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GENERALIZED HOMOMORPHISMS AND KK WITH
EXTRA STRUCTURES

JOACHIM CUNTZ AND JAMES GABE

ABSTRACT. We develop the approach via quasihomomorphisms and the
universal algebra ¢A to Kasparov’s K K-theory, so as to cover versions of
KK such as KK"™¢, KK% and ideal related K K-theory.

1. INTRODUCTION

Kasparov’s K K-theory is a main tool in the theory of operator algebras and
noncommutative geometry. It is based on a very flexible but not easy formalism
developed by Kasparov. In [5] and [6] the first named author has introduced
an alternative more algebraic approach based on quasihomomorphisms and the
universal algebra qA associated with an algebra A. In this picture elements
of KK (A, B) are represented by homomorphisms from ¢A to K ® B where K
denotes the standard algebra of compact operators on £2N. One merit of this
approach is a simple and universal construction of the product in K K from
which in particular associativity becomes very natural. Since many important
K K-elements come naturally from quasihomomorphisms, at the same time it
can be used to treat K K-elements that occur in ‘nature’. Note that there
are possible definitions of KK (A, B) that make the product and its associa-
tivity automatic but have the disadvantage that K K-elements appearing in
applications never fit the definition naturally - take for instance the possible
definition as homotopy classes of homomorphisms from K ® gA to K ® ¢B.
There also is the approach of [7], [9] which is based on the use of the universal
algebra gA too, and works also for Banach and locally convex algebras and
in fact even much more general algebras [4],[8]. The definition and especially
the product however uses higher quasihomomorphisms (maps from ¢" A rather
than from gA). In applications to C*-algebras e.g. for classification this is not
good enough because there it is usually important that a K K-element can be
represented by a prequasihomomorphism instead of a Kasparov-module.
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One strength of Kasparov’s formalism is the fact that by now it has been
extended to define very useful versions of KK for categories of C*-algebras
with additional structure such as equivariant K K-theory [L1], K K™ [16] or
ideal related K K-theory [12]. In this article we adapt the formalism of [6] to
allow for these additional structures. We will give definitions of the various
K K-theories using the approach via the universal algebra gA and establish
the associative product in each case. In section [ we will explain that our con-
struction reproduces the K K-theories defined previously in the papers cited
above. Moreover we will see there that in the case of equivariant and ideal
related K K-theory we obtain a universal functor with the usual properties of
split exactness, homotopy invariance and stability.

An nice feature of our approach is the fact that the ideal preserving or nucle-
arity condition on a homomorphism ¢ : gA — B can be characterized by a
simple criterion. In fact, these conditions can already be checked on the linear
map A 3 x — ¢(qx) (where gx is one of the standard generators of ¢gA). This
description of K K™ will be used in upcoming work of the second named au-
thor [3] to simplify functoriality of this functor similar to how this formalism
was used in [2, Appendix B.1].

The most established and probably the most important of the K K-theories we
discuss is the equivariant theory K K. This version of K K has been discussed
on the basis of the ¢A approach by Ralf Meyer in [13]. In fact one basic idea in
his approach appears also in our discussion. We mention however that Meyer
does not touch the Kasparov product at all. Using Meyer’s result we get a
new description of the product in Kasparov’s K K¢.

For the construction of the product we will not use Kasparov’s technical theo-
rem as in [LI] or Pedersen’s derivation lifting theorem as in [6] but Thomsen’s
somewhat simpler noncommutative Tietze extension theorem [10, 1.1.26]. In
the equivariant case we will also need a new equivariant version of this theorem
which we prove in section 2

2. PRELIMINARIES

Notation: In the following, homomorphisms between C*-algebras will always
be assumed to be *~homomorphisms. By K we denote the standard algebra
of compact operators on ¢2N. There is a natural isomorphism K =~ K ® K.
A C*-algebra A is called stable if A ~ K ® A. Given a C*-algebra A we
denote by M(A) its multiplier algebra. If ¢ : A — B is a og-unital homomor-
phism between C*-algebras, we denote by ¢° its extension to a homomorphism

M(A) — M(B).

Let A be a C*-algebra. We denote by QQA the free product A x A and by ¢,
the two natural inclusions of A into QA = Ax A. We denote by gA the kernel
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of the natural map A x A — A that identifies the two copies ¢t(A) and 7(A)
of A. Then ¢A is the closed two-sided ideal in QA that is generated by the
elements gr = 1(x) — i(z), z € A.

There is the natural evaluation map 74 : ¢A — A given by the restriction to
qA of the map id x 0 : QA — A that is the identity on the first copy of A and
zero on the second one.

Proposition 2.1. For z,y € A one has the identity
q(zy) = u(x)q(y) + q(@)e(y) = d(x)q(y) + q(x)u(y)

Finite sums of elements of the form (xo)qxy .. .qx, and qz1,...qx, or of the
form qxq...qrni(xg) and qxy,...qx, are dense in qA. In particular qA is
generated as a closed left or right ideal in gA by the elements qx, x € A.

Proof. The identity for g(xy) is trivially checked. The other statements are
consequences (for the assertion on the generation as a closed left or right

ideal note that ¢(y)qz is the limit of ¢(y)uygz for an approximate unit (u,) in
qA). O

As in [6] we define a prequasihomomorphism between two C*-algebras A and
B to be a diagram of the form

%

A = Ex>J5 B

i.e. two homomorphisms ¢, @ from A to a C*-algebra £ that contains an ideal
J, with the condition that ¢(z) — @(z) € J for all z € A and finally a homo-
morphism p : J — B. The pair (p, ¢) induces a homomorphism QA — & by
mapping the two copies of A via ¢,®. This homomorphism maps the ideal
qA to the ideal J. Thus, after composing with pu, every such prequasihomo-
morphism from A to B induces naturally a homomorphism ¢(p, ¢) : ¢A — B.
Conversely, if 1) : gA — B is a homomorphism, then we get a prequasihomo-
morphism by choosing & = M(¥(qA)), J = ¥(qA) and ¢ = ¢°, ¢ = °7 as
well as the inclusion p : ¥(qA) — B.

In this paper we will also have to use an iteration of the ¢gA construction.
We will write Q?A for the free product Q(QA) = QA x QA and 7,7 for the
two natural embeddings of QA into Q*A. We now denote by ¢,z the two
embeddings A — QA and get four embeddings ne, nz, e, Né of A to Q*A. We
have the ideal gA generated by the elements e(x) — &(x), z € A in QA and the
ideal ¢?A generated by n(z) — 77(2), z € ¢A in Q(qA).

In Section [6l we will use the following equivariant version of Thomsen’s non-
commutative Tietze extension theorem which we prove here. Recall that when
G is a locally compact group, a G-C*-algebra A is a C*-algebra with a point-
norm continuous action a of G on A. This action extends to a point-strictly



4 JOACHIM CUNTZ AND JAMES GABE

continuous action a° on the multiplier algebra M(A), where we remark that
each automorphism «; for g € G is strictly continuous on bounded sets. To
simplify notation, we will sometimes write g - a instead of ay(a) for a € A and
g € G (or instead of ag(a) if a € M(A)).

Proposition 2.2. Let G be a locally compact o-compact group, let 0 — J —
A5 B — 0 be an extension of o-unital G-C*-algebras, and let X <= M(A)
be a norm-separable self-adjoint subspace. Let w° : M(A) — M(B) be the
induced homomorphism. For every z in the commutator M(B) n 7°(X)" of
7°(X) in M(B), such that g - z = z for all g € G there exists y € M(A) such
that m°(y) = 2z, [y, X]| € J,9g-y—y e J forallge G and G 3 g +— g-y is
noTM-CcoNntinuous.

