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Abstract

We axiomatize the first-order theories of exponential integer parts of real-closed expo-

nential fields in a language with 2x, in a language with a predicate for powers of 2, and in the

basic language of ordered rings. In particular, the last theory extends IOpen by sentences

expressing the existence of winning strategies in a certain game on integers; we show that

it is a proper extension of IOpen, and give upper and lower bounds on the required number

of rounds needed to win the game.

1 Introduction

A classical result of Shepherdson [13] characterizes models of the arithmetical theory IOpen

(induction for quantifier-free formulas in the language LOR = 〈0, 1,+, ·, <〉) as exactly those

that are (nonnegative parts of) integer parts of real-closed fields. Here, an integer part (IP) of

an ordered ring R is a discrete subring I ⊆ R such that every element of R is within distance 1

from an element of I. An analogue for exponential ordered fields 〈R, exp〉 (with exp(1) = 2)

was introduced by Ressayre [11]: an exponential integer part (EIP) of R is an IP I ⊆ R such

that I≥0 is closed under exp. (We will find it more convenient to call the nonnegative part I≥0

the EIP of R rather than I itself, and we usually denote exp ↾ I≥0 as 2x.) We are interested

in the question what models of IOpen are EIP of real-closed exponential fields (RCEF), and in

particular, what is the first-order theory of such structures.

The question whether the theory of EIP of RCEF in LOR coincides with IOpen was raised

by Jeřábek [7]; he provided an upper bound on the theory, proving that every countable model

of the weak arithmetic VTC0 (or rather, the equivalent one-sorted arithmetical theory ∆b
1
-CR)

is an EIP of a RCEF, despite the fact that the “natural” integer exponentiation function in this

theory is only defined for small integers.

Extensions of Shepherdson’s theorem to RCEF were studied previously by Boughattas and

Ressayre [2] and Kovalyov [9]. Their work differs from ours in two main respects. First,

they approach Shepherdson’s characterization from the other side, focusing on problems such
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as: what additional axioms must be added to RCEF to ensure that their EIP are models of

such and such theory (e.g., open induction in a language with exponentiation). Second, they

mostly study IPs closed under the binary powering operation xy = exp(y log x) in a language

including xy: in this case, the ambient exponential field can be canonically reconstructed from

the structure of the IP (using the integer xy operation, we can define rational approximations

of exp(x) for rational x, which yields an exponential function on the completion of the fraction

field). Such a direct construction seems impossible if we have only 2x instead of xy in the

language, let alone when we work only with the basic language LOR; thus, we will instead rely

on model-theoretic tools such as the joint consistency theorem and recursively saturated models.

Our main contribution is an axiomatization of the theories of EIP of RCEF in LOR ∪ {2x},

in LOR∪{P2} (where P2 is a predicate for the set of powers of 2), and in LOR, denoted TEIP2x ,

TEIPP2
, and TEIP (respectively). The first two theories are extensions of IOpen by finitely many

axioms expressing basic algebraic properties of 2x and P2. The most important theory, TEIP, is

more involved: it extends IOpen with an infinite sequence of sentences expressing that a certain

game on positive integers (designed so that playing powers of 2 is a winning strategy) is a win for

the second player. We note that there is a general result on axiomatizing conservative fragments

of given theories by means of game sentences of similar kind due to Svenonius [15], which

is instrumental in the argument that countable recursively saturated models are resplendent

(Barwise and Schlipf [1]). However, in contrast to the rather opaque game considered by

Svenonius, mimicking the Henkin completion procedure, our game on integers has simple and

transparent rules, which makes it amenable to combinatorial analysis.

We show that TEIP is a proper extension of IOpen. We leave open the problem whether

TEIP is finitely axiomatizable over IOpen, but as a partial progress, we prove that formulas

obtained by stripping the outermost pair of quantifiers from each axiom of TEIP form a strict

hierarchy (even over the true arithmetic Th(N)); this amounts to the fact that if we play our

integer game starting with arbitrary numbers that are not powers of 2, the first player needs

an unbounded number of rounds to win. To this end, we analyze the game, proving upper and

lower bounds on the number of rounds needed to win that are tight for a sizeable set of initial

integers.

