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GENERALIZED HOMOMORPHISMS AND KK WITH

EXTRA STRUCTURES

JOACHIM CUNTZ AND JAMES GABE

Abstract. We develop the approach via quasihomomorphisms and the
universal algebra qA to Kasparov’s KK-theory, so as to cover versions of
KK such as KKnuc, KKG and ideal related KK-theory.

1. Introduction

Kasparov’s KK-theory is a main tool in the theory of operator algebras and
noncommutative geometry. It is based on a very flexible but not easy formalism
developed by Kasparov. In [5] and [6] the first named author has introduced
an alternative more algebraic approach based on quasihomomorphisms and the
universal algebra qA associated with an algebra A. In this picture elements
of KKpA,Bq are represented by homomorphisms from qA to K b B where K

denotes the standard algebra of compact operators on ℓ2N. One merit of this
approach is a simple and universal construction of the product in KK from
which in particular associativity becomes very natural. Since many important
KK-elements come naturally from quasihomomorphisms, at the same time it
can be used to treat KK-elements that occur in ‘nature’. Note that there
are possible definitions of KKpA,Bq that make the product and its associa-
tivity automatic but have the disadvantage that KK-elements appearing in
applications never fit the definition naturally - take for instance the possible
definition as homotopy classes of homomorphisms from K b qA to K b qB.
There also is the approach of [7], [9] which is based on the use of the universal
algebra qA too, and works also for Banach and locally convex algebras and
in fact even much more general algebras [4],[8]. The definition and especially
the product however uses higher quasihomomorphisms (maps from qnA rather
than from qA). In applications to C*-algebras e.g. for classification this is not
good enough because there it is usually important that a KK-element can be
represented by a prequasihomomorphism instead of a Kasparov-module.
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One strength of Kasparov’s formalism is the fact that by now it has been
extended to define very useful versions of KK for categories of C*-algebras
with additional structure such as equivariant KK-theory [11], KKnuc [16] or
ideal related KK-theory [12]. In this article we adapt the formalism of [6] to
allow for these additional structures. We will give definitions of the various
KK-theories using the approach via the universal algebra qA and establish
the associative product in each case. In section 7 we will explain that our con-
struction reproduces the KK-theories defined previously in the papers cited
above. Moreover we will see there that in the case of equivariant and ideal
related KK-theory we obtain a universal functor with the usual properties of
split exactness, homotopy invariance and stability.
An nice feature of our approach is the fact that the ideal preserving or nucle-
arity condition on a homomorphism ϕ : qA Ñ B can be characterized by a
simple criterion. In fact, these conditions can already be checked on the linear
map A Q x ÞÑ ϕpqxq (where qx is one of the standard generators of qA). This
description of KKnuc will be used in upcoming work of the second named au-
thor [3] to simplify functoriality of this functor similar to how this formalism
was used in [2, Appendix B.1].

The most established and probably the most important of the KK-theories we
discuss is the equivariant theory KKG. This version of KK has been discussed
on the basis of the qA approach by Ralf Meyer in [13]. In fact one basic idea in
his approach appears also in our discussion. We mention however that Meyer
does not touch the Kasparov product at all. Using Meyer’s result we get a
new description of the product in Kasparov’s KKG.
For the construction of the product we will not use Kasparov’s technical theo-
rem as in [11] or Pedersen’s derivation lifting theorem as in [6] but Thomsen’s
somewhat simpler noncommutative Tietze extension theorem [10, 1.1.26]. In
the equivariant case we will also need a new equivariant version of this theorem
which we prove in section 2.

2. Preliminaries

Notation: In the following, homomorphisms between C*-algebras will always
be assumed to be *-homomorphisms. By K we denote the standard algebra
of compact operators on ℓ2N. There is a natural isomorphism K – K b K.
A C*-algebra A is called stable if A – K b A. Given a C*-algebra A we
denote by MpAq its multiplier algebra. If ϕ : A Ñ B is a σ-unital homomor-
phism between C*-algebras, we denote by ϕ˝ its extension to a homomorphism
MpAq Ñ MpBq.

Let A be a C*-algebra. We denote by QA the free product A ‹ A and by ι, ῑ
the two natural inclusions of A into QA “ A ‹A. We denote by qA the kernel
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of the natural map A ‹ A Ñ A that identifies the two copies ιpAq and ῑpAq
of A. Then qA is the closed two-sided ideal in QA that is generated by the
elements qx “ ιpxq ´ ῑpxq, x P A.
There is the natural evaluation map πA : qA Ñ A given by the restriction to
qA of the map id ‹ 0 : QA Ñ A that is the identity on the first copy of A and
zero on the second one.

Proposition 2.1. For x, y P A one has the identity

qpxyq “ ιpxqqpyq ` qpxqῑpyq “ ῑpxqqpyq ` qpxqιpyq

Finite sums of elements of the form ιpx0qqx1 . . . qxn and qx1, . . . qxn or of the
form qx1 . . . qxnιpx0q and qx1, . . . qxn are dense in qA. In particular qA is
generated as a closed left or right ideal in qA by the elements qx, x P A.

Proof. The identity for qpxyq is trivially checked. The other statements are
consequences (for the assertion on the generation as a closed left or right
ideal note that ιpyqqx is the limit of ιpyquλqx for an approximate unit puλq in
qA). �

As in [6] we define a prequasihomomorphism between two C*-algebras A and
B to be a diagram of the form

A
ϕ,ϕ̄

Ñ E ✄ J
µ

Ñ B

i.e. two homomorphisms ϕ, ϕ̄ from A to a C*-algebra E that contains an ideal
J , with the condition that ϕpxq ´ ϕ̄pxq P J for all x P A and finally a homo-
morphism µ : J Ñ B. The pair pϕ, ϕ̄q induces a homomorphism QA Ñ E by
mapping the two copies of A via ϕ, ϕ̄. This homomorphism maps the ideal
qA to the ideal J . Thus, after composing with µ, every such prequasihomo-
morphism from A to B induces naturally a homomorphism qpϕ, ϕ̄q : qA Ñ B.
Conversely, if ψ : qA Ñ B is a homomorphism, then we get a prequasihomo-
morphism by choosing E “ MpψpqAqq, J “ ψpqAq and ϕ “ ψ˝ι, ϕ̄ “ ψ˝ῑ as
well as the inclusion µ : ψpqAq ãÑ B.

In this paper we will also have to use an iteration of the qA construction.
We will write Q2A for the free product QpQAq “ QA ‹ QA and η, η̄ for the
two natural embeddings of QA into Q2A. We now denote by ε, ε̄ the two
embeddings A Ñ QA and get four embeddings ηε, ηε̄, η̄ε, η̄ε̄ of A to Q2A. We
have the ideal qA generated by the elements εpxq ´ ε̄pxq, x P A in QA and the
ideal q2A generated by ηpzq ´ η̄pzq, z P qA in QpqAq.

In Section 6 we will use the following equivariant version of Thomsen’s non-
commutative Tietze extension theorem which we prove here. Recall that when
G is a locally compact group, a G-C˚-algebra A is a C˚-algebra with a point-
norm continuous action α of G on A. This action extends to a point-strictly
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continuous action α˝ on the multiplier algebra MpAq, where we remark that
each automorphism α˝

g for g P G is strictly continuous on bounded sets. To
simplify notation, we will sometimes write g ¨ a instead of αgpaq for a P A and
g P G (or instead of α˝

gpaq if a P MpAq).

Proposition 2.2. Let G be a locally compact σ-compact group, let 0 Ñ J Ñ
A

π
Ñ B Ñ 0 be an extension of σ-unital G-C*-algebras, and let X Ă MpAq

be a norm-separable self-adjoint subspace. Let π˝ : MpAq Ñ MpBq be the
induced homomorphism. For every z in the commutator MpBq X π˝pXq1 of
π˝pXq in MpBq, such that g ¨ z “ z for all g P G there exists y P MpAq such
that π˝pyq “ z, ry,Xs Ď J, g ¨ y ´ y P J for all g P G and G Q g ÞÑ g ¨ y is
norm-continuous.

