪n∈NOn, there is m ∈ N such that M ⊂ ∪n≤mOn,

• (M,d) is compact in case for any Ψ : M → R
+, there are x0, . . . , xk ∈ M

such that ∪i≤kB
M
d (xi,Ψ(xi)) covers M ,

• (M,d) is sequentially compact if any sequence has a convergent sub-sequence,

• (M,d) is limit point compact if any infinite set in M has a limit point,

• (M,d) is complete in case every Cauchy2 sequence converges,

• (M,d) is weakly complete if every effectively2 Cauchy sequence converges,

• (M,d) is totally bounded if for all k ∈ N, there are w0, . . . , wm ∈ N such

that ∪i≤mBM
d (wi,

1
2k
) covers M .

• (M,d) is effectively totally bounded if there is a sequence of finite sequences

(wn)n∈N in M such that for all k ∈ N and x ∈ M , there is i < |wk| such
that x ∈ B(w(i), 1

2k
).

• a set C ⊂ M is sequentially closed if for any sequence (wn)n∈N in C
converging to w ∈ M , we have w ∈ C.

• (M,d) has the Cantor intersection property if any sequence of nonempty

closed sets with M ⊇ C0 ⊇ · · · ⊇ Cn ⊇ Cn+1, has a nonempty intersection,

• (M,d) has the sequential Cantor intersection property if the sets in the

previous item are sequentially closed.

• (M,d) is separable if there is a sequence (xn)n∈N in M such that (∀x ∈
M,k ∈ N)(∃n ∈ N)(d(x, xn) <

1
2k
).

Thirdly, full second-order arithmetic Z2 is the ‘upper limit’ of second-order RM.
The systems Z

ω
2 and Z

Ω
2 are conservative extensions of Z2 by [15, Cor. 2.6]. The

system Z
Ω
2 is RCAω

0 plus Kleene’s quantifier (∃3) (see e.g. [15,33]), while Zω
2 is RCAω

0

plus (S2
k) for every k ≥ 1; the latter axiom states the existence of a functional S2

k

2A sequence (wn)n∈N in (M, d) is Cauchy if (∀k ∈ N)(∃N ∈ N)(∀m, n ≥ N)(d(wn, wm) < 1

2k
).

A sequence is effectively Cauchy if there is g ∈ N
N such that g(k) = N in the previous formula.
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deciding Π1
k-formulas in Kleene normal form. The system Π1

1-CA
ω
0 ≡ RCA

ω
0 + (S2

1)

is a Π1
3-conservative extension of Π1

1-CA0 ([36]), where S
2
1 is also called the Suslin

functional. We also write ACA
ω
0 for RCAω

0 + (∃2) where the latter is as follows

(∃E : N
N → {0, 1})(∀f ∈ N

N)
[

(∃n ∈ N)(f(n) = 0) ↔ E(f) = 0
]

. (∃2)

Over RCAω
0 , (∃

2) is equivalent to the existence of Feferman’s µ (see [19, Prop. 3.9]),
defined as follows for all f ∈ N

N:

µ(f) :=

{

n if n is the least natural such that f(n) = 0,

0 if f(n) > 0 for all n ∈ N
.

Fourth, the uncountability of the reals, formulated as follows, is studied in [32].

• NIN[0,1]: there is no Y : [0, 1] → N that is injective3.

• NBI[0,1]: there is no Y : [0, 1] → N that is both injective and surjective4.

It is shown in [31,32] that Zω
2 cannot prove NBI[0,1] and that Zω

2 +QF-AC
0,1 cannot

prove NIN[0,1], where the latter is countable choice5 for quantifier-free formulas.
Moreover, many third-order theorems imply NIN[0,1], as also established in [32]. By
contrast, that R cannot be enumerated is formalised by Theorem 1.4.

Theorem 1.4. For any sequence of distinct real numbers (xn)n∈N and any interval

[a, b], there is y ∈ [a, b] such that y is different from xn for all n ∈ N.

The previous theorem is rather tame, especially compared to NIN[0,1]. Indeed,
[13] includes an efficient computer program that computes the number y from The-
orem 1.4 in terms of the other data; a proof of Theorem 1.4 in RCA0 can be found
in [42, II.4.9], while a proof in Bishop’s Constructive Analysis is found in [2, p. 25].

Finally, the following remark discusses an interesting aspect of (∃2) and NIN[0,1].

