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With the help of one-dimensional random Potts-like model we study the origins
of fine structure observed on differential melting profiles of double-stranded DNA.
We assess the effects of sequence arrangement on DNA melting curves through the
comparison of results for random, correlated, and block sequences. Our results
re-confirm the smearing out the fine structure with the increase of chain length
for all types of sequence arrangements and suggest fine structure to be a finite-
size effect. We have found, that the fine structure in chains comprised of blocks
with the correlation in sequence is more persistent, probably, because of increased
sequence disorder the blocks introduce. Many natural DNAs show a well-expressed
fine structure of melting profiles. In view of our results it might mean the existence
of blocks in such DNAs. The very observation of fine structure may also mean,
that there exists an optimal length for natural DNAs in vivo.

I. INTRODUCTION

Altered external conditions (such as increased temperature) in a system containing double
stranded deoxyribonucleic acid (DNA) molecules may trigger a change of their conformation
from ordered helical to disordered coil1. This transition is referred to as DNA melting.
DNA is a double stranded heteropolymer, comprised of a sugar-phosphate backbone with
side groups containing one of four nucleotide bases (cytosine [C], guanine [G], adenine [A]
or thymine [T])7,14. Sequence complementarity rules for the double helix require that an A
on one of the strands is always paired with T on the other, and G pairs with C. The A–T
basepair is stabilized by two hydrogen bonds, and the G–C basepairs have three hydrogen
bonds. Due to such compositional disorder, natural DNAs are treated as heteropolymers,
and complementarity rules allow to describe DNAs as systems having binary disorder. Each
particular sequence of basepairs along the double helix defines the genetic code responsible
for the diversity of organisms in nature. Perhaps related to their biological relevance,
different sequences give rise to different melting profiles, and display multiple peaks on
differential melting curves (DMCs)1. The array of peaks observed along a DMC with
increased temperature are referred to as fine structure20,25. Water-DNA interactions have
been shown to play an important role for DNA conformations both experimentally30, and
theoretically24. How exactly is the fine structure affected by the presence of water, is not
clear at this moment, and will be left for future studies.
In the mid-1960s and early 1970s at the beginning of the era of DNA melting, theoretical

approaches were based on the two-component one-dimensional Ising model16 formulated
to predict DNA melting curves. When fitted to experimental melting curves, the Ising
Model approach was able to predict, at least qualitatively, much of the fine structure ex-
perimentally observed on DMCs17. Perhaps the most successful approaches to predicting
DNA DMC3,19,34 were based on the Poland-Sheraga method10 using the Fixman-Freire
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approximation18. These theories were formulated in terms of the Zimm-Bragg approach
originally applied to analysis of the helix-coil transition in polypeptides6,33; but often used
to describe the conformational changes in DNA as well11,36. The primary assumption un-
derlying these approaches was that nearest-neighbour basepair interactions play a central
role in the sequence dependence of DNA melting, and that peaks observed on DMCs corre-
spond to the independent melting of lengthy sequence blocks differing in their percentage of
G–C base pairs17,19. For long DNAs where the number of such blocks can be large (several
hundred basepairs), the fine structure on DMCs appeared to get smeared due to the overlap
of different peaks (see the recent review3). Therefore, it was surmised that clearly defined
fine structure on DMCs should only be observed for DNA chains of moderate length where
formation of a small number of loops is allowed.
Unfortunately, this classical viewpoint does not provide insight into the relationship be-

tween the number of blocks and the number of peaks observed on experimentally measured
DMCs. While helical segments of a homopolymer have often been considered as blocks, the
question of the range of correlations in heteropolymer systems is not a simple one and is
closely related to the theory of correlations in disordered systems9. In 2021 the Nobel Prize
was awarded to prof. Parisi ”for the discovery of the interplay of disorder and fluctuations
in physical systems from atomic to planetary scales”22, and our problem belongs to the
same category.
In order to improve the description of many-body effects, and to double-check the im-