Proof. We may assume without loss of generality that z is a positive con-
traction. Let h P A be strictly positive, let F Ă X be a compact subset of
contractions with dense span,1 and let H1 Ď H2 Ď ¨ ¨ ¨ Ď G be compact neigh-
bourhoods of the identity such that G “

Ť

Hn. Since B is also σ-unital, we
apply [11, Lemma 1.4] and pick a (positive, increasing, contractive) approxi-
mate identity penqnPN for B such that

}p1 ´ enqz1{2πphq} ď 4´n(1)

sup
xPF

}π˝pxqen ´ enπ
˝pxq} ď 4´n(2)

sup
gPHn

}g ¨ en ´ en} ď 4´n(3)

for n P N. To ease notation let e0 “ 0. We will recursively construct positive
contractions 0 “ y0 ď y1 ď y2 ď . . . in A such that for n P N

πpynq “ z1{2enz
1{2(4)

}pyn`1 ´ ynqh} ď 2´n(5)

sup
xPF

}ryn`1 ´ yn, xs} ď 2´n(6)

sup
gPHn

}g ¨ pyn`1 ´ ynq ´ pyn`1 ´ ynq} ď 2´n.(7)

Letting y0 “ 0, suppose we have constructed y0 ď ¨ ¨ ¨ ď yn as above. We will
explain how to construct yn`1.

Since z1{2pen`1 ´ enqz1{2 ď 1 ´ z1{2enz
1{2, we apply [14, Proposition 1.5.10] to

pick c P A such that πpcq “ z1{2pen`1 ´ enqz1{2 and 0 ď c ď 1´ yn in Ã. Again
using [11, Lemma 1.4] we let pvkqkPN be an approximate identity in J which is
quasi-central relative to tc, yn, hu Y F and such that limkÑ8 supgPHn

}g ¨ vk ´

vk} “ 0. Let y
pkq
n`1 :“ yn ` c1{2p1 ´ vkqc1{2. We will show that we can pick

yn`1 “ y
pkq
n`1 for sufficiently large k.

1If pxnqnPN is a dense sequence in the unit ball of X one could pick F “ t 1

n
xn : n P

Nu Y t0u.
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That (4), (5), and (6) are satisfied is exactly as in the proof of [10], so it
remains to show (7). For this we compute

lim sup
kÑ8

sup
gPHn

}g ¨ py
pkq
n`1 ´ ynq ´ py

pkq
n`1 ´ ynq}

“ lim sup
kÑ8

sup
gPHn

}g ¨ pp1 ´ vkqcq ´ p1 ´ vkqc}

“ lim sup
kÑ8

sup
gPHn

}p1 ´ vkqpg ¨ c´ cq}

“ sup
gPHn

}g ¨ pz1{2pen`1 ´ enqz1{2q ´ z1{2pen`1 ´ enqz1{2}

“ sup
gPHn

}z1{2pg ¨ pen`1 ´ enq ´ pen`1 ´ enqqz1{2}

(3)

ď 2´n.

Hence we may define yn`1 “ y
pkq
n`1 for large k so that it satisfies (4)–(7), so we

obtain our desired sequence pymqmPN.

By (5) it follows that pynqn converges strictly to a positive contraction y P
MpAq. Since π˝ is strictly continuous on bounded sets, it follows from (4)
that π˝pyq “ z (since z is the strict limit of z1{2enz

1{2). For x P F we have
by (6) that ryn, xs norm-converges to an element in A, so that ry, xs P A.
Moreover,

πpry, xsq “ lim
nÑ8

π˝pryn, xsq
(4)
“ lim

nÑ8
z1{2ren, π

˝pxqsz1{2 (2)
“ 0

so that ry, xs P J for all x P F . Hence ry, xs P J for all x P spanF “ X .

As the G-action on MpAq is pointwise strictly continuous, it follows that g ¨ y
is the strict limit of pg ¨ ynqnPN for any g P G. By (7), pg ¨ yn ´ ynqnPN converges
in A as n Ñ 8 for every g P G. Hence g ¨ y ´ y P A. Moreover,

πpg ¨ y ´ yq “ lim
nÑ8

π˝pg ¨ yn ´ ynq

(4)
“ lim

nÑ8
g ¨ pz1{2enz

1{2q ´ z1{2enz
1{2

“ lim
nÑ8

z1{2pg ¨ en ´ enqz1{2

(3)
“ 0.

Hence g ¨ y ´ y P J for all g P G.

Finally, given ǫ ą 0, pick N P N such that
ř8
k“N 2´n ă ǫ. Choose an open

neighbourhood U Ď HN Ď G of the identity such that supgPU }g ¨yN ´yN} ă ǫ.
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Then

sup
gPU

}g ¨ y ´ y} “ sup
gPU

}
8

ÿ

k“N

pg ¨ pyk`1 ´ ykq ´ pyk`1 ´ ykqq ` g ¨ yN ´ yN}

(7)

ď ǫ` sup
gPU

}g ¨ yN ´ yN}

ă 2ǫ.

Hence G Q g ÞÑ g ¨ y P MpAq is norm-continuous. �

3. The product in KK

Given two homomorphisms ϕ, ψ : X Ñ Y between C*-algebras we denote by
ϕ ‘ ψ the homomorphism

x ÞÑ
´

ϕpxq 0

0 ψpxq

¯

from X to M2pY q. Following [6] we define

Definition 3.1. Let A, B be C*-algebras and qA as in Section 2. We define
KKpA,Bq as the set of homotopy classes of homomorphisms from qA to KbB.

The setKKpA,Bq becomes an abelian group with the operation ‘ that assigns
to two homotopy classes rϕs, rψs of homomorphisms ϕ, ψ : qA Ñ K b B the
homotopy class rϕ‘ψs (using an isomorphism M2pKq – K to identify M2pKb
Bq – K b B, which is well-defined since such an isomorphism is unique up to
homotopy). In [5] it was checked that this definition of KKpA,Bq is equivalent
to the one by Kasparov. We recapitulate now the construction in [6] of the
product KKpA,Bq ˆ KKpB,Cq Ñ KKpA,Cq. It is based on a functorial
map ϕA : qA Ñ M2pq2Aq (which is in fact - up to stabilization by the 2 ˆ 2-
matrices M2 - a homotopy equivalence). Since versions of this map and of
its properties will be used in each of the subsequent sections on KK with
additional structure we include complete proofs. We take this opportunity to
include more details on the proofs and to arrange the arguments given in [6]
in a slightly different way.
To prove the existence of the map ϕA we will use Proposition 2.2 with A in
place of X . Since X in 2.2 has to be separable we will assume in this section
and in later sections where we discuss the product ofKKpA,Bq andKKpB,Cq
to KKpA,Cq with extra structure that A is separable.

Given a C*-algebra A, we use the four embeddings ηε, ηε̄, η̄ε, η̄ε̄ of A to Q2A

from section 2. Consider the C*-algebra R generated by the matrices
ˆ

R1 R1R2

R2R1 R2

˙
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where R1 “ ηpqAq, R2 “ η̄pqAq. Consider also the C*-algebra D generated by
matrices of the form

D “

ˆ

ηεpxq 0
0 η̄εpxq

˙

x P A

Then R is a subalgebra of M2pQqAq where QqA is the C*-subalgebra of Q2A

generated by ηpqAq and η̄pqAq. Let J “ R X M2pq2Aq. Since q2A is an ideal
in QqA this is an ideal in R. One also clearly has DR,RD Ă R. Thus R is an
ideal in R `D and J is also an ideal of R `D (we think of all these algebras
as subalgebras of M2pQ

2Aq).

Because ηpqAq{q2A “ η̄pqAq{q2A – qA, the quotient R{J is isomorphic to
M2pqAq. Moreover pR `Dq{J is isomorphic to the subalgebra of M2pQpAqq
generated by M2pqAq together with the matrices

ˆ

ιpxq 0
0 ιpxq

˙

x P A

If A is separable we can use Thomsen’s noncommutative Tietze extension
theorem [10, 1.1.26] (see also Proposition 2.2) and lift the multiplier

ˆ

0 1
1 0

˙

of R{J to a self-adjoint multiplier S of R that commutes mod J with D.

We can now set F “ e
πi
2
S and define the automorphism σ of MpJq by AdF .

Consider the homomorphisms A Ñ MpJq given by

h1 “

ˆ

ηε 0
0 η̄ε̄

˙

, h2 “

ˆ

ηε̄ 0
0 η̄ε

˙

In the following we use the notation ‘ introduced at the beginning of the
section. Thus h1 “ ηε‘ η̄ε̄ and h2 “ ηε̄ ‘ η̄ε.

Definition 3.2. We define the homomorphism ϕA : qA Ñ J Ă M2pq2Aq
by the prequasihomomorphism given by the pair of homomorphisms ph1, σh2q
(compare [6], p.39), i.e. ϕA “ qph1, σh2q.

To check that the difference of h1 and σh2 maps to J recall that by definition
σ fixes dpxq “ ηεpxq ‘ η̄εpxq mod J for each x P A and that h2pxq “ dpxq ´
ηpqpxqq ‘ 0. The term ηqpxq ‘ 0 is moved by σ to 0 ‘ η̄qpxq mod J (note that
ηqpxq ´ η̄qpxq P q2A). Since η̄εpxq ´ η̄pqxq “ η̄ε̄pxq we get that σh2pxq “ h1pxq
mod J .
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Note the ϕA is unique up to homotopy. In fact, if we picked a different operator
S1 P MpRq instead of S as above, and define St “ p1 ´ tqS ` tS1 and σt “

Ad e
πi
2
St , then qph1, σth2q defines a homotopy from qph1, σh2q to qph1, σ1h2q.