Remark 1.5 (On excluded middle). Despite the grand stories told in mathematics
and logic about Hilbert and the law of excluded middle, the ‘full’ use of the latter
law in RM is almost somewhat of a novelty. To be more precise, the law of excluded
middle as in (∃2) ∨ ¬(∃2) is extremely useful, namely as follows: suppose we are
proving T → NIN[0,1] over RCA

ω
0 + WKL. Now, in case ¬(∃2), all functions on R

(and N
N) are continuous by [19, Prop. 3.12]. Clearly, any continuous Y : [0, 1] → N

is not injective, i.e. NIN[0,1] follows in the case that ¬(∃2). Hence, what remains

is to establish T → NIN[0,1] in case we have (∃2). However, the latter axiom e.g.
implies ACA0 (and sequential compactness) and can uniformly convert reals to their
binary representations. In this way, finding a proof in RCA

ω
0 +(∃2) is ‘much easier’

than finding a proof in RCA
ω
0 +WKL.

Here, NIN[0,1] is just one example and there are many more, all pointing to a

more general phenomenon: while invoking (∃2) ∨ ¬(∃2) may be non-constructive,
it does lead to a short proof via case distinction: in case (∃2), one has access to
a stronger system while in case ¬(∃2), the theorem at hand is a triviality (like
for NIN[0,1] in the previous paragraph), or at least has a well-known second-order

proof, noting that WKL suffices to show that continuous functions on [0, 1] or 2N

have codes (see [33, §2] and [18, §4]).

3A function f : X → Y is injective if different x, x′ ∈ X yield different f(x), f(x′) ∈ Y .
4A function f : X → Y is surjective if for every y ∈ Y , there is x ∈ X with f(x) =Y y.
5To be absolutely clear, QF-AC0,1 states that for every Y 2, (∀n ∈ N)(∃f ∈ N

N)(Y (f, n) = 0)
implies (∃Φ0→1)(∀n ∈ N)(Y (Φ(n), n) = 0).
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2. Analysis on unrepresented metric spaces

We show that some (very specific) properties of continuous functions on com-
pact metric spaces are classified in the (second-order) Big Five systems of Reverse
Mathematics (Section 2.2), while most variations/generalisations are not provable
from the latter, and much stronger systems (Section 2.1). The negative results are
(mostly) established by deriving NBI[0,1] (Theorem 2.2), which is not provable in
Z
ω
2 . We also show that NIN[0,1] does not follow in most cases (Theorem 2.4).

2.1. Obtaining the uncountability of the reals. In this section, we show that
basic properties of continuous functions on compact metric spaces, like Heine’s
theorem in item (b), imply the uncountability of the reals as in NBI[0,1]. These
basic properties are therefore not provable in Z

ω
2 .

First of all, fragments of the induction axiom are sometimes used in an essential
way in second-order RM (see e.g. [23]). The equivalence between induction and
bounded comprehension is also well-known in second-order RM ([42, X.4.4]). We
seem to need a little bit of the induction axiom as follows.

Principle 2.1 (IND1). Let Y 2 satisfy (∀n ∈ N)(∃!f ∈ 2N)[Y (n, f) = 0]. Then

(∀n ∈ N)(∃w1∗ )
[

|w| = n ∧ (∀i < n)(Y (i, w(i)) = 0)
]

.

Note that IND1 is a special case of the axiom of finite choice, and is valid in
all models considered in [24–30,32], i.e. Zω

2 + IND1 cannot prove NBI[0,1]. We have
(first) used IND1 in the RM of the Jordan decomposition theorem in [31].

Secondly, the items in Theorem 2.2 are essentially those in [5, Theorem 4.1]
or [42, IV.2.2], but without codes. Equivalences of certain (coded) definitions of
compactness are studied in second-order RM in e.g. [3, 4].

Theorem 2.2 (RCAω
0 + IND1). The principle NBI[0,1] follows from any of the items

(a)-(s) where (M,d) is a metric space with M ⊂ R.

(a) For countably-compact (M,d) and sequentially continuous F : M → R, F
is bounded on M .

(b) Item (a) with ‘bounded’ replaced by ‘uniformly continuous’.

(c) Item (a) with ‘bounded’ replaced by ‘has a supremum’.

(d) Item (a) with ‘bounded’ replaced by ‘attains a maximum’.

(e) Any countably-compact (M,d) has the seq. Cantor intersection property.

(f) A countably-compact metric space (M,d) is separable.

