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DILATORS AND THE REVERSE MATHEMATICS ZOO

ANTON FREUND

Abstract. A predilator is a particularly uniform transformation of linear or-
ders. We have a dilator when the transformation preserves well-foundedness.
Over the theory ACA0 from reverse mathematics, any Π1

2
-formula is equivalent

to the statement that some predilator is a dilator. We show how this complete-
ness result breaks down without arithmetical comprehension: over RCA0 +PA,
the statements from a large part of the reverse mathematics zoo are not equi-
valent to some predilator being a dilator.

1. Introduction

Consider the transformation of a linear order α into the order 2α on terms

2α(n−1) + . . .+ 2α(0) with α(0) < . . . < α(n− 1) in α,

which are compared lexicographically (with α(n − 1) taking precedence). Any
embedding f : α → β of linear orders induces an obvious embedding 2f : 2α → 2β

(where f acts on the exponents), which means that we have a functor on the
category of linear orders and embeddings. Let us note that f ≤ g implies 2f ≤ 2g

when functions are compared pointwise. Each term σ = 2α(n−1) + . . .+ 2α(0) ∈ 2α

depends only on a finite subset suppα(σ) = {α(0), . . . , α(n − 1)} of α. Formally,
this corresponds to the fact that all embeddings f : α→ β validate

{

τ ∈ 2β
∣

∣ suppβ(τ) ⊆ rng(f)
}

⊆ rng
(

2f
)

,

where rng(g) denotes the range or image of a function g. The converse inclusion is
entailed by the naturality property

suppβ ◦ 2f = [f ]<ω ◦ suppα,

where we write [f ]<ω(a) = rng(f ↾ a) for finite a ⊆ α.
The functorial extension and support functions turn α 7→ 2α into a predilator

in the sense of J.-Y. Girard [18]. In Section 2 we will recall the general definition
of predilators and some fundamental properties. For the time being, we note that
each predilator D involves a transformation α 7→ D(α) of linear orders. We only
consider countable α and always assume that this makes D(α) countable as well.
The transformation α 7→ D(α) is then computable relative to a certain subset of N,
which we also denote by D. If this subset is computable, we speak of a computable
predilator. When we say that a theory proves a statement about a computable pre-
dilator, we assume that the latter is given via some program index. Let us note
that the coding of predilators by subsets of N makes crucial use of functoriality and
the support functions from above, so that the latter are well-motivated.
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2 ANTON FREUND

A predilator D is a dilator if D(α) is a well-order whenever the same holds for α.
In reverse mathematics (see [40]), the weak base theory RCA0 proves that the func-
torial extension of α 7→ 2α is a predilator. On the other hand, the statement that
this predilator is a dilator is equivalent to arithmetical comprehension over RCA0,
as shown by Girard [20] and J. Hirst [25]. The literature now contains many equi-
valences between natural dilators and important Π1

2-principles above ACA0, such as
infinite iterations of the Turing jump [31], arithmetical transfinite recursion [37] (ori-
ginally an unpublished result of H. Friedman), ω-models of arithmetical transfinite
recursion [34], ω-models of bar induction [36], and ω-models of Π1

1-comprehension
without [35] and with [42] bar induction. Since one can quantify over predilators
via their codes, one can also consider transformations of higher order, which map
dilators to well-orders or again to dilators. This has led to equivalences with the
Π1

3-principles of Π1
1-comprehension [1, 8, 16, 43] and Π1

1-transfinite recursion [10, 15].
Girard has shown that the notion of dilator is Π1

2-complete. The published proof
by D. Normann (see [21, Annex 8.E]) uses the Kleene-Brouwer order and is readily
formalized in ACA0. This provides some explanation for the results in the previous
paragraph, though the equivalences with specific natural dilators require substantial
work in each case. Below ACA0, the author knows of no proper Π1

2-statement that
has been characterized by a dilator. The aim of the present paper is to give a
systematic explanation for this observation. In particular, we want to understand
why research on dilators – which has found successful applications in the reverse
mathematics of better-quasi-orders [13] – has little overlap with investigations into
principles from the reverse mathematics zoo (see [6]), such as Ramsey’s theorem

for pairs (denoted RT
2
2; see [5, 32, 39]). To avoid misunderstanding, we stress that

proof-theoretic methods and the analysis of well-orders have played a crucial role
in the analysis of RT2

2 (see [28] and the many references discussed there).
We now explain our results in some detail. The following principle will play a

central role.

Definition 1.1. By slow transfinite Π0
2-induction (Π0

2-TI
⋆) we mean the statement

that Π0
2-induction along α holds for any linear order α such that 2α is well-founded.

For comparison, the usual principle of transfinite Π0
2-induction asserts that we

have Π0
2-induction along α whenever the latter is a well order. It is equivalent to

arithmetical comprehension over RCA0, as shown by Hirst [26]. Let us agree on the
following notation for entailment on a cone of ω-models.

Definition 1.2. In the context of second-order arithmetic, we write

T �ω ϕ(X1, . . . , Xn)

if there is a Y ⊆ N such that M � ϕ(X1, . . . , Xn) holds for every ω-model M � T

with X1, . . . , Xn, Y ∈ M (where the set parameters of ϕ are precisely X1, . . . , Xn).

Many unprovability arguments via computability theory yield ω-countermodels.
We will later use the following.

Proposition 1.3 (C. Jockusch [27]). We have RCA0 2ω RT
2
2.

The next proposition is established in Section 4. Crucial ideas in the proof are
due to F. Pakhomov and J. Aguilera (cf. the paragraph after Lemma 4.1).

Proposition 1.4. We have WKL0 2ω Π0
2-TI

⋆.
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The following dichotomy principle for dilators, which will be proved in Section 3,
is at the center of our approach. We note that the last part of the claim (that the
disjunction is exclusive) follows from the previous proposition. This relies on the
fact that RCA0 �ω ϕ and RCA0 �ω ϕ → ψ imply RCA0 �ω ψ, since any two cones
of ω-models intersect on a cone.

Theorem 1.5. For any dilator D, we have

RCA0 �ω “D is a dilator” or RCA0 �ω “D is a dilator” → Π0
2-TI

⋆

but not both.

The following can also be seen as a conservativity result over ω-models (cf. the
classical result of L. Harrington, e. g., in Corollary IX.2.6 of [40]), but we feel that
the given formulation as a dichotomy result is more faithful to the constructive
content of our argument. An entirely different proof of the corollary (which does
not involve Proposition 1.4 or Theorem 1.5) had previously been given by P. Uftring.

Corollary 1.6. For any dilator D, we have

RCA0 �ω “D is a dilator” or WKL0 2ω “D is a dilator”.

Proof. If the disjunction was false, we could invoke the previous theorem to conclude
that we have WKL0 �ω Π0

2-TI
⋆, against Proposition 1.4. �

So far, we have not been able to strengthen Proposition 1.4 by including RT
2
2.

Nevertheless, a somewhat indirect approach will yield the following (see Section 4),
which can be seen as the main result of our paper.

Theorem 1.7. Consider any sentence ϕ of second-order arithmetic such that we
have WKL0 +RT

2
2 +PA ⊢ ϕ and RCA0 2ω ϕ. For any computable dilator D, we get

RCA0 + PA 0 ϕ↔ “D is a dilator”.

We point out that the theorem becomes somewhat trivial when one omits PA,
since all but the most simple dilators rely on Σ0

2-induction (cf. Proposition 2.2 of [17]
and Lemma 3.8 below). The theorem clearly applies to a wide range of principles
from the reverse mathematics zoo. We only state the following instance.

Corollary 1.8. For any computable dilator D, we have

RCA0 + PA 0 RT
2
2 ↔ “D is a dilator”.

Proof. In view of Proposition 1.3 (due to Jockusch), we can apply the previous

theorem with RT
2
2 at the place of ϕ. �

Let us mention a result of L. Ko lodziejczyk and K. Yokoyama, which says that
WKL0 + RT

2
2 is conservative over RCA0 for certain statements about primitive re-

cursive transformations of well-orders below ωω (see [28, Corollary 3.4]). This result
is not quite comparable with ours, which concerns transformations of arbitrary or-
dinals rather than standard notation systems. The proof by Ko lodziejczyk and
Yokoyama involves new combinatorial results about RT

2
2, while we combine known

results about Ramsey’s theorem with a new dichotomy result for dilators.
It is natural to ask whether our Theorem 1.7 makes essential use of the specific

uniformity properties of dilators or whether it follows from more general results
about the reverse mathematics zoo. Being a dilator is a ∀1∃1Π0

2-property (where
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∀1 and ∃1 refer to set quantifiers). It is known that no statement of this com-
plexity can be equivalent to the cohesive principle, due to a conservation result of
D. Hirschfeldt and R. Shore (see [24, Corollary 2.21]). However, there is still a wide

range of principles from the zoo (such as RT
2
2) for which Theorem 1.7 does not

follow from results about quantifier complexity. On a somewhat different note, one
may wonder how our results depend on the fact that dilators act on linear rather
than partial orders (recall that the Π1

2-completeness proof for dilators involves the
Kleene-Brouwer order). We have no definite answer, though at least the dichotomy
in Theorem 1.5 seems to rely on the specific uniformity properties of dilators and
not on linearity alone. Our paper gives rise to several open questions, which are
presented at the end of Sections 3 and 4.