Proof. We may assume without loss of generality that z is a positive con-
traction. Let h € A be strictly positive, let F < X be a compact subset of
contractions with dense spanEl and let H; € Hy € --- < G be compact neigh-
bourhoods of the identity such that G = | J H,. Since B is also o-unital, we
apply [1I, Lemma 1.4] and pick a (positive, increasing, contractive) approxi-
mate identity (e,)nen for B such that

(1) |(1 = en)2r(h)| < 47"
(2) sup |7 (z)en — enm’(z)| < 47"
reF

(3) sup |g-e, —en| < 47"

geH,
for n € N. To ease notation let eg = 0. We will recursively construct positive
contractions 0 = yg < y; < y2 < ... in A such that for n € N
(4) w(yn) = 2%,z
(5) | (Y1 —yn)h| < 277"
(6) Sup [[Yni1 — yno 7] < 27"

reF
(7) sSup Hg ' (ynJrl - yn) - (ynJrl - yn>H < 27",

geH

Letting yo = 0, suppose we have constructed yo < --- < ¥, as above. We will
explain how to construct y,,1.

Since 2'2(epy1 — €n)2"/? < 1 — 242,22, we apply [14, Proposition 1.5.10] to
pick ¢ € A such that w(c) = 2Y2(epi1 —€,)2"? and 0 < ¢ < 1 -y, in A. Again
using [I1l Lemma 1.4] we let (vg)gew be an approximate identity in J which is
quasi-central relative to {c, y,, h} U F and such that limy . supgg, |9 ve —
ue = 0. Let y¥)| := g, + ¢Y2(1 — )2 We will show that we can pick
Yni1 = y,(ﬁzl for sufficiently large k.

Bl (Zn)nen is a dense sequence in the unit ball of X one could pick F = {%xn :n €
N} v {0}.
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That ), [@), and (@) are satisfied is exactly as in the proof of [10], so it
remains to show (7). For this we compute

. k k
limsup sup g - (u8)) = va) — @ — va)]

k—o0  geHp
= limsup sup |g- ((1 —wv)e) — (1 — )]
k—oo geHp
= limsup sup ||[(1 —v)(g - ¢ — o)
k—oo geHp
_ 1/2 1/2 1/2 1/2
= sup [g- (27" (ens1 —€n)2’7) — 2/ (en1 —€n)2 |
geHy,
= sup [2Y2(g - (ens1 — €n) — (ent1 — €0))2"?|
geH,,
e __
< 27

Hence we may define y, 11 = ygle for large k so that it satisfies [{)—(T), so we
obtain our desired sequence (Y, )men-

By (@) it follows that (y,), converges strictly to a positive contraction y €
M(A). Since 7° is strictly continuous on bounded sets, it follows from ()
that 7°(y) = z (since z is the strict limit of 2'/2¢,2%?). For z € F we have
by (@) that [y,,x] norm-converges to an element in A, so that [y,z] € A.
Moreover,

7([y, 2]) = lim 7°([yn, 2]) 2 lim 2Y2[e,, 7°(x)]2Y2 2 0

n—00 n—o0

so that [y, z] € J for all x € F. Hence [y, x] € J for all z € spanF = X.

As the G-action on M (A) is pointwise strictly continuous, it follows that g -y
is the strict limit of (g Y, )nen for any g € G. By ([@), (g Yn — Yn)new converges
in A as n — o for every g € G. Hence g -y —y € A. Moreover,

lim 7°(g - Y — yn)

n—00

(g -y —y)

18

lim g - (Zl/2€n21/2) 12, 172

n—o0

€nZ

lim 22(g - en, — en)2"?
n—o0

0.

=

Hence g-y —ye J for all ge G.

Finally, given € > 0, pick N € N such that >};” 2™ < e. Choose an open
neighbourhood U = Hy < G of the identity such that sup o, |g-ynv —yn| < e
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Then
0
supllg-y—yl = sup| > (g Warr — ve) — W1 — ve)) + 9+ Uv — yw|
9eU 9V p=N
(ri)
< c+suplg-yn —unl
geU
< 2e.
Hence G 3 g+ g -y € M(A) is norm-continuous. U

3. THE PRODUCT IN KK

Given two homomorphisms ¢, 1 : X — Y between C*-algebras we denote by
© @ 1) the homomorphism
p(x) 0
S ( 0 w(x>>

from X to My(Y'). Following [6] we define

Definition 3.1. Let A, B be C*-algebras and qA as in Section[d We define
KK(A, B) as the set of homotopy classes of homomorphisms from qA to KQB.

The set K K (A, B) becomes an abelian group with the operation @ that assigns
to two homotopy classes [¢], [¢] of homomorphisms ¢,1 : ¢A — K ® B the
homotopy class [¢ @] (using an isomorphism My (K) = K to identify My (K®
B) ~ K ® B, which is well-defined since such an isomorphism is unique up to
homotopy). In [5] it was checked that this definition of K K (A, B) is equivalent
to the one by Kasparov. We recapitulate now the construction in [6] of the
product KK(A,B) x KK(B,C) - KK(A,C). It is based on a functorial
map pa : gA — My(¢*>A) (which is in fact - up to stabilization by the 2 x 2-
matrices My - a homotopy equivalence). Since versions of this map and of
its properties will be used in each of the subsequent sections on KK with
additional structure we include complete proofs. We take this opportunity to
include more details on the proofs and to arrange the arguments given in [6]
in a slightly different way.

To prove the existence of the map ¢4 we will use Proposition with A in
place of X. Since X in has to be separable we will assume in this section
and in later sections where we discuss the product of KK (A, B) and KK (B, C)
to KK (A, C) with extra structure that A is separable.

Given a C*-algebra A, we use the four embeddings ne, 7z, e, ¢ of A to Q%A
from section @l Consider the C*-algebra R generated by the matrices

Ry RiRy
RyRy Ry
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where Ry = n(qA), Ry = 17(qA). Consider also the C*-algebra D generated by

matrices of the form
_ (me(x) O
D—( 0 775(93)) rze A

Then R is a subalgebra of My(QgA) where QgA is the C*-subalgebra of Q*A
generated by 1(qA) and 7(qA). Let J = R n My(q*?A). Since ¢*>A is an ideal
in QQqA this is an ideal in R. One also clearly has DR, RD < R. Thus R is an
ideal in R + D and J is also an ideal of R + D (we think of all these algebras
as subalgebras of My(Q?A)).

Because 1(qA)/¢*A = 7(qA)/¢*?A =~ A, the quotient R/J is isomorphic to
Ms(gA). Moreover (R +D)/J is isomorphic to the subalgebra of My(Q(A))
generated by Ms(qA) together with the matrices

If A is separable we can use Thomsen’s noncommutative Tietze extension
theorem [10, 1.1.26] (see also Proposition [Z2]) and lift the multiplier

0 1
10
of R/J to a self-adjoint multiplier S of R that commutes mod J with D.

We can now set F = ¢25 and define the automorphism o of M(.J) by Ad F.

Consider the homomorphisms A — M(.J) given by

_(me O _(ng 0
h1—<0 ﬁa‘)’ hz_(o 775)

In the following we use the notation @ introduced at the beginning of the
section. Thus hy; = ne @ 7€ and hy = N @ 7je.