The previous items still imply NBI[0,1] if we replace ‘countably-compact’ by ‘compact’

or ‘(weakly) complete and totally bounded’ or ‘strongly countably-compact’.

(h) For sequentially compact (M,d), any continuous F : M → R is bounded.

(i) Item (h) with ‘bounded’ replaced by ‘uniformly continuous’.

(j) Item (h) with ‘bounded’ replaced by ‘has a supremum’.

(k) Item (h) with ‘bounded’ replaced by ‘attains a maximum’.

(l) Items (h)-(k) assuming a modulus of continuity.

(m) Dini’s theorem ([1, 8, 9]). Let (M,d) be sequentially compact and let Fn :
(M × N) → R be a monotone sequence of continuous functions converging

to continuous F : M → R. Then the convergence is uniform.

(n) On a sequentially compact metric space (M,d), equicontinuity implies uni-

form equicontinuity.
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(o) (Pincherle, [35, p. 67]). For sequentially compact (M,d) and continuous

F : M → R
+, we have (∃k ∈ N)(∀w ∈ M)(F (w) > 1

2k ).
(p) (Ascoli-Arzelà, [42, III.2]). For sequentially compact (M,d), a uniformly

bounded and equicontinuous sequence of functions on M has a uniformly

convergent sub-sequence.

(q) Any sequentially compact (M,d) is strongly countably-compact.

(r) Any sequentially compact (M,d) is separable.

(s) Any sequentially compact (M,d) has the seq. Cantor intersection property.

(t) A sequentually compact metric space (M,d) is limit point compact.

Items (h)-(l) are provable in Z
Ω
2 (via the textbook proof ).

Proof. First of all, by Remark 1.5, we may assume (∃2) as NBI[0,1] is trivial in

case ¬(∃2). Now suppose Y : [0, 1] → N is a bijection, i.e. injective and surjective.

Define M as the union of the new symbol {0M} and the set N := {w1∗ : (∀i <
|w|)(Y (w(i)) = i)}. We define ‘=M ’ as 0M =M 0M , u 6=M 0M for u ∈ N , and w =M

v if w =1∗ v and w, v ∈ N . The metric d : M2 → R is defined as d(0M , 0M ) =R 0,
d(0M , u) = d(u, 0M ) = 1

2|u| for u ∈ N and d(w, v) = | 1
2|v|

− 1
2|w| | for w, v ∈ N .

Since Y is an injection, we have d(v, w) =R 0 ↔ v =M w. The other properties of
a metric space from Definition 1.2 follow by definition (and the triangle equality of
the absolute value on the reals).

Secondly, to show that (M,d) is countably-compact, fix a sequence (an)n∈N in
M and a sequence of rationals (rn)n∈N such that we have M ⊂ ∪n∈NB

M
d (an, rn)

Suppose 0M ∈ BM
d (an0 , rn0) for an0 6=M 0M , i.e. 1

2|an0 | = d(0M , an0) < rn0 . Then

| 1
2|y|

− 1

2|an0 | | = d(y, an0) < rn0 holds for all y ∈ N such that |y| > |an0 |. Now

use IND1 to enumerate the (finitely many) reals z ∈ M with |z| < |an0 |. In this
way, there exists a finite sub-covering of ∪n∈NB

M
d (an, rn) of at most |an0 | + 1

elements. The proof is analogous (and easier) in case an0 =M 0M . Thus, (M,d) is
a countably-compact metric space.

Thirdly, define the function F : M → R as follows: F (0M ) := 0 and F (w) := |w|
for any w ∈ N . Clearly, if the sequence (wn)n∈N in M converges to 0M , either it
is eventually constant 0M or lists all reals in [0, 1]. The latter case is impossible
by Theorem 1.4. Hence, F is sequentially continuous at 0M , but not continuous at
0M . To show that F is (sequentially) continuous at w 6= 0M , consider the formula
| 1
2|w| −

1
2|v|

| = d(v, w) < 1
2N ; the latter is false for N ≥ |w| + 2 and any v 6=M 0M .

Thus, the following formula is (vacuously) true:

(∀k ∈ N)(∃N ∈ N)(∀v ∈ BM
d (w, 1

2N ))(|F (w) − F (v)| < 1
2k
). (2.1)

i.e. F is continuous at w 6=M 0M , with a (kind of) modulus of continuity given.
Applying item (a) (or item (c)-(d)), we obtain a contradiction as F is clearly un-
bounded on M . This contradiction yields NBI[0,1] and the same for item (b) as F
is not (uniformly) continuous.

