GENERALIZED HOMOMORPHISMS AND $K K$ WITH EXTRA STRUCTURES

JOACHIM CUNTZ AND JAMES GABE

Abstract

We develop the approach via quasihomomorphisms and the universal algebra $q A$ to Kasparov's $K K$-theory, so as to cover versions of $K K$ such as $K K^{\text {nuc }}, K K^{G}$ and ideal related $K K$-theory.

1. Introduction

Kasparov's $K K$-theory is a main tool in the theory of operator algebras and noncommutative geometry. It is based on a very flexible but not easy formalism developed by Kasparov. In [5] and [6] the first named author has introduced an alternative more algebraic approach based on quasihomomorphisms and the universal algebra $q A$ associated with an algebra A. In this picture elements of $K K(A, B)$ are represented by homomorphisms from $q A$ to $\mathcal{K} \otimes B$ where \mathcal{K} denotes the standard algebra of compact operators on $\ell^{2} \mathbb{N}$. One merit of this approach is a simple and universal construction of the product in $K K$ from which in particular associativity becomes very natural. Since many important $K K$-elements come naturally from quasihomomorphisms, at the same time it can be used to treat $K K$-elements that occur in 'nature'. Note that there are possible definitions of $K K(A, B)$ that make the product and its associativity automatic but have the disadvantage that $K K$-elements appearing in applications never fit the definition naturally - take for instance the possible definition as homotopy classes of homomorphisms from $\mathcal{K} \otimes q A$ to $\mathcal{K} \otimes q B$. There also is the approach of [7, 9] which is based on the use of the universal algebra $q A$ too, and works also for Banach and locally convex algebras and in fact even much more general algebras [4], 8]. The definition and especially the product however uses higher quasihomomorphisms (maps from $q^{n} A$ rather than from $q A$). In applications to C^{*}-algebras e.g. for classification this is not good enough because there it is usually important that a $K K$-element can be represented by a prequasihomomorphism instead of a Kasparov-module.

[^0]One strength of Kasparov's formalism is the fact that by now it has been extended to define very useful versions of $K K$ for categories of C*-algebras with additional structure such as equivariant $K K$-theory [11], $K K^{\text {nuc }}$ [16] or ideal related $K K$-theory [12]. In this article we adapt the formalism of [6] to allow for these additional structures. We will give definitions of the various $K K$-theories using the approach via the universal algebra $q A$ and establish the associative product in each case. In section 7 we will explain that our construction reproduces the $K K$-theories defined previously in the papers cited above. Moreover we will see there that in the case of equivariant and ideal related $K K$-theory we obtain a universal functor with the usual properties of split exactness, homotopy invariance and stability.
An nice feature of our approach is the fact that the ideal preserving or nuclearity condition on a homomorphism $\varphi: q A \rightarrow B$ can be characterized by a simple criterion. In fact, these conditions can already be checked on the linear map $A \ni x \mapsto \varphi(q x)$ (where $q x$ is one of the standard generators of $q A$). This description of $K K^{n u c}$ will be used in upcoming work of the second named author [3] to simplify functoriality of this functor similar to how this formalism was used in [2, Appendix B.1].

The most established and probably the most important of the $K K$-theories we discuss is the equivariant theory $K K^{G}$. This version of $K K$ has been discussed on the basis of the $q A$ approach by Ralf Meyer in [13. In fact one basic idea in his approach appears also in our discussion. We mention however that Meyer does not touch the Kasparov product at all. Using Meyer's result we get a new description of the product in Kasparov's $K K^{G}$.
For the construction of the product we will not use Kasparov's technical theorem as in [11] or Pedersen's derivation lifting theorem as in [6] but Thomsen's somewhat simpler noncommutative Tietze extension theorem [10, 1.1.26]. In the equivariant case we will also need a new equivariant version of this theorem which we prove in section 2.

2. Preliminaries

Notation: In the following, homomorphisms between C^{*}-algebras will always be assumed to be ${ }^{*}$-homomorphisms. By \mathcal{K} we denote the standard algebra of compact operators on $\ell^{2} \mathbb{N}$. There is a natural isomorphism $\mathcal{K} \cong \mathcal{K} \otimes \mathcal{K}$. A C^{*}-algebra A is called stable if $A \cong \mathcal{K} \otimes A$. Given a C^{*}-algebra A we denote by $\mathcal{M}(A)$ its multiplier algebra. If $\varphi: A \rightarrow B$ is a σ-unital homomorphism between C^{*}-algebras, we denote by φ° its extension to a homomorphism $\mathcal{M}(A) \rightarrow \mathcal{M}(B)$.

Let A be a C^{*}-algebra. We denote by $Q A$ the free product $A \star A$ and by $\iota, \bar{\iota}$ the two natural inclusions of A into $Q A=A \star A$. We denote by $q A$ the kernel
of the natural map $A \star A \rightarrow A$ that identifies the two copies $\iota(A)$ and $\bar{\iota}(A)$ of A. Then $q A$ is the closed two-sided ideal in $Q A$ that is generated by the elements $q x=\iota(x)-\bar{\iota}(x), x \in A$.
There is the natural evaluation map $\pi_{A}: q A \rightarrow A$ given by the restriction to $q A$ of the map id $\star 0: Q A \rightarrow A$ that is the identity on the first copy of A and zero on the second one.

Proposition 2.1. For $x, y \in A$ one has the identity

$$
q(x y)=\iota(x) q(y)+q(x) \bar{\iota}(y)=\bar{\iota}(x) q(y)+q(x) \iota(y)
$$

Finite sums of elements of the form $\iota\left(x_{0}\right) q x_{1} \ldots q x_{n}$ and $q x_{1}, \ldots q x_{n}$ or of the form $q x_{1} \ldots q x_{n} \iota\left(x_{0}\right)$ and $q x_{1}, \ldots q x_{n}$ are dense in $q A$. In particular $q A$ is generated as a closed left or right ideal in $q A$ by the elements $q x, x \in A$.

Proof. The identity for $q(x y)$ is trivially checked. The other statements are consequences (for the assertion on the generation as a closed left or right ideal note that $\iota(y) q x$ is the limit of $\iota(y) u_{\lambda} q x$ for an approximate unit $\left(u_{\lambda}\right)$ in $q A)$.

As in [6] we define a prequasihomomorphism between two C^{*}-algebras A and B to be a diagram of the form

$$
A \xrightarrow{\varphi, \bar{\varphi}} \underset{\rightarrow}{\mathcal{E}} \triangleright J \xrightarrow{\mu} B
$$

i.e. two homomorphisms $\varphi, \bar{\varphi}$ from A to a C^{*}-algebra \mathcal{E} that contains an ideal J, with the condition that $\varphi(x)-\bar{\varphi}(x) \in J$ for all $x \in A$ and finally a homomorphism $\mu: J \rightarrow B$. The pair $(\varphi, \bar{\varphi})$ induces a homomorphism $Q A \rightarrow \mathcal{E}$ by mapping the two copies of A via $\varphi, \bar{\varphi}$. This homomorphism maps the ideal $q A$ to the ideal J. Thus, after composing with μ, every such prequasihomomorphism from A to B induces naturally a homomorphism $q(\varphi, \bar{\varphi}): q A \rightarrow B$. Conversely, if $\psi: q A \rightarrow B$ is a homomorphism, then we get a prequasihomomorphism by choosing $\mathcal{E}=\mathcal{M}(\psi(q A)), J=\psi(q A)$ and $\varphi=\psi^{\circ} \iota, \bar{\varphi}=\psi^{\circ} \bar{\iota}$ as well as the inclusion $\mu: \psi(q A) \hookrightarrow B$.

In this paper we will also have to use an iteration of the $q A$ construction. We will write $Q^{2} A$ for the free product $Q(Q A)=Q A \star Q A$ and $\eta, \bar{\eta}$ for the two natural embeddings of $Q A$ into $Q^{2} A$. We now denote by $\varepsilon, \bar{\varepsilon}$ the two embeddings $A \rightarrow Q A$ and get four embeddings $\eta \varepsilon, \eta \bar{\varepsilon}, \bar{\eta} \varepsilon, \bar{\eta} \bar{\varepsilon}$ of A to $Q^{2} A$. We have the ideal $q A$ generated by the elements $\varepsilon(x)-\bar{\varepsilon}(x), x \in A$ in $Q A$ and the ideal $q^{2} A$ generated by $\eta(z)-\bar{\eta}(z), z \in q A$ in $Q(q A)$.

In Section 6 we will use the following equivariant version of Thomsen's noncommutative Tietze extension theorem which we prove here. Recall that when G is a locally compact group, a G - C^{*}-algebra A is a C^{*}-algebra with a pointnorm continuous action α of G on A. This action extends to a point-strictly
continuous action α° on the multiplier algebra $\mathcal{M}(A)$, where we remark that each automorphism α_{g}° for $g \in G$ is strictly continuous on bounded sets. To simplify notation, we will sometimes write $g \cdot a$ instead of $\alpha_{g}(a)$ for $a \in A$ and $g \in G$ (or instead of $\alpha_{g}^{\circ}(a)$ if $a \in \mathcal{M}(A)$).
Proposition 2.2. Let G be a locally compact σ-compact group, let $0 \rightarrow J \rightarrow$ $A \xrightarrow{\pi} B \rightarrow 0$ be an extension of σ-unital $G-C^{*}$-algebras, and let $X \subset \mathcal{M}(A)$ be a norm-separable self-adjoint subspace. Let $\pi^{\circ}: \mathcal{M}(A) \rightarrow \mathcal{M}(B)$ be the induced homomorphism. For every z in the commutator $\mathcal{M}(B) \cap \pi^{\circ}(X)^{\prime}$ of $\pi^{\circ}(X)$ in $\mathcal{M}(B)$, such that $g \cdot z=z$ for all $g \in G$ there exists $y \in \mathcal{M}(A)$ such that $\pi^{\circ}(y)=z,[y, X] \subseteq J, g \cdot y-y \in J$ for all $g \in G$ and $G \ni g \mapsto g \cdot y$ is norm-continuous.

Proof. We may assume without loss of generality that z is a positive contraction. Let $h \in A$ be strictly positive, let $\mathcal{F} \subset X$ be a compact subset of contractions with dense span $\sqrt[1]{1}$ and let $H_{1} \subseteq H_{2} \subseteq \cdots \subseteq G$ be compact neighbourhoods of the identity such that $G=\bigcup H_{n}$. Since B is also σ-unital, we apply [11, Lemma 1.4] and pick a (positive, increasing, contractive) approximate identity $\left(e_{n}\right)_{n \in \mathbb{N}}$ for B such that

$$
\begin{align*}
\left\|\left(1-e_{n}\right) z^{1 / 2} \pi(h)\right\| & \leqslant 4^{-n} \tag{1}\\
\sup _{x \in \mathcal{F}}\left\|\pi^{\circ}(x) e_{n}-e_{n} \pi^{\circ}(x)\right\| & \leqslant 4^{-n} \tag{2}\\
\sup _{g \in H_{n}}\left\|g \cdot e_{n}-e_{n}\right\| & \leqslant 4^{-n} \tag{3}
\end{align*}
$$

for $n \in \mathbb{N}$. To ease notation let $e_{0}=0$. We will recursively construct positive contractions $0=y_{0} \leqslant y_{1} \leqslant y_{2} \leqslant \ldots$ in A such that for $n \in \mathbb{N}$

$$
\begin{align*}
\pi\left(y_{n}\right) & =z^{1 / 2} e_{n} z^{1 / 2} \tag{4}\\
\left\|\left(y_{n+1}-y_{n}\right) h\right\| & \leqslant 2^{-n} \tag{5}\\
\sup _{x \in \mathcal{F}}\left\|\left[y_{n+1}-y_{n}, x\right]\right\| & \leqslant 2^{-n} \tag{6}\\
\sup _{g \in H_{n}}\left\|g \cdot\left(y_{n+1}-y_{n}\right)-\left(y_{n+1}-y_{n}\right)\right\| & \leqslant 2^{-n} . \tag{7}
\end{align*}
$$

Letting $y_{0}=0$, suppose we have constructed $y_{0} \leqslant \cdots \leqslant y_{n}$ as above. We will explain how to construct y_{n+1}.

Since $z^{1 / 2}\left(e_{n+1}-e_{n}\right) z^{1 / 2} \leqslant 1-z^{1 / 2} e_{n} z^{1 / 2}$, we apply [14, Proposition 1.5.10] to pick $c \in A$ such that $\pi(c)=z^{1 / 2}\left(e_{n+1}-e_{n}\right) z^{1 / 2}$ and $0 \leqslant c \leqslant 1-y_{n}$ in \tilde{A}. Again using [11, Lemma 1.4] we let $\left(v_{k}\right)_{k \in \mathbb{N}}$ be an approximate identity in J which is quasi-central relative to $\left\{c, y_{n}, h\right\} \cup \mathcal{F}$ and such that $\lim _{k \rightarrow \infty} \sup _{g \in H_{n}} \| g \cdot v_{k}-$ $v_{k} \|=0$. Let $y_{n+1}^{(k)}:=y_{n}+c^{1 / 2}\left(1-v_{k}\right) c^{1 / 2}$. We will show that we can pick $y_{n+1}=y_{n+1}^{(k)}$ for sufficiently large k.