Definition 3.2. We define the homomorphism ¢4 : ¢A — J < My(q*A)
by the prequasihomomorphism given by the pair of homomorphisms (hy,chs)
(compare [6], p.39), i.e. oa = q(hy,0hs).

To check that the difference of h; and ohs maps to J recall that by definition
o fixes d(x) = ne(x) @ ne(x) mod J for each x € A and that hy(z) = d(z) —
n(q(z)) @ 0. The term ng(z) @0 is moved by o to 0@ 7g(x) mod J (note that
nq(x) —nq(x) € ¢*A). Since ne(x) — fj(qr) = 72(z) we get that ohy(z) = hy ()
mod J.
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Note the 4 is unique up to homotopy. In fact, if we picked a different operator
S1 € M(R) instead of S as above, and define S; = (1 —¢)S + t5; and oy =

Ad e%&, then q(hq,04hs) defines a homotopy from q(hy, ohs) to q(hy, o1hs).

3.1. The Kasparov product via the universal map ¢ 4. Once the map @4
is constructed we can define the product KK (A, B)x KK (B,C) - KK(A,C)
as follows.

Let a: qA - K® B and § : ¢B — K ® C represent elements a € KK (A, B)
and b € KK (B, () respectively. Since ¢ is a functor, we can form the homo-
morphism ¢(a) : ¢*A — ¢(K®B). The pair of homomorphisms (idx®¢, idx®7)
gives a natural map p : ¢(K ® B) - K ® ¢B. The product of a and b is then
represented by the following composition

8) qA % PAYDykeB) L KeeB " KekeC2k®C

For simplicity we have left out the tensor product by the 2 x 2-matrices My
which can be absorbed in the tensor product by K. Here and later we some-
times extend homomorphisms, such as g(«) here, tacitly to matrices or stabi-
lizations. We denote the resulting homomorphism gA — K®C in (8) by 51 a.
This description of the product will be used in the subsequent sections in
different versions.

Remark 3.3. (a) If @ maps ¢A to B € K ® B then we can omit the map p
and the stabilization of 5. We get that 5« then is represented by Sg(a)pa
The same formula applies if & maps ¢A to C® B and B ~ K ® B.

(b) Assume that B and C are stable and let « : ¢A — B and § : ¢B —
C represent elements of KK (A, B) and KK (B,C). Denote by B the C*-
subalgebra of B generated by a(qA) and by jp the inclusion B < B. Let
a:qA — Band 8 = Bogq(jp) : ¢B — C denote the corestriction and
restriction of a and 3. Then we have Sfa = Bfa. In fact Bq(a)pa factors as
Boq(ip)g(a)pa and the second expression represents [ £ a.

Instead of B we can just as well consider the hereditary subalgebra B, of
B generated by B and define ag, 8y in analogy to a, 3. We get the formula
Bo B g = Ba. We will use this setting below. B

3.2. Associativity. The important point that gives associativity of the prod-
uct is the existence of a homotopy inverse (up to tensoring by M,) for p4. It
is given by T4 : ¢*A — gA. We define 7,4 : QA — gA as the homomorphism
that annihilates 7(gA) in the free product QqA = ngA » nqA, and also as in
Section B its restriction to ¢>A < QgA.

Proposition 3.4. There is a continuous family of homomorphisms ), : ¢>A —
My(q?A), t €]0,1] such that g = id2a @0 and ¥y = pamga.

There also is a continuous family of homomorphisms A, : A — R < My(QqA)
such that moalo = idga @ 0 and weal1 = meapa (here and later we extend
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A+ PA — qA tacitly to a homomorphism My(q*A) — May(qA) between
2 x 2-matrices).

Proof. Let S be as above a lift of the multiplier given on R/J by the matrix

0 1

=i 0)
to a multiplier of R and denote by S’ the multiplier of M(QgA) given by the
same matrix M. For each t € [0, 1] we let 0y denote the automorphism of R
given by Ade?* and 7, the automorphism of My(QgA) given by AdeZ 5.
Since o, fixes the algebra D from above pointwise mod J, the homomorphisms
ne @ né and o,(né @ 7e) map A to D + R and their difference maps into the
ideal R of D + R. Therefore this difference defines, for each t € [0, 1] a homo-
morphism «a; from ¢A to R.
We also define a homomorphism a; : ¢A — My(QqA) by the pair of ho-
momorphisms (e @ 72, 7:(7€ ® 7¢)) from A to My(Q*A). Let us denote the
quotient map QqA — QqA/¢*A by x — z°. As already remarked above, we
have R* =~ M,(qA) and we also have (M(nqA))* =~ My(qA). Under the quo-
tient map R becomes equal to Ms(7jgA), o, becomes equal to 7, and therefore
ay(x)® = ay(x)* for all z € gA.
It follows that the pair (o, @;) defines a continuous family of homomorphisms
vy + ?A — My(q*A). These homomorphisms are restrictions of the maps
Q*A — My(Q?A) that map ne(z) and né(x) to ne @ 7z, oy(ng ® 7je) and
ne(x), né(x) to ne ® ne, 7(NE @ ne), respectively.
For t = 0 one easily checks for z € gA that ay(z) = n(z) ® 7(7(2)) and
ap(z) = 1(2) ®7(y(2)) where v denotes the restriction of the automorphism
of QA that interchanges ¢ and 7. Thus the pair (ag, &) induces the homomor-
phism id2a @0 : ¢?A — My(q?A).
Fort =1, a; : gA — My(¢*A) is ¢4 and @y is 0. This shows that ¢ = pama.
It remains to show that m 44 is homotopic to id,4 ®0. The map 7 4 : ¢*A —
gA is the restriction of the homomorphism (QgA — ¢A that annihilates 7(qA).
Consider \; : gA — R < M3(QqA) defined by the pair (ne @ 7z, o,(né ® 1¢)).
We find that moaXg = idga @ 0 and ma\1 = Tpapa. ]

Remark 3.5. The map ¢4 is functorial (up to stable homotopy) in the follow-
ing sense: If o : ¢A — ¢B is a homomorphism between separable C*-algebras,
then after stabilizing ¢?B the homomorphisms ¢(a)ps and ppa are homo-
topic.

In fact, let ~ denote stable homotopy equivalence. Using Proposition [3.4]
to note that mgapa ~ idga and ppmp ~ idgep, as well as the observation
amga = mepq(a), we get

q()pa ~ ©pTepq()pa = paTAPA ~ QRO

Given C*-algebras X and Y we use the standard notation [X,Y] to denote
the set of homotopy classes of homomorphisms from X to Y. Thus we have



10 JOACHIM CUNTZ AND JAMES GABE

KK(X,)Y)=[¢X,K®Y]. Given a: ¢X - K®Y and f: ¢Y - K® Z we
write ffa for (ide ® B)ug(a)pa, see formula (§). Thus the homotopy class
[F# ] represents the Kasparov product of [a] and [3]. One way to prove
the associativity of the Kasparov product consists in identifying K K (X,Y) =
[¢X, K®Y] with [ ® ¢X, K ® ¢Y] using Proposition B.4 and to check that,
under this identification the Kasparov product induced by f corresponds to
the composition product of homomorphisms and thus is associative. This
observation was stated explicitly for the first time by Skandalis in [I7]. We
have the following proposition.

In the following we consider gA as a subalgebra of I ® gA as the (1, 1)-corner
embedding.

Proposition 3.6. The map [a] — [@] where & = (idx ® mp)al.a is an iso-
morphism from [K®qA, K®qB] to [¢A, K& B| with inverse given by the map
[B] — [B'] where §' = u(ide ® q(B)pa) with p as in ). It is multiplicative
in the sense that it maps [Ba] to [B4a]. In particular the product on KK
induced by 1 is associative.