Fourth, to obtain NBI[0,1] from item (e), suppose again the former is false and
Y : [0, 1] → R and (M,d) are as above. Define Cn := {x ∈ N : |x| > n + 1}
and note that this set is non-empty (as Y is a surjection) but satisfies ∩nCn = ∅.
Item (e) now yields a contradiction if we can show that Cn is sequentially closed.
To the latter end, let (wk)k∈N be a sequence in Cn with limit w ∈ M . In case
w =M 0M , we make the same observation as in the third paragraph: either the
sequence (wk)k∈N is eventually constant 0M or enumerates the reals in [0, 1]. Both
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are impossible, i.e. this case does not occur. In case w 6= 0M , we have

(∀k ∈ N)(∃N ∈ N)(∀n ≥ N)(| 1
2|w| −

1
2|wn| | = d(w,wn) <

1
2k ),

which is only possible if (wn)n∈N is eventually constant w. In this case of course,
w ∈ Cn, i.e. Cn is sequentially closed, and (e) → NBI[0,1] follows. Regarding
item (f), suppose (M,d) is separable, i.e. there is a sequence (wn)n∈N such that

(∀w ∈ M,k ∈ N)(∃n ∈ N)(| 1
2|w| −

1
2|wn| | = d(w,wn) <

1
2k ). (2.2)

As in the above, for w 6=M 0M and k0 = |w|+2, the formula d(w,wn) <
1

2k0
is false

for any n ∈ N, i.e. we also obtain a contradiction in this case, yielding NBI[0,1].

Fifth, for the sentences between items (f) and (h), (M,d) is also complete and
(strongly countably) compact, which is proved in (exactly) the same way as in the
second paragraph: any ball around 0M covers ‘most’ of M ; to show that (M,d) is
complete, let (wn)n∈N be a Cauchy sequence, i.e. we have

(∀k ∈ N)(∃N ∈ N)(∀n,m ≥ N)(d(wn, wm) < 1
2k ).

Then (wn)n∈N is either eventually constant or enumerates all reals in [0, 1]. The
latter is impossible by Theorem 1.4, i.e. (wn)n∈N converges to some w ∈ M . Note
that a continuous function is trivially sequentially continuous.

Sixth, to obtain NBI[0,1] from item (h) and higher, recall the set N := {w1∗ :
(∀i < |w|)(Y (w(i)) = i)} and consider (N, d), which is a metric space in the same
way as for (M,d). To show that (N, d) is sequentially compact, let (wn)n∈N be a
sequence in N . In case (∀n ∈ N)(|wn| < m) for some m ∈ N, then (wn)n∈N contains
at most m different elements, as Y is an injection. The pigeon hole principle
now implies that (at least) one wn0 occurs infinitely often in (wn)n∈N, yielding
an obviously convergent sub-sequence. In case (∀m ∈ N)(∃n ∈ N)(|wn| ≥ m),
the sequence (wn)n∈N enumerates the reals in [0, 1] (as Y is a bijection), which
is impossible by Theorem 1.4. Thus, (N, d) is a sequentially compact space; the
function G : N → R defined as G(u) = |u| is continuous (in the same way as for
F above) but not bounded. This contradiction establishes that item (h) implies
NBI[0,1], and the same for items (i)-(k). For item (l), the functionH(x, k) := 1

2|x|+k+2

is a modulus of continuity for G.

Seventh, for item (m), assume again ¬NBI[0,1] and define Gn(w) as |w| in case
|w| ≤ n, and 0 otherwise. As for G above, Gn is continuous and limn→∞ Gn(w) =
G(w) for x ∈ N . Since Gn ≤ Gn+1 on N , item (m) implies that the convergence is
uniform, i.e. we have

(∀k ∈ N)(∃m ∈ N)(∀w ∈ N)(∀n ≥ m)(|Gn(w) −G(w)| < 1
2k
), (2.3)

which is clearly false. Indeed, take k = 1 and let m1 ∈ N be as in (2.3). Since Y is
surjective, IND1 provides w1 ∈ N of length m1 + 1, yielding |G(w1)−Gm1(w1)| =
|(m1+1)− 0| > 1

2 , contradicting (2.3) and thus NBI[0,1] follows from item (m). For
item (n), (Gn)n∈N is equicontinuous by the previous, but not uniformly equicon-
tinuous, just like for item (m) using a variation of (2.3). For item (o), the function
J(w) := 1

2|w| is continuous on N in the same way as for F,G. However, assuming
¬NBI[0,1], J becomes arbitrarily small on N , contradicting item (o). For item (p),
define Jn(w) as J(w) if |w| ≤ n, and 1 otherwise. Similar to the previous, Jn
converges to J , but not uniformly, i.e. item (p) also implies NBI[0,1].
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For item (q), note that On := {w ∈ N : |w| = n} is open as BM
d (v, 1

2n+2 ) ⊂ On

in case v ∈ On. Then ∪n∈NOn covers N , assuming N (and ¬NBI[0,1]) as above.
However, there clearly is no finite sub-covering.