Acknowledgements. The author is very grateful for generous and important in-
put from colleagues. Patrick Uftring had previously proved Corollary 1.6 by entirely
different methods. He asked if there are any non-trivial dilators between RCA0

and ACA0, which inspired this paper. The crucial ideas for the proof of Proposi-
tion 1.4 in Section 4 are due to Fedor Pakhomov and Juan Aguilera. A hint by Lev
Beklemishev was important for the proof of Proposition 4.3. Leszek Ko lodziejczyk
and Keita Yokoyama provided information and advice on Ramsey’s theorem for
pairs and the reverse mathematics zoo.

2. Preliminaries

In this section, we recall the definition of and some fundamental results about
dilators. While all mathematical content is due to Girard (see [18] and the intro-
ductory [19]), we have adapted the presentation to our current aims.

Whenever we speak of a linear order, we assume that its underlying set is a
subset of N, i. e., that we have a representation in second-order arithmetic. Let LO

be the category with the linear orders as objects and the embeddings as morphisms.
We define Nat as the full subcategory with objects n = {0, . . . , n − 1} for n ∈ N

(ordered as usual). For order embeddings f, g : X → Y , we write f ≤ g to express
that f(x) ≤ g(x) holds for all x ∈ X . A functor D : Nat → LO is called monotone if
f ≤ g implies D(f) ≤ D(g). By [·]<ω we denote the finite powerset functor on the
category of sets, i. e., we have [X ]<ω = {a ⊆ X | a finite} for any set X while [f ]<ω

for a function f is defined as in the introduction. We will omit forgetful functors
from orders to their underlying sets, and subsets of orders are tacitly considered
with the induced order. An example for the following can be found at the very
beginning of the present paper.

Definition 2.1. A (coded) predilator consists of a monotone functor D : Nat → LO

and a natural transformation supp : D ⇒ [·]<ω such that the support condition

{τ ∈ D(n) | suppn(τ) ⊆ rng(f)} ⊆ rng(D(f))

is satisfied for any morphism f : m→ n of Nat.

As noted in the introduction, the converse of the support condition is automatic
by naturality, which says precisely that we have the equality in

suppn (D(f)(σ)) = [f ]<ω (suppm(σ)) ⊆ rng(f).

We have defined predilators with domain Nat rather than LO in order to ensure
that D and supp can be represented by subsets of N (see [9, Definition 2.4] for
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an explicit representation). Let us now explain how an extension to LO can be
constructed. The idea is that any linear order arises as the direct limit (i. e., the
union) of its finite suborders, which are isomophic to objects of Nat. To make this
explicit, we write ena : |a| → a for the increasing enumeration of a finite order a
with |a| elements. Each embedding f : a → b of finite orders yields a unique
morphism |f | : |a| → |b| with enb ◦ |f | = f ◦ ena.

Definition 2.2. LetD be a coded predilator (with associated transformation supp).
With each linear order α we associate the set

D(α) =
{

(σ, a)
∣

∣

∣
a ∈ [α]<ω and σ ∈ D(|a|) with supp|a|(σ) = |a|

}

.

To define a linear order on D(α), we stipulate

(σ, a) ≤ (τ, b) ⇔ D(|ιa|)(σ) ≤ D(|ιb|)(τ)

for the inclusion maps ιa : a →֒ a∪b and ιb : b →֒ a∪b. When f : α→ β is an order
embedding, we define D(f) : D(α) → D(β) by D(f)(σ, a) = (σ, [f ]<ω(a)). We also
define functions suppα : D(α) → [α]<ω by setting suppα(σ, a) = a.

Over RCA0 one can verify that D and supp form a predilator on LO, i. e., that
they satisfy Definition 2.1 with LO at the place of Nat (see [9]). Conversely, any
predilator on LO is isomorphic to the extension of some coded predilator, by Girard’s
normal form theorem [18]. For ∆0

1-definable dilators on LO, the isomorphism can
be constructed in RCA0 (see [11, Section 2]).

Definition 2.3. A (coded) predilator D is called a dilator if D(α) is well-founded
for every well order α.

Let us point out that our definition of dilators is equivalent to the one by Girard.
Indeed, the existence of (necessarily unique) support functions is equivalent to the
preservation of pullbacks and direct limits (see [7, Remark 2.2.2]). We also note that
Girard’s terms (σ;x0, . . . , xn−1;α) correspond to (σ, {x0, . . . , xn−1}) in our nota-
tion. Let us mention that monotonicity on morphisms is automatic when D(ωω) is
well-founded (see [18] or the presentation in [16, Lemma 5.3]).

To ensure that the order on D(X) is antisymmetric, i. e., that its elements have
unique representations, we need the condition supp|a|(σ) = |a| from Definition 2.2,
which also features in the following.

Definition 2.4. The trace of a predilator D is given by

Tr(D) = {(σ, n) |σ ∈ D(n) and suppn(σ) = n}.

In the following result, the point is that (σ, n) ∈ Tr(D) yields (µn(σ), n) ∈ Tr(E),
as shown by Girard [18] (see [14, Lemma 2.19] for the metatheory).

Lemma 2.5 (RCA0). Given a natural transformation µ : D ⇒ E between coded pre-
dilators, we get a natural transformation µ : D ⇒ E with µα(σ, a) = (µ|a|(σ), a).

To complete our basic setup, we note that each coded predilator D is isomorphic
to the restriction of D to Nat. Here the inverse isomorphism maps (σ, a) ∈ D(n) to
D(enn

a)(σ) ∈ D(n), where enn
a : |a| → n is the embedding with range a (see [11]).

Combined with the previous considerations, we see that predilators on LO and
coded predilators may be identified on an informal level (though the paragraph
before the previous lemma shows that some care is occasionally required).



6 ANTON FREUND

In the rest of this section, we present some more specialized results of Girard,
which will play a central role in the present paper. With respect to the following
(originally from [18]), we note that the equalities

supp2n

(

D(ei)(σ)
)

= [ei]
<ω

(

suppn(σ)
)

= rng(ei)

ensure that the map i 7→ D(ei)(σ) is injective.

Definition 2.6. Consider a predilator D and an element (σ, n) of its trace. Let the
embeddings ei : n→ 2n for i < n be given by ei(i) = 2i+1 and ei(j) = 2j for j 6= i.
We define a permutation π = πσ : n→ n by stipulating

D
(

eπ(0)
)

(σ) > . . . > D
(

eπ(n−1)

)

(σ).

When a is a finite linear order with n elements, we abbreviate aσi = ena(πσ(i)).

The idea is that an element (σ, a) ∈ D(X) can be seen as a term with constructor
symbol σ and arguments ena(i) for i < |a| (see the paragraph before Definition 2.2).
In view of the following, the permutation πσ determines an order of priority on the
arguments, where the importance of position πσ(i) decreases as i grows. In contrast
to Girard, we formulate the result for predilators (rather than just dilators) and
with a specific metatheory (cf. Theorem 3.2.4 of [18]). The proof remains the same
despite these changes, but we present it in our notation, not least to demonstrate
the specific uniformity properties of predilators that are central to our approach.

Proposition 2.7 (RCA0). Assume that we have (σ, n) ∈ Tr(D) for a predilator D.
When α is any linear order, the order on D(α) satisfies

(σ, a) < (σ, b) ⇔ there is a j < n with aσj < bσj and aσi = bσi for all i < j.

Proof. Consider the order ω · α with elements ω · x+ n for x ∈ α and n ∈ N, which
are compared according to

ω · x+ n < ω · x′ + n′ ⇔ either x = x′ and n < n′ or x < x′.