portance of system length for the appearance of fine structure, another approach has been
put forth. It is based on a one-dimensional many-body Hamiltonian with Potts spins37.
This approach is known as the Generalized Model of Polypeptide Chains (GMPC) and
provides an alternative for describing melting of a double stranded DNA homopolymers in
the limit of small loops12. The GMPC in the thermodynamic limit has been used to study
the conformational transitions in both homopolymers37 and annealed heteropolymers23,29.
In order to separately consider the effect of frozen sequence and to depict the origins of
the fine structure of DMCs, we have employed the constrained annealing method, which
accounts for the existence of two types of degrees of freedom: annealed ones, which can re-
arrange in order to minimize the free energy and frozen ones, which do not change in time.
Thus biopolymer conformations are considered as annealed degrees of freedom, while the se-
quence of repeating units as frozen28,29.As a result of these considerations for infinite chain
lengths, it was possible to estimate the melting temperature and melting interval23,28,29.
The constrained annealing method also resulted in two large peaks on the DMC, but failed
in reproducing any of fine structures on DMC28,29. Since multi-peak DMCs have been ex-
perimentally observed in a number of studies25,35,38, there is an obvious necessity for more
in depth theoretical investigation on the origins and accurate predictions of fine structure
on DMCs of duplex DNAs.
In the present study, aiming to improve our understanding of correlations in helical regions

of DNA, we directly generate binary random sequences of different finite lengths. The
corresponding transfer-matrices23 are directly multiplied to result in the partition function,
which allows to calculate the degree of helicity for each of the generated sequences. Block
structures of DNA heteropolymers are mimicked by merging sequences with different G–
C content. Comparison of the results for random, correlated, block random and block
correlated sequences provides new insights into the origin of DMC fine structure.
Specifically, numerical calculations addressed the following questions: (i) What is the

difference between predicted DMCs for short versus long DNAs? (ii) How does the presence
of sequence blocks affect DMC fine structure? (iii) What are the effects of correlations within
sequence blocks?

II. MATERIALS AND METHODS

In this study we compare the effects of four types of sequence schemes onto the DNA melt-
ing curves. Considered schemes are: random, correlated, random block, correlated
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block.
Random sequences with two-component heterogeneity were generated using Wolfram

Mathematica21. Each repeating unit (r.u.) comprised of G – C basepair, assigned as type
”A”, enters the sequence with probability P (A) = x, and A–T basepair (type ”B”) with
probability P (B) = (1 − x)31. Thus defined, x has the usual meaning of G–C fraction. In
order to be able to observe strong disorder, and not just doping effects, x values from the
middle of value interval should be taken. In this study two particular values for random
sequences have been used: x = 0.4 and x = 0.5.

FIG. 1. Illustration of sequence generation: a) random, b) random block, c) correlated, and d)
correlated block. Red spheres correspond to type ”A”, and the blue ones to type ”B”. Block length
(in the figure, of 8 r.u) is actually 3000-r.u.-long, see text.

Correlated sequences are generated by increasing the probability of the neighboring
basepair of the same type by ∆x, and decreasing the probability for different neighboring
basepairs by the same ∆x. A detailed block-scheme of correlated sequence generation
algorithm is provided in B. Introduction of short-ranged correlations in the sequence allows
to reveal their effect on melting curve fine structure.
Block sequences for both random and correlated cases result from randomly merging

different sequences with different G–C fractions, x. Mixing (merging) equal amounts of
random sequences with x = 0.4 and x = 0.5, produces blocked sequences with x = 0.45.
Sequence generation is illustrated in Fig.1.
As proposed by Parisi, reduced free energies at fixed disorder content (x, in our case)

should tend to a certain limit at infinite system sizes. For a given parametrization, the
length scale for self-averaging of the free energy (not shown) in our model is N ≥ 3000
r.u.26,32 both for random and correlated sequences. The type of a sequence is not affecting
the self-averaging, since the self-averaging length scale is much larger than the sequence
correlation, which affects the probability for the nearest neighbour only. Therefore, in the
current study, the temperature dependence of the helicity degree is calculated for both
random and correlated sequences in blocks of 3000 r.u.
For every sequence, the partition function is given by,