Finally, for items (r)-(s), the above proof for items (e)-(f) goes through without
modification. For item (t), note that N is an infinite set in (N, d) without limit
point. The final sentence speaks for itself: one uses (∃3) and (µ2) to obtain a
modulus of continuity. For ε = 1, the latter yields an uncountable covering, which
has finite sub-covering assuming (∃3) by [29, Theorem 4.1]. This immediately yields
an upper bound while the supremum and maximum are obtained using the usual
interval-halving technique using (∃3). �

We could restrict item (q) to R2-open sets ([28, 34]), where the latter are open
sets such that x ∈ U implies B(x, hU (x)) ⊂ U with the notation of Def. 1.1.

2.2. Variations on a theme. Lest the reader believe that third-order metric
spaces are somehow irredeemable, we show that certain (very specific) variations of
the items in Theorem 2.2 are provable in rather weak systems, sometimes assuming
countable choice as in QF-AC

0,1 (Theorems 2.3 and 2.4). We also show that certain
items in Theorem 2.2 are just very hard to prove by deriving some of the new ‘Big’
systems from [31, 32, 38, 40], namely the Jordan decomposition theorem and the
uncountability of R as in NIN[0,1] (Theorem 2.6).

First, we establish the following theorem, which suggests a strong need for open
sets as in Def. 1.1 if we wish to prove basic properties of metric spaces in the
base theory, potentially extended with the Big Five. The fourth item should be
contrasted with item (e) in Theorem 2.2. Many variations of the below results are
of course possible based on the associated second-order results.

Theorem 2.3 (RCAω
0 ).

(a) For strongly countably open (M,d), a continuous F : M → R is bounded.

(b) Dini’s theorem for strongly countably-compact (M,d).
(c) Pincherle’s theorem for strongly countably-compact (M,d).
(d) A metric space (M,d) with the Cantor intersection property, is strongly

countably-compact.

(e) The following are equivalent:

(e.1) weak König’s lemma WKL0,

(e.2) for any weakly complete and effectively totally bounded metric space

(M,d) with M ⊂ [0, 1], a continuous F : M → R is bounded above,

(e.3) the previous item for sequentially continuous functions.

(f) The following are equivalent.

(f.1) arithmetical comprehension ACA0.

(f.2) any weakly complete and effectively totally bounded metric space (M,d)
with M ⊂ [0, 1], is sequentially compact.

Proof. For the first item, since F is continuous, the set En := {x ∈ M : |F (x)| > n}
is open and exists in the sense of Def. 1.1. Since ∪n∈NEn covers (M,d), there is
a finite sub-covering ∪n≤n0En for some n0 ∈ N, implying |F (x)| ≤ n0 + 1 for all
x ∈ M , i.e. F is bounded as required.

For the second item, let F, Fn be as in Dini’s theorem and define Gn(w) :=
F (w) − Fn(w). Now fix k ∈ N and define En := {w ∈ M : Gn(w) < 1

2k
}. The

latter yields a countable open covering and one obtains uniform convergence from
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any finite sub-covering. For the third item, fix F : M → R
+ and define En := {w ∈

M : F (w) > 1
2n }. The proof proceeds as for the previous items.

For the fourth item, this amounts to a manipulation of definitions. For the
fifth item, that (e.2) and (e.3) imply WKL0 is immediate by [33, Theorem 2.8] for
M = [0, 1] and [19, Prop. 3.6]. For the downward implication, fix F : M → R

for M ⊂ [0, 1] as in item (e.2). In case ¬(∃2), all functions on R are continuous
by [19, Prop. 3.12]. By [33, Theorem 2.8], all (continuous) [0, 1] → R-functions are
bounded. Since we may (also) view F as a (continuous) function from reals to reals,
F is bounded on [0, 1] and hence M , i.e. this case is finished.