If we have x < x′, we write ω · x+ n ≪ ω · x′ + n′. Note that we have a successor
function on ω ·α, which is given by (ω · x+ n) + 1 = ω · x+ (n+ 1). Clearly, ρ≪ τ
entails ρ + 1 ≪ τ . Consider the embedding f : α → ω · α with f(x) = ω · x + 0.
The equivalence from the proposition retains its truth value when we replace α
by ω ·α and change a and b into [f ]<ω(a) and [f ]<ω(b), respectively. For notational
convenience, we assume α itself is of the form ω · β. Write ci = enc(i) and π = πσ.
For j as in the proposition, the choice of f allows us to assume

aσj = aπ(j) ≪ min(aπ(j)+1, b
σ
j ),

where the minimum is evaluated to bσj in case we have π(j) = n − 1. Under this
assumption, we prove the proposition by induction on the number of indices k < n
with ak > bk. Note that it suffices to show the backward implication of our
equivalence, as the order on D(α) is linear. In the base case of the induction,
we have ena ≤ enb. To get (σ, a) < (σ, b), it suffices to recall that predilators
are monotone on morphisms. In the induction step, we consider the minimal k
with ak > bk. Write k = π(l) and note that we get j < l. Let a be the set that
results from a when we replace aσj by aσj + 1 and ak = aσl by bk, respectively. In
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view of ak−1 ≤ bk−1 < bk < ak and aσj ≪ min(aπ(j)+1, bπ(j)+1), we get |a| = |a| and

aσi =











aσj + 1 if i = j,

bσl if i = l,

aσi otherwise.

We thus have aσj < bσj and aσi = bσi for i < j, as well as aσj ≪ min(aπ(j)+1, b
σ
j ). Due

to the induction hypothesis, it is thus enough to prove the first inequality in

(σ, a) < (σ, a) < (σ, b).

We will show that the open inequality follows from aσj < aσj and aσl > aσl with j < l

when we have aσi = aσi for all i /∈ {j, l}. Much as above, we may assume that x < y
implies x≪ y for x, y ∈ a ∪ a. We then get an embedding g : 2n→ α by setting

g(2π(i)) =











aσj for i = j,

aσl for i = l,

aσi = aσi for i /∈ {j, l},

g(2π(i) + 1) =











aσj for i = j,

aσl for i = l,

aσi + 1 for i /∈ {j, l}.

For the embeddings ei : n→ 2n from Definition 2.6, we obtain
[

g ◦ eπ(j)
]<ω

(n) = a,
[

g ◦ eπ(j)
]<ω

(n) = a.

Given that D(g) is an embedding, the open claim is thus equivalent to
(

σ,
[

eπ(l)
]<ω

(n)
)

<
(

σ,
[

eπ(j)
]<ω

(n)
)

.

In view of Definition 2.2 (also consider the isomorphism D(2n) ∼= D(2n) from the
paragraph after Lemma 2.5), this inequality amounts to D(eπ(l))(σ) < D(eπ(j))(σ).
The latter holds because of j < l, by the characterization of π in Definition 2.6. �

In the rest of this section, we deal with comparisons between terms (σ, a) and (τ, b)
that rely on different trace elements.

Definition 2.8. Consider a predilator D as well as two distinct elements (σ,m)
and (τ, n) of its trace. We define P τ

σ as the largest P ≤ min(m,n) with

πσ(i) < πσ(j) ⇔ πτ (i) < πτ (j) for all i, j < P.

A number p ≤ P τ
σ is called secure (relative to σ and τ) if D(f)(σ) < D(g)(τ) has

the same truth value for all embeddings f : m → m + n and g : n → m + n such
that we have f(πσ(i)) = g(πτ (i)) for all i < p.

The following is somewhat stronger than Proposition 6.4.1 of [18] (where the
truth value of D(f)(σ) < D(g)(τ) can also depend on the values f(πσ(i)) for i < p).
Except for the first paragraph, our proof follows the one by Girard.

Lemma 2.9 (RCA0). In the previous definition, P τ
σ is secure.

Proof. Consider f, g as in the definition and assume that f ′, g′ satisfy the same
condition. For sufficiently large N , we find embeddings h, h′ : m + n → N such
that h ◦ f(πσ(i)) = h′ ◦ f ′(πσ(i)) holds for all i < P = P τ

σ . Since D(h) and D(h′)
are embeddings, we may replace f, g and f ′, g′ by h ◦ f, h ◦ g and h′ ◦ f ′, h′ ◦ g′. To
simplify notation, we omit h, h′ and assume f(πσ(i)) = f ′(πσ(i)) for i < P .

If we have P τ
σ = m ≤ n, we get f = g ◦ ι with ι(πσ(i)) = πτ (i), where ι is an

embedding by the defining property of P τ
σ . It follows that D(f)(σ) < D(g)(τ) is

equivalent to D(ι)(σ) = τ , which is clearly independent of f and g. A symmetric
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argument covers the case where we have P τ
σ = n ≤ m. Let us now assume that we

have P = P τ
σ < min(m,n). Here the maximality of P yields a j < P with

πσ(j) < πσ(P ) and πτ (j) > πτ (P )

or otherwise πσ(j) > πσ(P ) and πτ (j) < πτ (P ). Since the two cases are symmetric,
we assume that the former applies. Note that we cannot have D(f)(σ) = D(g)(τ),
since this would entail

[f ]<ω(m) = [f ]<ω ◦ suppm(σ) = suppm+n ◦D(f)(σ) = [g]<ω(n),

so that we would get f = g and then σ = τ . By symmetry (exchange f, g with f ′, g′),
we may thus assume that we have D(f)(σ) < D(g)(τ). The above yields

g(πτ (P )) < g(πτ (j)) = f(πσ(j)) < f(πσ(P )),

which remains true when f and g are replaced by f ′ and g′, respectively. We can
now find embeddings h, h′ : m+n→ N (not the same as above) such that all i < P
validate h ◦ f(πσ(i)) = h′ ◦ f(πσ(i)) and we have

h′ ◦ g(πτ (P )) < h ◦ g′(πτ (P )) < h ◦ f ′(πσ(P )) < h′ ◦ f(πσ(P )).

Note that the middle inequality and the one between the first and the last term are
consistent due to the previous observation. To see that, e. g., the first inequality is
consistent with the choice of values h ◦ f(πσ(i)) for i < P , we note

f(πσ(i)) < g(πτ (P )) ⇔ πτ (i) < πτ (P ) ⇔ f(πσ(i)) < g′(πτ (P )),

where the second equivalence relies on the above assumption f(πσ(i)) = f ′(πσ(i)).
The latter also yields h ◦ f ′(πσ(i)) = h′ ◦ f(πσ(i)). Together with the inequality at
position πσ(P ), we obtain D(h ◦ f ′)(σ) < D(h′ ◦ f)(σ) via Proposition 2.7 (observe
aσi = h ◦ f ′ for a = rng(h ◦ f ′) and employ the isomorphism D(N) ∼= D(N) from
the paragraph after Lemma 2.5). In the same way, we get the last inequality in

D(h ◦ f ′)(σ) < D(h′ ◦ f)(σ) < D(h′ ◦ g)(τ) < D(h ◦ g′)(τ).

Since D(h) is an embedding, we can finally conclude D(f ′)(σ) < D(g′)(τ). �

Note that the following is well-defined due to the previous lemma.

Definition 2.10. In the setting of Definition 2.8, we let pτσ be the minimal number
that is secure. To choose ετσ ∈ {−1,+1}, we declare that we have ετσ = +1 when
D(f)(σ) < D(g)(τ) holds for some (and hence for all) embeddings f : m → m+ n
and g : n→ m+ n with f(πσ(i)) = g(πτ (i)) for i < pτσ.

The following combines Proposition 6.4.2 and Theorem 6.4.5 of [18].

Theorem 2.11 (RCA0). Consider a predilator D and two distinct elements (σ,m)
and (τ, n) of its trace. For any linear order α and all finite subsets a, b ⊆ α with
|a| = m and |b| = n, the order on D(α) satisfies

(σ, a) < (τ, b) ⇔

{

there is j < pτσ with aσj < bτj and aσi = bτi for all i < j,

or we have aσi = bτi for all i < pτσ and ετσ = +1.

Proof. First note that we have pστ = pτσ and εστ = −ετσ. So if the right side of
the desired equivalence fails, it holds with (σ, a) and (τ, b) interchanged. For this
reason, it suffices to establish the backward implication. To get (σ, a) < (τ, b), we
aim at D(|ιa|)(σ) < D(|ιb|)(τ) in the notation from Definition 2.2. We note

ena∪b ◦ |ιa|(πσ(i)) = ιa ◦ ena(πσ(i)) = aσi .
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If the lower line on the right side of our equivalence applies, we can conclude that
all i < pτσ validate |ιa|(πσ(i)) = |ιb|(πτ (i)). Thus D(|ιa|)(σ) < D(|ιb|)(τ) follows
from ετσ = +1 (compose |ιa| and |ιb| with any embedding of |a ∪ b| into m+ n). In
the remaining case, we have a j < pτσ with

|ιa|(πσ(j)) < |ιb|(πτ (j)) and |ιa|(πσ(i)) = |ιb|(πτ (i)) for all i < j.