For the proof of the proposition we need the following lemma.

Lemma 3.7. The natural maps q(wa) and 7,4 from ¢*A to qA are homotopic
as maps to My(qA).

Proof. Both homomorphisms from ¢?A to ¢B are restrictions of homomor-
phisms from Q?A to QB. The first one maps nz(z), né(x), ne(x), 7é(z) to
t(x),2(x), 0, 0 and the second one to ¢(x), 0,z(z), 0. The homotopy between
the two is obtained by rotating in the homomorphism ¢*A — My(qA) which is
the restriction of the homomorphism Q?A — M,(QA) mapping the generators

to
CENCERCERCE
the second and fourth term to (8 z(?::))' O

Proof of Proposition[3.6. We use ~ to mean homotopic. Up to stabilisations
we have

_ . B.41,.
(@) = pq((idx®@mp)alga)pa = (1dxe®myp)pg(alia)pa = Tregpd(alga)pa = algamiapa
and this is homotopic to a by Proposition 3.4l Also

B = (idx @ ) uq(B)pa = Brgapa

which also is homotopic to 5 by B4l (in both cases we have used the obvious
identity myq(¢) = ¥ 7x : ¢X — Y for a homomophism ¢ : X — Y).
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Concerning multiplicativity we get (omitting here for clarity the stabilizations
and p) for av: gA — ¢B and 8 : ¢B — qC that

QATgA :quQ(a

— )
Ba = mefo ~ meBamiapa e Brepq(a)pa
fa

B;ﬂ 7o Ba(m)q(a)pa = TeBq(Tpa)pas = B
O

3.3. Another description of the product. For a prequasihomomorphism
A 3 E > J given by the pair of homomorphisms a,a : A — E we write as
above q(«, @) for the corresponding map gA — J (i.e. the restriction of o » &
from QA to qA).

For the product of K K-elements o : gA - K® B and §: ¢B — K ® C only
the restriction of S to ¢By matters, where By is the hereditary subalgebra of
K ® B, generated by the image «(gA), see Remark (b). This observation
leads to an alternative description of the product which we will also use to
discuss associativity of the product in K K" in section Bl In fact, for the
purposes of this section it would suffice to use the smaller C*-subalgebra B
of K ® B generated by a(qA) instead of By. But we will apply the following
discussion to the product in K K™ in section Bl and there the choice of the
hereditary subalgebra will be important.

With By as above we define ag, ag : A — M(By)®Aby ag(z) = (a®ua(z), x),
ap(r) = (ata(x), x) and set E, = C*(By,ar(A),arg(A)). This gives an
exact sequence 0 — By — E, > A — 0 with two splittings given by ag, ap :
A — E,. Note that the prequasihomomorphism (ag, ag) represents a : gA —
BO ie a= q(aE,dE).

Lemma 3.8. Let o, E, and By be as above and 8 : q(By) — K® C. Let
Jje : Bo — E, be the inclusion. There is ' : q(Ey) — My(8(qBo)) such that B
is homotopic to 5'q(jg).

Proof. Let ko : qE, — By be the homomorphism defined by the prequasiho-
momorphism (idg,, ap o p) (recall that p : E, — A is the quotient map) and
set B = Btka = Bq(ka)pr,. It is immediately checked that k.q(jg) = 75,
(in fact ke (u(x)q(y)) = xy and ko (i(2)q(y)) = 0 for x,y € By). Using the
homotopy ¢vx,.q(jr) ~ ¢*(jr)es, from Remark 3.5 we get (assuming that B is
stable) the following homotopy

Baiz) = (Btka)aliz) = Balka) v aliz) B2 Al

O
Given a homomorphism p : gA — K ® B, we denote by /i the composition pd

of p with the symmetry 0 of ¢A that exchanges the two copies of A. Then fi
is an additive homotopy inverse to u, i.e. we have p @ i ~ 0 (we can rotate

4
Ka) (1) 0B, = Ba(TBy) 0B, =

B
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z) ®i(x) to o(z) @ i(r) in 2 x 2-matrices).
Note that, if v is a second additive homotopy inverse to p, then v is homotopic
to /& in matrices (because v ~v @ u® i~ 0D 0D f1).

Proposition 3.9. Let «, 3, E,, By be as above and assume that ' : ¢E, —
K® C extends 5 up to homotopy as in [38. If we let Cy denote the hered-
itary subalgebra of K ® C generated by B(qFE.), we get two homomorphisms
Br, Byt By — Eg which we can compose with ag,ap : A — E,.

The homomorphism Bq(a) : A — Cy = KR C' is homotopic to wq(wa) where
w:gA— Cyc KRC is given by w = q(frap ® Bpar, frap @ Brag).

Proof. The homomorphism « = ¢(ap,ag) : ¢A — By extends to the homo-
morphism ap * ag from QA to E,. As a homomorphism to My(E,) this
extended map is homotopic to (g @0) * (0@ ag). The restriction of the latter
map to gA, which we denote by o, is described by o® = apmy @ apis. We
have
Bq(a) ~ B'q(a) ~ 5/Q(OK®) ~ ['q(apma) @ f'q(apTa)

where we have used that 8’ composed with a direct sum is in 2 x 2-matrices
homotopic to the direct sum of the two compositions. By the uniqueness of the

additive homotopy inverse we have that §'q(agma) ~ B’q(o‘zEﬂA). The result
follows since ' = q(B, %) O

Corollary 3.10. Let o, 3, E,, By be as above and assume that 5 extends up
to homotopy to ' : qE, — K ® C. Then the K K-product B4« is represented
by the homomorphism w : ¢A — Ms(Cy) € K® C' given by

w = q(Brap ® Brag, Brap ® Brar).

Proof. By Proposition B9, Proposition 3.4l and Lemma 3.7 we have

Bia s Baa)pa wq(m)w SHU

O

Note that, for the formula for S« in Corollary B.I0we don’t need the universal
map ¢4 in full but only the product ffk,. One could base an alternative
construction of the product in KK by reducing it to the special case of the
product by k.

3.4. Another proof for associativity. We follow here the discussion in
Section 4 of [5]. Assume that we have elements in KK(A, B), KK(B,C),
KK(C, D) represented by homomorphisms a: A - KQ B, 5:¢B - KQC,
v :qC - K® D. We define successively first £, o By and ag,ap : A — E,
as above, then ' : qF, — K ® C such that the restriction of ' to ¢By is
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homotopic to 5. We let C denote the hereditary subalgebra of I ® C' gen-
erated by ('(¢E,). Then we define Eg as before and get homomorphisms
B, By : Eo — Eg. We then take ' : ¢Eg — K ® D such that its restriction
to gCy is homotopic to v and get homomorphisms v, ¥y : Eg — E..

We can now apply Proposition to determine the two products 7' £ (f'f«)
and (7'45") #a. They will be homotopic to v(St«) and (y45)fa. By Remark
and Corollary the previous products can be described as 7'fw; and
wofav with

w1 = q(Bpap @ Bpas , Bpar @ frpar)

wy = ¢(VpBE ® VelBE , Vebr ® 1Elk)
We can now apply Proposition to both products. By the special form of
wy, the homomorphisms v, 4% can be composed with the homomomorphisms
occuring in the two components of w;. Therefore +' extends to E,, and we
are in the situation of Second, the two homomorphisms defining ws can
be composed with ag,ag and therefore wy extends to E,. When we apply

Proposition B9 to 7' £ (f'fa) and (v'#5") £ @ and use the special form of wy, wy
we find that in both cases the triple product is given by

4(VEBE @Vl E®V 850DV BE0E , VeBrar®VEBrar®V s E0e®VElE0Es)

4. THE IDEAL RELATED CASE

All ideals in C*-algebras in this section will be closed and two-sided.