There is a natural interpretation of LOR ∪ {P2} in arithmetic where we put P2(x) iff x has

no nontrivial odd divisor (“x is oddless”). We briefly discuss what theories of arithmetic prove

TEIPP2
under this interpretation (and hence include TEIP): in particular, this holds for IE2.

On the other hand, not even Th(N) + TEIPP2
can prove that P2(x) implies x is oddless: it is

consistent that an element of P2 is divisible by 3. In other words, even for strong theories of

arithmetic, expansions to models of TEIPP2
are not unique.

The paper is organized as follows. We review the preliminaries in Section 2. We compute

the theories of EIP of RCEF in LOR ∪ {2x} and LOR ∪ {P2} in Section 3. In Section 4, we

introduce the PowG game and determine the theory TEIP of EIP or RCEF in LOR. Section 5

is devoted to an analysis of winning strategies in PowG. We discuss the oddless interpretation

of P2 in Section 6, and we end with some concluding remarks and open problems in Section 7.
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2 Preliminaries

Let LOR = 〈0, 1,+, ·, <〉. An ordered ring is an LOR-structure R = 〈R, 0, 1,+, ·, <〉 such that

〈R, 0, 1,+, ·〉 is a commutative ring, and < is a (strict) total order on R compatible with + and ·
(i.e., x ≤ y implies x + z ≤ y + z, and, if z ≥ 0, also xz ≤ yz). We call R discrete if there

is no element strictly between 0 and 1. An ordered field is an ordered ring that is a field. An

ordered field R = 〈R, . . . 〉 is a real-closed field (RCF ) if it has no proper algebraic extension to

an ordered field, or equivalently, if every a ∈ R>0 has a square root in R, and every polynomial

f ∈ R[x] of odd degree has a root in R, where R>0 denotes {a ∈ R : a > 0}.

An integer part (IP) of an ordered ring R = 〈R, . . . 〉 is a discrete subring I ⊆ R (considered

as an LOR-substructure) such that for every a ∈ R, there is z ∈ I such that z ≤ a < z + 1.

The nonnegative part of an ordered ring R = 〈R, . . . 〉 is its substructure R≥0 with domain

R≥0 = {a ∈ R : a ≥ 0}. The theory of nonnegative parts of discrete ordered rings is denoted

PA−; it is an extension of Robinson’s arithmetic Q. Every M = 〈M, . . . 〉 � PA− has a unique (up

to isomorphism) extension to a discrete ordered ring M± = 〈M±, . . . 〉 such that (M±)≥0 = M

and M± = {a,−a : a ∈ M}, which is called the extension of M with negatives. The extension

of PA− (or equivalently, Q) with the induction axioms

(ϕ-IND) ∀~y
(

ϕ(0, ~y) ∧ ∀x
(

ϕ(x, ~y) → ϕ(x + 1, ~y)
)

→ ∀xϕ(x, ~y)

for all open (= quantifier-free) LOR-formulas ϕ is denoted IOpen.

Theorem 2.1 (Shepherdson [13]) An LOR-structure M is an IP of a RCF if and only if

M≥0 � IOpen. ✷

Note that a priori there is no reason for the class of integer parts of RCF to be elementary;

indeed, this fails for our case of interest (EIP of RCEF), as we will see.

R = 〈R, 0, 1,+, ·, <, exp〉 is an (ordered) exponential field if 〈R, 0, 1,+, ·, <〉 is an ordered

field, and exp is an ordered group isomorphism exp: 〈R,+, 0, <〉 → 〈R>0, ·, 1, <〉. Following

Ressayre [11], a real-closed exponential field (RCEF ) is an exponential field R = 〈R, . . . 〉 which

is real-closed and satisfies exp(1) = 2; if exp(x) > x for all x ∈ R, we say that it satisfies

the growth axiom1 (GA). If I is an IP of R such that I≥0 is closed under exp, we call I≥0 an

exponential integer part (EIP) of R. (We define I≥0, rather than I itself, to be an EIP, since

we intend to axiomatize first-order theories of EIP as extensions of IOpen, and compare them

with other theories of arithmetic such as IEk, which are formulated such that all elements are

nonnegative.) We consider an EIP I≥0 to be not just a set, but an LOR-substructure of R,

and we also consider it in some expanded languages: LOR ∪ {2x}, by inheriting the function

2x = exp ↾ I≥0 from R, and LOR ∪ {P2}, where the unary predicate P2 is interpreted as the

image of 2x : I≥0 → I>0.