Z = Tr

N
∏

i=1

Gi, (1)

where

Gi(∆×∆) =

















e
Ui

T 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 Qi − 1
1 1 1 · · · 1 1 Qi − 1

















, (2)
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is the transfer matrix of the GMPC model23 for i-th r.u. of either ”A” or ”B”; e
Ui

T is the
energetic parameter where Ui is the hydrogen bond formation energy, and T is temperature;
Qi is the number of conformations. Dimensions ∆ of the transfer-matrix are determined
by the number of repeating units, affected by the formation of hydrogen bonds in one r.u.
and reflects the single strand rigidity. The ∆ = 2 value corresponds to the Zimm-Bragg
model33, applied to polypeptides (see A for the detailed description on correspondence of
parameters). To account for a larger rigidity of a single strand DNA, we use ∆ = 4 value
throughout this study.
As opposed to treating the sequence disorder in partition function using approximate

methods23,29, applicable for the infinite chain length N , we use the straightforward multi-
plication of matrices for each generated sequence, which is exact and valid for any chain
length. Also, the approach can be extended beyond the calculation of melting temperature
Tm and melting interval ∆T . That is, the degree of helicity θ (fraction of intact basepairs)
can be determined according to:

θ =

Tr[E,O]
∏N

i=1 M̂i

[

O
E

]

NTr[E,O]
∏N

i=1 M̂i

[

E
O

] ; M̂i =

(

Ĝi Ĝ′

i

O Ĝi

)

. (3)

where E is the unit and O is null matrix and M̂i is the supermatrix. Here, Ĝ′

i = ∂Ĝi/∂J0,

so the first element of the transfer matrix Ĝ′

i,11 = eJi and all other elements are zero. For
the details of the model definition please consult the C.
Calculations are performed by multiplication of transfer-matrices in Eq. (1) for each type

of generated sequence. From Eq. (3) each supermatrix depends on the type of r.u., and the
degree of helicity represents every particular sequence and is unique.
On a Macintosh HD running MacOS 14.1.1 with 16 GB of memory and an Apple M1 Pro

chip, the process of calculating the helicity degree and gathering tensor data for each DNA
sequence consisting of 3000 repeated units requires approximately 2.5 hours. Subsequently,
the collected data is utilized for merging sequences, and the merging process along with
helicity degree calculation varies in duration, ranging from several seconds to 3 minutes.
The time required depends on the number of sequences being merged.
DMCs are obtained from the numeric derivation of Eq. (3). The estimated numerical

error is of the order of 10−5.

III. RESULTS AND DISCUSSION

A. Dependence of the DMC profile on length, block structure and sequence correlations

Equation (3) enables the examination of sequence dependent features such as length,
block structure and sequence correlations, on the DMC. Obtained curves visually remind
those familiar from the experiments. Thus, the dashed blue line of Fig.2a (N = 6000,
correlated sequence) displays a profile visually similar to the experimental DMC of calf
thymus DNA35,38. Since each particular DMC depends on sequence, different sequences are
incomparable, and only general trends can be deduced from results of the calculations.
As seen in Fig.2, fine structure is present at shorter sequence lengths for all sequence

arrangements considered (random, random block, correlated and correlated block), and
DMC turns into a smooth curve, when sequences become longer, a trend first reported by
Lyubchenko et al25.
In absence of a block structure, random and correlated sequences (dotted and dashed

lines, Fig.2) result in a smooth curve with a single maximum, while random block and
correlated block sequences (dash-dotted and solid lines, Fig.2) give rise to a smooth curve
with two well-expressed and wide maxima. Most persistent in terms of a fine structure is
the correlated block scheme.
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FIG. 2. Calculated DMCs for long heteropolymers with N = 6000 (a), N = 30000 (b), N = 90000
(c) and N = 180000 (d). Curves with x = 0.4 are compared with those for the joint block scheme
generated with parameters x = 0.4, x = 0.5, ∆x = 0.3. The other parameters, same for all curves,
read: UA = 1, UB = 0.8, QA = 71, QB = 51, ∆ = 4. Temperature is given in units of t = T/UA.
The legend indicates the specific sequence arrangements.