Since j < pτσ is not secure, there are embeddings f : m→ m+n and g : n→ m+n
with D(f)(σ) < D(g)(τ) and f(πσ(i)) = g(πτ (i)) for all i < j. When N ∈ N is
sufficiently large, we can find embeddings h : |a∪ b| → N and h′ : m+n→ N such
that we have h ◦ |ιa|(πσ(i)) = h′ ◦ f(πσ(i)) for i < j as well as

h ◦ |ιa|(πσ(j)) < h′ ◦ f(πσ(j)) and h′ ◦ g(πτ (j)) < h ◦ |ιb|(πτ (j)).

Let us point out that these two inequalities are consistent with each other since we
have |ιa|(πσ(j)) < |ιb|(πτ (j)), which is forced in case we have f(πσ(j)) < g(πτ (j)).
For i < j we have

|ιa|(πσ(i)) < |ιa|(πσ(j)) ⇔ πσ(i)< πσ(j) ⇔ f(πσ(i)) < f(πσ(j)),

f(πσ(i)) < g(πτ (j)) ⇔ πτ (i)< πτ (j) ⇔ |ιa|(πσ(i)) < |ιb|(πτ (j)),

while πσ(i) < πσ(j) and πτ (i) < πτ (j) are equivalent due to i, j < pτσ ≤ P τ
σ . This

ensures that all four terms from the two inequalities above fit in the same gap
between values h ◦ |ιa|(πσ(i)) = h′ ◦ f(πσ(i)). As in the previous proof, we can now
employ Proposition 2.7 to get

D(h ◦ |ιa|)(σ) < D(h′ ◦ f)(σ) < D(h′ ◦ g)(τ) < D(h ◦ |ιb|)(τ).

This yields D(|ιa|)(σ) < D(|ιb|)(τ) and then (σ, a) < (τ, b). �

Let us conclude this section with the following result, which will be needed later
(see the proof of Theorem 6.4.6 and Remark 6.4.7 in [18]).

Lemma 2.12 (RCA0). Let (ρ, k), (σ,m) and (τ, n) be three distinct elements from
the trace of a predilator D. We have pτρ ≥ min(pσρ , p

τ
σ).

Proof. We consider an arbitrary p < min(pσρ , p
τ
σ) and show that it cannot be secure

relative to ρ and τ , which forces pτρ > p. Note that all i, j ≤ p validate

πρ(i) < πρ(j) ⇔ πσ(i) < πσ(j) ⇔ πτ (i) < πτ (j).

For suitable N ∈ N, we can thus define embeddings f, f ′ : k → N and g, g′ : n→ N
as well as h : m→ N such that

f(πρ(i)) = f ′(πρ(i)) = h(πσ(i)) = g(πτ (i)) = g′(πτ (i))

holds for all i < p while we have

f(πρ(p)) < h(πσ(p)) < g(πτ (p)) and f ′(πρ(p)) > h(πσ(p)) > g′(πτ (p)).

We can now apply the previous theorem (modulo the isomorphism D(N) ∼= D(N)
from the paragraph after Lemma 2.5) in order to get

D(f)(ρ) < D(h)(σ) < D(g)(τ) and D(f ′)(ρ) > D(h)(σ) > D(g′)(τ).

As promised, this shows that p is not secure for ρ and τ . �
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3. A dichotomy result for dilators

In the present section, we prove the main part of Theorem 1.5 from the intro-
duction, namely that at least one of the alternatives from this theorem must hold
for any dilator.

The following construction will take centre stage. Let us agree to write l(σ) for
the length of a finite sequence σ.

Definition 3.1. Consider a linear order L = (N,≤L). For each n ∈ N, we define πL
n

as the permutation of n = {0, . . . , n− 1} that is determined by

πL
n (i) ≤N π

L
n (j) ⇔ i ≤L j.

For a sequence σ = 〈σ(0), . . . , σ(l(σ) − 1)〉, we shall abbreviate σL
i = σ(πL

l(σ)(i)).

Given a linear order α, we now set

DL(α) = {〈x0, . . . , xn−1〉 |xi ∈ α with x0 < . . . < xn−1}.

To define a binary relation < on DL(α), we stipulate that all σ, τ ∈ DL(α) validate

σ < τ ⇔















either there is j < min(l(σ), l(τ)) with

σL
j < τLj in α and σL

i = τLi for i < j,

or we have l(σ) < l(τ) and σL
i = τLi for i < l(σ).

For any order embedding f : α → β, we define DL(f) : DL(α) → DL(β) by setting

DL(f)(〈x0, . . . , xn−1〉) = 〈f(x0), . . . , f(xn−1)〉.

Finally, we declare that suppα : DL(α) → [α]<ω is given by

suppα(〈x0, . . . , xn−1〉) = {x0, . . . , xn−1}

for any linear order α.

Let us note that DL depends not only on the order type of L but also on a given
enumeration, i. e., on the representation of L as an order with underlying set N.
The following is straightforward to verify.

Lemma 3.2 (RCA0). For any linear order L = (N,≤L), the data from the previous
definition constitutes a predilator DL.

In the permuted lexicographic order on DL(α), the πL
n (i)-th smallest argument

becomes less important as i grows. This leads to the following familiar case.

Example 3.3. If ≤L is ≥N (so that L has the order type of the negative integers),
then DL coincides with the dilator α 7→ 2α that was discussed in the introduction.

The next proposition is not needed for any of our main results, but it answers
an obvious question. Also, the proof of the forward direction involves an idea that
will later reappear in a somewhat more complicated setting.

Proposition 3.4 (ACA0). The predilator DL is a dilator precisely when the linear
order L = (N,≤L) is ill-founded.

Proof. We begin with the backward direction, which is a variation on the well-known
fact that α 7→ 2α preserves well orders. Assume α is a well order while σ0, σ1, . . . is
an infinitely descending sequence in DL(α). We write σn = 〈σn(0), . . . , σn(l(n)−1)〉
and put σL

n,i = σn(πL
l(n)(i)) for i < l(n), where πL

l(n) is given as in Definition 3.1. We
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inductively find indices I(j) such that n ≥ I(j) implies l(n) ≥ j and σL
n,i = σL

I(j),i

for all i < j. Indeed, if the latter holds, we must have l(n) > j and σL
n,j ≥ σL

n+1,j

for n ≥ I(j), since the σn descend. Hence the sequence I(j) ≤ n 7→ σL
n,j in the well

order α must become constant for n above some I(j + 1). We now show that

N ∋ j 7→ σL
I(j+1),j

is an embedding of L = (N,≤L) into α. Assume that we have j ≤L k and that I is
bigger than both I(j + 1) and I(k + 1). In view of Definition 3.1, we get

σL
I(j+1),j = σL

I,j = σI(πL
l(I)(j)) ≤ σI(πL

l(I)(k)) = σL
I,k = σL

I(k+1),k.

Given that α is a well order, it follows that L cannot be ill-founded.
For the forward direction, we assume that L is well-founded. We want to show

that the infinitely descending sequence

〈1〉 > 〈0, 2〉 > 〈0, 1, 3〉 > . . .

in the lexicographic order embeds into DL(2 ·L), which will thus be ill-founded (see
the proof of Proposition 2.7 for a definition of product orders). Since 2 ·L is a well
order, this will mean that DL cannot be a dilator. We define σn : n+ 1 → ω ·L by

σn
(

πL
n+1(i)

)

=

{

2 · i+ 0 for i < n,

2 · i+ 1 for i = n.

Since πL
n+1(i) < πL

n+1(j) amounts to i <L j, the functions σn are strictly increasing.
We can thus view them as elements 〈σn(0), . . . , σn(n)〉 of DL(2 · L). We have

σn+1

(

πL
n+2(n)

)

= ω · n+ 0 < ω · n+ 1 = σn
(

πL
n+1(n)

)

as well as σn+1(πL
n+2(i)) = σn(πL

n+1(i)) for all i < n. This yields σn+1 < σn, so
that we indeed get a descending sequence in DL. �

The following definition and result indicate that the dilators DL are relevant for
a dichotomy result such as Theorem 1.5. As preparation for the definition, we note
that 1 + α has elements 0 and 1 + x for x ∈ α, with 0 < 1 + x < 1 + y for x < y.
To turn α 7→ E(α) := ω · (1 + α) into a dilator, we set

E(f)(ω · 0 + n) = ω · 0 + n, E(f)(ω · (1 + x) + n) = ω · (1 + f(x)) + n,

suppE
α (ω · 0 + n) = ∅, suppE

α (ω · (1 + x) + n) = {x}.

When D is another predilator with support functions suppD
α , the usual composition

of functors yields a predilator D ◦ E with suppα : D ◦ E(α) → [α]<ω given by

suppα(σ) =
⋃

{

suppE
α (ρ)

∣

∣

∣
ρ ∈ suppD

E(α)(σ)
}

.