3.1. The Kasparov product via the universal map ϕA. Once the map ϕA
is constructed we can define the product KKpA,BqˆKKpB,Cq Ñ KKpA,Cq
as follows.
Let α : qA Ñ K b B and β : qB Ñ K b C represent elements a P KKpA,Bq
and b P KKpB,Cq respectively. Since q is a functor, we can form the homo-
morphism qpαq : q2A Ñ qpKbBq. The pair of homomorphisms pidKbι, idKb ῑq
gives a natural map µ : qpK b Bq Ñ K b qB. The product of a and b is then
represented by the following composition

(8) qA
ϕAÑ q2A

qpαq
Ñ qpK b Bq

µ
Ñ K b qB

idKbβ
Ñ K b K b C – K b C

For simplicity we have left out the tensor product by the 2 ˆ 2-matrices M2

which can be absorbed in the tensor product by K. Here and later we some-
times extend homomorphisms, such as qpαq here, tacitly to matrices or stabi-
lizations. We denote the resulting homomorphism qA Ñ KbC in (8) by β 7α.
This description of the product will be used in the subsequent sections in
different versions.

Remark 3.3. (a) If α maps qA to B Ă K b B then we can omit the map µ
and the stabilization of β. We get that β 7α then is represented by βqpαqϕA.
The same formula applies if α maps qA to K b B and B – K b B.
(b) Assume that B and C are stable and let α : qA Ñ B and β : qB Ñ
C represent elements of KKpA,Bq and KKpB,Cq. Denote by B the C*-
subalgebra of B generated by αpqAq and by jB the inclusion B ãÑ B. Let
α : qA Ñ B and β “ β ˝ qpjBq : qB Ñ C denote the corestriction and
restriction of α and β. Then we have β 7α “ β7α. In fact βqpαqϕA factors as
β ˝ qpjBqqpαqϕA and the second expression represents β 7α.
Instead of B we can just as well consider the hereditary subalgebra B0 of
B generated by B and define α0, β0 in analogy to α, β. We get the formula
β0 7α0 “ β7α. We will use this setting below.

3.2. Associativity. The important point that gives associativity of the prod-
uct is the existence of a homotopy inverse (up to tensoring by M2) for ϕA. It
is given by πqA : q2A Ñ qA. We define πqA : QqA Ñ qA as the homomorphism
that annihilates η̄pqAq in the free product QqA “ ηqA ‹ η̄qA, and also as in
Section 2 its restriction to q2A Ă QqA.

Proposition 3.4. There is a continuous family of homomorphisms ψt : q
2A Ñ

M2pq
2Aq, t P r0, 1s such that ψ0 “ idq2A ‘ 0 and ψ1 “ ϕAπqA.

There also is a continuous family of homomorphisms λt : qA Ñ R Ă M2pQqAq
such that πqAλ0 “ idqA ‘ 0 and πqAλ1 “ πqAϕA (here and later we extend
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πqA : q2A Ñ qA tacitly to a homomorphism M2pq2Aq Ñ M2pqAq between
2 ˆ 2-matrices).

Proof. Let S be as above a lift of the multiplier given on R{J by the matrix

M “
´

0 1

1 0

¯

to a multiplier of R and denote by S 1 the multiplier of M2pQqAq given by the
same matrix M . For each t P r0, 1s we let σt denote the automorphism of R

given by Ad e
πi
2
St and τt the automorphism of M2pQqAq given by Ad e

πi
2
S1t.

Since σt fixes the algebra D from above pointwise mod J , the homomorphisms
ηε ‘ η̄ε̄ and σtpηε̄ ‘ η̄εq map A to D ` R and their difference maps into the
ideal R of D `R. Therefore this difference defines, for each t P r0, 1s a homo-
morphism αt from qA to R.
We also define a homomorphism ᾱt : qA Ñ M2pQqAq by the pair of ho-
momorphisms pη̄ε ‘ η̄ε̄, τtpη̄ε̄‘ η̄εqq from A to M2pQ2Aq. Let us denote the
quotient map QqA Ñ QqA{q2A by x ÞÑ x‚. As already remarked above, we
have R‚ – M2pqAq and we also have pM2pη̄qAqq‚ – M2pqAq. Under the quo-
tient map R becomes equal to M2pη̄qAq, σt becomes equal to τt and therefore
αtpxq‚ “ ᾱtpxq‚ for all x P qA.
It follows that the pair pαt, ᾱtq defines a continuous family of homomorphisms
ψt : q2A Ñ M2pq2Aq. These homomorphisms are restrictions of the maps
Q2A Ñ M2pQ2Aq that map ηεpxq and ηε̄pxq to ηε ‘ η̄ε̄, σtpηε̄ ‘ η̄εq and
η̄εpxq, η̄ε̄pxq to η̄ε ‘ η̄ε̄, τtpη̄ε̄‘ η̄εq, respectively.
For t “ 0 one easily checks for z P qA that α0pzq “ ηpzq ‘ η̄pγpzqq and
ᾱ0pzq “ η̄pzq ‘ η̄pγpzqq where γ denotes the restriction of the automorphism
of QA that interchanges ι and ῑ. Thus the pair pα0, ᾱ0q induces the homomor-
phism idq2A ‘ 0 : q2A Ñ M2pq2Aq.
For t “ 1, α1 : qA Ñ M2pq

2Aq is ϕA and ᾱ1 is 0. This shows that ψ1 “ ϕAπqA.
It remains to show that πqAϕA is homotopic to idqA‘0. The map πqA : q2A Ñ
qA is the restriction of the homomorphism QqA Ñ qA that annihilates η̄pqAq.
Consider λt : qA Ñ R Ă M2pQqAq defined by the pair pηε‘ η̄ε̄, σtpηε̄ ‘ η̄εqq.
We find that πqAλ0 “ idqA ‘ 0 and πqAλ1 “ πqAϕA. �

Remark 3.5. The map ϕA is functorial (up to stable homotopy) in the follow-
ing sense: If α : qA Ñ qB is a homomorphism between separable C*-algebras,
then after stabilizing q2B the homomorphisms qpαqϕA and ϕBα are homo-
topic.
In fact, let „ denote stable homotopy equivalence. Using Proposition 3.4
to note that πqAϕA „ idqA and ϕBπqB „ idq2B, as well as the observation
απqA “ πqBqpαq, we get

qpαqϕA „ ϕBπqBqpαqϕA “ ϕBαπqAϕA „ ϕBα.

Given C*-algebras X and Y we use the standard notation rX, Y s to denote
the set of homotopy classes of homomorphisms from X to Y . Thus we have
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KKpX, Y q “ rqX,K b Y s. Given α : qX Ñ K b Y and β : qY Ñ K b Z we
write β 7α for pidK b βqµqpαqϕA, see formula (8). Thus the homotopy class
rβ 7αs represents the Kasparov product of rαs and rβs. One way to prove
the associativity of the Kasparov product consists in identifying KKpX, Y q “
rqX,K b Y s with rK b qX,K b qY s using Proposition 3.4 and to check that,
under this identification the Kasparov product induced by 7 corresponds to
the composition product of homomorphisms and thus is associative. This
observation was stated explicitly for the first time by Skandalis in [17]. We
have the following proposition.

In the following we consider qA as a subalgebra of K b qA as the p1, 1q-corner
embedding.

Proposition 3.6. The map rαs ÞÑ rᾱs where ᾱ “ pidK b πBqα|qA is an iso-
morphism from rKb qA,Kb qBs to rqA,KbBs with inverse given by the map
rβs ÞÑ rβ 1s where β 1 “ µpidK b qpβqϕAq with µ as in (8). It is multiplicative
in the sense that it maps rβαs to rβ̄ 7 ᾱs. In particular the product on KK

induced by 7 is associative.

For the proof of the proposition we need the following lemma.

Lemma 3.7. The natural maps qpπAq and πqA from q2A to qA are homotopic
as maps to M2pqAq.