[^1]That (4), (5), and (6) are satisfied is exactly as in the proof of [10], so it remains to show (7). For this we compute

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty} \sup _{g \in H_{n}}\left\|g \cdot\left(y_{n+1}^{(k)}-y_{n}\right)-\left(y_{n+1}^{(k)}-y_{n}\right)\right\| \\
= & \limsup _{k \rightarrow \infty} \sup _{g \in H_{n}}\left\|g \cdot\left(\left(1-v_{k}\right) c\right)-\left(1-v_{k}\right) c\right\| \\
= & \limsup _{k \rightarrow \infty} \sup _{g \in H_{n}}\left\|\left(1-v_{k}\right)(g \cdot c-c)\right\| \\
= & \sup _{g \in H_{n}}\left\|g \cdot\left(z^{1 / 2}\left(e_{n+1}-e_{n}\right) z^{1 / 2}\right)-z^{1 / 2}\left(e_{n+1}-e_{n}\right) z^{1 / 2}\right\| \\
= & \sup _{g \in H_{n}}\left\|z^{1 / 2}\left(g \cdot\left(e_{n+1}-e_{n}\right)-\left(e_{n+1}-e_{n}\right)\right) z^{1 / 2}\right\| \\
& \frac{\text { (3) }}{\leqslant} \\
\leqslant & 2^{-n} .
\end{aligned}
$$

Hence we may define $y_{n+1}=y_{n+1}^{(k)}$ for large k so that it satisfies (4) - (7), so we obtain our desired sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$.

By (5) it follows that $\left(y_{n}\right)_{n}$ converges strictly to a positive contraction $y \in$ $\mathcal{M}(A)$. Since π° is strictly continuous on bounded sets, it follows from (4) that $\pi^{\circ}(y)=z$ (since z is the strict limit of $\left.z^{1 / 2} e_{n} z^{1 / 2}\right)$. For $x \in \mathcal{F}$ we have by (6) that $\left[y_{n}, x\right]$ norm-converges to an element in A, so that $[y, x] \in A$. Moreover,

$$
\pi([y, x])=\lim _{n \rightarrow \infty} \pi^{\circ}\left(\left[y_{n}, x\right]\right) \stackrel{(4)}{=} \lim _{n \rightarrow \infty} z^{1 / 2}\left[e_{n}, \pi^{\circ}(x)\right] z^{1 / 2} \stackrel{(2 / 2)}{=} 0
$$

so that $[y, x] \in J$ for all $x \in \mathcal{F}$. Hence $[y, x] \in J$ for all $x \in \overline{\operatorname{span}} \mathcal{F}=X$.
As the G-action on $\mathcal{M}(A)$ is pointwise strictly continuous, it follows that $g \cdot y$ is the strict limit of $\left(g \cdot y_{n}\right)_{n \in \mathbb{N}}$ for any $g \in G$. By (7), $\left(g \cdot y_{n}-y_{n}\right)_{n \in \mathbb{N}}$ converges in A as $n \rightarrow \infty$ for every $g \in G$. Hence $g \cdot y-y \in A$. Moreover,

$$
\begin{aligned}
\pi(g \cdot y-y) & =\lim _{n \rightarrow \infty} \pi^{\circ}\left(g \cdot y_{n}-y_{n}\right) \\
& \stackrel{\text { (4) }}{=} \lim _{n \rightarrow \infty} g \cdot\left(z^{1 / 2} e_{n} z^{1 / 2}\right)-z^{1 / 2} e_{n} z^{1 / 2} \\
& =\lim _{n \rightarrow \infty} z^{1 / 2}\left(g \cdot e_{n}-e_{n}\right) z^{1 / 2} \\
& \stackrel{\text { (3) }}{=} 0 .
\end{aligned}
$$

Hence $g \cdot y-y \in J$ for all $g \in G$.
Finally, given $\epsilon>0$, pick $N \in \mathbb{N}$ such that $\sum_{k=N}^{\infty} 2^{-n}<\epsilon$. Choose an open neighbourhood $U \subseteq H_{N} \subseteq G$ of the identity such that $\sup _{g \in U}\left\|g \cdot y_{N}-y_{N}\right\|<\epsilon$.

Then

$$
\begin{aligned}
\sup _{g \in U}\|g \cdot y-y\| & =\sup _{g \in U}\left\|\sum_{k=N}^{\infty}\left(g \cdot\left(y_{k+1}-y_{k}\right)-\left(y_{k+1}-y_{k}\right)\right)+g \cdot y_{N}-y_{N}\right\| \\
& \stackrel{\boxed{77}}{\leqslant} \epsilon+\sup _{g \in U}\left\|g \cdot y_{N}-y_{N}\right\| \\
& <2 \epsilon .
\end{aligned}
$$

Hence $G \ni g \mapsto g \cdot y \in \mathcal{M}(A)$ is norm-continuous.

3. The product in $K K$

Given two homomorphisms $\varphi, \psi: X \rightarrow Y$ between C^{*}-algebras we denote by $\varphi \oplus \psi$ the homomorphism

$$
x \mapsto\left(\begin{array}{cc}
\varphi(x) & 0 \\
0 & \psi(x)
\end{array}\right)
$$

from X to $M_{2}(Y)$. Following [6] we define
Definition 3.1. Let A, B be C^{*}-algebras and $q A$ as in Section 圆. We define $K K(A, B)$ as the set of homotopy classes of homomorphisms from $q A$ to $\mathcal{K} \otimes B$.

The set $K K(A, B)$ becomes an abelian group with the operation \oplus that assigns to two homotopy classes $[\varphi],[\psi]$ of homomorphisms $\varphi, \psi: q A \rightarrow \mathcal{K} \otimes B$ the homotopy class $[\varphi \oplus \psi]$ (using an isomorphism $M_{2}(\mathcal{K}) \cong \mathcal{K}$ to identify $M_{2}(\mathcal{K} \otimes$ $B) \cong \mathcal{K} \otimes B$, which is well-defined since such an isomorphism is unique up to homotopy). In [5] it was checked that this definition of $K K(A, B)$ is equivalent to the one by Kasparov. We recapitulate now the construction in [6] of the product $K K(A, B) \times K K(B, C) \rightarrow K K(A, C)$. It is based on a functorial $\operatorname{map} \varphi_{A}: q A \rightarrow M_{2}\left(q^{2} A\right)$ (which is in fact - up to stabilization by the 2×2 matrices M_{2} - a homotopy equivalence). Since versions of this map and of its properties will be used in each of the subsequent sections on $K K$ with additional structure we include complete proofs. We take this opportunity to include more details on the proofs and to arrange the arguments given in [6] in a slightly different way.
To prove the existence of the map φ_{A} we will use Proposition 2.2 with A in place of X. Since X in 2.2 has to be separable we will assume in this section and in later sections where we discuss the product of $K K(A, B)$ and $K K(B, C)$ to $K K(A, C)$ with extra structure that A is separable.

Given a C^{*}-algebra A, we use the four embeddings $\eta \varepsilon, \eta \bar{\varepsilon}, \bar{\eta} \varepsilon, \bar{\eta} \bar{\varepsilon}$ of A to $Q^{2} A$ from section 2. Consider the C^{*}-algebra R generated by the matrices

$$
\left(\begin{array}{cc}
R_{1} & R_{1} R_{2} \\
R_{2} R_{1} & R_{2}
\end{array}\right)
$$

where $R_{1}=\eta(q A), R_{2}=\bar{\eta}(q A)$. Consider also the C^{*}-algebra D generated by matrices of the form

$$
D=\left(\begin{array}{cc}
\eta \varepsilon(x) & 0 \\
0 & \bar{\eta} \varepsilon(x)
\end{array}\right) \quad x \in A
$$

Then R is a subalgebra of $M_{2}(Q q A)$ where $Q q A$ is the C^{*}-subalgebra of $Q^{2} A$ generated by $\eta(q A)$ and $\bar{\eta}(q A)$. Let $J=R \cap M_{2}\left(q^{2} A\right)$. Since $q^{2} A$ is an ideal in $Q q A$ this is an ideal in R. One also clearly has $D R, R D \subset R$. Thus R is an ideal in $R+D$ and J is also an ideal of $R+D$ (we think of all these algebras as subalgebras of $M_{2}\left(Q^{2} A\right)$).

Because $\eta(q A) / q^{2} A=\bar{\eta}(q A) / q^{2} A \cong q A$, the quotient R / J is isomorphic to $M_{2}(q A)$. Moreover $(R+D) / J$ is isomorphic to the subalgebra of $M_{2}(Q(A))$ generated by $M_{2}(q A)$ together with the matrices

$$
\left(\begin{array}{cc}
\iota(x) & 0 \\
0 & \iota(x)
\end{array}\right) \quad x \in A
$$

If A is separable we can use Thomsen's noncommutative Tietze extension theorem [10, 1.1.26] (see also Proposition [2.2) and lift the multiplier

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

of R / J to a self-adjoint multiplier S of R that commutes $\bmod J$ with D.
We can now set $F=e^{\frac{\pi i}{2} S}$ and define the automorphism σ of $\mathcal{M}(J)$ by $\operatorname{Ad} F$.
Consider the homomorphisms $A \rightarrow \mathcal{M}(J)$ given by

$$
h_{1}=\left(\begin{array}{cc}
\eta \varepsilon & 0 \\
0 & \bar{\eta} \bar{\varepsilon}
\end{array}\right), \quad h_{2}=\left(\begin{array}{cc}
\eta \bar{\varepsilon} & 0 \\
0 & \bar{\eta} \varepsilon
\end{array}\right)
$$

In the following we use the notation \oplus introduced at the beginning of the section. Thus $h_{1}=\eta \varepsilon \oplus \bar{\eta} \bar{\varepsilon}$ and $h_{2}=\eta \bar{\varepsilon} \oplus \bar{\eta} \varepsilon$.

Definition 3.2. We define the homomorphism $\varphi_{A}: q A \rightarrow J \subset M_{2}\left(q^{2} A\right)$ by the prequasihomomorphism given by the pair of homomorphisms $\left(h_{1}, \sigma h_{2}\right)$ (compare [6], p.39), i.e. $\varphi_{A}=q\left(h_{1}, \sigma h_{2}\right)$.

To check that the difference of h_{1} and σh_{2} maps to J recall that by definition σ fixes $d(x)=\eta \varepsilon(x) \oplus \bar{\eta} \varepsilon(x) \bmod J$ for each $x \in A$ and that $h_{2}(x)=d(x)-$ $\eta(q(x)) \oplus 0$. The term $\eta q(x) \oplus 0$ is moved by σ to $0 \oplus \bar{\eta} q(x) \bmod J$ (note that $\left.\eta q(x)-\bar{\eta} q(x) \in q^{2} A\right)$. Since $\bar{\eta} \varepsilon(x)-\bar{\eta}(q x)=\bar{\eta} \bar{\varepsilon}(x)$ we get that $\sigma h_{2}(x)=h_{1}(x)$ $\bmod J$.

Note the φ_{A} is unique up to homotopy. In fact, if we picked a different operator $S_{1} \in \mathcal{M}(R)$ instead of S as above, and define $S_{t}=(1-t) S+t S_{1}$ and $\sigma_{t}=$ Ad $e^{\frac{\pi i}{2} S_{t}}$, then $q\left(h_{1}, \sigma_{t} h_{2}\right)$ defines a homotopy from $q\left(h_{1}, \sigma h_{2}\right)$ to $q\left(h_{1}, \sigma_{1} h_{2}\right)$.
3.1. The Kasparov product via the universal map φ_{A}. Once the map φ_{A} is constructed we can define the product $K K(A, B) \times K K(B, C) \rightarrow K K(A, C)$ as follows.
Let $\alpha: q A \rightarrow \mathcal{K} \otimes B$ and $\beta: q B \rightarrow \mathcal{K} \otimes C$ represent elements $a \in K K(A, B)$ and $b \in K K(B, C)$ respectively. Since q is a functor, we can form the homomorphism $q(\alpha): q^{2} A \rightarrow q(\mathcal{K} \otimes B)$. The pair of homomorphisms $\left(\operatorname{id}_{\mathcal{K}} \otimes \iota, \operatorname{id}_{\mathcal{K}} \otimes \bar{\iota}\right)$ gives a natural map $\mu: q(\mathcal{K} \otimes B) \rightarrow \mathcal{K} \otimes q B$. The product of a and b is then represented by the following composition

$$
\begin{equation*}
q A \xrightarrow{\varphi_{A}} q^{2} A \xrightarrow{q(\alpha)} q(\mathcal{K} \otimes B) \xrightarrow{\mu} \mathcal{K} \otimes q B \xrightarrow{\mathrm{id} \mathcal{K} \otimes \beta} \mathcal{K} \otimes \mathcal{K} \otimes C \cong \mathcal{K} \otimes C \tag{8}
\end{equation*}
$$

For simplicity we have left out the tensor product by the 2×2-matrices M_{2} which can be absorbed in the tensor product by \mathcal{K}. Here and later we sometimes extend homomorphisms, such as $q(\alpha)$ here, tacitly to matrices or stabilizations. We denote the resulting homomorphism $q A \rightarrow \mathcal{K} \otimes C$ in (8) by $\beta \sharp \alpha$. This description of the product will be used in the subsequent sections in different versions.