In case (∃2), we follow the well-known proof to show that (M,d) is sequentially
compact. Indeed, for a sequence (xn)n∈N in M , define a sub-sequence as follows:
M can be covered by a finite number of balls with radius 1/2k with k = 1. Find
a ball with infinitely many elements of (xn)n∈N inside (which can be done explic-
itly using (∃2)) and choose xn0 in this ball to define y0 := xn0 . Now repeat the
previous steps for k > 1 and note that the resulting sequence is effectively Cauchy
and hence convergent (by the assumptions on M). Hence, (M,d) is sequentially
compact and suppose F : M → R is unbounded, i.e. (∀n ∈ N)(∃x ∈ M)(F (x) > n).

It is now important to note that the underlined quantifier can be replaced by a
quantifier over N using the sequence (wn)n∈N provided by M being effectively to-

tally bounded. Applying QF-AC
0,0, included in RCA

ω
0 , there is a sequence (xn)n∈N

such that |F (xn)| > n. This sequence has a convergent sub-sequence, say with
limit y, and F is not continuous at y, a contradiction. Thus, F is bounded for both
disjuncts of (∃2) ∨ ¬(∃2). The equivalence involving ACA0 has a similar proof. �

As emphasised in bold in the theorem, the final part of the proof seems to
crucially depend on effective totally boundedness. Indeed, by the first part of
Theorem 2.2, item (e.3) of Theorem 2.3 with ‘effectively’ omitted, implies NBI[0,1].
In other words, the equivalences in Theorem 2.3 do not seem robust.

Secondly, we show that certain items from Theorem 2.2 fit nicely with RM,
assuming an extended base theory. Other items turn out to be connected to the
‘new’ Big systems studied in [31, 38, 39].

We now show that certain items from Theorem 2.2 are provable assuming count-
able choice as in QF-AC

0,1. Thus, these items do not imply NIN[0,1] as the latter is

not provable in Z
ω
2 +QF-AC

0,1. The third item should be contrasted with [42, III.2].

Many results in RM do not go through in the absence of QF-AC0,1, as studied at
length in [28, 29].

Theorem 2.4 (RCAω
0+QF-AC

0,1). The following are provable for (M,d) any metric

space with M ⊂ R.

• Items (h), (i), (m), (n), (o), (q), (s), and (t) from Theorem 2.2.

• The following are equivalent:

– weak König’s lemma WKL0,

– the unit interval is strongly countably-compact.

• The following are equivalent:

– arithmetical comprehension ACA0,

– a weakly complete and effectively totally bounded (M,d) with M ⊂
[0, 1] is limit point compact.
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Proof. First of all, we prove item (h) from Theorem 2.2 in RCA
ω
0 + QF-AC

0,1. To
this end, suppose the continuous function F : M → R is unbounded, i.e. (∀n ∈
N)(∃w ∈ M)(|F (w)| > n). Applying QF-AC

0,1, there is a sequence (xn)n∈N such
that |F (wn)| > n. Since (M,d) is assumed to be sequentially complete, let (yn)n∈N

be a convergent sub-sequence with limit y ∈ M . Clearly, F cannot be continuous
at y ∈ M , a contradiction, which yields item (h). Item (i) is proved in the same

way: suppose F is not uniformly continuous and apply QF-AC
0,1 to the latter

statement to obtain a sequence. Then F is not continuous at the limit of the
convergent sub-sequence. Items (m)-(o) are proved in the same way. To prove item
(q), let (On)n∈N be a countable open covering of M with (∀n ∈ N)(∃x ∈ M)(x 6∈
∪m≤nOm). Apply QF-AC

0,1 to obtain a sequence (xn)n∈N, which has a convergent
sub-sequence (yn)n∈N by assumption, say with limit y ∈ M . Then y ∈ On0 for some
n0 ∈ N, which implies that yn is also eventually in On0 , a contradiction. To prove
item (s), let (Cn)n∈N be as in the sequential Cantor intersection property and apply

QF-AC
0,1 to (∀n ∈ N)(∃x ∈ M)(x ∈ Cn). The convergent sub-sequence has a limit

y ∈ ∩n∈NCn. To prove item (t), let X be an infinite set, i.e. (∀N ∈ N)(∃w1∗)(∀i <
|w|)(|w| = N ∧ w(i) ∈ X). Now apply QF-AC

0,1 to obtain a sequence (wn)n∈N

in X . Since (M,d) is sequentially closed, the latter sequence has a convergent
sub-sequence, the limit of which is a limit point of X .