Proof. Both homomorphisms from q2A to qB are restrictions of homomor-
phisms from Q2A to QB. The first one maps ηεpxq, ηε̄pxq, η̄εpxq, η̄ε̄pxq to
ιpxq, ῑpxq, 0, 0 and the second one to ιpxq, 0, ῑpxq, 0. The homotopy between
the two is obtained by rotating in the homomorphism q2A Ñ M2pqAq which is
the restriction of the homomorphism Q2A Ñ M2pQAq mapping the generators
to

´

ιpxq 0

0 0

¯ ´

ῑpxq 0

0 0

¯ ´

ῑpxq 0

0 0

¯ ´

ῑpxq 0

0 0

¯

the second and fourth term to
´

0 0

0 ῑpxq

¯

. �

Proof of Proposition 3.6. We use „ to mean homotopic. Up to stabilisations
we have

pᾱq1 “ µqppidKbπBqα|qAqϕA
3.7
„ pidKbπqBqµqpα|qAqϕA “ πKbqBqpα|qAqϕA “ α|qAπqAϕA

and this is homotopic to α by Proposition 3.4. Also

β 1 “ pidK b πBqµqpβqϕA “ βπqAϕA

which also is homotopic to β by 3.4 (in both cases we have used the obvious
identity πY qpψq “ ψ πX : qX Ñ Y for a homomophism ψ : X Ñ Y ).
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Concerning multiplicativity we get (omitting here for clarity the stabilizations
and µ) for α : qA Ñ qB and β : qB Ñ qC that

βα “ πCβα „ πCβαπqAϕA
απqA“πqBqpαq

“ πCβπqBqpαqϕA
3.7
„ πC βqpπBqqpαqϕA “ πCβqpπBαqϕA “ β̄ 7 ᾱ.

�

3.3. Another description of the product. For a prequasihomomorphism
A Ñ E ✄ J given by the pair of homomorphisms α, ᾱ : A Ñ E we write as
above qpα, ᾱq for the corresponding map qA Ñ J (i.e. the restriction of α ‹ ᾱ
from QA to qA).
For the product of KK-elements α : qA Ñ K b B and β : qB Ñ K b C only
the restriction of β to qB0 matters, where B0 is the hereditary subalgebra of
K b B, generated by the image αpqAq, see Remark 3.3 (b). This observation
leads to an alternative description of the product which we will also use to
discuss associativity of the product in KKnuc in section 5. In fact, for the
purposes of this section it would suffice to use the smaller C*-subalgebra B
of K b B generated by αpqAq instead of B0. But we will apply the following
discussion to the product in KKnuc in section 5 and there the choice of the
hereditary subalgebra will be important.
With B0 as above we define αE, ᾱE : A Ñ MpB0q‘A by αEpxq “ pα˝ιApxq , xq,
ᾱEpxq “ pα˝ῑApxq , xq and set Eα “ C˚pB0, αEpAq, ᾱEpAqq. This gives an

exact sequence 0 Ñ B0 Ñ Eα
p

Ñ A Ñ 0 with two splittings given by αE , ᾱE :
A Ñ Eα. Note that the prequasihomomorphism pαE , ᾱEq represents α : qA Ñ
B0 i.e. α “ qpαE, ᾱEq.

Lemma 3.8. Let α, Eα and B0 be as above and β : qpB0q Ñ K b C. Let
jE : B0 Ñ Eα be the inclusion. There is β 1 : qpEαq Ñ M2pβpqB0qq such that β
is homotopic to β 1qpjEq.

Proof. Let κα : qEα Ñ B0 be the homomorphism defined by the prequasiho-
momorphism pidEα

, αE ˝ pq (recall that p : Eα Ñ A is the quotient map) and
set β 1 “ β 7 κα “ βqpκαqϕEα

. It is immediately checked that καqpjEq “ πB0

(in fact καpιpxqqpyqq “ xy and καpῑpxqqpyqq “ 0 for x, y P B0). Using the
homotopy ϕEα

qpjEq „ q2pjEqϕB0
from Remark 3.5 we get (assuming that B is

stable) the following homotopy

β 1qpjEq “ pβ7καqqpjEq “ β qpκαqϕEα
qpjEq

3.5
„ β qpκαqq2pjEqϕB0

“ βqpπB0
qϕB0

3.2
„ β

�

Given a homomorphism µ : qA Ñ K b B, we denote by µ̆ the composition µδ
of µ with the symmetry δ of qA that exchanges the two copies of A. Then µ̆
is an additive homotopy inverse to µ, i.e. we have µ ‘ µ̆ „ 0 (we can rotate
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ιpxq ‘ ῑpxq to ῑpxq ‘ ιpxq in 2 ˆ 2-matrices).
Note that, if ν is a second additive homotopy inverse to µ, then ν is homotopic
to µ̆ in matrices (because ν „ ν ‘ µ ‘ µ̆ „ 0 ‘ 0 ‘ µ̆).

Proposition 3.9. Let α, β, Eα, B0 be as above and assume that β 1 : qEα Ñ
K b C extends β up to homotopy as in 3.8. If we let C0 denote the hered-
itary subalgebra of K b C generated by βpqEαq, we get two homomorphisms
β 1
E, β̄

1
E : Eα Ñ Eβ1 which we can compose with αE , ᾱE : A Ñ Eα.

The homomorphism βqpαq : q2A Ñ C0 Ă KbC is homotopic to ωqpπAq where
ω : qA Ñ C0 Ă K b C is given by ω “ qpβ 1

EαE ‘ β̄ 1
EᾱE , β̄

1
EαE ‘ βEᾱEq.

Proof. The homomorphism α “ qpαE , ᾱEq : qA Ñ B0 extends to the homo-
morphism αE ‹ ᾱE from QA to Eα. As a homomorphism to M2pEαq this
extended map is homotopic to pαE ‘0q ‹ p0‘ ᾱEq. The restriction of the latter
map to qA, which we denote by α‘, is described by α‘ “ αEπA ‘ ᾱEπ̆A. We
have

βqpαq „ β 1qpαq „ β 1qpα‘q „ β 1qpαEπAq ‘ β 1qpᾱEπ̆Aq

where we have used that β 1 composed with a direct sum is in 2 ˆ 2-matrices
homotopic to the direct sum of the two compositions. By the uniqueness of the
additive homotopy inverse we have that β 1qpᾱE π̆Aq „ β̆ 1qpᾱEπAq. The result
follows since β 1 “ qpβ 1

E , β̄
1
Eq. �

Corollary 3.10. Let α, β, Eα, B0 be as above and assume that β extends up
to homotopy to β 1 : qEα Ñ K b C. Then the KK-product β 7α is represented
by the homomorphism ω : qA Ñ M2pC0q Ă K b C given by

ω “ qpβ 1
EαE ‘ β̄ 1

EᾱE , β̄
1
EαE ‘ β 1

EᾱEq.

Proof. By Proposition 3.9, Proposition 3.4 and Lemma 3.7 we have

β7α
3.3
„ βqpαqϕA

3.9
„ ωqpπAqϕA

3.4
„ ω.

�

Note that, for the formula for β7α in Corollary 3.10 we don’t need the universal
map ϕA in full but only the product β 7 κα. One could base an alternative
construction of the product in KK by reducing it to the special case of the
product by κα.

3.4. Another proof for associativity. We follow here the discussion in
Section 4 of [5]. Assume that we have elements in KKpA,Bq, KKpB,Cq,
KKpC,Dq represented by homomorphisms α : qA Ñ KbB, β : qB Ñ KbC,
γ : qC Ñ K b D. We define successively first Eα Ą B0 and αE , ᾱE : A Ñ Eα
as above, then β 1 : qEα Ñ K b C such that the restriction of β 1 to qB0 is



KK WITH EXTRA STRUCTURES 13

homotopic to β. We let C0 denote the hereditary subalgebra of K b C gen-
erated by β 1pqEαq. Then we define Eβ1 as before and get homomorphisms
β 1
E , β̄

1
E : Eα Ñ Eβ1. We then take γ1 : qEβ1 Ñ K b D such that its restriction

to qC0 is homotopic to γ and get homomorphisms γ1
E, γ̄

1
E : Eβ1 Ñ Eγ1 .

We can now apply Proposition 3.9 to determine the two products γ1 7 pβ 17αq
and pγ17β 1q 7α. They will be homotopic to γ7pβ7αq and pγ7βq7α. By Remark
3.3 and Corollary 3.10 the previous products can be described as γ17ω1 and
ω27α with

ω1 “ qpβ 1
EαE ‘ β̄ 1

EᾱE , β̄
1
EαE ‘ β 1

EᾱEq

ω2 “ qpγ1
Eβ

1
E ‘ γ̄1

Eβ̄
1
E , γ̄

1
Eβ

1
E ‘ γEβ̄

1
Eq

We can now apply Proposition 3.9 to both products. By the special form of
ω1, the homomorphisms γ1

E, γ̄
1
E can be composed with the homomomorphisms

occuring in the two components of ω1. Therefore γ1 extends to Eω1
and we

are in the situation of 3.9. Second, the two homomorphisms defining ω2 can
be composed with αE , ᾱE and therefore ω2 extends to Eα. When we apply
Proposition 3.9 to γ1 7 pβ 17αq and pγ17β 1q 7α and use the special form of ω1, ω2

we find that in both cases the triple product is given by

qpγ1
Eβ

1
EαE‘γ̄1

Eβ̄
1
EαE‘γ1

Eβ̄
1
EᾱE‘γ̄1

Eβ
1
EᾱE , γ̄

1
Eβ

1
EαE‘γ1

Eβ̄
1
EαE‘γ̄1

Eβ̄
1
EᾱE‘γ1

Eβ
1
EᾱEq

4. The ideal related case

All ideals in C*-algebras in this section will be closed and two-sided.