It is tempting to suggest an explanation for the small peaks forming the DMC profile
as appearing from individually melting regions, following Lyubchenko et al25. Using the
expression for the transition interval of melting of a homopolymer, the same authors have
qualitatively estimated the area of a peak of fine structure to be proportional to ν/N of
the total area of the differential melting curve (ν is the average length of a helical region).
The larger is the chain length N , the smaller will be the contribution from the peak, and
eventually, peaks disappear for large N . The length of an individually melting region should
be of the order of a spatial correlation length, which formally brings the problem to the
calculation of the correlation function, which is not a trivial question for disordered systems,
heteropolymer, in this case. Probably, this is the reason, why Lyubchenko et al25 have to
rely on the transition interval formula for a homopolymer. As it was reported before1,23,
the span of correlations within the secondary structure of a heteropolymer is certainly
different from that of a homopolymer. This is obvious from the fact that the transition
interval of a heteropolymer has a different functional dependence on model parameters
than a homopolymer. Thus, while valuable as an idea, the concept of Lyubchenko et al

needs to be justified, when it comes to the scale of conformational correlations for the
heteropolymer.
With a very interesting numerical experiment, Lyubchenko et al have illustrated the

relevance of the value of nucleation parameter σ for the fine structure. Fig.1 of Ref.25

shows a calculated DMC for N = 30000 r.u. long random heteropolymer in a model
that allows for loop formation, and apparently results in fine structure. Fig.3 of Ref.25

is for exactly the same parameters, but without loops, and one can see the fine structure
disappeared. What has changed? The presence of loops introduces additional cooperativity
into the system, and significantly decreases the value of nucleation parameter σ. When
the loop factor is removed from the model, the cooperativity decreases, and the value of σ
increases. So, which factor is relevant per se, loop formation possibility, or the value of the
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nucleation parameter σ? Lyubchenko et al gave a clear answer to the question in Fig.4 of
Ref.25, where they took the model without loops, but decreased the value of σ to the value
it had in the case of loops, and have demonstrated the re-appearance of fine structure. So,
according to Lyubchenko et al, it is all about the values of σ: at small values there is a
fine structure, while at large ones there are no signs of fine structure. If recall the simple
relationship between the parameter σ and the correlation length ξ, σ = ξ−2

max provided by
the homopolymer version of the GMPC model (please see Eq. (S3) of SI and references
therein), one can re-read the message: large conformational correlations (small σs) result
in fine structures. Similar to the preceding paragraph, here again, the need to estimate the
span of conformations for a heteropolymer becomes apparent. Let us say it clear, although
we do not study the correlation function for the heteropolymer in this paper, the work of
Lyubchenko et al inspires a clear working ansatz for the future study: fine structure is a
finite size effect, related to the ξ/N ratio. When the ratio is comparable with unity, finite
size effects, including the fine structure, are apparent, while at small values the system
self-averages nicely, so that no fine structure is present.
As we illustrate in Fig.2, besides the abovementioned factors, the specific sequence ar-

rangements can also seriously affect the DMC shapes. That is, our calculated DMCs of
random sequences are smooth for N = 30000 (Fig.2b, dotted), while the presence of block
structure results in fine structure (Fig.2b, dash-dotted). The significant difference between
our approach and that of Lyubchenko et al is our utilization of sequence blocks. Pieces of
random sequence of 3000 nucleotides each were linked to obtain the block structure in our
study. In contrast, Lyubchenko et al generated random sequences, and considered chain
pieces of one helical segment long as individual blocks.
To conclude this section, results presented in Fig.2, qualitatively support the view of fine

structure as a finite size effect, and the expression of it depends on the disorder, encoded
in the different schemes of sequence organization.