1Ressayre includes this in the definition of an exponential field, and actually formulates it as “exp(x) > xn

for all x somewhat larger than n”, where n presumably refers to standard natural numbers. This follows from

our GA, since exp(x) = exp(x/2n)2n > (x/2n)2n ≥ xn as long as, say, x ≥ (2n)2. On the other hand, it is easy

to see that if there is m ∈ N such that exp(x) > x holds for all x ≥ m, then it holds for all x ∈ R, thus our axiom

is equivalent to Ressayre’s formulation.
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Presburger arithmetic is the complete theory of the structure 〈N, 0, 1,+, <〉. Models of

Presburger arithmetic are exactly the nonnegative parts of Z-groups, which are discrete ordered

abelian groups 〈Z, 0,+, <〉 with a least positive element 1 such that Z/Z is divisible, where we

identify Z with the subgroup of Z generated by 1. There is an (easily proved) baby version of

Theorem 2.1: Z-groups are exactly the IPs of divisible ordered abelian groups (where an IP of

an ordered group is defined analogously to rings, but without multiplication).

In theories extending PA−, existential bounded quantifiers ∃x ≤ t ϕ(x, . . .) (where t is a term

that does not contain x) are defined as shorthands for ∃x (x ≤ t ∧ ϕ(x, . . .)), and universal

bounded quantifiers ∀x ≤ t ϕ(x, . . .) are shorthands for ∀x (x ≤ t → ϕ(x, . . .)). A bounded

formula is one that only uses bounded quantifiers. The set of all bounded LOR-formulas is

denoted ∆0. An LOR-formula is Ek (resp., Uk) if it can be written with k alternating (possibly

empty) blocks of bounded quantifiers followed by a quantifier-free formula, with the first block

being existential (resp., universal). If Γ is a formula class such as ∆0 or Ek, IΓ denotes the

theory axiomatized by PA− (or just Q) and (ϕ-IND) for formulas ϕ ∈ Γ (thus, IE0 = IOpen).

We define the divisibility predicate x | y as ∃z xz = y (thus all elements divide 0). Over

PA−, the existential quantifier can be bounded by z ≤ y, thus x | y is an E1 formula; it is

equivalent to the U1 formula ∀q ≤ y ∀r < x (y = qx+ r → r = 0) over IOpen.

The theory ∆b
1
-CR of Johannsen and Pollett [8] is a weak theory of bounded arithmetic in

the style of Buss’s theories (cf. [5, §V.4]) that corresponds to the complexity class TC0. It

is bi-interpretable (RSUV-isomorphic) to the more commonly used two-sorted Zambella-style

theory VTC0 (see [4]), but since our interest lies in embedding the universe of the theory with its

LOR-structure as EIP in other structures, it is more natural to consider the one-sorted version

of the theory. It was proved in Jeřábek [7] that every countable model of ∆b
1
-CR is an EIP of

a RCEF satisfying GA (despite the fact that the natural exponentiation function in ∆b
1
-CR is

only defined on an initial segment of small integers). Proper definitions of ∆b
1
-CR and VTC0

as well as more context can be found in the references above; readers unfamiliar with these

theories may safely skip the few places where they are mentioned below.

We use log x to denote the base-2 logarithm of x, with the convention that log x = 0 for

x ≤ 1 (i.e., it is really max{0, log2 x}). We denote the natural logarithm by lnx, and general

base-b logarithm by logb x.