More precisely, this explains the composition of predilators on LO (cf. the paragraph
after Definition 2.2). The case of coded predilators requires some more work, since
functors from Nat to LO cannot be composed directly (see Section 2 of [14]).

Definition 3.5. A linear order L = (N,≤L) is called a thread of a predilator D if
there is a natural family of embeddings DL(α) → D(ω · (1 + α)).

In order to explain the occurrence of ω · (1 + α) in the definition, we note that
the support sets for DL can have any finite cardinality. If we had a natural family
of embeddings DL(α) → D(α), the same would need to hold for D, which would
be quite restrictive. The choice of ω · (1 + α) is motivated by the following proof.
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Theorem 3.6. For any predilator D such that D(ω2) is well-founded, at least one
of the following statements must hold:

(i) We have RCA0 �ω “D is a dilator”.
(ii) The predilator D has a thread.

In Corollary 4.2, we will see that the alternative in the theorem is exlusive, i. e.,
that precisely one of statements (i) and (ii) holds for each eligible predilator D.

Proof. Assuming that (i) fails, we consider an ω-model M � RCA0 with D ∈ M
and a linear order α ∈ M such that M contains no infinitely descending sequence
in α but does contain a sequence

(σ(0), a(0)) > (σ(1), a(1)) > . . .

in the orderD(α). Let us abbreviate aiu := a(i)
σ(i)
u for u < |a(i)| (cf. Definition 2.6).

We claim that no trace element (σ(i), |a(i)|) can occur infinitely often. Other-
wise, we could assume that some (σ, n) ∈ Tr(D) equals (σ(i), |a(i)|) for all i ∈ N.
In view of Proposition 2.7, we would then have an infinitely descending sequence

i 7→ αn−1 · a0i + . . .+ α0 · a0,n−1 ∈ αn.

This would contradict the fact that αn is well-founded according to M, which can
be established by Π0

2-induction on n (see, e. g., Proposition 9 of [44]). We may now
assume that all trace elements (σ(i), |a(i)|) are distinct. This allows us to apply
Definition 2.8 and the considerations that follow it. Let us agree to write

pij := p
σ(j)
σ(i) and εij := ε

σ(j)
σ(i)

for i < j (cf. Definition 2.10).
We now aim to find a sequence of indices I(0) < I(1) < . . . (not necessarily in the

model M) with pI(i),I(j) ≥ i for all i < j. Let us inductively assume that we have
found a sequence I(i) = j(0) < j(1) < . . . in M such that k < l implies pj(k),j(l) ≥ i
and additionally aj(k),u = aj(l),u for u < i. Purely for notational convenience, we
assume j(k) = I(i) + k. For an inductive construction, it suffices to derive that M
contains another sequence I(i) < I(i + 1) := j(0) < j(1) < . . . such that we have
pj(k),j(l) ≥ i+ 1 and aj(k),i = aj(l),i for all k < l.

Towards a contradiction, we first assume that all J admit a j ≥ J with pjk = i
for all k > j. By passing to a subsequence (which may no longer lie in M), we can
then assume that all j < k validate pjk = i as well as aju = aku for u < i. In view
of Theorem 2.11, it follows that all inequalities σj > σk in our descending sequence
are due to εjk = −1 (recall pjk = pkj and εjk = −εkj from the proof of the cited
theorem). We now find sets b(j) ∈ [ω · (1 + i)]<ω with |b(j)| = |a(j)| and

{

b(j)σ(j)u

∣

∣u < i
}

=
{

ω · (1 + l)
∣

∣ l < i
}

,

which is possible since the gaps below and above the values ω · (1+ l) accommodate
any finite order. In view of Definition 2.8, any j < k and all u,w < i = pjk satisfy

b(j)σ(j)u < b(j)σ(j)w ⇔ b(k)σ(k)u < b(k)σ(k)w .

Together with the previous equality of sets, this yields

b(j)σ(j)u = b(k)σ(k)u for i < pjk.

As we have εjk = −1, we can conclude that j < k implies (σ(j), b(j)) > (σ(k), b(k)),

due to Theorem 2.11. This contradicts the assumption that D(ω2) is well-founded.
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We now know that any sufficiently large j admits a k > j with pjk > i. Hence we
can find a sequence I(i) < j(0) < j(1) < . . ., this time in the model M, such that
all k ∈ N validate pj(k),j(k+1) > i. Due to Lemma 2.12, we even get pj(k),j(l) > i
for k < l. As (σ(j(k)), a(j(k))) decreases in k and aj(k),u = aj(l),u holds for u < i,
we can invoke Theorem 2.11 to conclude that k < l entails aj(k),i ≥ aj(l),i. Since α
is well-founded according to M, we can pass to a tail of our sequence on which we
have aj(k),i = aj(l),i for all k < l. This completes the inductive construction. Let
us note that the latter also yields aI(i),u = aI(j),u for u < i < j (which is relevant
for the corollary below but not for the present proof).

If we drop the assumption that the sequence i 7→ (σ(i), a(i)) lies in M, we may
instead assume that we have I(i) = i, so that pij ≥ i holds for all i < j. Let us recall
the permutations πσ(i) from Definition 2.6. We define a linear order L = (N,≤L)
by stipulating

k ≤L l ⇔ πσ(i)(k) ≤ πσ(i)(l) for i > max{k, l},

where different i agree in view of Definition 2.8. For the corollary below, we note
that k 7→ ak+1,k yields an embedding of L into α. Indeed, we have previously
observed that ak+1,k = aIk holds for k < I. Given k <L l, we thus get

ak+1,k = aIk = ena(I)(πσ(I)(k)) < ena(I)(πσ(I)(l)) = aIl = al+1,l

with an arbitrary I > max{k, l}.
In order to establish alternative (ii) from the statement of the theorem, we first

choose embeddings gi : |a(i+ 1)| → ω · (1 + i) with

{gi(πσ(i+1)(k)) | k < i} = {ω · (1 + l) | l < i},

where the values gi(πσ(i+1)(k)) for i ≤ k < |a(i+1)| are accommodated in the gaps
below and above the elements ω·(1+l). An element ρ = 〈ρ(0), . . . , ρ(i−1)〉 ∈ DL(α)
can be considered as an order embedding ρ : i → α, which induces an embedding
ρ : ω · (1 + i) → ω · (1 +α) with ρ(m) = m and ρ(ω · (1 + l) +m) = ω · (1 +ρ(l)) +m.
To satisfy (ii), we now define ηα : DL(α) → D(ω · (1 + α)) by setting

ηα(ρ) = D(ρ ◦ gi)(σ(i + 1)).

It is straightforward to verify that this definition is natural in the sense that we
have ηβ ◦DL(f) = D(ω · (1 + f)) ◦ ηα for any embedding f : α → β (reduce this

to the fact that we have f ◦ ρ = (ω · (1 + f)) · ρ). Let us note that we need only
consider finite α if we work on the level of coded dilators (cf. Lemma 2.5).

To see that ηα is an embedding, recall the permutations πL
i from Definition 3.1.

The definition of L ensures that πL
i (k) ≤ πL

i (l) and πσ(i+1)(k) ≤ πσ(i+1)(l) are equi-

valent for k, l < i. With ρLk = ρ(πL
i (k)) as in Definition 3.1, we get

ρLk ≤ ρLl ⇔ ρ ◦ gi(πσ(i+1)(k)) ≤ ρ ◦ gi(πσ(i+1)(l)) for k, l < i.

In conjunction with

{ω · (1 + ρLk ) | k < i} = {ω · (1 + ρ(l)) | l < i}

= {ρ(ω · (1 + l)) | l < i} = {ρ ◦ gi(πσ(i+1)(k)) | k < i},

this entails that we have ω · (1 + ρLk ) = ρ ◦ gi(πσ(i+1)(k)) for k < i.
Now assume we have ρ < τ in DL(α), for ρ as before and τ = 〈τ(0), . . . τ(j−1)〉.

In view of Definition 3.1, we first assume that we have ρLl < τLl as well as ρLk = τLk
for k < l < min(i, j). We get the inequality ρ ◦ gi(πσ(i+1)(l)) < ρ ◦ gj(πσ(j+1)(l))
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and equalities below l. By Proposition 2.7 (if i = j) or Theorem 2.11 (note that we
have i, j < pi+1,j+1), we can conclude

ηα(ρ) = D(ρ ◦ gi)(σ(i + 1)) < D(τ ◦ gj)(σ(j + 1)) = ηα(τ).

Finally, we consider the case where ρ < τ holds due to ρLk = τLk for all k < i < j.
To obtain ηα(ρ) < ηα(τ) via Theorem 2.11, we need only show

ρ ◦ gi(πσ(i+1)(i)) < τ ◦ gj(πσ(j+1)(i)) = ω · (1 + τLi ).