B. Effects of averaging over the sequences

DMCs for different sequences generated at the same value of x mimic melting curves for
different DNA sequences with the same G–C content. The theory of systems with a random
potential, one example being the model of heterogeneous sequence DNA melting23, similar
to that considered here, provides estimates of quantities, averaged over the disorder, in the
limit of infinite system size9. Understanding the mechanisms behind this averaging may
illustrate effects on the DMC, arising from particular sequence structure of DNA.
We start by generating ten sequences with N = 3000 at fixed x, calculating the DMC and

then averaging the curves. As shown in Fig.3, the curves obtained do not follow a pattern.
Some have well-defined fine structure, others do not, however, the fine structure is more
expressed on DMCs for correlated sequences (see more curves in 7 of D). Interestingly, for
both the uncorrelated (Fig.3a) and correlated (Fig.3b) sequences, results of averaging are
similar: smooth curves with two weakly expressed maxima are obtained.

C. Comparison between block-averaging and sequence-averaging

Results in Fig.3 show, that averaging over large number of shorter sequences results in a
smooth curve, in a way similar to the long sequence behavior. To check if it is true, we take
10 (30) sequences, N = 3000 r.u. each, calculate the average DMC (codename average),
then compare it with the DMC of a joint sequence, made by gluing together exactly the
same 10 (30) sequences. Both the random and correlated curves (Figs. 4a, c and 4b,
d respectively) look quite similar, with a minimal number of peaks. The tendency to a
shapeless DMC without fine structure is obvious. This demonstrates qualitatively similar
DMCs result for sequences, made by gluing blocks into a large single chain and for those
obtained by averaging over a large number of independent blocks. More joint curves are



7

0.216 0.220
0

250

500

0.208 0.216
0

100

200 b

a

t

-d dt

t
FIG. 3. Calculated DMCs for heteropolymers (colored thin lines) and their average (thick line).
(a) random sequences: (b) sequences with correlation. x = 0.4, other parameters are as in Fig. 2.
Averages were determined from 10 individually calculated curves (not all shown).

shown on 8 in D. Thus the ansatz is confirmed: whether shorter sequences are joint into a
long chain, or results for short sequences are averaged, resulting DMC is same. And longer
is the chain length (or larger is the number of shorter sequences), the better is agreement
between the two (compare Figs. 4a,b with Figs. 4c,d).

Dashed thin vertical lines on Fig. 4 indicate the melting temperatures for random se-
quences, drawn according to the theoretically calculated value4,23 for infinitely long se-
quences as Tm = xTA + (1− x)Tb (for x = 0.4 and x = 0.5 values). For random sequences,
Fig. 4a,c, the maxima of DMCs are very close to the corresponding random heteropolymer
values (dashed vertical lines), while the introduction of block structure in Fig. 4b,d, breaks
the agreement with the theoretical values.

To study this question further, we plot the positions of maxima (considered as melting
temperature) and transition interval vs the chain length in Fig. 5 (left). One can see
that for random sequences the melting temperature is close to the theoretical value and
for the correlated heteropolymers there is no agreement between the theoretical melting
temperatures. As to the melting interval (Fig. 5, right), it is also strongly affected by
the sequence organization. Thus, when the random and block sequences are compared,
the melting interval of the second is about twice bigger. When the random and correlated
sequences are compared, the melting interval is again twice bigger for correlated sequences.
And finally, when the block sequences are compared with correlated block ones, the melting
interval is again approximately twice bigger, thus it is about four times bigger than melting
interval of random sequences. Additional info on melting temeperatures and intervals can
be found in Table 1 of C.
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dashed thin vertical lines.
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IV. SUMMARY AND CONCLUSIONS

Our results indicate, that sequence organization strongly affects the presence or absence
of fine structure (Fig.2). When different sequence schemes are compared, the expression of
a fine structure (at fixed sequence length N) increases in the following order: random →

correlated → random block → random correlated.