Remark 3.3. (a) If α maps $q A$ to $B \subset \mathcal{K} \otimes B$ then we can omit the map μ and the stabilization of β. We get that $\beta \sharp \alpha$ then is represented by $\beta q(\alpha) \varphi_{A}$. The same formula applies if α maps $q A$ to $\mathcal{K} \otimes B$ and $B \cong \mathcal{K} \otimes B$.
(b) Assume that B and C are stable and let $\alpha: q A \rightarrow B$ and $\beta: q B \rightarrow$ C represent elements of $K K(A, B)$ and $K K(B, C)$. Denote by \underline{B} the $\mathrm{C}^{*}-$ subalgebra of B generated by $\alpha(q A)$ and by j_{B} the inclusion $\underline{B} \hookrightarrow B$. Let $\underline{\alpha}: q A \rightarrow \underline{B}$ and $\underline{\beta}=\beta \circ q\left(j_{B}\right): q \underline{B} \rightarrow C$ denote the corestriction and restriction of α and $\bar{\beta}$. Then we have $\underline{\beta} \sharp \underline{\alpha}=\beta \sharp \alpha$. In fact $\beta q(\alpha) \varphi_{A}$ factors as $\beta \circ q\left(j_{B}\right) q(\underline{\alpha}) \varphi_{A}$ and the second expression represents $\beta \sharp \underline{\alpha}$.
Instead of \underline{B} we can just as well consider the hereditary subalgebra B_{0} of B generated by \underline{B} and define α_{0}, β_{0} in analogy to $\underline{\alpha}, \underline{\beta}$. We get the formula $\beta_{0} \sharp \alpha_{0}=\beta \sharp \alpha$. We will use this setting below.
3.2. Associativity. The important point that gives associativity of the product is the existence of a homotopy inverse (up to tensoring by M_{2}) for φ_{A}. It is given by $\pi_{q A}: q^{2} A \rightarrow q A$. We define $\pi_{q A}: Q q A \rightarrow q A$ as the homomorphism that annihilates $\bar{\eta}(q A)$ in the free product $Q q A=\eta q A \star \bar{\eta} q A$, and also as in Section 2 its restriction to $q^{2} A \subset Q q A$.
Proposition 3.4. There is a continuous family of homomorphisms $\psi_{t}: q^{2} A \rightarrow$ $M_{2}\left(q^{2} A\right), t \in[0,1]$ such that $\psi_{0}=\mathrm{id}_{q^{2} A} \oplus 0$ and $\psi_{1}=\varphi_{A} \pi_{q A}$.
There also is a continuous family of homomorphisms $\lambda_{t}: q A \rightarrow R \subset M_{2}(Q q A)$ such that $\pi_{q A} \lambda_{0}=\mathrm{id}_{q A} \oplus 0$ and $\pi_{q A} \lambda_{1}=\pi_{q A} \varphi_{A}$ (here and later we extend
$\pi_{q A}: q^{2} A \rightarrow q A$ tacitly to a homomorphism $M_{2}\left(q^{2} A\right) \rightarrow M_{2}(q A)$ between 2×2-matrices).

Proof. Let S be as above a lift of the multiplier given on R / J by the matrix

$$
M=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

to a multiplier of R and denote by S^{\prime} the multiplier of $M_{2}(Q q A)$ given by the same matrix M. For each $t \in[0,1]$ we let σ_{t} denote the automorphism of R given by $\operatorname{Ad} e^{\frac{\pi i}{2} S t}$ and τ_{t} the automorphism of $M_{2}(Q q A)$ given by Ad $e^{\frac{\pi i}{2} S^{\prime} t}$.
Since σ_{t} fixes the algebra D from above pointwise $\bmod J$, the homomorphisms $\eta \varepsilon \oplus \bar{\eta} \bar{\varepsilon}$ and $\sigma_{t}(\eta \bar{\varepsilon} \oplus \bar{\eta} \varepsilon)$ map A to $D+R$ and their difference maps into the ideal R of $D+R$. Therefore this difference defines, for each $t \in[0,1]$ a homomorphism α_{t} from $q A$ to R.
We also define a homomorphism $\bar{\alpha}_{t}: q A \rightarrow M_{2}(Q q A)$ by the pair of homomorphisms $\left(\bar{\eta} \varepsilon \oplus \bar{\eta} \bar{\varepsilon}, \tau_{t}(\bar{\eta} \bar{\varepsilon} \oplus \bar{\eta} \varepsilon)\right)$ from A to $M_{2}\left(Q^{2} A\right)$. Let us denote the quotient map $Q q A \rightarrow Q q A / q^{2} A$ by $x \mapsto x^{\bullet}$. As already remarked above, we have $R^{\bullet} \cong M_{2}(q A)$ and we also have $\left(M_{2}(\bar{\eta} q A)\right)^{\bullet} \cong M_{2}(q A)$. Under the quotient map R becomes equal to $M_{2}(\bar{\eta} q A), \sigma_{t}$ becomes equal to τ_{t} and therefore $\alpha_{t}(x)^{\bullet}=\bar{\alpha}_{t}(x)^{\bullet}$ for all $x \in q A$.
It follows that the pair $\left(\alpha_{t}, \bar{\alpha}_{t}\right)$ defines a continuous family of homomorphisms $\psi_{t}: q^{2} A \rightarrow M_{2}\left(q^{2} A\right)$. These homomorphisms are restrictions of the maps $Q^{2} A \rightarrow M_{2}\left(Q^{2} A\right)$ that map $\eta \varepsilon(x)$ and $\eta \bar{\varepsilon}(x)$ to $\eta \varepsilon \oplus \bar{\eta} \bar{\varepsilon}, \sigma_{t}(\eta \bar{\varepsilon} \oplus \bar{\eta} \varepsilon)$ and $\bar{\eta} \varepsilon(x), \bar{\eta} \bar{\varepsilon}(x)$ to $\bar{\eta} \varepsilon \oplus \bar{\eta} \bar{\varepsilon}, \tau_{t}(\bar{\eta} \bar{\varepsilon} \oplus \bar{\eta} \varepsilon)$, respectively.
For $t=0$ one easily checks for $z \in q A$ that $\alpha_{0}(z)=\eta(z) \oplus \bar{\eta}(\gamma(z))$ and $\bar{\alpha}_{0}(z)=\bar{\eta}(z) \oplus \bar{\eta}(\gamma(z))$ where γ denotes the restriction of the automorphism of $Q A$ that interchanges ι and $\bar{\iota}$. Thus the pair $\left(\alpha_{0}, \bar{\alpha}_{0}\right)$ induces the homomorphism $\operatorname{id}_{q^{2} A} \oplus 0: q^{2} A \rightarrow M_{2}\left(q^{2} A\right)$.
For $t=1, \alpha_{1}: q A \rightarrow M_{2}\left(q^{2} A\right)$ is φ_{A} and $\bar{\alpha}_{1}$ is 0 . This shows that $\psi_{1}=\varphi_{A} \pi_{q A}$. It remains to show that $\pi_{q A} \varphi_{A}$ is homotopic to $\operatorname{id}_{q A} \oplus 0$. The map $\pi_{q A}: q^{2} A \rightarrow$ $q A$ is the restriction of the homorphism $Q q A \rightarrow q A$ that annihilates $\bar{\eta}(q A)$. Consider $\lambda_{t}: q A \rightarrow R \subset M_{2}(Q q A)$ defined by the pair $\left(\eta \varepsilon \oplus \bar{\eta} \bar{\varepsilon}, \sigma_{t}(\eta \bar{\varepsilon} \oplus \bar{\eta} \varepsilon)\right)$. We find that $\pi_{q A} \lambda_{0}=\operatorname{id}_{q A} \oplus 0$ and $\pi_{q A} \lambda_{1}=\pi_{q A} \varphi_{A}$.
Remark 3.5. The map φ_{A} is functorial (up to stable homotopy) in the following sense: If $\alpha: q A \rightarrow q B$ is a homomorphism between separable C^{*}-algebras, then after stabilizing $q^{2} B$ the homomorphisms $q(\alpha) \varphi_{A}$ and $\varphi_{B} \alpha$ are homotopic.
In fact, let \sim denote stable homotopy equivalence. Using Proposition 3.4 to note that $\pi_{q A} \varphi_{A} \sim \mathrm{id}_{q A}$ and $\varphi_{B} \pi_{q B} \sim \operatorname{id}_{q^{2} B}$, as well as the observation $\alpha \pi_{q A}=\pi_{q B} q(\alpha)$, we get

$$
q(\alpha) \varphi_{A} \sim \varphi_{B} \pi_{q B} q(\alpha) \varphi_{A}=\varphi_{B} \alpha \pi_{q A} \varphi_{A} \sim \varphi_{B} \alpha
$$

Given C^{*}-algebras X and Y we use the standard notation $[X, Y]$ to denote the set of homotopy classes of homomorphisms from X to Y. Thus we have
$K K(X, Y)=[q X, \mathcal{K} \otimes Y]$. Given $\alpha: q X \rightarrow \mathcal{K} \otimes Y$ and $\beta: q Y \rightarrow \mathcal{K} \otimes Z$ we write $\beta \sharp \alpha$ for $\left(\operatorname{id}_{\mathcal{K}} \otimes \beta\right) \mu q(\alpha) \varphi_{A}$, see formula (8). Thus the homotopy class $[\beta \sharp \alpha]$ represents the Kasparov product of $[\alpha]$ and $[\beta]$. One way to prove the associativity of the Kasparov product consists in identifying $K K(X, Y)=$ [$q X, \mathcal{K} \otimes Y$] with $[\mathcal{K} \otimes q X, \mathcal{K} \otimes q Y]$ using Proposition 3.4 and to check that, under this identification the Kasparov product induced by \sharp corresponds to the composition product of homomorphisms and thus is associative. This observation was stated explicitly for the first time by Skandalis in [17]. We have the following proposition.

In the following we consider $q A$ as a subalgebra of $\mathcal{K} \otimes q A$ as the $(1,1)$-corner embedding.

Proposition 3.6. The map $[\alpha] \mapsto[\bar{\alpha}]$ where $\bar{\alpha}=\left.\left(\mathrm{id}_{\mathcal{K}} \otimes \pi_{B}\right) \alpha\right|_{q A}$ is an isomorphism from $[\mathcal{K} \otimes q A, \mathcal{K} \otimes q B]$ to $[q A, \mathcal{K} \otimes B]$ with inverse given by the map $[\beta] \mapsto\left[\beta^{\prime}\right]$ where $\beta^{\prime}=\mu\left(\operatorname{id}_{\mathcal{K}} \otimes q(\beta) \varphi_{A}\right)$ with μ as in (8). It is multiplicative in the sense that it maps $[\beta \alpha]$ to $[\bar{\beta} \sharp \bar{\alpha}]$. In particular the product on $K K$ induced by \sharp is associative.

For the proof of the proposition we need the following lemma.
Lemma 3.7. The natural maps $q\left(\pi_{A}\right)$ and $\pi_{q A}$ from $q^{2} A$ to $q A$ are homotopic as maps to $M_{2}(q A)$.

Proof. Both homomorphisms from $q^{2} A$ to $q B$ are restrictions of homomorphisms from $Q^{2} A$ to $Q B$. The first one maps $\eta \varepsilon(x), \eta \bar{\varepsilon}(x), \bar{\eta} \varepsilon(x), \bar{\eta} \bar{\varepsilon}(x)$ to $\iota(x), \bar{\iota}(x), 0,0$ and the second one to $\iota(x), 0, \bar{\iota}(x), 0$. The homotopy between the two is obtained by rotating in the homomorphism $q^{2} A \rightarrow M_{2}(q A)$ which is the restriction of the homomorphism $Q^{2} A \rightarrow M_{2}(Q A)$ mapping the generators to

$$
\left(\begin{array}{cc}
\iota(x) & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
\bar{\iota}(x) & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
\bar{\iota}(x) & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
\bar{\iota}(x) & 0 \\
0 & 0
\end{array}\right)
$$

the second and fourth term to $\left(\begin{array}{cc}0 & 0 \\ 0 & \bar{u}(x)\end{array}\right)$.

Proof of Proposition 3.6. We use \sim to mean homotopic. Up to stabilisations we have
$(\bar{\alpha})^{\prime}=\mu q\left(\left.\left(\operatorname{id}_{\mathcal{K}} \otimes \pi_{B}\right) \alpha\right|_{q A}\right) \varphi_{A} \stackrel{\sqrt[3.7]{\sim}}{\sim}\left(\operatorname{id}_{\mathcal{K}} \otimes \pi_{q B}\right) \mu q\left(\left.\alpha\right|_{q A}\right) \varphi_{A}=\pi_{\mathcal{K} \otimes q B} q\left(\left.\alpha\right|_{q A}\right) \varphi_{A}=\left.\alpha\right|_{q A} \pi_{q A} \varphi_{A}$
and this is homotopic to α by Proposition 3.4. Also

$$
\overline{\beta^{\prime}}=\left(\mathrm{id}_{\mathcal{K}} \otimes \pi_{B}\right) \mu q(\beta) \varphi_{A}=\beta \pi_{q A} \varphi_{A}
$$

which also is homotopic to β by 3.4 (in both cases we have used the obvious identity $\pi_{Y} q(\psi)=\psi \pi_{X}: q X \rightarrow Y$ for a homomophism $\left.\psi: X \rightarrow Y\right)$.