Definition 4.1. Let X be a topological space and OpXq its lattice of open
subsets. An action of X on a C*-algebra A with ideal lattice IpAq is an order
preserving map OpXq Q U ÞÑ ApUq P IpAq.

Let A,B be C*-algebras with an action of X .

A homomorphism (or also a linear map) ψ : A Ñ B is said to be X-equivariant
if ψ maps ApUq to BpUq for each U P OpXq.

A homomorphism ϕ from qA to B is said to be weakly X-equivariant, if the
maps A Q x ÞÑ ϕpιpxqzq, x ÞÑ ϕpῑpxqzq are X-equivariant for each z P qA.

We say that ϕ : qA Ñ B is qX-equivariant if the map A Q x ÞÑ ϕpqxq is
X-equivariant.

Finally, given X and a C*-algebra A with an action of X , we can define actions
ofX onQA and qA by letting QApUq and qApUq be the closed ideals generated
by QpApUqq in QA and by QpApUqqqA ` `qAQpApUqq in qA, respectively
(these are the kernels of the natural maps QA Ñ QpA{ApUqq and qA Ñ
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qpA{ApUqq). We denote QA, qA with these actions by QXA, qXA. Then

0 Ñ qXA Ñ QXA Ñ A Ñ 0

is an X-equivariant exact sequence with equivariant splitting ι : A Ñ QXA.

Proposition 4.2. Let A,B be C*-algebras with an action of X and ϕ a ho-
momorphism qA Ñ B. The following are equivalent

‚ ϕ is weakly X-equivariant
‚ ϕ is qX-equivariant
‚ ϕ is X-equivariant as a homomorphism qXA Ñ B

Proof. Assume that ϕ is qX -equivariant. By Proposition 2.1, qA is the closed
span of elements qy w for y P A and w P qA. Then ϕpιpxqqy wq “ ϕpqpxyqwq ´
ϕpqx ῑpyqwq is in BpUq whenever x is in ApUq for all y P A, w P qA. Similarly
for ϕpῑpxqqy wq, which shows that ϕ is weakly X-equivariant.
Conversely, assume that ϕ is weakly X-equivariant. Let x P ApUq and puλq
an approximate unit for qA. Then ϕpqxq “ limλ ϕpqx uλq “ limλ ϕppιpxq ´
ῑpxqquλq P BpUq.
If ϕ is weaklyX-equivariant then ϕpqA ιpxqqAq and ϕpqA ῑpxqqAq are contained
in BpUq for all x P ApUq and thus, by definition of qXApUq we get that
ϕpqXApUqq Ă BpUq.
Finally, if ϕ : qXA Ñ B is X-equivariant, then ϕpQpApUqqqAq Ă BpUq which
means that ϕ is weakly X-equivariant. �

Definition 4.3. Let A,B be C*-algebras with an action of X. We define
KKpX ;A,Bq as the set of homotopy classes of weakly X-equivariant homo-
morphisms (or equivalently of qX-equivariant morphisms) qA Ñ K b B (with
homotopy in the category of such morphisms).
Equivalently this is the set of equivariant homotopy classes of X-equivariant
homomorphisms qXA Ñ K b B.

In the X-equivariant case the construction of the product actually carries over
directly from section 3. We can apply the arguments from there basically
verbatim to qXA in place of qA because all the maps and homotopies occuring
in the discussion are naturally X-equivariant. In particular, the automorphism
σ used in the construction of ϕA is inner and therefore respects ideals and is
X-equivariant. This in turn implies that ϕA also is X-equivariant as a map
from qXA to M2pq2XAq with q2XA “ qXpqXAq. Moreover, the homotopies used
in the proofs of Propositions 3.4 and 3.6 are manifestly X-equivariant. We
obtain

Proposition 4.4. Let A, B, C be C*-algebras with an action of the topological
space X. There is a natural bilinear and associative product KKpX ;A,Bq ˆ
KKpX ;B,Cq Ñ KKpX ;A,Cq which extends the composition product of X-
equivariant homomorphisms.
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5. KKnuc via the qA formalism

We start with a discussion of nuclear and weakly nuclear linear maps between
C*-algebras. While nuclearity is most often studied in the context of com-
pletely positive maps, Pisier considered the case for more general linear maps
in [15, Chapter 12]. Since we think that these notions have some indepen-
dent interest we do this in more detail than what is actually needed for our
purposes.

Definition 5.1. Let ρ : A Ñ B be a linear map between C*-algebras. We let
}ρ}nuc (the nuclear norm) denote the infimum over all K ě 0 for which

ρ b id : A balg D Ñ B bmax D

is bounded by K for all C*-algebras D, if we equip Abalg D with the minimal
C˚-tensor norm. We say that ρ is nuclear if }ρ}nuc is finite.

In comparison, a linear map φ : A Ñ B between C˚-algebras is completely
bounded (resp. weakly decomposable2) if there is a constant K such that the
map φb id : AbalgD Ñ B balgD is bounded in norm by K when both tensor
products are equipped with the minimal (resp. maximal) C˚-tensor product.

Since it suffices to check complete boundedness for D being matrix algebras,
it follows that weakly decomposable maps are completely bounded.

Note that if ρ : A Ñ B is nuclear (or weakly decomposable) and ρ takes values
in a C˚-subalgebra B0 Ď B, the corestriction ρ|B0 is not necessarily nuclear (or
weakly decomposable) since the map B0 bmaxD Ñ BbmaxD is not necessarily
faithful. However, the map B0 bmaxD Ñ BbmaxD is faithful if B0 is a hered-
itary C˚-algebra so in that case ρ|B0 is still nuclear (or weakly decomposable).
This explains why we often consider hereditary C˚-subalgebras, instead of just
ordinary subalgebras, in the theory below.

If E is a C˚-algebra with closed ideal B, a linear map ψ : A Ñ E is called
weakly nuclear (relative to B) if ψb : A Ñ B (i.e. the map x ÞÑ ψpxqb) is
nuclear for all b P B. We address in Remark 5.3 why this notion agrees with
the more traditional notion of weak nuclearity.

Here are some easy observations on nuclear linear maps. IfX is a C*-subalgebra

of a C*-algebra Y , we denote in the following by X
Y
the hereditary subalgebra

XYX of Y generated by X .

Lemma 5.2. Let A,B,C,D be C˚-algebras.

2This name is motivated by the result from [15, Chapter 14] (which is due to Kirch-
berg) where this definition is shown to be equivalent to the map φ : A Ñ B Ď B˚˚ being
decomposable, i.e. a linear combination of completely positive maps.
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(1) For a fixed K ě 0, the set of linear maps ρ : A Ñ B with }ρ}nuc ď K

is closed in the point-norm topology.
(2) The set of nuclear linear maps A Ñ B is a Banach space with respect

to the nuclear norm.
(3) If ρ : A Ñ B is nuclear and D is a nuclear C˚-algebra, then idD b ρ

extends canonically to a nuclear map D b A Ñ D b B.
(4) If ρ : A Ñ B is completely positive and nuclear then }ρ}nuc “ }ρ}.
(5) If φ : A Ñ B, ρ : B Ñ C and ψ : C Ñ D are linear maps such that φ is

completely bounded, ρ is nuclear, and ψ is weakly decomposable, then
ψρφ is nuclear.

(6) If ψ : A Ñ E is a homomorphism with an ideal B ✁ E, and if b P B

such that ψb is nuclear, then }ψb}nuc ď }b}.
(7) If ψ : A Ñ E is a homomorphism with an ideal B ✁ E, and if X Ď B

is a subset such that B is generated as a closed right ideal by X, then
ψ is weakly nuclear relative to B provided ψb is nuclear for all b P X.

Proof. (1), (2), and (5) are immediate to verify, while (4) is classical, see for
instance [1, Theorem 3.5.3].

(3): That idD b ρ extends is immediate from the definition of nuclearity of ρ,
and nuclearity of idD b ρ follows since idE b idD b ρ extends to a linear map

E bmin pD b Aq “ pE b Dq bmin A Ñ pE b Dq bmax B “ E bmax pD b Bq

bounded by }ρ}nuc for any C
˚-algebra E by nuclearity of D and ρ.