The fact, that increasing sequence length smears out the fine structure, means its presence
on DMC curves is a finite-size effect, which depends on a ratio ξ/N , where the spatial scale ξ
should be related to the correlation length of the system. The calculation of the correlation
length of a system with disorder (heteropolymer) is related to the calculation of the second
Lyapunov exponent9, and is not a trivial task per se.

Introduction of blocks should decrease the physical cooperation between different parts
of the system due to the additional disorder it creates as compared to the random sequence.
The better expression of fine structure (see Fig.2) for the block sequences (at same N) can
be understood as decreased value of the correlation length ξ of the system. However, since
the calculation of the correlation length has not been done here, it is a speculation, for the
moment.

Results of Fig. 2 showed that random and correlated sequences give rise to a single peak
DMC curve at large N , while the sequences with blocks of different G–C content x result
in two peaks. This confirms our earlier results regarding the presence of just two peaks,
obtained using the method of constrained annealing (CA)28,29. Based on this observation we
claim that the CA method is a good approximation for completely random heteropolymers.
We notice correlated sequences resulting in more peaks on the DMCs than uncorrelated
sequences. The number of peaks on the DMC tend to increase for block sequence structure.
We also see the tendency to smear out all the peaks of fine structure at increased sequence
length, in agreement with Lyubchenko et al25. The very fact, that many DNAs of living
organisms show the presence of fine structure on their melting profiles, may be considered
as a sign, that they are optimized not to exceed a certain length, the biological meaning of
which has still to be clarified.

Our study suggests insights into the stability of DNA based on its primary structure
and length. Targeted gene therapy crucially depends on DNA conformations to avoid
biodegradaton during the delivery phase2,8. It makes our findings relevant for future devel-
opment of drugs intended for use in gene therapy.
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Appendix A: The basic model for heteropolymers

A microscopic Potts-like one-dimensional model with δ-particle interactions is used to
describe the helix-coil transition in polypeptides from early 1990s27,37. Later it was shown
that the same approach could be applied to DNA if the large-scale loop factor is ignored12.
This model, known as the Generalized Model of Polypeptide Chains (GMPC) has the
Hamiltonian of the form:

−βH = J
N
∑

i=1

δ
(∆)
i , (A1)

where the summation is performed across all N repeated units, β = 1/T is inverse temper-

ature, J = U/T , U is the hydrogen bond formation energy, and δ
(∆)
l =

∏k−1
k=0 δ(γl, 1), where

δ(x, 1) is the Kronecker symbol. γl is a Potts spin, describing the conformational state of
repeated unit, that can vary from 1 to Q values. γl = 1 is taken as helical state and all the
other values of γ correspond to coil states. Thus, the presence of the Kronecker delta in the
Hamiltonian guarantees that the energy J results only when all ∆ adjacent repeated units
are in the helical conformation. Consequently, this considers the limitations on backbone
chain conformations imposed by the formation of hydrogen bonds. The transfer-matrix,
corresponding to the Hamiltonian (A1) reads37:

G(∆×∆) =















W 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 Q
1 1 1 · · · 1 1 Q















, (A2)

where W = e
U

T , has the characteristic equation λ∆−1(λ−W )(λ−Q) = (W−1)(Q−1). Once
the eigenvalues are found, the partition function of the model can be estimated (at large
N) as Z = λN

1 , and the spatial correlation length as ξ = ln−1(λ1/λ2), where λ1, λ2 are the
maximal and the second largest eigenvalues, correspondingly. The point of closest approach
of two largest eigenvalues determines the transition point estimated from W ≈ Q as Tm =
U/lnQ. The correlation length is the distance, over which the conformations of repeated
units are correlated. Since the range of interactions is finite (∆ < ∞), the conformational
transition in this 1D system is not a phase transition (Pierls-Landau theorem)15. Therefore,
the correlation length does not tend to infinity and remains finite, but reaches its maximum