Concerning multiplicativity we get (omitting here for clarity the stabilizations and μ) for $\alpha: q A \rightarrow q B$ and $\beta: q B \rightarrow q C$ that

$$
\begin{gathered}
\overline{\beta \alpha}=\pi_{C} \beta \alpha \sim \pi_{C} \beta \alpha \pi_{q A} \varphi_{A} \stackrel{\alpha \pi_{q A}=\pi_{q B} q(\alpha)}{=} \pi_{C} \beta \pi_{q B} q(\alpha) \varphi_{A} \\
\text { 3.7 } \pi_{C} \beta q\left(\pi_{B}\right) q(\alpha) \varphi_{A}=\pi_{C} \beta q\left(\pi_{B} \alpha\right) \varphi_{A}=\bar{\beta} \sharp \bar{\alpha} .
\end{gathered}
$$

3.3. Another description of the product. For a prequasihomomorphism $A \rightrightarrows E \triangleright J$ given by the pair of homomorphisms $\alpha, \bar{\alpha}: A \rightarrow E$ we write as above $q(\alpha, \bar{\alpha})$ for the corresponding map $q A \rightarrow J$ (i.e. the restriction of $\alpha \star \bar{\alpha}$ from $Q A$ to $q A$).
For the product of $K K$-elements $\alpha: q A \rightarrow \mathcal{K} \otimes B$ and $\beta: q B \rightarrow \mathcal{K} \otimes C$ only the restriction of β to $q B_{0}$ matters, where B_{0} is the hereditary subalgebra of $\mathcal{K} \otimes B$, generated by the image $\alpha(q A)$, see Remark 3.3 (b). This observation leads to an alternative description of the product which we will also use to discuss associativity of the product in $K K^{n u c}$ in section 5. In fact, for the purposes of this section it would suffice to use the smaller C^{*}-subalgebra \underline{B} of $\mathcal{K} \otimes B$ generated by $\alpha(q A)$ instead of B_{0}. But we will apply the following discussion to the product in $K K^{n u c}$ in section 5 and there the choice of the hereditary subalgebra will be important.
With B_{0} as above we define $\alpha_{E}, \bar{\alpha}_{E}: A \rightarrow \mathcal{M}\left(B_{0}\right) \oplus A$ by $\alpha_{E}(x)=\left(\alpha^{\circ} \iota_{A}(x), x\right)$, $\bar{\alpha}_{E}(x)=\left(\alpha^{\circ} \bar{\iota}_{A}(x), x\right)$ and set $E_{\alpha}=C^{*}\left(B_{0}, \alpha_{E}(A), \bar{\alpha}_{E}(A)\right)$. This gives an exact sequence $0 \rightarrow B_{0} \rightarrow E_{\alpha} \xrightarrow{p} A \rightarrow 0$ with two splittings given by $\alpha_{E}, \bar{\alpha}_{E}$: $A \rightarrow E_{\alpha}$. Note that the prequasihomomorphism $\left(\alpha_{E}, \bar{\alpha}_{E}\right)$ represents $\alpha: q A \rightarrow$ B_{0} i.e. $\alpha=q\left(\alpha_{E}, \bar{\alpha}_{E}\right)$.

Lemma 3.8. Let α, E_{α} and B_{0} be as above and $\beta: q\left(B_{0}\right) \rightarrow \mathcal{K} \otimes C$. Let $j_{E}: B_{0} \rightarrow E_{\alpha}$ be the inclusion. There is $\beta^{\prime}: q\left(E_{\alpha}\right) \rightarrow M_{2}\left(\beta\left(q B_{0}\right)\right)$ such that β is homotopic to $\beta^{\prime} q\left(j_{E}\right)$.

Proof. Let $\kappa_{\alpha}: q E_{\alpha} \rightarrow B_{0}$ be the homomorphism defined by the prequasihomomorphism $\left(\mathrm{id}_{E_{\alpha}}, \alpha_{E} \circ p\right)$ (recall that $p: E_{\alpha} \rightarrow A$ is the quotient map) and set $\beta^{\prime}=\beta \sharp \kappa_{\alpha}=\beta q\left(\kappa_{\alpha}\right) \varphi_{E_{\alpha}}$. It is immediately checked that $\kappa_{\alpha} q\left(j_{E}\right)=\pi_{B_{0}}$ (in fact $\kappa_{\alpha}(\iota(x) q(y))=x y$ and $\kappa_{\alpha}(\bar{\iota}(x) q(y))=0$ for $x, y \in B_{0}$). Using the homotopy $\varphi_{E_{\alpha}} q\left(j_{E}\right) \sim q^{2}\left(j_{E}\right) \varphi_{B_{0}}$ from Remark 3.5 we get (assuming that B is stable) the following homotopy
$\beta^{\prime} q\left(j_{E}\right)=\left(\beta \sharp \kappa_{\alpha}\right) q\left(j_{E}\right)=\beta q\left(\kappa_{\alpha}\right) \varphi_{E_{\alpha}} q\left(j_{E}\right) \stackrel{3.5}{\sim} \beta q\left(\kappa_{\alpha}\right) q^{2}\left(j_{E}\right) \varphi_{B_{0}}=\beta q\left(\pi_{B_{0}}\right) \varphi_{B_{0}}{ }^{\left[\frac{3.2}{\sim}\right.} \beta$

Given a homomorphism $\mu: q A \rightarrow \mathcal{K} \otimes B$, we denote by $\breve{\mu}$ the composition $\mu \delta$ of μ with the symmetry δ of $q A$ that exchanges the two copies of A. Then $\breve{\mu}$ is an additive homotopy inverse to μ, i.e. we have $\mu \oplus \breve{\mu} \sim 0$ (we can rotate
$\iota(x) \oplus \bar{\iota}(x)$ to $\bar{\iota}(x) \oplus \iota(x)$ in 2×2-matrices $).$
Note that, if ν is a second additive homotopy inverse to μ, then ν is homotopic to $\breve{\mu}$ in matrices (because $\nu \sim \nu \oplus \mu \oplus \breve{\mu} \sim 0 \oplus 0 \oplus \breve{\mu}$).

Proposition 3.9. Let $\alpha, \beta, E_{\alpha}, B_{0}$ be as above and assume that $\beta^{\prime}: q E_{\alpha} \rightarrow$ $\mathcal{K} \otimes C$ extends β up to homotopy as in 3.8. If we let C_{0} denote the hereditary subalgebra of $\mathcal{K} \otimes C$ generated by $\beta\left(q E_{\alpha}\right)$, we get two homomorphisms $\beta_{E}^{\prime}, \bar{\beta}_{E}^{\prime}: E_{\alpha} \rightarrow E_{\beta^{\prime}}$ which we can compose with $\alpha_{E}, \bar{\alpha}_{E}: A \rightarrow E_{\alpha}$.
The homomorphism $\beta q(\alpha): q^{2} A \rightarrow C_{0} \subset \mathcal{K} \otimes C$ is homotopic to $\omega q\left(\pi_{A}\right)$ where $\omega: q A \rightarrow C_{0} \subset \mathcal{K} \otimes C$ is given by $\omega=q\left(\beta_{E}^{\prime} \alpha_{E} \oplus \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E}, \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \beta_{E} \bar{\alpha}_{E}\right)$.

Proof. The homomorphism $\alpha=q\left(\alpha_{E}, \bar{\alpha}_{E}\right): q A \rightarrow B_{0}$ extends to the homomorphism $\alpha_{E} \star \bar{\alpha}_{E}$ from $Q A$ to E_{α}. As a homomorphism to $M_{2}\left(E_{\alpha}\right)$ this extended map is homotopic to $\left(\alpha_{E} \oplus 0\right) \star\left(0 \oplus \bar{\alpha}_{E}\right)$. The restriction of the latter map to $q A$, which we denote by α^{\oplus}, is described by $\alpha^{\oplus}=\alpha_{E} \pi_{A} \oplus \bar{\alpha}_{E} \breve{\pi}_{A}$. We have

$$
\beta q(\alpha) \sim \beta^{\prime} q(\alpha) \sim \beta^{\prime} q\left(\alpha^{\oplus}\right) \sim \beta^{\prime} q\left(\alpha_{E} \pi_{A}\right) \oplus \beta^{\prime} q\left(\bar{\alpha}_{E} \breve{\pi}_{A}\right)
$$

where we have used that β^{\prime} composed with a direct sum is in 2×2-matrices homotopic to the direct sum of the two compositions. By the uniqueness of the additive homotopy inverse we have that $\beta^{\prime} q\left(\bar{\alpha}_{E} \breve{\pi}_{A}\right) \sim \breve{\beta}^{\prime} q\left(\bar{\alpha}_{E} \pi_{A}\right)$. The result follows since $\beta^{\prime}=q\left(\beta_{E}^{\prime}, \bar{\beta}_{E}^{\prime}\right)$.

Corollary 3.10. Let $\alpha, \beta, E_{\alpha}, B_{0}$ be as above and assume that β extends up to homotopy to $\beta^{\prime}: q E_{\alpha} \rightarrow \mathcal{K} \otimes C$. Then the $K K$-product $\beta \sharp \alpha$ is represented by the homomorphism $\omega: q A \rightarrow M_{2}\left(C_{0}\right) \subset \mathcal{K} \otimes C$ given by

$$
\omega=q\left(\beta_{E}^{\prime} \alpha_{E} \oplus \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E}, \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \beta_{E}^{\prime} \bar{\alpha}_{E}\right)
$$

Proof. By Proposition 3.9, Proposition 3.4 and Lemma 3.7 we have

$$
\beta \sharp \alpha \stackrel{\sqrt[3.3]{\sim}}{\sim} \beta q(\alpha) \varphi_{A} \stackrel{\sqrt{3.9}}{\sim} \omega q\left(\pi_{A}\right) \varphi_{A} \stackrel{\sqrt[3.4]{\sim}}{\sim} \omega .
$$

Note that, for the formula for $\beta \sharp \alpha$ in Corollary 3.10 we don’t need the universal map φ_{A} in full but only the product $\beta \sharp \kappa_{\alpha}$. One could base an alternative construction of the product in $K K$ by reducing it to the special case of the product by κ_{α}.
3.4. Another proof for associativity. We follow here the discussion in Section 4 of [5]. Assume that we have elements in $K K(A, B), K K(B, C)$, $K K(C, D)$ represented by homomorphisms $\alpha: q A \rightarrow \mathcal{K} \otimes B, \beta: q B \rightarrow \mathcal{K} \otimes C$, $\gamma: q C \rightarrow \mathcal{K} \otimes D$. We define successively first $E_{\alpha} \supset B_{0}$ and $\alpha_{E}, \bar{\alpha}_{E}: A \rightarrow E_{\alpha}$ as above, then $\beta^{\prime}: q E_{\alpha} \rightarrow \mathcal{K} \otimes C$ such that the restriction of β^{\prime} to $q B_{0}$ is
homotopic to β. We let C_{0} denote the hereditary subalgebra of $\mathcal{K} \otimes C$ generated by $\beta^{\prime}\left(q E_{\alpha}\right)$. Then we define $E_{\beta^{\prime}}$ as before and get homomorphisms $\beta_{E}^{\prime}, \bar{\beta}_{E}^{\prime}: E_{\alpha} \rightarrow E_{\beta^{\prime}}$. We then take $\gamma^{\prime}: q E_{\beta^{\prime}} \rightarrow \mathcal{K} \otimes D$ such that its restriction to $q C_{0}$ is homotopic to γ and get homomorphisms $\gamma_{E}^{\prime}, \bar{\gamma}_{E}^{\prime}: E_{\beta^{\prime}} \rightarrow E_{\gamma^{\prime}}$.

We can now apply Proposition 3.9 to determine the two products $\gamma^{\prime} \sharp\left(\beta^{\prime} \sharp \alpha\right)$ and $\left(\gamma^{\prime} \sharp \beta^{\prime}\right) \sharp \alpha$. They will be homotopic to $\gamma \sharp(\beta \sharp \alpha)$ and $(\gamma \sharp \beta) \sharp \alpha$. By Remark 3.3 and Corollary 3.10 the previous products can be described as $\gamma^{\prime} \sharp \omega_{1}$ and $\omega_{2} \sharp \alpha$ with

$$
\begin{gathered}
\omega_{1}=q\left(\beta_{E}^{\prime} \alpha_{E} \oplus \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E}, \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \beta_{E}^{\prime} \bar{\alpha}_{E}\right) \\
\omega_{2}=q\left(\gamma_{E}^{\prime} \beta_{E}^{\prime} \oplus \bar{\gamma}_{E}^{\prime} \bar{\beta}_{E}^{\prime}, \bar{\gamma}_{E}^{\prime} \beta_{E}^{\prime} \oplus \gamma_{E} \bar{\beta}_{E}^{\prime}\right)
\end{gathered}
$$

We can now apply Proposition 3.9 to both products. By the special form of ω_{1}, the homomorphisms $\gamma_{E}^{\prime}, \bar{\gamma}_{E}^{\prime}$ can be composed with the homomomorphisms occuring in the two components of ω_{1}. Therefore γ^{\prime} extends to $E_{\omega_{1}}$ and we are in the situation of 3.9. Second, the two homomorphisms defining ω_{2} can be composed with $\alpha_{E}, \bar{\alpha}_{E}$ and therefore ω_{2} extends to E_{α}. When we apply Proposition 3.9 to $\gamma^{\prime} \sharp\left(\beta^{\prime} \sharp \alpha\right)$ and $\left(\gamma^{\prime} \sharp \beta^{\prime}\right) \sharp \alpha$ and use the special form of ω_{1}, ω_{2} we find that in both cases the triple product is given by
$q\left(\gamma_{E}^{\prime} \beta_{E}^{\prime} \alpha_{E} \oplus \bar{\gamma}_{E}^{\prime} \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \gamma_{E}^{\prime} \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E} \oplus \bar{\gamma}_{E}^{\prime} \beta_{E}^{\prime} \bar{\alpha}_{E}, \bar{\gamma}_{E}^{\prime} \beta_{E}^{\prime} \alpha_{E} \oplus \gamma_{E}^{\prime} \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \bar{\gamma}_{E}^{\prime} \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E} \oplus \gamma_{E}^{\prime} \beta_{E}^{\prime} \bar{\alpha}_{E}\right)$

4. The ideal Related case

All ideals in C^{*}-algebras in this section will be closed and two-sided.
Definition 4.1. Let X be a topological space and $\mathcal{O}(X)$ its lattice of open subsets. An action of X on a C^{*}-algebra A with ideal lattice $\mathcal{I}(A)$ is an order preserving map $\mathcal{O}(X) \ni U \mapsto A(U) \in \mathcal{I}(A)$.