We will also need two tools from model theory. The first is Robinson’s joint consistency

theorem (see e.g. Hodges [6, Cor. 9.5.8]):

Theorem 2.2 Let T be a complete L-theory, and for i = 0, 1, let Ti ⊇ T be a consistent

Li-theory, where L0 ∩ L1 = L. Then T0 ∪ T1 is consistent. ✷

Recursive saturation was introduced by Barwise and Schlipf [1]. Let M = 〈M, . . . 〉 be a

structure in a finite language L. If ~a ∈ M and Γ(x, ~y) is a recursive set of L-formulas, then

Γ(x,~a) is a recursive type of M, which is finitely satisfiable if M � ∃x ∧ϕ∈Γ′ ϕ(x,~a) for each

finite Γ′ ⊆ Γ, and realized by c ∈ M if M � Γ(c,~a). Then M is recursively saturated if every

finitely satisfiable recursive type of M is realized in M. We will use the fact that every countable

L-structure has a countable recursively saturated elementary extension.
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3 Exponential integer parts in a language with 2x or P2

We start by axiomatizing the theory of EIP of RCEF in a language with 2x, which is fairly

straightforward.

Definition 3.1 TEIP2x is a theory in the language LOR ∪ {2x} extending IOpen by the axioms

x > 0 → ∃y x < 2y ≤ 2x,(2x-IP)

2x+y = 2x2y,(2x-Mul)

2x > 0.(2x-Pos)

TEIP+
2x is defined similarly, but with axiom

2x > x(2x-GA)

in place of (2x-Pos).

By doubling/halving x (which corresponds to shifting y by 1), (2x-IP) is equivalent to

x > 0 → ∃y 2y ≤ x < 2 · 2y,

which would match more closely the axioms of TEIPP2
and TEIP that will be given further on,

but the version here looks more visually pleasing.

Theorem 3.2 The first-order theory of EIP of RCEF in LOR∪{2x} is TEIP2x . The first-order

theory of EIP of RCEF satisfying GA in LOR ∪ {2x} is TEIP+
2x .

Proof: It is clear that any EIP of a RCEF satisfies the given axioms. Conversely, assume that

M = 〈M, 0, 1,+, ·, <, 2x〉 � TEIP2x . Since M � IOpen, M± is an IP of a RCF R by Theorem 2.1.

There exists an elementary extension R∗ = 〈R∗,M∗, 0, 1,+, ·, <, 2x〉 of 〈R,M, 0, 1,+, ·, <, 2x〉
that expands to a RCEF 〈R∗, exp〉 by Theorem 2.2 (applied with T0 being the elementary

diagram of 〈R,M, 0, 1,+, ·, <, 2x〉 and T1 the theory of RCEF, with common language LOR),

using the completeness of the theory RCF. Let M∗
± = M∗ ∪ {−a : a ∈ M}, and extend

2x : M∗ → M∗
>0 to a function 2x : M∗

± → R∗
>0 by 2−x = (2x)−1. Applying (2x-IP) with x = 1,

there exists y ∈M∗ such that 2y = 2; depending on the parity of y, (2x-Mul) implies 2 = (2y/2)2

(which is impossible) or 2 = 21 · (2⌊y/2⌋)2, thus 21 = 2. Then using (2x-Mul) and (2x-Pos), 2x

is strictly increasing, hence it is an ordered group embedding 〈M∗
±, 0,+, <〉 → 〈R∗

>0, 1, ·, <〉.
Putting B = {x ∈ R∗ : ∃n ∈ N |x| ≤ n}, we define a new exponential exp: R∗ → R∗

>0 by

exp(a+ r) = 2a exp(r), a ∈M∗
±, r ∈ B.

To see that this is well defined, if a+r = a′ +r′ with a, a′ ∈M∗
± and r, r′ ∈ B, then n = a−a′ =

r′ − r ∈ B ∩M∗
± = Z, hence both 2a−a

′

and exp(r′ − r) coincide with the usual value of 2n,

which implies 2a exp(r) = 2a
′

exp(r′). The function exp is defined on all of R∗ as M∗
± is an IP

of R∗.
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It follows easily that exp is a homomorphism 〈R∗, 0,+〉 → 〈R∗
>0, 1, ·〉 using the corresponding

properties of 2x and exp, and exp(x) > 1 for x > 0, thus exp is strictly increasing. It is also

surjective: if y ∈ R∗
>0, (2x-IP) implies that there is a ∈ M∗

± such that 2−ay ∈ [1, 2], thus

using the surjectivity and monotonicity of exp, 2−ay = exp(x) for some x ∈ [0, 1], whence

y = exp(a+ x). That is, 〈R∗, 0, 1,+, ·, <, exp〉 is an RCEF, and 〈M∗
±, 0, 1,+, ·, <, 2x〉 is its EIP.