ξmax ∝ Q
∆−1

2 at the transition point5,37. Nucleation parameter σ and equilibrium constant
s from Zimm-Bragg model are in correspondence with the following parameters in GMPC27:

σ = ξ−2
max, s =

W

Q
. (A3)

However, one should consider, that above results are derived for a homopolymer model,
and are certainly different for a heteropolymer GMPC. DNA is a heteropolymer since the
adenine-thymidine (A − T ) and guanine-cytosine (G − C) base pairs differ in the number
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of hydrogen bonds. We model the structural disorder of DNA through the dependence of
W parameters on the position of r.u. in the sequence. Thus, the partition function for a
given sequence of base pairs can be written as

Z = Tr

N
∏

i=1

Gi, (A4)

where the transfer matrix Eq. (A2) is modified to read

Gi =

{

GAT if i -th r.u. is of A-T type

GGC if i -th r.u. is of G-C type.

Given that these matrices are not commutative, every sequence within the collection of
sequences of length N and disorder concentration x possesses distinct statistical character-
istics. Typically, each specific chain can be identified by a sequence-dependent free energy
Fseq . Nevertheless, it is widely accepted that the free energy adheres to the principle of
self-averaging. This principle asserts that the probability distribution of free energies for
independent samples is highly constrained, resulting in the virtual alignment of the free
energy with the mean free energy for nearly all sequences. This self-averaging tendency has
been shown to come to saturation in the range of 2000−3000 r.u. length of the sequence de-
pending on the peculiarities of sequence generation32. In the past, we have treated general
characteristics of such heteropolymer model, using the microcanonical23 and the constrained
annealing28 methods. The essence of a microcanonical method is that the quenched aver-
ages can be substituted by the annealed average at fixed disorder concentration x, since
the two quantities are equal to each other up to the fluctuations of x. The constrained
annealing is a more sensitive method, and treats the conformations as annealed degrees of
freedom, while the sequences of r.u. is considered frozen. Interested reader is addressed to
Refs.23,28, and references therein. Using these approaches the expressions for the transition
temperature

Tm = xTGC + (1− x)TAT , (A5)

where TGC and TAT are corresponding homopolymer melting temperatures, and the interval

∆T = 2x(1 − x) lnQ(TGC − TAT )
2/Tm (A6)

have been found. None of the approaches gave access to fine structure.

Appendix B: Algorithm of correlated sequence generation

When the parameters are defined: x = 0.4 (G-C fraction), ∆x = 0.3 correlation param-
eter, and N = 3000 number of repeated units, there is random generation of a number
between 0 and 1. The random number is compared with ”x” and if it is smaller or equal
to ”x” then, sequence is filled with ”A” type R.U. (corresponding to G-C bp) and in the
same step ”x” is increased with amount of ∆x to increase the probability of the next R.U.
being generated as ”A” again, if no, the sequence is filled with ”b” type R.U. (A-T bp)
and ”x” is decreased with amount of ∆x to increase the probability of the next R.U. being
generated as ”B” again. The value of ∆x is chosen comparable to the value of ”x”, so that
the correlation is noticeable in the sequence and influences the DMCs.
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Appendix C: Detailed calculation of helicity degree for heteropolymer

The Hamiltonian for a heteropolymer in frame of GMPC is as follows:

−βH =

N
∑

i=1

Jiδ
(∆)
i . (C1)

Where Ji = Ui

T
and the energy of hydrogen bond Ui depends on the type of repeated

unit, δ
(∆)
j =

∏0
k=∆−1 δ(γj−k, 1), where γi = 1, 2, ..., Qi. In this paper the model of DNA

is taken as a sequence of repeated units with bimodal heterogeneity both by energies of
helicity structure formation, and by number of conformations of repeated units. Thus a
variable σi is introduced, to take value 1 with given probability x and −1 with probability
(1−x). Accordingly, x is the fraction of type A repeated unit in the system: xA = NA

NA+NB
.

Therefore, we deal with two-component heteropolymer and the intramolecular hydrogen
bond’s energies of A and B types of repeated units can be expressed as: Ji = J0 +∆Jσ

JA = J0 +∆J and JB = J0 −∆J.