Write gi(πσ(i+1)(i)) = ω · (1 + l) +m with l < i and possibly l = −1. If the latter
holds, the claim is immediate. Now assume l ≥ 0 and write ω·(1+l) = gi(πσ(i+1)(k))
with k < i. We get πσ(i+1)(k) < πσ(i+1)(i) and hence πσ(j+1)(k) < πσ(j+1)(i). By

ρ ◦ gi(πσ(i+1)(k)) = ω · (1 + ρLk ) = ω · (1 + τLk )

= τ ◦ gj(πσ(j+1)(k)) < τ ◦ gj(πσ(j+1)(i))

we get the open claim. �

We record the following characterization of dilators, even though it is not needed
in the present paper.

Corollary 3.7. A predilator D is a dilator precisely if D(ω2) is a well order and
all threads of D are ill-founded.

Proof. The forward direction is immediate by Proposition 3.4. To establish the
backward direction, we assume that D is no dilator. We then have a well order α
with an infinitely descending sequence i 7→ (σ(i), a(i)) in D(α). Let us consider an
ω-model M � RCA0 that contains D and α as well as our descending sequence. The
use of an ω-model is not necessary here, but we prefer to stay close to the previous
proof. From the latter, we learn that D(ω2) is ill-founded or that D has a thread L
that embeds into α and is thus well-ordered. �

To derive Theorem 1.5, we investigate the strength of the statement that DL

is a dilator for some order L. The following result of Uftring will be used for this
purpose. Let us recall that (1 + α)γ denotes the order with underlying set

(1 + α)γ = {〈(x0, y0), . . . , (xn−1, yn−1)〉 |x0 > . . . > xn−1 in γ and yi ∈ α}

and lexicographic comparisons (where smaller indices have higher priority and we
have (xj , yj) < (x′j , y

′
j) if either xj = x′j and yj < y′j or xj < x′j).

Lemma 3.8 (RCA0; see [44]). For any linear order γ, the following are equivalent:

(i) Whenever α is a well order, so is (1 + α)γ .
(ii) The principle of Π0

2-induction along γ holds.

The following will yield a connection with slow transfinite induction. Concerning
naturality, we note that any order embedding of α into β yields obvious embeddings
of (1 +α)γ into (1 + β)γ and of α · 2γ into β · 2γ . We do not define these explicitly,
because naturality is not needed for the crucial corollary below.

Proposition 3.9 (RCA0). For arbitrary linear orders L = (N,≤L) and γ, there is
a natural family of embeddings

ηα : (1 + α)γ → DL (α · 2γ) ,

where α ranges over all linear orders.
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Proof. Our approach is to set

ηα(〈(γ0, α0), . . . , (γk−1, αk−1)〉) = 〈e(0), . . . , e(k − 1)〉

for a suitable embedding e : k → α ·2γ . For better readability, elements of the order
2γ = (1 + {0})γ are written as 2δ0 + . . .+ 2δn−1 rather than 〈(δ0, 0), . . . , (δn−1, 0)〉,
as in the introduction. Let us recall the permutations πL

k from Definition 3.1. To
define e(πL

k (i)) by recursion on i, we first set

e(πL
k (0)) = α · 2γ0 + α0.

Now assume that we have already defined values

e(πL
k (j)) = α · σj + αj

for all j ≤ i, where each σj is of the form

σj = 2γj(0) + . . .+ 2γj(l) with j(0) < . . . < j(l) = j.

Crucially, there is a unique

σi+1 ∈ {2γi+1} ∪ {σj + 2γi+1 | j ≤ i}

such that e remains order preserving when we set

e(πL
k (i+ 1)) = α · σi+1 + αi+1.

If γj is fixed for j ≤ i, then σi+1 is strictly increasing in γi+1. It is straightforward
to conclude that ηα is an embedding. Given that the σj do not depend on the αi,
the construction is clearly natural. �

Let us write −ω for the order on the negative integers. Intuitively, the previous
proof relies on the fact that 2−ω is a dense linear order, into which any L can be
embedded. While −ω does not embed into γ, the first components from elements
of (1 +α)γ provide descending sequences that allow us to construct partial embed-
dings in a dynamical way. We note that there is some similarity with the proof
of Proposition 3.4, though no dynamical approximation was needed in the latter,
where we had the (contradictory) assumption that L is a well order.

Corollary 3.10 (RCA0). If DL is a dilator for some linear order L = (N,≤L),
then the principle Π0

2-TI
⋆ of slow transfinite Π0

2-induction holds (cf. Definition 1.1).

Proof. In view of Lemma 3.8, it suffices to derive that α 7→ (1 + α)γ preserves well
orders whenever 2γ is well-founded. Given that DL is a dilator and that α and 2γ

are well orders, the order DL(α · 2γ) is well-founded. By the previous proposition,
we can conclude that the same holds for (1 + α)γ . �

We can now derive the central part of Theorem 1.5. The remaining claim, namely
that the following disjunction is exclusive, will be establish in the next section.

Theorem 3.11. For any predilator D such that D(ω2) is well founded, at least
one of the following is true:

(i) We have RCA0 �ω “D is a dilator”.
(ii) We have RCA0 �ω “D is a dilator” → Π0

2-TI
⋆.

Proof. Assume that (i) fails. By Theorem 3.6, we get a linear order L = (N,≤L) and
a natural transformation η with components ηα : DL(α) → D(ω ·(1+α)). When η is
considered as a transformation between coded predilators, it is a countable family of
countable order embeddings, which we assume to be coded into a single subset of N.
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In order to establish (ii), we now consider an ω-model M � RCA0+“D is a dilator”
that contains L and η (in addition to D). The statement that η is a natural trans-
formation between coded predilators is arithmetical and hence available inside M
(cf. the proof of Theorem 4.5). In view of Lemma 2.5, we get M � “DL is a dilator”.
The previous corollary allows us to conclude. �

The reader may wonder if Proposition 3.9 and Corollary 3.10 leave room for
improvement. In particular, it is natural to ask whether 2α can be embedded into
an order like DL(ω · (1 + α)) for arbitrary L. By a result that was mentioned in
the introduction, this would allow us to replace Π0

2-TI
⋆ by ACA0 in Theorem 3.11.

We only have the following partial answer. Let us note that the rest of this section
does not affect any other part of this paper and may thus be skipped. At the end
of the section, we formulate an open question.

Proposition 3.12 (RCA0). Assume that L = (N,≤L) is a scattered linear order
of finite Hausdorff rank r, i. e., that we have an embedding h : L→ Zr. Then there
is a natural family of embeddings ηα : 2α → DL

(

α · (ω · (α+ 1))r
)

.

Proof. We intend to set

ηα (2α0 + . . .+ 2αn−1) = 〈σ(0), . . . , σ(n− 1)〉

for a strictly increasing function σ : n→ α · (ω · (α + 1))r with values of the form

σ
(

πL
n (j)

)

= α · h(j) + αj .

To make ηα an embedding, it is enough to ensure that h(j) ∈ (ω · (α+ 1))r depends
only on α0, . . . , αj−1 (i. e., not on αj , . . . , αn−1 and not on n).

The function σ will be strictly increasing if i <L j implies h(i) < h(j). In order
to achieve the latter, we rely on the idea that finite descending sequences in α allow
for a dynamic approximation of Zr by (ω · (α + 1))r (cf. the paragraph after the
proof of Proposition 3.9). Write the values of the given embedding h : L→ Zr as

h(j) =
〈

qj0, . . . , q
j
r−1

〉

.

For each j ∈ N we pick an Nj ≥ j with qjk ≥ −Nj for all k < r. Given any q ∈ Z,
we define j(q) = min{j | q ≥ −Nj} ≤ |q|. Writing α−1 = α, we then put

q = ω · αj(q)−1 +Nj(q) + q for q ∈ Z with j(q) ≤ n.

As we have j(qjk) ≤ j by construction, we may consider the function

h : n→ (ω · (α+ 1))r with h(j) =
〈

qj0, . . . , q
j
r−1

〉

.

Now q 7→ q is strictly increasing. To see this, note that p < q implies j(p) ≥ j(q). If
the latter is an equality, we clearly get p < q. If it is a strict inequality, we get the
same via αj(p)−1 < αj(q)−1. Given that h is an embedding, it follows that i <L j

implies h(i) < h(j), as desired. Again due to j(qjk) ≤ j, we can confirm that h(j)
depends on α0, . . . , αj−1 only. The construction is clearly natural in α. �

Recall that, over RCA0, arithmetical comprehension is equivalent to the state-
ment that α 7→ 2α preserves well orders (see [20, 25]). Together with the previous
proposition, this yields the following (cf. the proof of Theorem 3.11).

Corollary 3.13. For any predilator D with a thread of finite Hausdorff rank, we
have RCA0 � “D is a dilator” → ACA0.
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In the following, we explain the restriction to finite Hausdorff ranks.