(6): Note that θ : A Ñ B given by θpxq “ b˚ψpxqb is both completely positive
and nuclear (it is the nuclear map ψb multiplied by b˚), and thus }θ}nuc ď }b}2

by (4). Let D be a non-zero C˚-algebra and x “
řN
j“1 aj b dj P AbalgD with

minimal tensor norm }x}min “ 1. Then

}pψb b idDqpxq}max “ }
N
ÿ

j“1

ψpajqb b dj}max

“ }
N
ÿ

i,j“1

θpa˚
i ajq b d˚

i dj}
1{2
max

“ }pθ b idDqpx˚xq}1{2
max

ď }θ}1{2
nuc

ď }b}.

(7): This is an easy consequence of parts (2) and (6). �

Remark 5.3. Classically a homomorphism (or completely positive map) ψ : A Ñ
E being weakly nuclear relative to a closed ideal B means that b˚ψb : A Ñ B is
nuclear for all b P B. We will show that this agrees with our definition above.



KK WITH EXTRA STRUCTURES 17

If ψb is nuclear then clearly so is b˚ψb so one implication is obvious. Conversely,
suppose c˚ψc is nuclear for all c P B, so that we should show that ψb is nuclear
for all b P B. Let peλqλ be an approximate identity in B. By Lemma 5.2(1)
it suffices to show that there is an upper bound on the nuclear norms of the
maps eλψb. By the polarisation identity we have

eλψb “
1

4

3
ÿ

j“0

ijpijeλ ` bq˚ψp.qpijeλ ` bq

and by Lemma 5.2(4) we obtain

}eλψb}nuc ď
1

4

3
ÿ

j“0

}pijeλ ` bq˚ψp.qpijeλ ` bq} ď p1 ` }b}q2}ψ}.

Hence ψb is nuclear.

If X is a C*-subalgebra of the multiplier algebra MpY q, we denote by X
Y

the hereditary subalgebra XYX of Y generated by X (note that XYX is a
C˚-algebra by the Cohen–Hewitt factorisation theorem).

Proposition 5.4. Let ψ : qA Ñ B be a homomorphism. The following are
equivalent:

(i) The map A Q x ÞÑ ψpqxq P B is nuclear;
(ii) The maps A Ñ B given by x ÞÑ ψpιpxqyq and x ÞÑ ψpῑpxqyq are nuclear

for all y P qA;
(iii) ψ is represented by a prequasihomomorphism

pψ1, ψ2q : A Ñ E ✄ J ãÑ B

where ψ1, ψ2 are weakly nuclear relative to J ;

(iv) If ψ˝ : QA Ñ MpψpqAq
B

q is the canonical extension of ψ, then ψ˝ι

and ψ˝ῑ are weakly nuclear.
(v) If E “ ψpqAqB is considered as a Hilbert B-module, the Kasparov

module
´

ψ˝ι ‘ ψ˝ῑ : A Ñ BpE ‘ Eopq,
´

0 1

1 0

¯¯

is nuclear in the sense of Skandalis.

Proof. With E as in (v), BpEq is canonically isomorphic to MpψpqAq
B

q and
hence (iv) and (v) are equivalent by [16, 1.5].

(iv) implies (iii) is immediate since ψ is induced by

pψ˝ι, ψ˝ῑq : A Ñ MpψpqAq
B

q ✄ ψpqAq
B

ãÑ B.

For (iii) ñ (ii) we have x ÞÑ ψpιpxqyq “ ψ1pxqψpyq is nuclear for all y P qA,
and similarly x ÞÑ ψpῑpxqyq is nuclear.
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For (ii) ñ (i), let for y P qA ψy, ψ̄y : A Ñ B be the completely positive maps
given by ψypxq “ ψpy˚ιpxqyq and ψ̄ypxq “ ψpy˚ῑpxqyq which are nuclear by (ii).
As these maps are completely positive, their nuclear norm }ψy}nuc “ }ψy} ď
}y}2 (Lemma 5.2(4)), and similarly }ψ̄y}nuc ď }y}2. Hence

x ÞÑ ψpy˚ qx yq “ ψypxq ´ ψ̄ypxq

has nuclear norm bounded by 2}y}2. Letting y range through an approximate
identity for qA, these nuclear maps converge point-norm to x ÞÑ ψpqxq and
have nuclear norm bounded by 2, so }x ÞÑ ψpqxq}nuc ď 2 by Lemma 5.2(1).

(i) ñ (iv): By Proposition 2.1, ψpqAq
B
is generated as a closed left ideal by

tψpqaq : a P Au. So to check that ψ˝ι is weakly nuclear it suffices by Lemma
5.2(7) to check that

x ÞÑ ψ˝ιpxqψpqaq “ ψpιpxqqaq
2.1
“ ψpqpxaqq ´ ψpqpxqqψ˝ῑpaq

is nuclear, which holds by Lemma 5.2(5) (applied to the weakly decomposable
maps given by right multiplication by a fixed element). Similarly ψ˝ῑ is weakly
nuclear. �

Definition 5.5. We say that a homomorphism ψ : qA Ñ B is q-nuclear if it
satisfies the equivalent conditions in the above proposition.

Definition 5.6. We define KKnucpA,Bq as the abelian group rqA,KbBsnuc of
homotopy classes (in the same category of maps) of q-nuclear homomorphisms
qA Ñ K b B.

Remark 5.7. The definition of KKnucpA,Bq from [16] for A separable and
B σ-unital uses the original definition of Kasparov but assuming all Kasparov
modules and homotopies are nuclear. The argument from [5] combined with
Proposition 5.4 shows that the obvious map from Skandalis’ KKnuc-group to
rqA,K b Bsnuc is an isomorphism. This map, in particular, takes a Kasparov
module induced by a prequasihomomorphism as in Proposition 5.4(iii) (with
KbB instead of B) to the induced q-nuclear homomorphism φ : qA Ñ KbB.

Remark 5.8. A C*-algebra A is K-nuclear in the sense of Skandalis, if and
only if the natural projection πA : qA Ñ A composed with the inclusion
A Ñ K b A is homotopic to a q-nuclear homomorphism qA Ñ K b A.

We now discuss the product of elements in KKnuc by elements in KK. We
want to see that our formula in Subsection 3.1 for the product of two KK-
elements represented by ρ : qA Ñ K b B and ψ : qB Ñ K b C gives a well
defined element in KKnucpA,Cq if ρ or ψ is q-nuclear. The product, as we
defined it, depends only on the restriction of ψ to qpρpqAqq. But if ρ : qA Ñ B

is q-nuclear then we don’t know if ρ : qA Ñ ρpqAq is too. Therefore we apply
the formula for the product from Section 3 to the corestrictions/restrictions

ρ0 : qA Ñ B0 and ψ0 : qB0 Ñ C0 of ρ and ψ, where B0 “ ρpqAq
B
, and
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C0 “ ψpqB0q
C
are the hereditary subalgebras generated by ρpqAq and ψpqB0q.

Then ρ0 is q-nuclear iff ρ is and ρ “ jB0
˝ρ0 for the embedding jB0

: B0 Ñ KbB
(and the same for ψ and ψ0). Similarly we denote by pψ07ρ0q0 the corestriction
of ψ07ρ0 to the hereditary subalgebra C0 generated by the image of ψ07ρ0. The
product in KK without nuclearity condition of ψ and ρ will be the same as
the product pψ07ρ0q0 composed with the embedding jC0

: C0 ãÑ K b C (see
Remark 3.3 (b)). We call ρ0, ψ0 the completed form of ρ, ψ and pψ07ρ0q0 the
completed product.
We consider the two maps ηψ, η̄ψ : B0 Ñ MpC0q given by ηψ “ ψ˝

0ιB0
, η̄ψ “

ψ˝
0 ῑB0

(with ιB0
, ῑB0

: B0 Ñ QB0 the natural inclusions) and set Rψ
1 “ ηψpB0q,

R
ψ
2 “ η̄ψpB0q and let Rψ be the C*-algebra generated in M2pMpC0qq by the

matrices in
ˆ

R
ψ
1 R

ψ
1R

ψ
2

R
ψ
2R

ψ
1 R

ψ
2

˙

We also denote by J0 the intersection of Rψ with M2pC0q.
We can extend ηψ, η̄ψ to maps from the multipliers of B0 to the multipliers
of Rψ

1 , R
ψ
2 respectively. By composing these extended maps with the natural

maps ερ, ε̄ρ : A Ñ MpB0q (given by ρ˝
0ι and ρ

˝
0ῑ) we obtain maps ηψερ, ηψε̄ρ :

A Ñ MpRψ
1 q and η̄ψερ, η̄ψε̄ρ : A Ñ MpRψ

2 q.
This means that the maps

h
ψρ
1 “

ˆ

ηψερ 0
0 η̄ψε̄ρ

˙

h
ψρ
2 “

ˆ

ηψε̄ρ 0
0 η̄ψερ

˙

are homomorphisms from A to the multipliers of Rψ.