Let A, B be C^{*}-algebras with an action of X.
A homomorphism (or also a linear map) $\psi: A \rightarrow B$ is said to be X-equivariant if ψ maps $A(U)$ to $B(U)$ for each $U \in \mathcal{O}(X)$.

A homomorphism φ from $q A$ to B is said to be weakly X-equivariant, if the maps $A \ni x \mapsto \varphi(\iota(x) z), x \mapsto \varphi(\bar{\iota}(x) z)$ are X-equivariant for each $z \in q A$.
We say that $\varphi: q A \rightarrow B$ is q_{X}-equivariant if the map $A \ni x \mapsto \varphi(q x)$ is X-equivariant.

Finally, given X and a C^{*}-algebra A with an action of X, we can define actions of X on $Q A$ and $q A$ by letting $Q A(U)$ and $q A(U)$ be the closed ideals generated by $Q(A(U))$ in $Q A$ and by $Q(A(U)) q A++q A Q(A(U))$ in $q A$, respectively (these are the kernels of the natural maps $Q A \rightarrow Q(A / A(U))$ and $q A \rightarrow$
$q(A / A(U)))$. We denote $Q A, q A$ with these actions by $Q_{X} A, q_{X} A$. Then

$$
0 \rightarrow q_{X} A \rightarrow Q_{X} A \rightarrow A \rightarrow 0
$$

is an X-equivariant exact sequence with equivariant splitting $\iota: A \rightarrow Q_{X} A$.
Proposition 4.2. Let A, B be C^{*}-algebras with an action of X and φ a homomorphism $q A \rightarrow B$. The following are equivalent

- φ is weakly X-equivariant
- φ is q_{X}-equivariant
- φ is X-equivariant as a homomorphism $q_{X} A \rightarrow B$

Proof. Assume that φ is q_{X}-equivariant. By Proposition 2.1, $q A$ is the closed span of elements $q y w$ for $y \in A$ and $w \in q A$. Then $\varphi(\iota(x) q y w)=\varphi(q(x y) w)-$ $\varphi(q x \bar{\iota}(y) w)$ is in $B(U)$ whenever x is in $A(U)$ for all $y \in A, w \in q A$. Similarly for $\varphi(\bar{\iota}(x) q y w)$, which shows that φ is weakly X-equivariant.
Conversely, assume that φ is weakly X-equivariant. Let $x \in A(U)$ and $\left(u_{\lambda}\right)$ an approximate unit for $q A$. Then $\varphi(q x)=\lim _{\lambda} \varphi\left(q x u_{\lambda}\right)=\lim _{\lambda} \varphi((\iota(x)-$ $\left.\bar{\iota}(x)) u_{\lambda}\right) \in B(U)$.
If φ is weakly X-equivariant then $\varphi(q A \iota(x) q A)$ and $\varphi(q A \bar{\iota}(x) q A)$ are contained in $B(U)$ for all $x \in A(U)$ and thus, by definition of $q_{X} A(U)$ we get that $\varphi\left(q_{X} A(U)\right) \subset B(U)$.
Finally, if $\varphi: q_{X} A \rightarrow B$ is X-equivariant, then $\varphi(Q(A(U)) q A) \subset B(U)$ which means that φ is weakly X-equivariant.

Definition 4.3. Let A, B be C^{*}-algebras with an action of X. We define $K K(X ; A, B)$ as the set of homotopy classes of weakly X-equivariant homomorphisms (or equivalently of q_{X}-equivariant morphisms) $q A \rightarrow \mathcal{K} \otimes B$ (with homotopy in the category of such morphisms).
Equivalently this is the set of equivariant homotopy classes of X-equivariant homomorphisms $q_{X} A \rightarrow \mathcal{K} \otimes B$.

In the X-equivariant case the construction of the product actually carries over directly from section 3. We can apply the arguments from there basically verbatim to $q_{X} A$ in place of $q A$ because all the maps and homotopies occuring in the discussion are naturally X-equivariant. In particular, the automorphism σ used in the construction of φ_{A} is inner and therefore respects ideals and is X-equivariant. This in turn implies that φ_{A} also is X-equivariant as a map from $q_{X} A$ to $M_{2}\left(q_{X}^{2} A\right)$ with $q_{X}^{2} A=q_{X}\left(q_{X} A\right)$. Moreover, the homotopies used in the proofs of Propositions 3.4 and 3.6 are manifestly X-equivariant. We obtain

Proposition 4.4. Let A, B, C be C^{*}-algebras with an action of the topological space X. There is a natural bilinear and associative product $K K(X ; A, B) \times$ $K K(X ; B, C) \rightarrow K K(X ; A, C)$ which extends the composition product of X equivariant homomorphisms.

5. $K K^{\text {nuc }}$ VIA THE $q A$ FORMALISM

We start with a discussion of nuclear and weakly nuclear linear maps between C^{*}-algebras. While nuclearity is most often studied in the context of completely positive maps, Pisier considered the case for more general linear maps in [15, Chapter 12]. Since we think that these notions have some independent interest we do this in more detail than what is actually needed for our purposes.

Definition 5.1. Let $\rho: A \rightarrow B$ be a linear map between C^{*}-algebras. We let $\|\rho\|_{\text {nuc }}$ (the nuclear norm) denote the infimum over all $K \geqslant 0$ for which

$$
\rho \otimes \mathrm{id}: A \otimes_{\mathrm{alg}} D \rightarrow B \otimes_{\max } D
$$

is bounded by K for all C^{*}-algebras D, if we equip $A \otimes_{\mathrm{alg}} D$ with the minimal C^{*}-tensor norm. We say that ρ is nuclear if $\|\rho\|_{\text {nuc }}$ is finite.

In comparison, a linear map $\phi: A \rightarrow B$ between C^{*}-algebras is completely bounded (resp. weakly decomposabl ${ }^{2}$) if there is a constant K such that the map $\phi \otimes \mathrm{id}: A \otimes_{\text {alg }} D \rightarrow B \otimes_{\text {alg }} D$ is bounded in norm by K when both tensor products are equipped with the minimal (resp. maximal) C^{*}-tensor product.

Since it suffices to check complete boundedness for D being matrix algebras, it follows that weakly decomposable maps are completely bounded.

Note that if $\rho: A \rightarrow B$ is nuclear (or weakly decomposable) and ρ takes values in a C^{*}-subalgebra $B_{0} \subseteq B$, the corestriction $\left.\rho\right|^{B_{0}}$ is not necessarily nuclear (or weakly decomposable) since the map $B_{0} \otimes_{\max } D \rightarrow B \otimes_{\max } D$ is not necessarily faithful. However, the map $B_{0} \otimes_{\max } D \rightarrow B \otimes_{\max } D$ is faithful if B_{0} is a hereditary C^{*}-algebra so in that case $\left.\rho\right|^{B_{0}}$ is still nuclear (or weakly decomposable). This explains why we often consider hereditary C^{*}-subalgebras, instead of just ordinary subalgebras, in the theory below.

If E is a C^{*}-algebra with closed ideal B, a linear map $\psi: A \rightarrow E$ is called weakly nuclear (relative to B) if $\psi b: A \rightarrow B$ (i.e. the map $x \mapsto \psi(x) b$) is nuclear for all $b \in B$. We address in Remark 5.3 why this notion agrees with the more traditional notion of weak nuclearity.

Here are some easy observations on nuclear linear maps. If X is a C^{*}-subalgebra of a C C^{*}-algebra Y, we denote in the following by \bar{X}^{Y} the hereditary subalgebra $\overline{X Y X}$ of Y generated by X.

Lemma 5.2. Let A, B, C, D be C^{*}-algebras.

[^2](1) For a fixed $K \geqslant 0$, the set of linear maps $\rho: A \rightarrow B$ with $\|\rho\|_{\text {nuc }} \leqslant K$ is closed in the point-norm topology.
(2) The set of nuclear linear maps $A \rightarrow B$ is a Banach space with respect to the nuclear norm.
(3) If $\rho: A \rightarrow B$ is nuclear and D is a nuclear C^{*}-algebra, then $\operatorname{id}_{D} \otimes \rho$ extends canonically to a nuclear map $D \otimes A \rightarrow D \otimes B$.
(4) If $\rho: A \rightarrow B$ is completely positive and nuclear then $\|\rho\|_{\text {nuc }}=\|\rho\|$.
(5) If $\phi: A \rightarrow B, \rho: B \rightarrow C$ and $\psi: C \rightarrow D$ are linear maps such that ϕ is completely bounded, ρ is nuclear, and ψ is weakly decomposable, then $\psi \rho \phi$ is nuclear.
(6) If $\psi: A \rightarrow E$ is a homomorphism with an ideal $B \triangleleft E$, and if $b \in B$ such that ψb is nuclear, then $\|\psi b\|_{\text {nuc }} \leqslant\|b\|$.
(7) If $\psi: A \rightarrow E$ is a homomorphism with an ideal $B \triangleleft E$, and if $X \subseteq B$ is a subset such that B is generated as a closed right ideal by X, then ψ is weakly nuclear relative to B provided ψb is nuclear for all $b \in X$.

Proof. (11), (2), and (5) are immediate to verify, while (4) is classical, see for instance [1, Theorem 3.5.3].
(3): That $\operatorname{id}_{D} \otimes \rho$ extends is immediate from the definition of nuclearity of ρ, and nuclearity of $\operatorname{id}_{D} \otimes \rho$ follows since $\operatorname{id}_{E} \otimes \operatorname{id}_{D} \otimes \rho$ extends to a linear map

$$
E \otimes_{\min }(D \otimes A)=(E \otimes D) \otimes_{\min } A \rightarrow(E \otimes D) \otimes_{\max } B=E \otimes_{\max }(D \otimes B)
$$

bounded by $\|\rho\|_{\text {nuc }}$ for any C^{*}-algebra E by nuclearity of D and ρ.
(6): Note that $\theta: A \rightarrow B$ given by $\theta(x)=b^{*} \psi(x) b$ is both completely positive and nuclear (it is the nuclear map ψb multiplied by b^{*}), and thus $\|\theta\|_{\text {nuc }} \leqslant\|b\|^{2}$ by (4). Let D be a non-zero C^{*}-algebra and $x=\sum_{j=1}^{N} a_{j} \otimes d_{j} \in A \otimes_{\text {alg }} D$ with minimal tensor norm $\|x\|_{\text {min }}=1$. Then

$$
\begin{aligned}
\left\|\left(\psi b \otimes \operatorname{id}_{D}\right)(x)\right\|_{\max } & =\left\|\sum_{j=1}^{N} \psi\left(a_{j}\right) b \otimes d_{j}\right\|_{\max } \\
& =\left\|\sum_{i, j=1}^{N} \theta\left(a_{i}^{*} a_{j}\right) \otimes d_{i}^{*} d_{j}\right\|_{\max }^{1 / 2} \\
& =\left\|\left(\theta \otimes \operatorname{id}_{D}\right)\left(x^{*} x\right)\right\|_{\max }^{1 / 2} \\
& \leqslant\|\theta\|_{\text {nuc }}^{1 / 2} \\
& \leqslant\|b\| .
\end{aligned}
$$

(7): This is an easy consequence of parts (21) and (6).

Remark 5.3. Classically a homomorphism (or completely positive map) $\psi: A \rightarrow$ E being weakly nuclear relative to a closed ideal B means that $b^{*} \psi b: A \rightarrow B$ is nuclear for all $b \in B$. We will show that this agrees with our definition above.

If ψb is nuclear then clearly so is $b^{*} \psi b$ so one implication is obvious. Conversely, suppose $c^{*} \psi c$ is nuclear for all $c \in B$, so that we should show that ψb is nuclear for all $b \in B$. Let $\left(e_{\lambda}\right)_{\lambda}$ be an approximate identity in B. By Lemma 5.2(1) it suffices to show that there is an upper bound on the nuclear norms of the maps $e_{\lambda} \psi b$. By the polarisation identity we have

$$
e_{\lambda} \psi b=\frac{1}{4} \sum_{j=0}^{3} i^{j}\left(i^{j} e_{\lambda}+b\right)^{*} \psi(.)\left(i^{j} e_{\lambda}+b\right)
$$

and by Lemma 5.2(4) we obtain

$$
\left\|e_{\lambda} \psi b\right\|_{\text {nuc }} \leqslant \frac{1}{4} \sum_{j=0}^{3}\left\|\left(i^{j} e_{\lambda}+b\right)^{*} \psi(.)\left(i^{j} e_{\lambda}+b\right)\right\| \leqslant(1+\|b\|)^{2}\|\psi\| .
$$

Hence ψb is nuclear.