Definition 4.1. Let X be a topological space and O(X) its lattice of open
subsets. An action of X on a C*-algebra A with ideal lattice Z(A) is an order
preserving map O(X) s U — A(U) e Z(A).

Let A, B be C*-algebras with an action of X.

A homomorphism (or also a linear map) 1 : A — B is said to be X-equivariant
if v maps A(U) to B(U) for each U € O(X).

A homomorphism ¢ from ¢A to B is said to be weakly X-equivariant, if the
maps A 3z — ¢(u(x)z),z — @(i(x)z) are X-equivariant for each z € ¢A.

We say that ¢ : ¢A — B is gx-equivariant if the map A 3 x — ¢(qx) is
X-equivariant.

Finally, given X and a C*-algebra A with an action of X, we can define actions
of X on QA and ¢A by letting QA(U) and gA(U) be the closed ideals generated
by Q(A(U)) in QA and by Q(A(U))gA + +qAQ(A(U)) in qA, respectively
(these are the kernels of the natural maps QA — Q(A/A(U)) and ¢A —
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q(A/AU))). We denote QA, gA with these actions by Qx A, gxA. Then
O—’QXAHQ)(A—)A—)O
is an X-equivariant exact sequence with equivariant splitting ¢ : A — Qx A.

Proposition 4.2. Let A, B be C*-algebras with an action of X and ¢ a ho-
momorphism qA — B. The following are equivalent

o © is weakly X -equivariant
® © 5 gx-equivariant
e © is X-equivariant as a homomorphism qx A — B

Proof. Assume that ¢ is ¢y-equivariant. By Proposition 2.1l ¢A is the closed
span of elements gy w for y € A and w € gA. Then ¢(i(z)qyw) = p(q(xy)w) —
o(qr i(y)w) is in B(U) whenever z is in A(U) for all y € A, w € ¢A. Similarly
for ¢ (z(x)qy w), which shows that ¢ is weakly X-equivariant.

Conversely, assume that ¢ is weakly X-equivariant. Let x € A(U) and (uy)
an approximate unit for ¢gA. Then ¢(qx) = limy p(qruy) = limy ((¢(z) —
o(x))uy) € B(U).

If ¢ is weakly X-equivariant then ¢(gA ¢(z)gA) and ¢(qA t(x)gA) are contained
in B(U) for all x € A(U) and thus, by definition of ¢xA(U) we get that
elgxA(U)) < B(U).

Finally, if ¢ : gxA — B is X-equivariant, then ¢(Q(A(U))gA) < B(U) which
means that ¢ is weakly X-equivariant. O

Definition 4.3. Let A, B be C*-algebras with an action of X. We define
KK(X; A, B) as the set of homotopy classes of weakly X -equivariant homo-
morphisms (or equivalently of qx -equivariant morphisms) gA — K ® B (with
homotopy in the category of such morphisms).

Equivalently this is the set of equivariant homotopy classes of X -equivariant
homomorphisms gxA - K& B.

In the X-equivariant case the construction of the product actually carries over
directly from section Bl We can apply the arguments from there basically
verbatim to ¢x A in place of ¢A because all the maps and homotopies occuring
in the discussion are naturally X-equivariant. In particular, the automorphism
o used in the construction of ¢4 is inner and therefore respects ideals and is
X-equivariant. This in turn implies that ¢4 also is X-equivariant as a map
from gx A to My(¢% A) with ¢% A = ¢x(gxA). Moreover, the homotopies used
in the proofs of Propositions B.4] and are manifestly X-equivariant. We
obtain

Proposition 4.4. Let A, B, C' be C*-algebras with an action of the topological
space X. There is a natural bilinear and associative product KK(X; A, B) x
KK(X;B,C) - KK(X;A,C) which extends the composition product of X -

equivariant homomorphisms.
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5. KK™¢ VIA THE gA FORMALISM

We start with a discussion of nuclear and weakly nuclear linear maps between
C*-algebras. While nuclearity is most often studied in the context of com-
pletely positive maps, Pisier considered the case for more general linear maps
in [I5, Chapter 12]. Since we think that these notions have some indepen-
dent interest we do this in more detail than what is actually needed for our
purposes.

Definition 5.1. Let p: A — B be a linear map between C*-algebras. We let
|p|ue (the nuclear norm) denote the infimum over all K = 0 for which

p@ld A@algD_)B@)maxD

is bounded by K for all C*-algebras D, if we equip A ®ug D with the minimal
C*-tensor norm. We say that p is nuclear if |p|nue is finite.

In comparison, a linear map ¢: A — B between C*-algebras is completely
bounded (resp. weakly decomposabldg) if there is a constant K such that the
map ¢ ®id: A®aule D — B®a)e D is bounded in norm by K when both tensor
products are equipped with the minimal (resp. maximal) C*-tensor product.

Since it suffices to check complete boundedness for D being matrix algebras,
it follows that weakly decomposable maps are completely bounded.

Note that if p: A — B is nuclear (or weakly decomposable) and p takes values
in a C*-subalgebra By < B, the corestriction p|?° is not necessarily nuclear (or
weakly decomposable) since the map By ®max D — B ®max D is not necessarily
faithful. However, the map By ®umax D — B Qmax D is faithful if By is a hered-
itary C*-algebra so in that case p|?¢ is still nuclear (or weakly decomposable).
This explains why we often consider hereditary C*-subalgebras, instead of just
ordinary subalgebras, in the theory below.

If F is a C*-algebra with closed ideal B, a linear map v: A — F is called
weakly nuclear (relative to B) if ¥b: A — B (i.e. the map = — (x)b) is
nuclear for all b € B. We address in Remark why this notion agrees with
the more traditional notion of weak nuclearity.

Here are some easy observations on nuclear linear maps. If X is a C*-subalgebra
of a C*-algebra Y, we denote in the following by X" the hereditary subalgebra
XY X of Y generated by X.

Lemma 5.2. Let A, B,C, D be C*-algebras.

2This name is motivated by the result from [I5, Chapter 14] (which is due to Kirch-
berg) where this definition is shown to be equivalent to the map ¢: A — B € B** being
decomposable, i.e. a linear combination of completely positive maps.
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(1) For a fired K = 0, the set of linear maps p: A — B with ||p|me < K
1s closed in the point-norm topology.

(2) The set of nuclear linear maps A — B is a Banach space with respect
to the nuclear norm.

(3) If p: A — B is nuclear and D is a nuclear C*-algebra, then idp ® p
extends canonically to a nuclear map D® A — D ® B.

(4) If p: A — B is completely positive and nuclear then |plue = |p]-

(5) If o: A— B, p: B— C and¢: C — D are linear maps such that ¢ is
completely bounded, p is nuclear, and v is weakly decomposable, then
Ypo is nuclear.

(6) If v: A — E is a homomorphism with an ideal B < E, and if b € B
such that Vb is nuclear, then ||1b| e < |b].

(7) If v: A — E is a homomorphism with an ideal B 1 E, and if X < B
15 a subset such that B is generated as a closed right ideal by X, then
¥ 1s weakly nuclear relative to B provided 1b is nuclear for all be X.

Proof. (), @), and (@) are immediate to verify, while () is classical, see for
instance [I, Theorem 3.5.3].