Where J0 is energetic parameter to be changed accordingly with the type of repeated
unit. According to4,12,13, partition function determines as

Z = J∗

∏

GiJ where J∗ =
(

0 0 0 · · · 0 1
)

, J =















0
0
0
· · ·

0
1















. (C2)

However, it has been shown32 that for a heteropolymer longer than 30 nucleotides, eq.
C2 can be replaced with the following one with high precision:

Z = Tr
N
∏

i=1

Gi, (C3)

While calculating the partition function according to Eq.(C3)) for long biopolymers,
sometimes the values exceed the limits of the technical support (Wolfram mathematica).
To avoid such disturbances we made the following transfiguration:

Gi = λ1igi, (C4)

where λ1i is the principal eigenvalue for the transfer-matrix Gi. Thus, partition function
for bimodal heterogeneity will appear as:

Z = λx
1Aλ

1−x
1B Tr

N
∏

i=1

gi. (C5)

Where λ1A and λ1B are principal eigenvalues of type A and type B repeated units cor-
respondingly.
It is generally known, that the following expression can be used to calculate helicity degree

of the system:
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N 3000 30000 60000 90000 120000 180000

Tm

x = 0.4 0.217 0.211 0.216 0.211 0.217 0.211 0.217 0.211
x = 0.5 0.220 0.220 0.220 0.219 0.220 0.220 0.220 0.220
x = 0.45 0.218 0.214 0.218 0.215 0.218 0.215 0.218 0.216 0.218 0.216

∆T
x = 0.4 0.00212 0.00472 0.00279 0.00552 0.00223 0.00483 0.00231 0.00483
x = 0.5 0.00194 0.00521 0.00267 0.00603 0.00219 0.00522 0.00210 0.00525
x = 0.45 0.00468 0.01107 0.00432 0.01053 0.00405 0.01047 0.00408 0.01044 0.00410 0.01038

Table 1. Melting temperatures and intervals depending on random or correlated sequences and
their lengths.

θN =
Nh

N
=

1

NZ

∑

i

δ
(∆)
i exp−βH . (C6)

Where Nh is the number of repeated units in helical state. Taking into account the
Hamiltonian expression ( C1 ), for helicity degree we obtained:

θN =
1

NZ

∂Z

∂J0
. (C7)

With the help of partition function expression in terms of transfer-matrix, we will obtain:

θN =
1

NZ

∑

i

Tr

i−1
∏

k=1

GkG
′

i

N
∏

k=i+1

Gk. (C8)

For calculation of the latest equation we have used method of supermatrices. The super-
matrix we have inserted has dimensions(2∆× 2∆) and can be expressed as:

M̂i =

(

Ĝi Ĝ′

i

O Ĝi

)

, (C9)

where O is null matrix (∆×∆).

Ĝ′

i =
∂Ĝi

∂J0
, (C10)

consequently, the matrix has only one nonzero element: Ĝ′

i,11 = expJi , all the other elements
of matrix are equal to zero. Therefore, the helicity degree takes the following form:

θN =

Tr[E,O]
∏N

i=1 M̂i

[

O
E

]

NTr[E,O]
∏N

i=1 M̂i

[

E
O

] . (C11)

Where E is identity matrix (∆×∆).

Appendix D: Melting parameters and DMCs

From Fig. 8 various length of block systems were obtained through merging of heteropoly-
mers each with 3000 base pairs. The shortest shown contains 30000 r.u. and the longest:
180000 r.u. It is clear, that with increasing number of r.u. the curves become smoother,
however, the inclination toward smoothing is more pronounced for random blocks in con-
trast to correlated blocks.
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FIG. 6. Block-scheme for correlated sequence generation
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FIG. 7. DMCs for 30 sequences of each type.
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FIG. 8. From 10 to 60 merged sequences, each contains 3000 r.u. As a result block random and
block correlated sequences are obtained.
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