If X is a C^{*}-subalgebra of the multiplier algebra $\mathcal{M}(Y)$, we denote by \bar{X}^{Y} the hereditary subalgebra $X Y X$ of Y generated by X (note that $X Y X$ is a C^{*}-algebra by the Cohen-Hewitt factorisation theorem).

Proposition 5.4. Let $\psi: q A \rightarrow B$ be a homomorphism. The following are equivalent:
(i) The map $A \ni x \mapsto \psi(q x) \in B$ is nuclear;
(ii) The maps $A \rightarrow B$ given by $x \mapsto \psi(\iota(x) y)$ and $x \mapsto \psi(\bar{\iota}(x) y)$ are nuclear for all $y \in q A$;
(iii) ψ is represented by a prequasihomomorphism

$$
\left(\psi_{1}, \psi_{2}\right): A \rightrightarrows E \triangleright J \hookrightarrow B
$$

where ψ_{1}, ψ_{2} are weakly nuclear relative to J;
(iv) If $\psi^{\circ}: Q A \rightarrow \mathcal{M}\left(\overline{\psi(q A)}^{B}\right)$ is the canonical extension of ψ, then $\psi^{\circ} \iota$ and $\psi^{\circ} \iota$ are weakly nuclear.
(v) If $E=\psi(q A) B$ is considered as a Hilbert B-module, the Kasparov module

$$
\left(\psi^{\circ} \iota \oplus \psi^{\circ} \bar{\iota}: A \rightarrow \mathcal{B}\left(E \oplus E^{o p}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

is nuclear in the sense of Skandalis.

Proof. With E as in (v), $\mathcal{B}(E)$ is canonically isomorphic to $\mathcal{M}\left(\overline{\psi(q A)}^{B}\right)$ and hence (iv) and (v) are equivalent by [16, 1.5].
(iv) implies (iii) is immediate since ψ is induced by

$$
\left(\psi^{\circ} \iota, \psi^{\circ} \bar{\iota}\right): A \rightrightarrows \mathcal{M}\left(\overline{\psi(q A)}^{B}\right) \triangleright \overline{\psi(q A)}^{B} \hookrightarrow B
$$

For (iii) \Rightarrow (ii) we have $x \mapsto \psi(\iota(x) y)=\psi_{1}(x) \psi(y)$ is nuclear for all $y \in q A$, and similarly $x \mapsto \psi(\bar{\iota}(x) y)$ is nuclear.

For (ii) \Rightarrow (i), let for $y \in q A \psi_{y}, \bar{\psi}_{y}: A \rightarrow B$ be the completely positive maps given by $\psi_{y}(x)=\psi\left(y^{*} \iota(x) y\right)$ and $\bar{\psi}_{y}(x)=\psi\left(y^{*} \bar{\iota}(x) y\right)$ which are nuclear by (ii). As these maps are completely positive, their nuclear norm $\left\|\psi_{y}\right\|_{\text {nuc }}=\left\|\psi_{y}\right\| \leqslant$ $\|y\|^{2}$ (Lemma 5.2(4)), and similarly $\left\|\bar{\psi}_{y}\right\|_{\text {nuc }} \leqslant\|y\|^{2}$. Hence

$$
x \mapsto \psi\left(y^{*} q x y\right)=\psi_{y}(x)-\bar{\psi}_{y}(x)
$$

has nuclear norm bounded by $2\|y\|^{2}$. Letting y range through an approximate identity for $q A$, these nuclear maps converge point-norm to $x \mapsto \psi(q x)$ and have nuclear norm bounded by 2 , so $\|x \mapsto \psi(q x)\|_{\text {nuc }} \leqslant 2$ by Lemma 5.2(1).
(i) \Rightarrow (iv): By Proposition 2.1, $\overline{\psi(q A)}^{B}$ is generated as a closed left ideal by $\{\psi(q a): a \in A\}$. So to check that $\psi^{\circ} \iota$ is weakly nuclear it suffices by Lemma 5.2(7) to check that

$$
x \mapsto \psi^{\circ} \iota(x) \psi(q a)=\psi(\iota(x) q a) \stackrel{2.1}{=} \psi(q(x a))-\psi(q(x)) \psi^{\circ} \bar{\iota}(a)
$$

is nuclear, which holds by Lemma 5.2(5) (applied to the weakly decomposable maps given by right multiplication by a fixed element). Similarly $\psi^{\circ} \measuredangle$ is weakly nuclear.

Definition 5.5. We say that a homomorphism $\psi: q A \rightarrow B$ is q-nuclear if it satisfies the equivalent conditions in the above proposition.
Definition 5.6. We define $K K^{n u c}(A, B)$ as the abelian group $[q A, \mathcal{K} \otimes B]_{\text {nuc }}$ of homotopy classes (in the same category of maps) of q-nuclear homomorphisms $q A \rightarrow \mathcal{K} \otimes B$.

Remark 5.7. The definition of $K K^{\text {nuc }}(A, B)$ from [16] for A separable and $B \sigma$-unital uses the original definition of Kasparov but assuming all Kasparov modules and homotopies are nuclear. The argument from [5] combined with Proposition 5.4 shows that the obvious map from Skandalis' $K K^{n u c}$-group to $[q A, \mathcal{K} \otimes B]_{\text {nuc }}$ is an isomorphism. This map, in particular, takes a Kasparov module induced by a prequasihomomorphism as in Proposition 5.4(iii) (with $\mathcal{K} \otimes B$ instead of B) to the induced q-nuclear homomorphism $\phi: q A \rightarrow \mathcal{K} \otimes B$.

Remark 5.8. A C*-algebra A is K-nuclear in the sense of Skandalis, if and only if the natural projection $\pi_{A}: q A \rightarrow A$ composed with the inclusion $A \rightarrow \mathcal{K} \otimes A$ is homotopic to a q-nuclear homomorphism $q A \rightarrow \mathcal{K} \otimes A$.

We now discuss the product of elements in $K K^{\text {nuc }}$ by elements in $K K$. We want to see that our formula in Subsection 3.1 for the product of two $K K$ elements represented by $\rho: q A \rightarrow \mathcal{K} \otimes B$ and $\psi: q B \rightarrow \mathcal{K} \otimes C$ gives a well defined element in $K K^{n u c}(A, C)$ if ρ or ψ is q-nuclear. The product, as we defined it, depends only on the restriction of ψ to $q(\rho(q A))$. But if $\rho: q A \rightarrow B$ is q-nuclear then we don't know if $\rho: q A \rightarrow \rho(q A)$ is too. Therefore we apply the formula for the product from Section 3 to the corestrictions/restrictions $\rho_{0}: q A \rightarrow B_{0}$ and $\psi_{0}: q B_{0} \rightarrow C_{0}$ of ρ and ψ, where $B_{0}=\overline{\rho(q A)}^{B}$, and
$C_{0}={\overline{\psi\left(q B_{0}\right)}}^{C}$ are the hereditary subalgebras generated by $\rho(q A)$ and $\psi\left(q B_{0}\right)$. Then ρ_{0} is q-nuclear iff ρ is and $\rho=j_{B_{0}} \circ \rho_{0}$ for the embedding $j_{B_{0}}: B_{0} \rightarrow \mathcal{K} \otimes B$ (and the same for ψ and ψ_{0}). Similarly we denote by $\left(\psi_{0} \sharp \rho_{0}\right)_{0}$ the corestriction of $\psi_{0} \sharp \rho_{0}$ to the hereditary subalgebra C_{0} generated by the image of $\psi_{0} \sharp \rho_{0}$. The product in $K K$ without nuclearity condition of ψ and ρ will be the same as the product $\left(\psi_{0} \sharp \rho_{0}\right)_{0}$ composed with the embedding $j_{C_{0}}: C_{0} \hookrightarrow \mathcal{K} \otimes C$ (see Remark 3.3 (b)). We call ρ_{0}, ψ_{0} the completed form of ρ, ψ and $\left(\psi_{0} \sharp \rho_{0}\right)_{0}$ the completed product.
We consider the two maps $\eta^{\psi}, \bar{\eta}^{\psi}: B_{0} \rightarrow \mathcal{M}\left(C_{0}\right)$ given by $\eta^{\psi}=\psi_{0}^{\circ} \iota_{B_{0}}, \bar{\eta}^{\psi}=$ $\psi_{0}^{\circ} \bar{\iota}_{B_{0}}$ (with $\iota_{B_{0}}, \bar{\iota}_{B_{0}}: B_{0} \rightarrow Q B_{0}$ the natural inclusions) and set $R_{1}^{\psi}=\eta^{\psi}\left(B_{0}\right)$, $R_{2}^{\psi}=\bar{\eta}^{\psi}\left(B_{0}\right)$ and let R^{ψ} be the C^{*}-algebra generated in $M_{2}\left(\mathcal{M}\left(C_{0}\right)\right)$ by the matrices in

$$
\left(\begin{array}{cc}
R_{1}^{\psi} & R_{1}^{\psi} R_{2}^{\psi} \\
R_{2}^{\psi} R_{1}^{\psi} & R_{2}^{\psi}
\end{array}\right)
$$

We also denote by J_{0} the intersection of R^{ψ} with $M_{2}\left(C_{0}\right)$.
We can extend $\eta^{\psi}, \bar{\eta}^{\psi}$ to maps from the multipliers of B_{0} to the multipliers of $R_{1}^{\psi}, R_{2}^{\psi}$ respectively. By composing these extended maps with the natural maps $\varepsilon^{\rho}, \bar{\varepsilon}^{\rho}: A \rightarrow \mathcal{M}\left(B_{0}\right)$ (given by $\rho_{0}^{\circ} \iota$ and $\rho_{0}^{\circ} \bar{\iota}$) we obtain maps $\eta^{\psi} \varepsilon^{\rho}, \eta^{\psi} \bar{\varepsilon}^{\rho}$: $A \rightarrow \mathcal{M}\left(R_{1}^{\psi}\right)$ and $\bar{\eta}^{\psi} \varepsilon^{\rho}, \bar{\eta}^{\psi} \bar{\varepsilon}^{\rho}: A \rightarrow \mathcal{M}\left(R_{2}^{\psi}\right)$.
This means that the maps

$$
h_{1}^{\psi \rho}=\left(\begin{array}{cc}
\eta^{\psi} \varepsilon^{\rho} & 0 \\
0 & \bar{\eta}^{\psi} \bar{\varepsilon}^{\rho}
\end{array}\right) \quad h_{2}^{\psi \rho}=\left(\begin{array}{cc}
\eta^{\psi} \bar{\varepsilon}^{\rho} & 0 \\
0 & \bar{\eta}^{\psi} \varepsilon^{\rho}
\end{array}\right)
$$

are homomorphisms from A to the multipliers of R^{ψ}.
Lemma 5.9. If ρ or ψ is q-nuclear, then $h_{1}^{\psi \rho}$ and $h_{2}^{\psi \rho}$ are weakly nuclear relative to J_{0}.

Proof. Assume that ρ is weakly nuclear. Then the map $A \ni x \mapsto v \varepsilon^{\rho}(x) v^{*}$ is nuclear for each $v \in B_{0}$ and the same for $\bar{\varepsilon}^{\rho}$. If we apply η^{ψ} to this map we see that $A \ni x \mapsto w \eta^{\psi} \varepsilon^{\rho}(x) w^{*}$ is nuclear for each $w \in \eta^{\psi}\left(B_{0}\right)$. If we multiply w in this map by $y \in C_{0}$ on the left we find that $A \ni x \mapsto y w \eta^{\psi} \varepsilon^{\rho}(x) w^{*} y^{*}$ is nuclear for each $w \in \eta^{\psi}\left(B_{0}\right)$ and $y \in C_{0}$ and the same for $\bar{\eta}^{\psi}$ and $\bar{\varepsilon}^{\rho}$ in place of η^{ψ} and/or ε^{ρ}. By matrix multiplication this shows that the maps $A \ni x \mapsto z h_{i}^{\psi \rho} z^{*}$ are nuclear for $i=1,2$ and each $z \in J_{0}$.
Assume now that ψ is q-nuclear.
If $\left(u_{\lambda}\right)$ is an approximate unit for B_{0}, then, by the special definition of R^{ψ}, we have that $z h_{1}^{\psi \rho}\left(u_{\lambda}\right)$ and $z h_{2}^{\psi \rho}\left(u_{\lambda}\right)$ tend to z for each $z \in R^{\psi}$.
By q-nuclearity of ψ, for each $z \in J_{0}$ the map $A \ni x \mapsto z \eta^{\psi}\left(u_{\lambda} \varepsilon^{\rho}(x) u_{\lambda}^{*}\right) z^{*}$ is nuclear for each λ and the same for $\bar{\eta}^{\psi}$ and $\bar{\varepsilon}^{\rho}$. In the limit over λ we get that the map $A \ni x \mapsto z \eta^{\psi} \varepsilon^{\rho}(x) z^{*}$ is nuclear as well (as the set of nuclear c.p. maps is point-norm closed) as the corresponding maps with η^{ψ} and ε^{ρ} replaced with $\bar{\eta}^{\psi}$ and/or $\bar{\varepsilon}^{\rho}$. This shows that for $i=1,2$ and $y \in J_{0}$ the maps
$A \ni x \mapsto y h_{i}^{\psi \rho}(x) y^{*}$ are nuclear and thus that $h_{1}^{\psi \rho}, h_{2}^{\psi \rho}$ are weakly nuclear relative to J_{0}.