Lemma 5.9. If ρ or ψ is q-nuclear, then h
ψρ
1 and h

ψρ
2 are weakly nuclear

relative to J0.

Proof. Assume that ρ is weakly nuclear. Then the map A Q x ÞÑ vερpxqv˚ is
nuclear for each v P B0 and the same for ε̄ρ. If we apply ηψ to this map we see
that A Q x ÞÑ wηψερpxqw˚ is nuclear for each w P ηψpB0q. If we multiply w in
this map by y P C0 on the left we find that A Q x ÞÑ ywηψερpxqw˚y˚ is nuclear
for each w P ηψpB0q and y P C0 and the same for η̄ψ and ε̄ρ in place of ηψ

and/or ερ. By matrix multiplication this shows that the maps A Q x ÞÑ zh
ψρ
i z

˚

are nuclear for i “ 1, 2 and each z P J0.
Assume now that ψ is q-nuclear.
If puλq is an approximate unit for B0, then, by the special definition of Rψ, we

have that zhψρ1 puλq and zhψρ2 puλq tend to z for each z P Rψ.
By q-nuclearity of ψ, for each z P J0 the map A Q x ÞÑ zηψpuλε

ρpxqu˚
λqz˚ is

nuclear for each λ and the same for η̄ψ and ε̄ρ. In the limit over λ we get
that the map A Q x ÞÑ zηψερpxqz˚ is nuclear as well (as the set of nuclear
c.p. maps is point-norm closed) as the corresponding maps with ηψ and ερ

replaced with η̄ψ and/or ε̄ρ. This shows that for i “ 1, 2 and y P J0 the maps



20 JOACHIM CUNTZ AND JAMES GABE

A Q x ÞÑ yh
ψρ
i pxqy˚ are nuclear and thus that hψρ1 , h

ψρ
2 are weakly nuclear

relative to J0. �

We now examine the product of the bivariant elements represented by ρ0 and
ψ0. As in the universal case we have that Rψ{J0 – M2pB0q and we can lift the

multiplier
´

0 1

1 0

¯

to a multiplier S0 of J0 that commutes mod J0 with ηεpxq ‘

η̄εpxq for x P A. We set F0 “ e
πi
2
S0 and σψt “ Ad e

πi
2
S0 and σψ “ σ

ψ
1 . If h

ψρ
2 is

weakly nuclear relative to J0, so is the composition σψhψρ2 . The homomorphism

pψ0 7 ρ0q0 “ qphψρ1 , σψh
ψρ
2 q : qA Ñ M2pC0q represents the product and defines

an element of KKpA,C0q which, by Lemma 5.9, is q-nuclear whenever ρ or ψ
is. We get

Proposition 5.10. The pairing pψ0, ρ0q ÞÑ jC0
pψ0 7 ρ0q0 induces well defined

bilinear products KKnucpA,Bq ˆ KKpB,Cq Ñ KKnucpA,Cq and
KKpA,Bq ˆ KKnucpB,Cq Ñ KKnucpA,Cq.

Proof. The product jC0
˝ ψ0 7 ρ0 represents an element of KKnucpA,Cq by

Lemma 5.9 and the discussion after the lemma. It is well defined since q-
nuclear homotopies on the side of rqA,K b B0snuc or rqB0,K b C0snuc induce
elements ofKKnucpA,B0r0, 1sq orKKnucpB0, C0r0, 1sq. The product with such
an element gives q-nuclear homotopies of the product. �

5.1. Associativity. Assume that we have elements inKKpA,Bq, KKpB,Cq,
KKpC,Dq represented by homomorphisms α : qA Ñ KbB, β : qB Ñ KbC,
γ : qC Ñ K b D and assume that one of those is q-nuclear. In order to
show that the two different products γ 7 pβ7αq and pγ7βq 7α are homotopic
via a q-nuclear homotopy and are themselves both q-nuclear we can proceed
exactly as in subsection 3.4. Using the notation from there we obtain modified
homomorphisms α, β 1, γ1. By Proposition 5.10, β 1, γ1 will be q-nuclear if β
resp. γ is. According to subsection 3.4 the product is given for both choices
of parentheses by the homomorphism qA Ñ D0 Ă K b D given by

qpγ1
Eβ

1
EαE‘γ̄1

Eβ̄
1
EαE‘γ1

Eβ̄
1
EᾱE‘γ̄1

Eβ
1
EᾱE , γ̄

1
Eβ

1
EαE‘γ1

Eβ̄
1
EαE‘γ̄1

Eβ̄
1
EᾱE‘γ1

Eβ
1
EᾱEq

It is q-nuclear by Proposition 5.10.

Remark 5.11. (a)In the situation above it follows from Proposition 5.10 that
the two products with different choice of parentheses are q-nuclear, if one of
the α, β, γ is. But if we have already established that the product is given by
the long expression above and that β 1 or γ1 is q-nuclear once β or γ is q-nuclear,
then the q-nuclearity of the product is obvious. In fact we get the chain of
ideals

γ1
Eβ

1
EαEA Ź γ1

Eβ
1
EB0 Ź γ1

EC0 Ź D0
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and an analogous chain of ideals for each composition γ1
Eβ

1
EαE , γ̄

1
Eβ̄

1
EαE . . ..

This shows that each of these compositions is weakly nuclear relative to D0 as
soon as one of the α, β, γ is q-nuclear.
(b) For the proof of associativity of the product in KKnuc we could also adapt
the arguments from subsection 3.2 or from [6], but the proof in subsection 3.4
is particularly well suited for the situation in KKnuc.

6. The equivariant case

Let G be a locally compact σ-compact group. A G-C*-algebra is a C*-
algebra with an action of G by automorphisms αg, g P G such that the map
G Q g ÞÑ αgpxq is continuous for each x P A. We denote by K “ KN the alge-
bra of compact operators on ℓ2N and by KG the algebra KpL2Gq of compact
operators on L2G. They are G-algebras with the trivial action and with the
adjoint action Adλ of G, respectively, where λ : G Ñ UpL2Gq is the left regular
representation. We also denote by KNG their tensor product with the tensor
product action and will later use the fact that KNG is equivariantly isomorphic
to KNG b KNG (by Fell’s absorption principle the tensor product of λ by any
unitary representation of G is equivalent to a multiple of λ).

Given a G-C*-algebra pA, αq we consider the Hilbert A-module L2pG,Aq with
the natural action of G given by λα where λ is the action by translation on
G. The algebra of compact operators on L2pG,Aq in the sense of Kasparov is
isomorphic to KG b A. The induced action of G on KG b A is Adλ b α.

Since A ÞÑ QA is a functor, the action α induces actions of G on QA, qA and
on Q2A, q2A,R, J (see Section 3) which we still denote by α.

Definition 6.1. Given G-C*-algebras pA, αq and pB, βq where A is separable,
define KKGpA,Bq as the set of homotopy classes (in the category of equivari-
ant homomorphisms) of equivariant *-homomorphisms from KNGbqpKNGbAq
to KNG b B.

Remark 6.2. (a) The pair of homomorphisms pid b ι, id b ῑq gives an equi-
variant homomorphism from qpKNG b Aq to KNG b qA. Therefore every equi-
variant homomorphism qA Ñ KNG b B (or equivalently every equivariant
prequasihomomorphism A Ñ KNG bB) induces by stabilization an element of
KKGpA,Bq.
(b) It is a consequence of Definition 6.1 that the so defined KKG is the uni-
versal functor satisfying the usual properties of homotopy invariance, stability
and split exactness, see Section 7. Using the characterization of KKG by these
properties in [18] our KKG is the same as the one of Kasparov [11]. Ralf Meyer
has shown in [13] by direct comparison that Definition 6.1 gives the same func-
tor as the one of [11].
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(c) Using Meyer’s result our construction of the product below gives an alter-
native definition of the product in Kasparov’s KKG.

In order to describe the composition product for KKG we will use an equi-
variant version of the map ϕA in Section 3 this time from qpKNG b Aq to
M2pq

2pKNGbAqq. As a first step we are now going to construct an equivariant
map ϕ0 from qpKG bAq to M2pKG b q2Aq.

We consider first, as in Section 1, the algebras

R “

ˆ

R1 R1R2

R2R1 R2

˙

D “ C˚

"ˆ

ηεpxq 0
0 η̄εpxq

˙

x P A

*

where R1 “ ηpqAq, R2 “ η̄pqAq as well as the ideal J “ R X M2pq2Aq.