Secondly, the equivalence in the second item is proved in [28, Theorem 4.1].
For the third item, the upwards implication is immediate for M = [0, 1]. For the
downwards implication, assume (M,d) as in the final sub-item. Theorem 2.3 implies
that (M,d) is sequentially compact. As in the previous paragraph, an infinite set
in M now has a limit point. �

A similar proof should go through for many of the other items in Theorem 2.2
and for QF-AC0,1 replaced by NCC from [30]; the latter is provable in Z

Ω
2 while the

former is not provable in ZF.

Secondly, the Jordan decomposition theorem is studied in [31,40] where various
versions are shown to be equivalent to the enumeration principle for countable
sets. Many equivalences exist for the following principle, elevating it to a new ‘Big’
system, as shown in [31].

Principle 2.5 (cocode0). Let A ⊂ [0, 1] and Y : [0, 1] → N be such that Y is

injective on A. Then there is a sequence of reals (xn)n∈N that includes A.

This principle is ‘explosive’ in that ACAω
0 + cocode0 proves ATR0 and Π1

1-CA
ω
0 +

cocode0 proves Π1
2-CA0 (see [31, §4]). As it turns out, the separability of metric

spaces is similarly explosive.

Theorem 2.6 (ACAω
0 ).

• Item (f) or (r) from Theorem 2.2 implies cocode0.

• Item (f) or (r) for M = [0, 1] from Theorem 2.2 implies NIN[0,1].

Proof. For the first item, let Y : [0, 1] → N be injective on A ⊂ [0, 1]; without
loss of generality, we may assume 0 ∈ A. Now define d(x, y) := | 1

2Y (x) − 1
2Y (y) |,

d(x, 0) = d(0, x) := 1
2Y (x) for x, y 6= 0 and d(0, 0) := 0. The metric space (A, d) is

countably-compact as 0 ∈ BA
d (x, r) implies y ∈ BA

d (x, r) for y ∈ A with only finitely
many exceptions (as Y is injective on A). Similarly, (A, d) is sequentially compact:
in case a sequence (zn)n∈N in A has at most finitely many distinct elements, there
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is an obvious convergent/constant sub-sequence. Otherwise, (zn)n∈N has a sub-
sequence (yn)n∈N such that Y (yn) becomes arbitrary large with n increasing; this
sub-sequence is readily seen to converge to 0.

Now let (xn)n∈N be the sequence provided by item (f) or (r) of Theorem 2.2,
implying (∀x ∈ A)(∃n ∈ N)(d(x, xn) <

1
2Y (x)+1 ) by taking k = Y (x) + 1. The latter

formula implies

(∀x ∈ A)(∃n ∈ N)(x 6=R 0 → | 1
2Y (x) −

1
2Y (xn) | <R

1
2Y (x)+1 ) (2.4)

by definition. Note that xn from (2.4) cannot be 0 by the definition of the metric
d. Clearly, | 1

2Y (x) − 1
2Y (xn) | <

1
2Y (x)+1 is only possible if Y (x) = Y (xn), implying

x =R xn. Hence, we have shown that (xn)n∈N lists all reals in A \ {0}. The same
proof now yields the second item for A = [0, 1] as Theorem 1.4 implies the reals
cannot be enumerated. �

In conclusion, the coding of metric spaces does distort the logical properties of
basic properties of continuous functions on metric spaces by Theorem 2.2. This is
established by deriving NBI[0,1] while noting that NIN[0,1] generally does not follow
by Theorem 2.4. The latter also shows that in an enriched base theory, one can
obtain ‘rather vanilla’ RM. By contrast, other properties of metric spaces imply
new ‘Big’ systems, as is clear from Theorem 2.6.

3. Foundational musings

3.1. Thoughts on coding. The results in this paper have implications for the
coding of higher-order objects in second-order RM, as discussed in this section.

First of all, our results shed new light on the following problem from [11, p. 135].

PROBLEM. [. . . ] Show that Simpson’s neighborhood condition
coding of partial continuous functions between complete separable
metric spaces is “optimal”.

A coding is called optimal in [11] in case RCA0 can prove ‘as much as possible’,
i.e. as many as possible of the basic properties of the coding can be established in
RCA0. Theorem 2.2 show that without separability, basic properties of continuous
functions on compact metric spaces are no longer provable from second-order (com-
prehension) axioms. Thus, separability is an essential ingredient if one wishes to
study these matters using second-order arithmetic/axioms.