If M and M∗ additionally satisfy (2x-GA), then exp(x) > x for all x: this holds trivially if

x ≤ 0; otherwise, we can write x = a+ r with a ∈ M and r ∈ [0, 1), thus 2x ≥ 2a ≥ a+ 1 > x.

✷

Next, we move to a language that only has a predicate P2 for the image of 2x rather

than 2x itself. It turns out that the resulting theory is the same irrespective of whether we

demand the RCEF to satisfy the growth axiom; but whereas in absence of GA, the proof is still

straightforward, the GA case is considerably more complicated.

Definition 3.3 TEIPP2
is a theory in the language LOR ∪ {P2} extending IOpen by the axioms

x > 0 → ∃u (P2(u) ∧ u ≤ x < 2u),(P2-IP)

P2(u) ∧ P2(v) ∧ u ≤ v → ∃w (P2(w) ∧ uw = v).(P2-Div)

TEIP′
P2

is a theory in the language LOR ∪ {P2} extending IOpen by the axioms

x > 0 → ∃!u (P2(u) ∧ u ≤ x < 2u),(P2-IP!)

¬P2(0),(P2-Pos)

P2(u) ∧ P2(v) → P2(uv).(P2-Mul)

Lemma 3.4 TEIPP2
is equivalent to TEIP′

P2
, and it proves P2(1) and P2(2).

Proof:

TEIPP2
⊢ TEIP′

P2
: The existence part of (P2-IP!) is just (P2-IP); for uniqueness, if u and u′

satisfy the conclusion, and, say, u ≤ u′, then u | u′ by (P2-Div), while u′ < 2u. Thus, the only

possibility is u = u′.

Applying (P2-IP) with x = 1, we see that P2(1). Then (P2-Div) gives ¬P2(0) as 0 ∤ 1.

Assume P2(u) and P2(v). If u = 1 or v = 1, then P2(uv) holds trivially, hence we may also

assume u, v ≥ 2. By (P2-IP), there is w such that P2(w) and w ≤ uv < 2w. Since 2u ≤ uv,

we have u < w, hence (P2-Div) implies u | w and P2(w/u). Moreover, w/u ≤ v < 2w/u, thus

w/u = v by the uniqueness part of (P2-IP!), i.e., P2(uv).

TEIP′
P2

⊢ TEIPP2
: (P2-IP) follows from (P2-IP!). Assume that P2(u), P2(v), and u ≤ v. We

have u > 0 by (P2-Pos), whence IOpen implies the existence of x > 0 such that ux ≤ v < u(x+1).

By (P2-IP!), there is w such that P2(w) and w ≤ x < 2w, i.e., uw ≤ v < 2uw. Then P2(uw)

by (P2-Mul), hence uw = v by the uniqueness part of (P2-IP!).

We have already seen that TEIPP2
⊢ P2(1). Likewise, an application of (P2-IP) with x = 2

gives P2(2). ✷
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Lemma 3.5 If M = 〈M, 0, 1,+, ·, <, P2〉 � TEIPP2
, then 〈P2, 1, 2, ·, <〉 is a model of Presburger

arithmetic.

Proof: Let R = 〈R, . . . 〉 be a RCF such that M± is its IP using Theorem 2.1. Let P±1
2 =

{u, u−1 : u ∈ P2} ⊆ R>0. Using Lemma 3.4, 〈P±1
2 , 1, ·, <〉 is a discrete ordered abelian group

with a least positive element 2, and it is an IP of the divisible ordered group 〈R>0, 1, ·, <〉.
Thus, it is a Z-group, and its “nonnegative” part 〈P2, 1, 2, ·, <〉 is a model of Presburger. ✷

For the construction of TEIP in the next section, it will be convenient to consider yet another

axiomatization of TEIPP2
that may look less intuitive, but has the advantage that it only involves

one positive occurrence of P2:

Definition 3.6 TEIP′′
P2

is a theory in the language LOR ∪ {P2} extending IOpen by the axioms

(P2-IP), (P2-Pos), and

(P2-Univ) P2(u) ∧ P2(v) ∧ P2(w) → ¬(uv < w < 2uv).

Lemma 3.7 TEIP′
P2

is equivalent to TEIP′′
P2
.