Remark 3.14. In Proposition 3.12, one can replace Zr by (1 + Z)γ for an infinite
ordinal γ. However, this does not yield a result about infinite Hausdorff ranks.
The reason lies in different definitions of exponentiation for linear orders. When
we write (1 + Z)γ , we refer to the definition in the paragraph before Lemma 3.8.
On the other hand, the definition of Hausdorff rank (see [38]) takes Zγ to be the
order on functions f : γ → Z with only finitely many non-zero values, where we
have f < g if f(β) < g(β) holds for the biggest β on which f and g differ. If we only
record non-zero values, such functions can also be represented by finite sequences
〈(γ0, q0), . . . , (γn−1, qn−1)〉, but we have 〈(0,−1)〉 > 〈(1,−1)〉 > 〈(2,−1)〉 > . . . in
the order Zω . For infinite γ, this makes it hard to approximate Zγ by well orders,
so that our proof of Proposition 3.12 does not extend to this case.

To conclude this section, we formulate an open problem.

Question 3.15. How strong is the statement that DL is a dilator for some linear
order L = (N,≤L)? Is it stronger than Π0

2-TI
⋆ (cf. Corollary 3.10)? Is it weaker

than arithmetical comprehension? What happens in the extreme case L ∼= Q?

4. On slow transfinite induction

In the present section, we prove bounds on the strength of slow transfinite in-
duction and derive the results that were stated in the introduction.

Let us begin with a straightforward observation. As usual, we write IΣ
0
n to refer

to Σ0
n-induction along the natural numbers.

Lemma 4.1. (a) We have RCA0 + Π0
2-TI

⋆ ⊢ IΣ
0
2.

(b) Over RCA0 + IΣ
0
2, the following is equivalent to Π0

2-TI
⋆: a linear order γ

such that 2γ is well-founded admits no infinitely descending ∆0
2-sequence.

Proof. (a) The order type ω of the natural numbers is isomorphic to 2ω (think of
binary notation). This fact and the well-foundedness of ω is recognized in RCA0.
Given Π0

2-TI
⋆, we thus get Π0

2-induction along N. It is well-known that the latter

is equivalent to IΣ
0
2 (see, e. g., Section I.2 of [22]).

(b) It suffices to show that Π0
2-induction along γ holds precisely if no ∆0

2-sequence
in γ descends infinitely. For the forward direction, we assume that F : N → γ is ∆0

2

with F (n) > F (n + 1) for all n ∈ N. We obtain F (n) > x for all n ∈ N by a
straightforward induction on x ∈ γ, which clearly yields a contradiction. For the
backward direction, we assume that induction along γ fails for a Π0

2-formula ψ(x),
i. e., that we have

∃x ∈ γ ¬ψ(x) and ∀x ∈ γ(¬ψ(x) → ∃y < x¬ψ(y)).

The idea is to construct x0 > x1 > . . . in γ such that ¬ψ(xi) holds for all i ∈ N. To
achieve this in our metatheory, we write ψ(x) as ∀nϕ(x, n) where ϕ is Σ0

1. Let S
be the ∆0

2-collection of all finite sequences σ = 〈σ0, . . . , σk−1〉 such that each σi is
the minimal code of a pair 〈xi, ni〉 with ¬ϕ(xi, ni) and either i = 0 or xi < xi−1.

Using IΣ
0
2, one readily shows that S contains a (clearly unique) sequence of each

length. In order to obtain a ∆0
2-function F : N → γ with F (n) < F (n− 1), we now

declare that F (n) is the first component of the n-th pair in some (or any) suitably
long sequence from S. �
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We now provide the proof for a proposition from the introduction, which asserts
that we have WKL0 2ω Π0

2-TI
⋆. It was found at Trends in Proof Theory 2024. The

crucial ideas for the second and third paragraph of the proof were suggested by
F. Pakhomov and J. Aguilera, respectively.

Proof of Proposition 1.4. Given any Z ⊆ N, we need to find an ω-model M � WKL0

that contains Z and falsifies Π0
2-TI

⋆. Let us anticipate that the following arguments
relativize, which allows us to assume Z = ∅. We find a low set X and an ω-model
M � WKL0 such that all sets in M are computable from X (take a low PA-degree,
e. g. via Theorems 3.17 and 4.22 of [23]). In view of the previous lemma, it is enough
to find a computable linear order γ such that 2γ has no X-computable descending
sequence while γ contains a descending sequence that is computable in 0′.

For an X-computable linear order γ, it is known that an X-computable des-
cending sequence in 2γ yields an X ′-computable descending sequence in γ itself
(see Theorem 3.1 of [31]). To formulate an effective version of this fact, we write
{e}X(n) and {e}′X(n) for the result (possibly undefined) of the e-th programme on
input n with oracle X and X ′, respectively. The proof in the cited reference yields
a computable function f : N2 → N with the following properties:

• If {e}X is the characteristic function of the graph of a linear order γ and
{s}X is a strictly descending sequence in γ, then {f(e, s)}′X is a strictly des-
cending sequence in γ.

• The function {f(e, s)}′X is total for all e, s ∈ N.

Now the idea is to construct a computable linear order γ with a 0′-computable des-
cending sequence such that every sequence x0 > x1 > . . . in γ validates

{f(e, s)}′X(n) <N xn for all n = 〈e, s〉 ∈ N.

If e0 and s0 were X-indices for γ and a descending sequence in 2γ , the sequence that
is given by xn = {f(e0, s0)}′X(n) ∈ γ would yield a contradiction at n = 〈e0, s0〉.
Thus 2γ will have to be X-computably well-founded, as demanded above.

Given that X is low, we get a total 0′-computable function D : N → N by setting

D(n) = {f(e, s)}′X(n) + 1 for n = 〈e, s〉.

By the limit lemma (see Section 3.6 of [41]), we get D(n) = limk d(k, n) for a com-
putable function d : N2 → N, where we can assume d(k, n) ≤ k. Let us write K(n)
for the smallest K such that D(n) = d(k, n) holds for all k ≥ K. We point out that
we get D(n) ≤ K(n). Define T as the tree of sequences 〈k(0), . . . , k(l − 1)〉 such
that the following holds for n < l:

(i) If k(n) is non-zero, then we have d(k(n) − 1, n) 6= d(k(n), n).
(ii) We have d(k(n), n) = d(k, n) for k(n) < k < l.

Condition (i) ensures k(n) ≤ K(n). The latter must be an equality when the given
sequence lies on a path of T , by condition (ii) and the minimality of K(n). Thus T
has a unique path, which consists of the rightmost sequences. Let γ be the Kleene-
Brouwer order on T without its root. Any descending sequence x0 > x1 > . . . in γ
must lie entirely within the branch. Assuming that the code of a sequence majorizes
its entries, we thus get xn ≥ K(n) ≥ D(n), as needed. �

Let us note that Corollary 1.6 from the introduction is now established as well.
As promised in the previous section, we get the following.
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Corollary 4.2. The alternatives in Theorems 3.6 and 3.11 are exclusive, i. e., in
each of these two results and for each predilator D, statements (i) and (ii) cannot
hold simultaneously.

Proof. Statement (i) is the same in both results, and statement (ii) of Theorem 3.6
implies (ii) of Theorem 3.11, by the proof of the latter. Thus it suffices to show
that the alternative in the second result is exclusive. If this was not the case, we
would get RCA0 �ω Π0

2-TI
⋆, against the result of the previous proof. �

Our next aim is to derive a result that involves Ramsey’s theorem for pairs and
two colours (RT2

2). We begin with some preparations. Let us recall that ε0, which is
the proof-theoretic ordinal of Peano arithmetic (PA), has a standard representation
as an ordered system of terms that are recursively generated by the clause

t(0) � . . . � t(n− 1) in ε0 ⇒ ωt(0) + . . .+ ωt(n−1) ∈ ε0.

This already refers to the order ≺ on ε0, which is lexicographic with respect to
the recursively defined order on exponents (see, e. g., Section 3.3.1 of [33] for more
details). The following proof, which adapts a classical argument due to G. Kreisel
and A. Lévy [29], was pointed out to the author by L. Beklemishev. We write ∃1Π0

n

for the class of formulas ∃X ⊆ Nϕ such that ϕ is Π0
n. In the context of second-order

arithmetic, PA denotes the schema of arithmetical induction with set parameters.

Proposition 4.3. When ψ is any true ∃1Π0
3-sentence, the theory RCA0 + PA + ψ

cannot prove that the well-foundedness of ε0 entails Π0
2-induction along ε0.

Proof. We begin with a reduction to a corresponding first-order result. Let us
extend the language of first-order arithmetic by a unary predicate symbol U . We
will use U to account for the second-order quantifier in ψ. For a Π1

1-sentence ∀X ϕ
of second-order arithmetic, we define ϕU as the first-order sentence that results
from ϕ when all (positive and negative) subformulas t ∈ X are replaced by U(t).
In the following, it is understood that U may occur in the induction formulas of
first-order Peano arithmetic.