As in Section 3 we have that pR `Dq{J is isomorphic to the subalgebra of
M2pQpAqq generated by M2pqAq together with the matrices

ˆ

ιpxq 0
0 ιpxq

˙

x P A.

Using the equivariant version of Proposition 2.2 (Thomsen’s noncommutative

Tietze extension theorem) we can lift the multiplier S0 “

ˆ

0 1
1 0

˙

of R{J to a

self-adjoint multiplier S of J that commutes mod J with D and which satisfies
αgpSq ´ S P J for all g P G.

This multiplier S can be extended to a G-invariant self-adjoint element S 1 of
BpL2pG, Jqq by setting S 1pξqpsq “ Ssξpsq for s P G where Ss “ αspSq “ αsSα

´1
s

and where ξ P CcpG,Aq Ă L2pG,Aq. It is immediate that S 1 is invariant for
the action λα of G on L2pG, Jq. Thus S 1 defines a G-invariant multiplier of
KG b J .

The important point now is that moreover S 1 commutes mod KG b J with
D1 “ KG b D. In fact, for a typical rank 1 element of the form | f1 y x f2 | in
KG with f1, f2 P CcpG,Cq, x P D and ξ P CcpG, Jq Ă L2pG, Jq we get

prS 1, p|f1y xf2| b xqs ξq psq “ f1psq

ż

pf2ptqpSsx ´ xStqqξptqdt

“ f1psq

ż

pf2ptqpSsx´ Stxqqξptqdt´ f1psq

ż

pf2ptqpStx´ xStqqξptqdt

where Stx´xSt, Ssx´Stx are in J and continuous in t. In fact, S was chosen,
using 2.2 to commute mod J with D and such that Ss ´ S, St ´ S are in J

and continuous in s, t.
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As in Section 3 we can now choose F 1 “ e
πi
2
S1

. Then AdF 1 defines an auto-
morphism σ1 of the multipliers of KG b J . Tensoring by idKG

we extend the
maps ηε, ηε̄, η̄ε, η̄ε̄ : A Ñ Q2A to homomorphisms from KG bA to KG bQ2A,
still denoted by ηε, ηε̄, η̄ε, η̄ε̄. Then the pair of homomorphisms

ˆˆ

ηε 0
0 η̄ε̄

˙

, σ1

ˆ

η̄ε 0
0 ηε̄

˙˙

defines an equivariant homomorphism ϕ0 : qpKGbAq to KGbJ (note that, by

definition of R, both

ˆ

ηε 0
0 η̄ε̄

˙

and

ˆ

η̄ε 0
0 ηε̄

˙

map KG bA to the multipliers

of KG b R).

We can now stabilize the algebras involved in the definition of ϕ0 by KNG.
Setting A1 “ KNG b A and using the fact that KNG b KNG – KNG we obtain
the stabilized equivariant map

ϕ1
A : KNG b qA1 Ñ KNG b J 1

where J 1 “ R1 X q2pA1q. As in the non-equivariant case, the map ϕ1
A induces

the associative product KKGpA,Bq ˆ KKGpB,Cq Ñ KKGpA,Cq as follows:
let elements of KKGpA,Bq and of KKGpB,Cq be represented by equivariant
maps

KNG b qpKNG b Aq
µ

Ñ KNG b B and KNG b qpKNG b Bq
ν

Ñ KNG b C

respectively. Using the fact that KNG – KNG b KNG, we get a map

q2pKNG b Aq – q2pKNG b KNG b Aq
κ

Ñ qpKNG b qpKNG b Aq

and, using this, we can form the following composition

KNG b qpKNG b Aq
ϕ1

AÝÑ KNG b q2pKNG b Aq
κ

Ñ KNG b qpKNG b qpKNG b Aqq
idbqpµq
ÝÑ KNG b qpKNG b Bq

ν
Ñ KNG b C

which represents the product in KKGpA,Cq.

6.1. Associativity. Associativity of the product in KKG follows as in Sub-
section 3.2 since all the isomorphisms and homotopies used there are manifestly
G-equivariant once the automorphisms σt are chosen to be equivariant.

7. Universality and connection to the usual definitions

We show now that the functors KKpX ; ¨ q and KKG that we have studied in
Sections 4 and 6 are characterized - just like ordinary KK - by split exactness
together with homotopy invariance and stability in their respective category.
It seems that KKnuc could also be characterized by a suitable more involved
split exactness property for exact sequences with a weakly nuclear splitting.
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We leave that open - partly also because we think that such a characterization
would be of minor interest.
Split exactness on equivariant, equivariantly split exact sequences does in fact
follow for the functors KKpX ; ¨ q and KKG that we have studied in Sections
4 and 6 from the existence of the product, by the simple argument in [6, 2.1].

7.1. The case of ideal related KK-theory. Let X be a topological space.

Proposition 7.1. KKpX ; ¨ , ¨ q is the universal functor from the category of
separable C*-algebras with an action of X to an additive category which is
stable, homotopy invariant and split exact on exact sequences of algebras in
the category with an X-equivariant homomorphism splitting.

Proof. Given a C*-algebra A with an action of X , consider the exact sequence

0 Ñ qXA Ñ QXA Ñ A Ñ 0

with the equivariant splitting ι : A Ñ QXA. The usual argument showing
that a free product of C*-algebras is KK-equivalent to the direct sum (see [6]
Proposition 3.1) is compatible with the action of X , so that QXA is equivalent
in KKpX ; ¨, ¨q to A ‘ A with the natural action of X - just by homotopy in-
variance and stability. Let now F be a functor from the category of separable
C*-algebras with an X-action to an additive category which is stable, homo-
topy invariant and equivariantly split exact. Then F pQXAq is isomorphic, via
the natural map, to F pA ‘ Aq “ F pAq ‘ F pAq and by split exactness con-
sequently F pqXAq – F pAq. By Definition 4.3 every element of KKpX ;A,Bq
is represented by an X-equivariant homomorphism qXA Ñ K b B. Apply-
ing F to the homotopy class of such a homomorphism we get a morphism
F pAq – F pqXAq Ñ F pK b Bq – F pBq. Since the isomorphisms involved are
natural this morphism is uniquely determined.
Conversely KKpX ; ¨ q is homotopy invariant, stable and splits on X-equi-
variantly split exact sequences. �

7.2. The case of KKG. If G is a locally compact σ-compact group we also
have

Proposition 7.2. (cf.[13]) KKG is the universal functor on the category of
separable G-C*-algebras which is homotopy invariant, stable under tensor prod-
uct by KNG and split exact on extensions 0 Ñ I Ñ E Ñ A Ñ 0 of G-C*-
algebras with an equivariant splitting homomorphism s : A Ñ E.

Proof. Let F be a functor with the given properties from the category of G-C*-
algebras to an additive category and set A1 “ KNG bA. Homotopy invariance
and stability of F imply that F pQA1q – F pA1 ‘ A1q (by the argument in [6]
Proposition 3.1 which is compatible with the action of G). Split exactness
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implies that F pQA1q – pF pqA1q ‘ F pA1q and finally that F pqA1q – F pA1q
naturally. Since also F pA1q – F pAq for all A by stability, the assertion then
follows from the definition of KKG, see 6.1.
Conversely, KKG is equivariantly split exact by the remark at the beginning
of the section. �

7.3. Connection to the usual definitions. The usual definitions of the
different versions of KKpA,Bq are based on A-B Kasparov modules pE, F q
with additional structure. In such a Kasparov module one can always assume
that F “ F ˚ and F 2 “ 1. Conjugation of the (first component for the Z{2-
grading of the) left action ϕ of A on E by F gives a second homomorphism ϕ̄ :
A Ñ BpEq. Depending on the situation, ϕ will ‘weakly’ respect the additional
structure (X-equivariance, G-equivariance or nuclearity respectively). Now
in order to get a homomorphism from qA to KpEq respecting the additional
structure we need to know that ϕ̄ also respects the structure ‘weakly’. Since
ϕ̄ “ AdFϕ, and AdF is inner, this is automatic for X-equivariance. In the
case of KKG this has been established in the paper by Ralf Meyer. In the case
of KKnuc the equivalence between q-nuclear homomorphisms qA Ñ KpEq and
nuclear Kasparov modules has been shown in Proposition 5.4. In the case of
KKG and KKpXq we get the equivalence then from the universality of our
definition.
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[9] Joachim Cuntz and Andreas Thom. Algebraic K-theory and locally convex algebras.

Math. Ann., 334(2):339–371, 2006.
[10] Kjeld Knudsen Jensen and Klaus Thomsen. Elements of KK-theory. Mathematics:
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