@): That idp ® p extends is immediate from the definition of nuclearity of p,
and nuclearity of idp ® p follows since idg ® idp ® p extends to a linear map

E®min (D®A) = <E®D) ®minA - <E®D> ®maxB = E®max (D®B>
bounded by | pllue for any C*-algebra E by nuclearity of D and p.

([@): Note that 0: A — B given by 0(x) = b*)(x)b is both completely positive
and nuclear (it is the nuclear map b multiplied by b*), and thus [0 .. < [0]?
by @). Let D be a non-zero C*-algebra and z = 3 | 4, ® d; € A®,, D with

j=1
minimal tensor norm ||z, = 1. Then

N
|(b @idp) (@) max = || Y ¥(a;)b ® dj | ma
i=1
N
= || )] Olafay) @ did; |2,
ij=1
= [(#®idp)(z*w) |y
< [0l
< o]
([@): This is an easy consequence of parts (2]) and ([@). O

Remark 5.3. Classically a homomorphism (or completely positive map) ¢: A —
E being weakly nuclear relative to a closed ideal B means that b*b: A — Bis
nuclear for all b € B. We will show that this agrees with our definition above.
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If b is nuclear then clearly so is b*b so one implication is obvious. Conversely,
suppose c¢*1c is nuclear for all ¢ € B, so that we should show that b is nuclear
for all b € B. Let (e))x be an approximate identity in B. By Lemma [5.2()
it suffices to show that there is an upper bound on the nuclear norms of the
maps e 1b. By the polarisation identity we have

1oy .

exthb = = > i (iley + b) () (i ex + b)

4 =

and by Lemma B.2I[) we obtain
13, .
lextblme < 5 D l@ex + ) () (@en + )| < (1+ [b])*| ]
5=0

Hence b is nuclear.

If X is a C*-subalgebra of the multiplier algebra M(Y), we denote by X
the hereditary subalgebra XY X of Y generated by X (note that XY X is a
C*-algebra by the Cohen—Hewitt factorisation theorem).

Proposition 5.4. Let ¢v: gA — B be a homomorphism. The following are
equivalent:

(i) The map A 3 x— (qx) € B is nuclear;

(ii) The maps A — B given by x — ¥ (1(x)y) and x — ¥ (i(x)y) are nuclear
for all y € qA;

(iii) v is represented by a prequasihomomorphism

(Y1,402): AR Er>J — B

where 1y, Yy are weakly nuclear relative to J;

(iv) If v°: QA — M(w(qA)B) is the canonical extension of v, then 1°¢
and Y°t are weakly nuclear.

(v) If E = (qA)B is considered as a Hilbert B-module, the Kasparov
module

(o a-mrsEm ( )
1s nuclear in the sense of Skandalis.

Proof. With E as in (v), B(F) is canonically isomorphic to M(w(qA)B)

hence (iv) and (v) are equivalent by [16, 1.5].

and

(iv) implies (iii) is immediate since 9 is induced by

(%0, 0°): A3 M(0(qA) ) > b(gA). — B.

For (iii) = (ii) we have = — ¥(i(x)y) = ¥1(x)1(y) is nuclear for all y € ¢A,
and similarly = — ¥ (2(z)y) is nuclear.
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For (ii) = (i), let for y € ¢A 1,,1,: A — B be the completely positive maps
given by ¥, (z) = ¥ (y*1(x)y) and ¥, (z) = ¥ (y*1(x)y) which are nuclear by (ii).
As these maps are completely positive, their nuclear norm ||ty [ne = [[10y] <
ly|? (Lemma BE2@)), and similarly |9, [we < |y]* Hence

= Py~ qry) = Py (z) - @y(x)
has nuclear norm bounded by 2||y|?. Letting y range through an approximate

identity for gA, these nuclear maps converge point-norm to z — ¥ (gz) and
have nuclear norm bounded by 2, so |z — ¥(qx)|lmue < 2 by Lemma BE2I().

(i) = (iv): By Proposition 2.1] ¢(qA)B is generated as a closed left ideal by
{1(qa) : a € A}. So to check that ¢°¢ is weakly nuclear it suffices by Lemma
B2([T) to check that

2

x> gu(r) ¥(ga) = P(u(x)qa) = bg(za)) — ¥(g(x))P°i(a)
is nuclear, which holds by Lemma E2([]) (applied to the weakly decomposable

maps given by right multiplication by a fixed element). Similarly ¢°z is weakly
nuclear. m

Definition 5.5. We say that a homomorphism v : qA — B is g-nuclear if it
satisfies the equivalent conditions in the above proposition.

Definition 5.6. We define K K™“(A, B) as the abelian group [qA, K& By of
homotopy classes (in the same category of maps) of q-nuclear homomorphisms
gA > K ® B.

Remark 5.7. The definition of K K™“(A, B) from [16] for A separable and
B o-unital uses the original definition of Kasparov but assuming all Kasparov
modules and homotopies are nuclear. The argument from [5] combined with
Proposition [5.4] shows that the obvious map from Skandalis’ K K™"“-group to
[¢A, K ® Bl is an isomorphism. This map, in particular, takes a Kasparov
module induced by a prequasihomomorphism as in Proposition E.4(iii) (with
K ® B instead of B) to the induced g-nuclear homomorphism ¢: ¢A - K® B.

Remark 5.8. A C*-algebra A is K-nuclear in the sense of Skandalis, if and
only if the natural projection 74 : gA — A composed with the inclusion
A - K ® A is homotopic to a g-nuclear homomorphism ¢gA — K ® A.

We now discuss the product of elements in K K™ by elements in K K. We
want to see that our formula in Subsection B.1] for the product of two K K-
elements represented by p: ¢A - K® B and ¢ : ¢B — K& C gives a well
defined element in K K™(A,C) if p or ¢ is g-nuclear. The product, as we
defined it, depends only on the restriction of ¢ to q(p(¢A)). Butif p: ¢A — B
is g-nuclear then we don’t know if p : ¢gA — p(qA) is too. Therefore we apply
the formula for the product from Section [ to the corestrictions/restrictions

po : qA — By and vy : qBy — Cy of p and 1, where By = p(qA)B, and
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Cy = w(qBo)C are the hereditary subalgebras generated by p(qA) and ¥ (qBy).
Then py is g-nuclear iff p is and p = jp,0po for the embedding jg, : By - K&®B
(and the same for ¢ and 1)y). Similarly we denote by (wofpo)o the corestriction
of Yypo to the hereditary subalgebra Cy generated by the image of ¥yfipy. The
product in K K without nuclearity condition of ¢ and p will be the same as
the product (¢ofpo)o composed with the embedding jo, : Co — K ® C (see
Remark (b)). We call pg, 1y the completed form of p,1 and (¢ofpo)o the
completed product.

We consider the two maps 7%, 7% : By — M(Cp) given by n¥ = ¢gip,, ¢ =
YiTp, (With tp,,Tp, : By — QBy the natural inclusions) and set RY = 5% (By),
RY = 7¥(B,) and let RY be the C*-algebra generated in M,y(M(Cy)) by the

matrices in
RY  RYRj
RYRY Ry

We also denote by Jy the intersection of R¥ with My (Cy).

We can extend 7%, 7% to maps from the multipliers of By to the multipliers
of le’, Rg’ respectively. By composing these extended maps with the natural
maps e, &7 : A — M(By) (given by pge and pgi) we obtain maps n¥e?, n¥e
A — M(RY) and i¥e?, ij¥e” : A — M(RY).