Secondly, second-order (comprehension) axioms can establish many (third-order)
theorems about continuous and discontinuous functions on the reals (see [33, 40]),
assuming RCA

ω
0 . Hence, large parts of (third-order) real analysis can be developed

using second-order comprehension axioms in a weak third-order background theory,
namely RCA

ω
0 , using little-to-no-coding. The same does not hold for continuous

functions on compact metric spaces by the above results. In particular, Theorem 2.3
suggests we have to choose a very specific representation, namely ‘weakly complete
and effectively totally bounded’ to obtain third-order statements that are classified
in the Big Five. Indeed, Theorem 2.2 implies that many (most?) other variations
are not provable from second-order (comprehension) axioms.

In conclusion, our results show that separability is an essential ingredient if one
wishes to study these matters using second-order arithmetic/axioms. However, our
results also show that this is a very specific choice that is ‘non-standard’ in the sense
that many variations cannot be established using second-order arithmetic/axioms.
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3.2. Set theory and ordinary mathematics. In this section, we explore a theme
introduced in [39]. Intuitively speaking, we collect evidence for a parallel between
our results and some central results in set theory. Formulated slightly differently,
one could say that interesting phenomena in set theory have ‘miniature versions’
to be found in third-order arithmetic, or that the seeds for interesting phenomena
in set theory can already be found in third-order arithmetic.

First of all, the cardinality of R is mercurial in nature: the famous work of Gödel
([12]) and Cohen ([6,7]) shows that the Continuum Hypothesis cannot be proved or
disproved in ZFC, i.e. Zermelo-Fraenkel set theory with AC, the usual foundations
of mathematics. In particular, the exact cardinality of R cannot be established in
ZFC. A parallel observation in higher-order RM is that Zω

2 +QF-AC
0,1 cannot prove

that R is uncountable in the sense of there being no no injection from R to N (see
[32] for details). In a conclusion, the cardinality of R has a particularly mercurial
nature, in both set theory and higher-order arithmetic.

Secondly, many standard results in mainstream mathematics are not provable
in ZF, i.e. ZFC with AC removed, as explored in great detail [14]. The absence of
AC is even said to lead to disasters in topology and analysis (see [17]). A parallel
phenomenon was observed in [28,29], namely that certain rather basic equivalences
go through over RCAω

0 + QF-AC
0,1, but not over Zω

2 .

Examples include the equivalence between compactness results and local-global
principles, which are intimately related according to Tao ([44]). In this light, it is
fair to say that disasters happen in both set theory and higher-order arithmetic in
the absence of AC. It should be noted that QF-AC0,1 (not provable in ZF) can be

replaced by NCC from [30] (provable in Z
Ω
2 ) in the aforementioned.

Thirdly, we discuss the essential role of AC in measure and integration theory,
which leads to rather concrete parallel observations in higher-order arithmetic. In-
deed, the full pigeonhole principle for measure spaces is not provable in ZF, which
immediately follows from e.g. [14, Diagram 3.4]. A parallel phenomenon in higher-
order arithmetic (see [39]) is that even the restriction to closed sets, namely PHP[0,1]

cannot be proved in Z
ω
2 + QF-AC

0,1 (but ZΩ
2 suffices).

A more ‘down to earth’ observation pertains to the intuitions underlying the
Riemann and Lesbesgue integral. Intuitively, the integral of a non-negative function
represents the area under the graph; thus, if the integral is zero, then this function
must be zero for ‘most’ reals. Now, AC is needed to establish this intuition for
the Lebesgue integral ([16]). Similarly, [39, Theorem 3.8] establishes the parallel
observation that this intuition for the Riemann integral cannot be proved in Z

ω
2 +

QF-AC
0,1 (but ZΩ

2 suffices as usual).

Fourth, the pointwise equivalence between sequential and ‘epsilon-delta’ conti-
nuity cannot be proved in ZF while RCAω

0 +QF-AC
0,1 suffices for functions on Baire

space (see [19]). A parallel observation is provided by (the proof of) Theorem 2.2,
namely that the following statement is not provable in Z

ω
2 :

for countably-compact (M,d) and sequentially continuous F : M → R, F is

continuous on M .

Thus, the global equivalence between sequential and ‘epsilon-delta’ continuity on
metric spaces cannot be proved in Z

ω
2 . In other words, the exact relation between

sequential and ‘epsilon-delta’ continuity is hard to pin down, both in set theory and
third-order arithmetic.
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