We now examine the product of the bivariant elements represented by ρ_{0} and ψ_{0}. As in the universal case we have that $R^{\psi} / J_{0} \cong M_{2}\left(B_{0}\right)$ and we can lift the multiplier $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ to a multiplier S_{0} of J_{0} that commutes mod J_{0} with $\eta \varepsilon(x) \oplus$ $\bar{\eta} \varepsilon(x)$ for $x \in A$. We set $F_{0}=e^{\frac{\pi i}{2} S_{0}}$ and $\sigma_{t}^{\psi}=\operatorname{Ad} e^{\frac{\pi i}{2} S_{0}}$ and $\sigma^{\psi}=\sigma_{1}^{\psi}$. If $h_{2}^{\psi \rho}$ is weakly nuclear relative to J_{0}, so is the composition $\sigma^{\psi} h_{2}^{\psi \rho}$. The homomorphism $\left(\psi_{0} \sharp \rho_{0}\right)_{0}=q\left(h_{1}^{\psi \rho}, \sigma^{\psi} h_{2}^{\psi \rho}\right): q A \rightarrow M_{2}\left(C_{0}\right)$ represents the product and defines an element of $K K\left(A, C_{0}\right)$ which, by Lemma 5.9, is q-nuclear whenever ρ or ψ is. We get

Proposition 5.10. The pairing $\left(\psi_{0}, \rho_{0}\right) \mapsto j_{C_{0}}\left(\psi_{0} \sharp \rho_{0}\right)_{0}$ induces well defined bilinear products $K K^{\text {nuc }}(A, B) \times K K(B, C) \rightarrow K K^{\text {nuc }}(A, C)$ and $K K(A, B) \times K K^{n u c}(B, C) \rightarrow K K^{n u c}(A, C)$.

Proof. The product $j_{C_{0}} \circ \psi_{0} \sharp \rho_{0}$ represents an element of $K K^{\text {nuc }}(A, C)$ by Lemma 5.9 and the discussion after the lemma. It is well defined since q nuclear homotopies on the side of $\left[q A, \mathcal{K} \otimes B_{0}\right]_{\text {nuc }}$ or $\left[q B_{0}, \mathcal{K} \otimes C_{0}\right]_{\text {nuc }}$ induce elements of $K K^{n u c}\left(A, B_{0}[0,1]\right)$ or $K K^{n u c}\left(B_{0}, C_{0}[0,1]\right)$. The product with such an element gives q-nuclear homotopies of the product.
5.1. Associativity. Assume that we have elements in $K K(A, B), K K(B, C)$, $K K(C, D)$ represented by homomorphisms $\alpha: q A \rightarrow \mathcal{K} \otimes B, \beta: q B \rightarrow \mathcal{K} \otimes C$, $\gamma: q C \rightarrow \mathcal{K} \otimes D$ and assume that one of those is q-nuclear. In order to show that the two different products $\gamma \sharp(\beta \sharp \alpha)$ and $(\gamma \sharp \beta) \sharp \alpha$ are homotopic via a q-nuclear homotopy and are themselves both q-nuclear we can proceed exactly as in subsection 3.4. Using the notation from there we obtain modified homomorphisms $\alpha, \beta^{\prime}, \gamma^{\prime}$. By Proposition 5.10, $\beta^{\prime}, \gamma^{\prime}$ will be q-nuclear if β resp. γ is. According to subsection 3.4 the product is given for both choices of parentheses by the homomorphism $q A \rightarrow D_{0} \subset \mathcal{K} \otimes D$ given by
$q\left(\gamma_{E}^{\prime} \beta_{E}^{\prime} \alpha_{E} \oplus \bar{\gamma}_{E}^{\prime} \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \gamma_{E}^{\prime} \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E} \oplus \bar{\gamma}_{E}^{\prime} \beta_{E}^{\prime} \bar{\alpha}_{E}, \bar{\gamma}_{E}^{\prime} \beta_{E}^{\prime} \alpha_{E} \oplus \gamma_{E}^{\prime} \bar{\beta}_{E}^{\prime} \alpha_{E} \oplus \bar{\gamma}_{E}^{\prime} \bar{\beta}_{E}^{\prime} \bar{\alpha}_{E} \oplus \gamma_{E}^{\prime} \beta_{E}^{\prime} \bar{\alpha}_{E}\right)$
It is q-nuclear by Proposition 5.10.
Remark 5.11. (a)In the situation above it follows from Proposition 5.10 that the two products with different choice of parentheses are q-nuclear, if one of the α, β, γ is. But if we have already established that the product is given by the long expression above and that β^{\prime} or γ^{\prime} is q-nuclear once β or γ is q-nuclear, then the q-nuclearity of the product is obvious. In fact we get the chain of ideals

$$
\gamma_{E}^{\prime} \beta_{E}^{\prime} \alpha_{E} A \triangleright \gamma_{E}^{\prime} \beta_{E}^{\prime} B_{0} \triangleright \gamma_{E}^{\prime} C_{0} \triangleright D_{0}
$$

and an analogous chain of ideals for each composition $\gamma_{E}^{\prime} \beta_{E}^{\prime} \alpha_{E}, \bar{\gamma}_{E}^{\prime} \bar{\beta}_{E}^{\prime} \alpha_{E} \ldots$ This shows that each of these compositions is weakly nuclear relative to D_{0} as soon as one of the α, β, γ is q-nuclear.
(b) For the proof of associativity of the product in $K K^{\text {nuc }}$ we could also adapt the arguments from subsection 3.2 or from [6], but the proof in subsection 3.4 is particularly well suited for the situation in $K K^{\text {nuc }}$.

6. The Equivariant case

Let G be a locally compact σ-compact group. A G-C ${ }^{*}$-algebra is a C^{*} algebra with an action of G by automorphisms $\alpha_{g}, g \in G$ such that the map $G \ni g \mapsto \alpha_{g}(x)$ is continuous for each $x \in A$. We denote by $\mathcal{K}=\mathcal{K}_{\mathbb{N}}$ the algebra of compact operators on $\ell^{2} \mathbb{N}$ and by \mathcal{K}_{G} the algebra $\mathcal{K}\left(L^{2} G\right)$ of compact operators on $L^{2} G$. They are G-algebras with the trivial action and with the adjoint action $\operatorname{Ad} \lambda$ of G, respectively, where $\lambda: G \rightarrow \mathcal{U}\left(L^{2} G\right)$ is the left regular representation. We also denote by $\mathcal{K}_{\mathbb{N} G}$ their tensor product with the tensor product action and will later use the fact that $\mathcal{K}_{\mathbb{N} G}$ is equivariantly isomorphic to $\mathcal{K}_{\mathbb{N} G} \otimes \mathcal{K}_{\mathbb{N} G}$ (by Fell's absorption principle the tensor product of λ by any unitary representation of G is equivalent to a multiple of λ).

Given a G-C ${ }^{*}$-algebra (A, α) we consider the Hilbert A-module $L^{2}(G, A)$ with the natural action of G given by $\lambda \alpha$ where λ is the action by translation on G. The algebra of compact operators on $L^{2}(G, A)$ in the sense of Kasparov is isomorphic to $\mathcal{K}_{G} \otimes A$. The induced action of G on $\mathcal{K}_{G} \otimes A$ is $\operatorname{Ad} \lambda \otimes \alpha$.

Since $A \mapsto Q A$ is a functor, the action α induces actions of G on $Q A, q A$ and on $Q^{2} A, q^{2} A, R, J$ (see Section (3) which we still denote by α.

Definition 6.1. Given $G-C^{*}$-algebras (A, α) and (B, β) where A is separable, define $K K^{G}(A, B)$ as the set of homotopy classes (in the category of equivariant homomorphisms) of equivariant ${ }^{*}$-homomorphisms from $\mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right)$ to $\mathcal{K}_{\mathbb{N} G} \otimes B$.

Remark 6.2. (a) The pair of homomorphisms (id $\otimes \iota, i d \otimes \bar{\iota})$ gives an equivariant homomorphism from $q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right)$ to $\mathcal{K}_{\mathbb{N} G} \otimes q A$. Therefore every equivariant homomorphism $q A \rightarrow \mathcal{K}_{\mathbb{N} G} \otimes B$ (or equivalently every equivariant prequasihomomorphism $A \rightarrow \mathcal{K}_{\mathbb{N} G} \otimes B$) induces by stabilization an element of $K K^{G}(A, B)$.
(b) It is a consequence of Definition 6.1 that the so defined $K K^{G}$ is the universal functor satisfying the usual properties of homotopy invariance, stability and split exactness, see Section 7. Using the characterization of $K K^{G}$ by these properties in [18] our $K K^{G}$ is the same as the one of Kasparov [11]. Ralf Meyer has shown in [13] by direct comparison that Definition 6.1]gives the same functor as the one of [11].
(c) Using Meyer's result our construction of the product below gives an alternative definition of the product in Kasparov's $K K^{G}$.

In order to describe the composition product for $K K^{G}$ we will use an equivariant version of the map φ_{A} in Section 3 this time from $q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right)$ to $M_{2}\left(q^{2}\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right)\right)$. As a first step we are now going to construct an equivariant map φ_{0} from $q\left(\mathcal{K}_{G} \otimes A\right)$ to $M_{2}\left(\mathcal{K}_{G} \otimes q^{2} A\right)$.

We consider first, as in Section 1, the algebras

$$
R=\left(\begin{array}{cc}
R_{1} & R_{1} R_{2} \\
R_{2} R_{1} & R_{2}
\end{array}\right) \quad D=C^{*}\left\{\left(\begin{array}{cc}
\eta \varepsilon(x) & 0 \\
0 & \bar{\eta} \varepsilon(x)
\end{array}\right) \quad x \in A\right\}
$$

where $R_{1}=\eta(q A), R_{2}=\bar{\eta}(q A)$ as well as the ideal $J=R \cap M_{2}\left(q^{2} A\right)$.
As in Section 3 we have that $(R+D) / J$ is isomorphic to the subalgebra of $M_{2}(Q(A))$ generated by $M_{2}(q A)$ together with the matrices

$$
\left(\begin{array}{cc}
\iota(x) & 0 \\
0 & \iota(x)
\end{array}\right) \quad x \in A .
$$

Using the equivariant version of Proposition 2.2 (Thomsen's noncommutative Tietze extension theorem) we can lift the multiplier $S_{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ of R / J to a self-adjoint multiplier S of J that commutes mod J with D and which satisfies $\alpha_{g}(S)-S \in J$ for all $g \in G$.

This multiplier S can be extended to a G-invariant self-adjoint element S^{\prime} of $\mathcal{B}\left(L^{2}(G, J)\right)$ by setting $S^{\prime}(\xi)(s)=S_{s} \xi(s)$ for $s \in G$ where $S_{s}=\alpha_{s}(S)=\alpha_{s} S \alpha_{s}^{-1}$ and where $\xi \in C_{c}(G, A) \subset L^{2}(G, A)$. It is immediate that S^{\prime} is invariant for the action $\lambda \alpha$ of G on $L^{2}(G, J)$. Thus S^{\prime} defines a G-invariant multiplier of $\mathcal{K}_{G} \otimes J$.

The important point now is that moreover S^{\prime} commutes $\bmod \mathcal{K}_{G} \otimes J$ with $D^{\prime}=\mathcal{K}_{G} \otimes D$. In fact, for a typical rank 1 element of the form $\left|f_{1}\right\rangle\left\langle f_{2}\right|$ in \mathcal{K}_{G} with $f_{1}, f_{2} \in C_{c}(G, \mathbb{C}), x \in D$ and $\xi \in C_{c}(G, J) \subset L^{2}(G, J)$ we get

$$
\begin{aligned}
& \left.\left(\left[S^{\prime},\left(\left|f_{1}\right\rangle\left\langle f_{2}\right| \otimes x\right)\right] \xi\right)(s)=f_{1}(s) \int \overline{f_{2}(t)}\left(S_{s} x-x S_{t}\right)\right) \xi(t) d t \\
& \quad=f_{1}(s) \int\left(\overline{f_{2}(t)}\left(S_{s} x-S_{t} x\right)\right) \xi(t) d t-f_{1}(s) \int \overline{\left(\overline{f_{2}(t)}\left(S_{t} x-x S_{t}\right)\right) \xi(t) d t}
\end{aligned}
$$

where $S_{t} x-x S_{t}, S_{s} x-S_{t} x$ are in J and continuous in t. In fact, S was chosen, using 2.2 to commute mod J with D and such that $S_{s}-S, S_{t}-S$ are in J and continuous in s, t.