We consider transfinite induction only along (our standard representation of)
the ordinal ε0. When Γ is a class of formulas (each with a distinguished induction
variable), we write Γ-TI for the collection of formulas

∀γ ∈ ε0
(

∀β ≺ γ ϕ(β) → ϕ(γ)
)

→ ∀α ∈ ε0 ϕ(α)

with ϕ ∈ Γ. We will be particularly interested in the case where Γ is the class of
Πn-formulas with n ∈ {1, 2}. Let us agree that such formulas may contain U . We
have the following conservation result.

Claim. For any Π1
1-sentence ∀X ϕ, we have

RCA0 + PA + “ε0 is well-founded” ⊢ ∀X ϕ ⇒ PA + Π1-TI ⊢ ϕU .

When PA is replaced by IΣ1, the result coincides with Theorem 4 of [4]. The
proof extends the usual model-theoretic argument for the conservativity of RCA0

over IΣ1. Aiming at the contrapositive of our implication, we consider a model M
of the theory PA + Π1-TI + ¬ϕU . Let S consist of the ∆1-definable subsets of
the universe M of M (where definitions may involve U). If a subset of M is
∆0

1-definable with number and set parameters over (M,S), it is ∆1-definable with
number parameters over M (see [40, Lemma IX.1.8]). The analogous claim for first-
order definability follows. Thus (M,S) validates RCA0+PA and clearly also ¬∀X ϕ.
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As in [4], ill-foundedness of ε0 in (M,S) would yield a failure of Π1-TI in M. We
will use the claim above in conjunction with the following.

Claim. For any Σ4-sentence ϕ that is true under some interpretation of U , we have

PA + ϕ+ Π1-TI 0 Π2-TI.

By a classical result of Kreisel and Lévy [29], induction along ε0 is equivalent
to uniform reflection over PA. A closer look at the proof shows that Π2-induction
corresponds to Π4-reflection. To formalize the latter, we use a Π4-formula Tr4 that
defines truth for Π4-sentences (see [22, Section I.1]). We also have a Σ1-formula PrPA

that expresses provability in PA. Our reflection principle can now be stated as

RFN4 = ∀θ
(

“θ is a Π4-sentence” ∧ PrPA(θ) → Tr4(θ)
)

.

The result of Kreisel and Lévy (refined with respect to formula complexity) says

PA + Π2-TI ⊢ RFN4.

For a detailed proof via ordinal analysis, we refer to Section 5 of [12] (also see the
alternative approach by Beklemishev [2, 3]). There it is shown that parameter-
free Π1-induction implies local Σ2-reflection. No new issues arise when we admit
parameters and go from Π2-induction to uniform Σ3-reflection, which is known
to be equivalent to uniform Π4 reflection. The addition of the predicate symbol U
amounts to a harmless relativization. We can express Π1-TI by a single Π3-sentence
(again via a partial truth definition). Let θ be the Σ4-sentence ϕ ∧ Π1-TI. If the
proposition was false, we would get PA+θ ⊢ PrPA(¬θ) → ¬θ. The assumption on ϕ
ensures that PA + θ is consistent. So we would have a contradiction with Gödel’s
second incompleteness theorem. This completes the proof of our second claim.

We now write ∃X ψ0 for the ∃1Π0
3-formula ψ from the statement of the propos-

ition. For any set variable Y , let Π2-TIY be the second-order formula that results
from Π2-TI when each subformula U(t) is replaced by t ∈ Y . Note that ∀Y Π2-TIY

is a consequence of the second-order version of Π0
2-induction along ε0. Assuming

that the proposition is false, we thus get

RCA0 + PA + “ε0 is well-founded” ⊢ ∃X ψ0 → ∀Y Π2-TIY .

Here the conclusion can be weakened to ∀X(ψ0 → Π2-TIX). Due to the first claim
above, we can infer

PA + Π1-TI ⊢ ψ
U
0 → Π2-TI.

But this contradicts the second claim. �

To get the following, it suffices to combine the previous proposition with a recent
result of Q. Le Houérou, L. Patey and K. Yokoyama [30].

Corollary 4.4. When ψ is a true ∃1Π0
3-sentence, we have

WKL0 + RT
2
2 + PA + ψ 0 Π0

2-TI
⋆.

Proof. It is straightforward to show that 2ε0 embeds into ε0 (in fact by an iso-
morphism). Assuming that the corollary fails, we infer that the theory

WKL0 + RT
2
2 + PA + “ε0 is well-founded”

proves that ψ implies Π0
2-induction along ε0. This implication is a Π1

1-statement.
We can thus use Theorem 1.6 of [30] to infer that the same implication is provable in
RCA0+PA+“ε0 is well-founded”. But this contradicts the previous proposition. �
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Finally, we derive the following result, which is a reformulation of Theorem 1.7
from the introduction.

Theorem 4.5. For any computable dilator D, we have

RCA0 �ω “D is a dilator” or WKL0 + RT
2
2 + PA 0 “D is a dilator”.

Proof. Towards a contradiction, we assume the theorem fails for D. Then we have

WKL0 + RT
2
2 + PA ⊢ “D is a dilator”.

Also, Theorem 3.6 ensures that D has a thread, i. e., that the following statement ψ
is true: there is a natural family of order embeddings ηn : DL(n) → D(ω · (1 + n))
with n ∈ N for some linear order L = (N,≤L). In the proof of Theorem 3.11 we have
used that ψ is Σ1

1. Here we note that it is actually ∃1Π0
2. Indeed, the order DL(n)

and thus the embedding ηn is finite for each n ∈ N. Our natural family can thus
be seen as a function n 7→ ηn ∈ N, and it takes a Π0

2-formula to express that this
function is total. To say that the family is natural, we need to quantify over all
morphisms f : m→ n with m,n ∈ N, which amounts to a first-order quantification.
For each f , the naturality condition ηn ◦DL(f) = D(ω · (1 + f)) ◦ ηm asserts only
finitely many equalities and is thus ∆0

1. By Lemma 2.5, our natural family yields
an embedding DL(α) → D(ω · (1 + α)) for any linear order α, provably in RCA0.
We thus get

WKL0 + RT
2
2 + PA + ψ ⊢ “DL is a dilator for some linear order L = (N,≤L)”.

By Corollary 3.10, the same theory proves Π0
2-TI

⋆, against Corollary 4.4. �

The following complements the question from the end of the previous section.
Yokoyama has pointed out that a positive answer to (c) would yield a more canonical
version of the previous theorem.

Question 4.6. (a) Do we have WKL0 + RT
2
2 2ω Π0

2-TI
⋆?

(b) Is Π0
2-TI

⋆ strictly weaker than the principle of arithmetical comprehension?
Is it Π1

1-conservative over RCA0 + IΣ
0
2 (cf. Lemma 4.1)?

(c) Is WKL0 + RT
2
2 + PA conservative over RCA0 + PA for statements of the

form “D is a dilator” with computable D?
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29. Georg Kreisel and Azriel Lévy, Reflection principles and their use for establishing the com-

plexity of axiomatic systems, Zeitschrift für mathematische Logik und Grundlagen der Math-
ematik 14 (1968), 97–142.

30. Quentin Le Houérou, Ludovic Patey, and Keita Yokoyama, Conservation of Ramsey’s theorem

for pairs and well-foundedness, 2024, https://doi.org/10.48550/arXiv.2402.11616.
31. Alberto Marcone and Antonio Montalbán, The Veblen functions for computability theorists,

The Journal of Symbolic Logic 76 (2011), 575–602.
32. Ludovic Patey and Keita Yokoyama, The proof-theoretic strength of Ramsey’s theorem for

pairs and two colors, Advances in Mathematics 330 (2018), 1034–1070.
33. Wolfram Pohlers, Proof theory. The first step into impredicativity, Springer, Berlin, 2009.
34. Michael Rathjen, ω-models and well-ordering principles, Foundational Adventures: Essays in

Honor of Harvey M. Friedman (Neil Tennant, ed.), College Publications, 2014, pp. 179–212.

http://girard.perso.math.cnrs.fr/Archives4.html
https://doi.org/10.48550/arXiv.2402.11616


DILATORS AND THE REVERSE MATHEMATICS ZOO 23

35. Michael Rathjen and Ian Alexander Thomson, Well-ordering principles, ω-models and Π1

1
-

comprehension, The Legacy of Kurt Schütte (Reinhard Kahle and Michael Rathjen, eds.),
Springer, 2020, pp. 171–215.

36. Michael Rathjen and Pedro Francisco Valencia Vizcáıno, Well ordering principles and bar
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