This means that the maps

pYP — nve? 0 Boe — nver 0
! 0 qler 2 0 qler

are homomorphisms from A to the multipliers of RY.

Lemma 5.9. If p or ¢ is g-nuclear, then hqu and h;"” are weakly nuclear
relative to Jy.

Proof. Assume that p is weakly nuclear. Then the map A 3 z — ve?(z)v* is
nuclear for each v € By and the same for . If we apply 7% to this map we see
that A 3 2 — wn¥e?(z)w* is nuclear for each w € n¥(By). If we multiply w in
this map by y € Cy on the left we find that A 5 x — ywn¥e?(x)w*y* is nuclear
for each w € n¥(By) and y € Cy and the same for ¥ and &° in place of n¥
and/or e”. By matrix multiplication this shows that the maps A 3 z — zh?’p z*
are nuclear for i = 1,2 and each z € J,.

Assume now that 1 is g-nuclear.

If (uy) is an approximate unit for By, then, by the special definition of RY, we
have that zh!”(u,) and zh%”(u,) tend to z for each z € RY.

By g-nuclearity of 9, for each z € Jy the map A 5 z — 2n¥(uxe?(x)uf)z* is
nuclear for each A\ and the same for 7% and °. In the limit over A\ we get
that the map A 3 x — 2n¥e’(x)z* is nuclear as well (as the set of nuclear
c.p. maps is point-norm closed) as the corresponding maps with n¥ and ”
replaced with 7% and/or 7. This shows that for i = 1,2 and y € J, the maps

*
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A sz — yh!’(z)y* are nuclear and thus that h'”, hY” are weakly nuclear
relative to Jy. O

We now examine the product of the bivariant elements represented by pg and
Yy. As in the universal case we have that RY/Jy =~ M(By) and we can lift the

multiplier ((1) (1)) to a multiplier Sy of Jy that commutes mod Jy with ne(z) @

fie(z) for z € A. We set Fy = €% and 0f = Ade®% and ¥ = o, If hY" is
weakly nuclear relative to .Jy, so is the composition 0¥ hé’” . The homomorphism
(1o po)o = q(hY?, a¥hi’) - qA — My(Cp) represents the product and defines
an element of K K (A, Cy) which, by Lemma 59, is g-nuclear whenever p or v
is. We get

Proposition 5.10. The pairing (1o, po) — Jjo, (Yo B po)o induces well defined
bilinear products K K"™(A, B) x KK(B,C) — KK"(A,C) and
KK(A,B) x KK™(B,C) — KK™(A,C).

Proof. The product jg, o ¥gfpo represents an element of KK"(A,C) by
Lemma and the discussion after the lemma. It is well defined since ¢-
nuclear homotopies on the side of [¢A, K ® Bg|nue or [¢Bo, K ® Coluue induce
elements of K K"¢(A, Byl|0, 1]) or K K™¢(By, Cy[0, 1]). The product with such
an element gives g-nuclear homotopies of the product. O

5.1. Associativity. Assume that we have elements in K K(A, B), KK (B, (),
KK(C, D) represented by homomorphisms o : ¢A - K® B, f: ¢B > K®C,
v :qC — K® D and assume that one of those is g-nuclear. In order to
show that the two different products v 4 (54«) and (v43)#« are homotopic
via a g-nuclear homotopy and are themselves both g-nuclear we can proceed
exactly as in subsection 3.4l Using the notation from there we obtain modified
homomorphisms «, 5',+'. By Proposition B.10, £’,+" will be ¢g-nuclear if
resp. 7 is. According to subsection B.4] the product is given for both choices
of parentheses by the homomorphism ¢A — Dy < K &® D given by

1(VeBroe®VEBrae®VeBras®Velrin , VpBrar®Y s ras®VeBpte®pfrir)
It is g-nuclear by Proposition G.10.

Remark 5.11. (a)In the situation above it follows from Proposition that
the two products with different choice of parentheses are g-nuclear, if one of
the a, 8,7 is. But if we have already established that the product is given by
the long expression above and that 8’ or 7/ is g-nuclear once (3 or 7 is g-nuclear,
then the g-nuclearity of the product is obvious. In fact we get the chain of
ideals

YeBpapA = YgfpBo = vpCo = Dy
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and an analogous chain of ideals for each composition vyA50E, VefEaE - - ..
This shows that each of these compositions is weakly nuclear relative to Dy as
soon as one of the «, 3,7 is g-nuclear.

(b) For the proof of associativity of the product in K K™ we could also adapt
the arguments from subsection or from [6], but the proof in subsection B.4]
is particularly well suited for the situation in K K™,

6. THE EQUIVARIANT CASE

Let G be a locally compact o-compact group. A G-C*-algebra is a C*-
algebra with an action of G by automorphisms «ay, g € G such that the map
G 3 g — ay(x) is continuous for each z € A. We denote by K = Iy the alge-
bra of compact operators on /2N and by K¢ the algebra K(L?G) of compact
operators on L?G. They are G-algebras with the trivial action and with the
adjoint action Ad X of G, respectively, where \: G — U(L?G) is the left regular
representation. We also denote by g their tensor product with the tensor
product action and will later use the fact that g is equivariantly isomorphic
to Kng ® Kng (by Fell’s absorption principle the tensor product of A by any
unitary representation of G is equivalent to a multiple of \).

Given a G-C*-algebra (A, a) we consider the Hilbert A-module L*(G, A) with
the natural action of G' given by Aa where A is the action by translation on
G. The algebra of compact operators on L?*(G, A) in the sense of Kasparov is
isomorphic to g ® A. The induced action of G on Ko ® A is Ad A ® a.

Since A — QA is a functor, the action « induces actions of G on QA, gA and
on Q*A,¢*A, R, J (see Section [B)) which we still denote by .

Definition 6.1. Given G-C*-algebras (A, ) and (B, ) where A is separable,
define KKY(A, B) as the set of homotopy classes (in the category of equivari-
ant homomorphisms) of equivariant *-homomorphisms from Kne®q(Kne®A)
to ICNG (9] B.

Remark 6.2. (a) The pair of homomorphisms (id ® ¢,id ® ) gives an equi-
variant homomorphism from ¢(Kyg ® A) to Kyng ® ¢A. Therefore every equi-
variant homomorphism ¢gA — Kyg ® B (or equivalently every equivariant
prequasihomomorphism A — g ® B) induces by stabilization an element of
KKY(A, B).

(b) It is a consequence of Definition that the so defined K K¢ is the uni-
versal functor satisfying the usual properties of homotopy invariance, stability
and split exactness, see Section [l Using the characterization of K K¢ by these
properties in [I8] our K K¢ is the same as the one of Kasparov [I1]. Ralf Meyer
has shown in [13] by direct comparison that Definition [6.1] gives the same func-
tor as the one of [11].
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(c) Using Meyer’s result our construction of the product below gives an alter-
native definition of the product in Kasparov’'s K K¢.

In order to describe the composition product for KK we will use an equi-
variant version of the map ¢4 in Section [] this time from ¢(Kng ® A) to
My(*(Kng®A)). As a first step we are now going to construct an equivariant
map ¢y from ¢(Kg ® A) to My(Ke ® ¢*A).

We consider first, as in Section 1, the algebras

[ R RiR s (mex) 0
= (RgRl R2 ) D=C {( 0 778(5(7) red
where Ry = 1(qA), Ry = 7j(qA) as well as the ideal J = R n My(¢*A).