As in Section 3 we can now choose $F^{\prime}=e^{\frac{\pi i}{2} S^{\prime}}$. Then $\operatorname{Ad} F^{\prime}$ defines an automorphism σ^{\prime} of the multipliers of $\mathcal{K}_{G} \otimes J$. Tensoring by $\mathrm{id}_{\mathcal{K}_{G}}$ we extend the maps $\eta \varepsilon, \eta \bar{\varepsilon}, \bar{\eta} \varepsilon, \bar{\eta} \bar{\varepsilon}: A \rightarrow Q^{2} A$ to homomorphisms from $\mathcal{K}_{G} \otimes A$ to $\mathcal{K}_{G} \otimes Q^{2} A$, still denoted by $\eta \varepsilon, \eta \bar{\varepsilon}, \bar{\eta} \varepsilon, \bar{\eta} \bar{\varepsilon}$. Then the pair of homomorphisms

$$
\left(\left(\begin{array}{cc}
\eta \varepsilon & 0 \\
0 & \bar{\eta} \bar{\varepsilon}
\end{array}\right), \sigma^{\prime}\left(\begin{array}{cc}
\bar{\eta} \varepsilon & 0 \\
0 & \eta \bar{\varepsilon} \bar{\varepsilon}
\end{array}\right)\right)
$$

defines an equivariant homomorphism $\varphi_{0}: q\left(\mathcal{K}_{G} \otimes A\right)$ to $\mathcal{K}_{G} \otimes J$ (note that, by definition of R, both $\left(\begin{array}{cc}\eta \varepsilon & 0 \\ 0 & \bar{\eta} \bar{\varepsilon}\end{array}\right)$ and $\left(\begin{array}{cc}\bar{\eta} \varepsilon & 0 \\ 0 & \eta \bar{\varepsilon}\end{array}\right)$ map $\mathcal{K}_{G} \otimes A$ to the multipliers of $\left.\mathcal{K}_{G} \otimes R\right)$.

We can now stabilize the algebras involved in the definition of φ_{0} by $\mathcal{K}_{\mathbb{N} G}$. Setting $A^{\prime}=\mathcal{K}_{\mathbb{N} G} \otimes A$ and using the fact that $\mathcal{K}_{\mathbb{N} G} \otimes \mathcal{K}_{\mathbb{N} G} \cong \mathcal{K}_{\mathbb{N} G}$ we obtain the stabilized equivariant map

$$
\varphi_{A}^{\prime}: \mathcal{K}_{\mathbb{N} G} \otimes q A^{\prime} \rightarrow \mathcal{K}_{\mathbb{N} G} \otimes J^{\prime}
$$

where $J^{\prime}=R^{\prime} \cap q^{2}\left(A^{\prime}\right)$. As in the non-equivariant case, the map φ_{A}^{\prime} induces the associative product $K K^{G}(A, B) \times K K^{G}(B, C) \rightarrow K K^{G}(A, C)$ as follows: let elements of $K K^{G}(A, B)$ and of $K K^{G}(B, C)$ be represented by equivariant maps

$$
\mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right) \xrightarrow{\mu} \mathcal{K}_{\mathbb{N} G} \otimes B \quad \text { and } \quad \mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes B\right) \xrightarrow{\nu} \mathcal{K}_{\mathbb{N} G} \otimes C
$$

respectively. Using the fact that $\mathcal{K}_{\mathbb{N} G} \cong \mathcal{K}_{\mathbb{N} G} \otimes \mathcal{K}_{\mathbb{N} G}$, we get a map

$$
q^{2}\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right) \cong q^{2}\left(\mathcal{K}_{\mathbb{N} G} \otimes \mathcal{K}_{\mathbb{N} G} \otimes A\right) \xrightarrow{\kappa} q\left(\mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right)\right.
$$

and, using this, we can form the following composition

$$
\mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right) \xrightarrow{\varphi_{A}^{\prime}} \mathcal{K}_{\mathbb{N} G} \otimes q^{2}\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right) \xrightarrow{\kappa} \mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes A\right)\right)
$$

$$
\xrightarrow{\mathrm{id} \otimes q(\mu)} \mathcal{K}_{\mathbb{N} G} \otimes q\left(\mathcal{K}_{\mathbb{N} G} \otimes B\right) \xrightarrow{\nu} \mathcal{K}_{\mathbb{N} G} \otimes C
$$

which represents the product in $K K^{G}(A, C)$.
6.1. Associativity. Associativity of the product in $K K^{G}$ follows as in Subsection 3.2 since all the isomorphisms and homotopies used there are manifestly G-equivariant once the automorphisms σ_{t} are chosen to be equivariant.

7. Universality and connection to the usual definitions

We show now that the functors $K K(X ; \cdot)$ and $K K^{G}$ that we have studied in Sections 4 and 6 are characterized - just like ordinary $K K$ - by split exactness together with homotopy invariance and stability in their respective category. It seems that $K K^{n u c}$ could also be characterized by a suitable more involved split exactness property for exact sequences with a weakly nuclear splitting.

We leave that open - partly also because we think that such a characterization would be of minor interest.
Split exactness on equivariant, equivariantly split exact sequences does in fact follow for the functors $K K(X ; \cdot)$ and $K K^{G}$ that we have studied in Sections 4 and 6 from the existence of the product, by the simple argument in [6, 2.1].
7.1. The case of ideal related $K K$-theory. Let X be a topological space.

Proposition 7.1. $K K(X ; \cdot, \cdot)$ is the universal functor from the category of separable C^{*}-algebras with an action of X to an additive category which is stable, homotopy invariant and split exact on exact sequences of algebras in the category with an X-equivariant homomorphism splitting.

Proof. Given a C ${ }^{*}$-algebra A with an action of X, consider the exact sequence

$$
0 \rightarrow q_{X} A \rightarrow Q_{X} A \rightarrow A \rightarrow 0
$$

with the equivariant splitting $\iota: A \rightarrow Q_{X} A$. The usual argument showing that a free product of C^{*}-algebras is $K K$-equivalent to the direct sum (see [6] Proposition 3.1) is compatible with the action of X, so that $Q_{X} A$ is equivalent in $K K(X ; \cdot, \cdot)$ to $A \oplus A$ with the natural action of X - just by homotopy invariance and stability. Let now F be a functor from the category of separable C^{*}-algebras with an X-action to an additive category which is stable, homotopy invariant and equivariantly split exact. Then $F\left(Q_{X} A\right)$ is isomorphic, via the natural map, to $F(A \oplus A)=F(A) \oplus F(A)$ and by split exactness consequently $F\left(q_{X} A\right) \cong F(A)$. By Definition 4.3 every element of $K K(X ; A, B)$ is represented by an X-equivariant homomorphism $q_{X} A \rightarrow \mathcal{K} \otimes B$. Applying F to the homotopy class of such a homomorphism we get a morphism $F(A) \cong F\left(q_{X} A\right) \rightarrow F(\mathcal{K} \otimes B) \cong F(B)$. Since the isomorphisms involved are natural this morphism is uniquely determined.
Conversely $K K(X ; \cdot)$ is homotopy invariant, stable and splits on X-equivariantly split exact sequences.
7.2. The case of $K K^{G}$. If G is a locally compact σ-compact group we also have

Proposition 7.2. (cf.[13]) $K K^{G}$ is the universal functor on the category of separable $G-C^{*}$-algebras which is homotopy invariant, stable under tensor product by $\mathcal{K}_{\mathbb{N} G}$ and split exact on extensions $0 \rightarrow I \rightarrow E \rightarrow A \rightarrow 0$ of $G-C^{*}-$ algebras with an equivariant splitting homomorphism $s: A \rightarrow E$.

Proof. Let F be a functor with the given properties from the category of G - $\mathrm{C}^{*}-$ algebras to an additive category and set $A^{\prime}=\mathcal{K}_{\mathbb{N} G} \otimes A$. Homotopy invariance and stability of F imply that $F\left(Q A^{\prime}\right) \cong F\left(A^{\prime} \oplus A^{\prime}\right)$ (by the argument in [6] Proposition 3.1 which is compatible with the action of G). Split exactness
implies that $F\left(Q A^{\prime}\right) \cong\left(F\left(q A^{\prime}\right) \oplus F\left(A^{\prime}\right)\right.$ and finally that $F\left(q A^{\prime}\right) \cong F\left(A^{\prime}\right)$ naturally. Since also $F\left(A^{\prime}\right) \cong F(A)$ for all A by stability, the assertion then follows from the definition of $K K^{G}$, see 6.1.
Conversely, $K K^{G}$ is equivariantly split exact by the remark at the beginning of the section.
7.3. Connection to the usual definitions. The usual definitions of the different versions of $K K(A, B)$ are based on A - B Kasparov modules (E, F) with additional structure. In such a Kasparov module one can always assume that $F=F^{*}$ and $F^{2}=1$. Conjugation of the (first component for the $\mathbb{Z} / 2$ grading of the) left action φ of A on E by F gives a second homomorphism $\bar{\varphi}$: $A \rightarrow \mathcal{B}(E)$. Depending on the situation, φ will 'weakly' respect the additional structure (X-equivariance, G-equivariance or nuclearity respectively). Now in order to get a homomorphism from $q A$ to $\mathcal{K}(E)$ respecting the additional structure we need to know that $\bar{\varphi}$ also respects the structure 'weakly'. Since $\bar{\varphi}=\operatorname{Ad} F \varphi$, and $\operatorname{Ad} F$ is inner, this is automatic for X-equivariance. In the case of $K K^{G}$ this has been established in the paper by Ralf Meyer. In the case of $K K^{n u c}$ the equivalence between q-nuclear homomorphisms $q A \rightarrow \mathcal{K}(E)$ and nuclear Kasparov modules has been shown in Proposition 5.4. In the case of $K K^{G}$ and $K K(X)$ we get the equivalence then from the universality of our definition.

References

[1] Nathanial P. Brown and Narutaka Ozawa. C^{*}-algebras and finite-dimensional approximations, volume 88 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[2] José Carrión, James Gabe, Christopher Schafhauser, Aaron Tikuisis, and Stuart White. Classifying *-homomorphisms I: unital simple nuclear C^{*}-algebras. arXiv:2307.06480 (preprint).
[3] José Carrión, James Gabe, Christopher Schafhauser, Aaron Tikuisis, and Stuart White. Classifying *-homomorphisms II. In preperation.
[4] Guillermo Cortiñas and Andreas Thom. Bivariant algebraic K-theory. J. Reine Angew. Math., 610:71-123, 2007.
[5] Joachim Cuntz. Generalized homomorphisms between C^{*}-algebras and $K K$-theory. In Dynamics and processes (Bielefeld, 1981), volume 1031 of Lecture Notes in Math., pages 31-45. Springer, Berlin, 1983.
[6] Joachim Cuntz. A new look at KK-theory. K-Theory, 1(1):31-51, 1987.
[7] Joachim Cuntz. Bivariante K-Theorie für lokalkonvexe Algebren und der Chern-Connes-Charakter. Doc. Math., 2:139-182, 1997.
[8] Joachim Cuntz, Ralf Meyer, and Jonathan M. Rosenberg. Topological and bivariant K-theory, volume 36 of Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2007.
[9] Joachim Cuntz and Andreas Thom. Algebraic K-theory and locally convex algebras. Math. Ann., 334(2):339-371, 2006.
[10] Kjeld Knudsen Jensen and Klaus Thomsen. Elements of KK-theory. Mathematics: Theory \& Applications. Birkhäuser Boston, Inc., Boston, MA, 1991.
[11] G. G. Kasparov. Equivariant $K K$-theory and the Novikov conjecture. Invent. Math., 91(1):147-201, 1988.
[12] Eberhard Kirchberg. Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren. In C^{*}-algebras (Münster, 1999), pages 92-141. Springer, Berlin, 2000.
[13] Ralf Meyer. Equivariant Kasparov theory and generalized homomorphisms. K-Theory, 21(3):201-228, 2000.
[14] Gert K. Pedersen. C^{*}-algebras and their automorphism groups, volume 14 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.
[15] Gilles Pisier. Introduction to operator space theory, volume 294 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
[16] Georges Skandalis. Une notion de nucléarité en K-théorie (d'après J. Cuntz). K-Theory, 1(6):549-573, 1988.
[17] Georges Skandalis. Kasparov's bivariant K-theory and applications. Exposition. Math., 9(3):193-250, 1991.
[18] Klaus Thomsen. The universal property of equivariant KK-theory. J. Reine Angew. Math., 504:55-71, 1998.

Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

Email address: cuntz@uni-muenster.de

Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark

Email address: gabe@imada.sdu.dk

[^0]: 2010 Mathematics Subject Classification. Primary 19K35, 46L80; Secondary 47L35, 19L47.

 The first named author was supported by Deutsche Forschungsgemeinschaft (DFG) via Exzellenzstrategie des Bundes und der Länder EXC 2044-390685587, Mathematik Münster: Dynamik-Geometrie-Struktur.
 The second named author was supported by the IRFD grants 1054-00094B and 1026-00371B.

[^1]: ${ }^{1}$ If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a dense sequence in the unit ball of X one could pick $\mathcal{F}=\left\{\frac{1}{n} x_{n}: n \in\right.$ $\mathbb{N}\} \cup\{0\}$.

[^2]: ${ }^{2}$ This name is motivated by the result from [15, Chapter 14] (which is due to Kirchberg) where this definition is shown to be equivalent to the map $\phi: A \rightarrow B \subseteq B^{* *}$ being decomposable, i.e. a linear combination of completely positive maps.