As in Section Bl we have that (R +D)/J is isomorphic to the subalgebra of
My(Q(A)) generated by Ms(qA) together with the matrices

(L%’) L&)) re A

Using the equivariant version of Proposition (Thomsen’s noncommutative

(1) (1) of R/J to a
self-adjoint multiplier S of J that commutes mod J with D and which satisfies
ay(S)—SeJforall geG.

Tietze extension theorem) we can lift the multiplier Sy =

This multiplier S can be extended to a G-invariant self-adjoint element S” of
B(L?(G, J)) by setting S"(£)(s) = Si&(s) for s € G where Sy = () = aSa; !
and where £ € C.(G,A) = L*(G,A). It is immediate that S’ is invariant for
the action Aa of G on L*(G,J). Thus S’ defines a G-invariant multiplier of
Ke®J.

The important point now is that moreover S’ commutes mod Ko ® J with
D' = Kg® D. In fact, for a typical rank 1 element of the form | f; Y{ f2] in
Kg with fi, fo € C.(G,C), x € D and € € C.(G, J) = L*(G, J) we get

(IS (1> ol ®2)] €) (5) = fi(s) f () (Sz — 25)E(t)dt
~ A(s) f (Bl)(Su — Sy))E(t)dt — fuls) f<f2—<t><stx — wS,))E(t)dt

where S;x —x.S;, Ssx — S;x are in J and continuous in ¢. In fact, S was chosen,
using to commute mod J with D and such that Sy, — S, S; — S are in J
and continuous in s, t.
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As in Section B] we can now choose F' = ¢25. Then Ad F’ defines an auto-

morphism ¢’ of the multipliers of K¢ ® J. Tensoring by idx, we extend the
maps ne, ng, fje, N : A — Q*A to homomorphisms from Kg ® A to Kg ® Q%A,
still denoted by ne, né, ne, né. Then the pair of homomorphisms

((5 ) (5 )

defines an equivariant homomorphism ¢ : ¢(Ke® A) to Kg® J (note that, by
definition of R, both (ng 7‘?5) and

! (775 7?6_) map Kg ® A to the multipliers
Of ICG ® R)

0

We can now stabilize the algebras involved in the definition of ¢y by Kye.
Setting A’ = Kng ® A and using the fact that Kyg ® Kng = Kng we obtain
the stabilized equivariant map

Q014 Kne ®qA" — Kpne ® J'

where J' = R’ n ¢*(A4’). As in the non-equivariant case, the map ¢/, induces
the associative product K K%(A, B) x KK%(B,(C) — KK%(A,C) as follows:
let elements of KKY(A, B) and of KK%(B,C) be represented by equivariant
maps
Kne ® ¢(Kne ® A) B Kne® B and - Kne ® ¢(Kng @ B) 2 Kne ® C
respectively. Using the fact that Cng = Kng ® Kng, we get a map
¢ (Kne ® A) = ¢*(Kne ® Kng ® 4) 5 ¢(Kie ® ¢(Kng ® A)

and, using this, we can form the following composition

Kne ® ¢(Kne ® A) REN Kne ®q2(ICNG®A) 5 Kne ® ¢(Kne ® ¢(Kne ® A))

By Kne ® ¢(Kne ® B) 2 Ky @ C

which represents the product in K K% (A, C).

6.1. Associativity. Associativity of the product in K K¢ follows as in Sub-
section B2 since all the isomorphisms and homotopies used there are manifestly
G-equivariant once the automorphisms o; are chosen to be equivariant.

7. UNIVERSALITY AND CONNECTION TO THE USUAL DEFINITIONS

We show now that the functors K K(X; -) and KK that we have studied in
Sections [] and [f] are characterized - just like ordinary K K - by split exactness
together with homotopy invariance and stability in their respective category.
It seems that K K™ could also be characterized by a suitable more involved
split exactness property for exact sequences with a weakly nuclear splitting.
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We leave that open - partly also because we think that such a characterization
would be of minor interest.

Split exactness on equivariant, equivariantly split exact sequences does in fact
follow for the functors KK (X; -) and K K¢ that we have studied in Sections
[ and [@ from the existence of the product, by the simple argument in [6 2.1].

7.1. The case of ideal related K K-theory. Let X be a topological space.

Proposition 7.1. KK(X; -, -) is the universal functor from the category of
separable C*-algebras with an action of X to an additive category which is
stable, homotopy invariant and split exact on exact sequences of algebras in
the category with an X -equivariant homomorphism splitting.

Proof. Given a C*-algebra A with an action of X, consider the exact sequence
O—’(]XAHQ)(A—)A—)O

with the equivariant splitting ¢ : A — ()xA. The usual argument showing
that a free product of C*-algebras is K K-equivalent to the direct sum (see [6]
Proposition 3.1) is compatible with the action of X, so that ) x A is equivalent
in KK(X;-,-) to A® A with the natural action of X - just by homotopy in-
variance and stability. Let now F be a functor from the category of separable
C*-algebras with an X-action to an additive category which is stable, homo-
topy invariant and equivariantly split exact. Then F(QxA) is isomorphic, via
the natural map, to F(A® A) = F(A) ® F(A) and by split exactness con-
sequently F(qxA) =~ F(A). By Definition every element of KK (X; A, B)
is represented by an X-equivariant homomorphism gxA — K ® B. Apply-
ing F' to the homotopy class of such a homomorphism we get a morphism
F(A) = F(qxA) - F(K® B) = F(B). Since the isomorphisms involved are
natural this morphism is uniquely determined.

Conversely KK (X;-) is homotopy invariant, stable and splits on X-equi-
variantly split exact sequences. U

7.2. The case of KK¢. If G is a locally compact o-compact group we also
have

Proposition 7.2. (¢f.[13]) KK is the universal functor on the category of
separable G-C*-algebras which is homotopy invariant, stable under tensor prod-
uct by Kng and split exact on extensions 0 — I — E — A — 0 of G-C*
algebras with an equivariant splitting homomorphism s : A — E.

Proof. Let F be a functor with the given properties from the category of G-C*-
algebras to an additive category and set A" = Kyg ® A. Homotopy invariance
and stability of F' imply that F(QA") = F(A' @ A’) (by the argument in [6]
Proposition 3.1 which is compatible with the action of G). Split exactness
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implies that F(QA") = (F(qA") @ F(A’) and finally that F(qA") =~ F(A)
naturally. Since also F'(A’) =~ F(A) for all A by stability, the assertion then
follows from the definition of K K%, see 6.1l

Conversely, K K¢ is equivariantly split exact by the remark at the beginning
of the section. OJ

7.3. Connection to the usual definitions. The usual definitions of the
different versions of KK (A, B) are based on A-B Kasparov modules (E, )
with additional structure. In such a Kasparov module one can always assume
that I/ = F* and > = 1. Conjugation of the (first component for the Z/2-
grading of the) left action ¢ of A on E by F' gives a second homomorphism ¢ :
A — B(E). Depending on the situation, ¢ will ‘weakly’ respect the additional
structure (X-equivariance, G-equivariance or nuclearity respectively). Now
in order to get a homomorphism from ¢gA to K(FE) respecting the additional
structure we need to know that ¢ also respects the structure ‘weakly’. Since
@ = Ad Fp, and Ad F is inner, this is automatic for X-equivariance. In the
case of K K¢ this has been established in the paper by Ralf Meyer. In the case
of KK™* the equivalence between g-nuclear homomorphisms ¢A — K(F) and
nuclear Kasparov modules has been shown in Proposition .4l In the case of
KK% and KK(X) we get the equivalence then from the universality of our
definition.
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