Proof:

TEIP′
P2

⊢ TEIP′′
P2

: For (P2-Univ), if P2(u), P2(v), and P2(w), then P2(uv) by (P2-Mul), hence

the uniqueness part of (P2-IP!) precludes uv < w < 2uv.

TEIP′′
P2

⊢ TEIP′
P2

: First, (P2-IP) implies P2(1), hence (P2-Univ) gives P2(u) ∧ P2(u′) →
¬(u < u′ < 2u), which is the uniqueness part of (P2-IP!); thus, we have (P2-IP!) and (P2-Pos).

For (P2-Mul), assuming P2(u) and P2(v), there is w such that P2(w) and uv ≤ w < 2uv

by (P2-IP); we must have w = uv by (P2-Univ). ✷

Theorem 3.8 The first-order theory of EIP of RCEF in LOR ∪ {P2} is TEIPP2
.

Proof: In view of Theorem 3.2, it suffices to show that TEIP2x is a conservative extension of

TEIPP2
when P2(u) is interpreted as ∃xu = 2x. Clearly, TEIP2x proves TEIPP2

.

On the other hand, if M = 〈M, 0, 1,+, ·, <, P2〉 � TEIPP2
, then using IOpen and Lemma 3.5,

the structures 〈M, 0, 1,+, <〉 and 〈P2, 1, 2, ·, <〉 are both models of Presburger arithmetic, hence

elementarily equivalent. It follows from the joint consistency theorem that M has an elementary

extension M∗ = 〈M∗, 0, 1,+, ·, <, P ∗
2 〉 such that 〈M∗, 0, 1,+, <〉 and 〈P ∗

2 , 1, 2, ·, <〉 are isomor-

phic. (Theorem 2.2 is applied here such that L0 is LOR ∪ {P2} expanded with constants for

elements of M , L1 = {s : s ∈ L0} is a copy of L0 with a disjoint set of symbols except that we

identify 0 = 1, 1 = 2, + = ·, and < = <, T0 and T1 are the elementary diagram of M formulated

using the respective languages, and T is Presburger arithmetic.) If 2x is such an isomorphism,

then 〈M∗, 2x〉 � TEIP2x . ✷

The growth axiom interconnects the structures 〈M, 0, 1,+, <〉 and 〈P2, 1, 2, ·, <〉 in a way

that seems to preclude a similarly easy proof of the extension of Theorem 3.8 to TEIP+
2x .

One idea that does not work is to use the joint consistency theorem to expand an elemen-

tary extension of M to a model of Th(〈N, 0, 1,+, <, 2x〉), taking Th(〈N, 0, 1,+, <, · ↾ P2〉) as

the common subtheory: since Th(〈N, 0, 1,+, <, 2x〉) is decidable due to Semenov [12], its reduct

7



Th(〈N, 0, 1,+, <, ·↾P2〉) is recursively axiomatizable, thus in principle it might be possible to take

its axiomatization by a few natural axioms or schemata and check that it is included in TEIPP2
.

This fails for two reasons: first, even though Th(〈N, 0, 1,+, <, 2x〉) is explicitly axiomatized in

Cherlin and Point [3], we do not know of a similar axiomatization of Th(〈N, 0, 1,+, <, · ↾ P2〉)
in the literature, and this would likely require some work to devise. Second, TEIP+

2x does not,

in fact, include even the weaker theory Th(〈N, 0, 1,+, <, P2〉): as we will see below, it does not

prove that powers of 2 are not divisible by 3.

In absence of a better idea, we will get our hands dirty and construct the required 2x obeying

GA by a back-and-forth argument (cf. [7, Thm. 6.4]):

Theorem 3.9 The first-order theory of EIP of RCEF satisfying GA in LOR ∪ {P2} is TEIPP2
.

Proof: It suffices to show that TEIP+
2x is conservative over TEIPP2

. Let M = 〈M, 0, 1,+, ·, <, P2〉
be a countable recursively saturated model of TEIPP2

; we will show that it expands to a model

of TEIP+
2x . Let R be a RCF whose IP is M±, P±1

2 = {u, u−1 : u ∈ P2} ⊆ R>0, B = {x ∈ R :

∃n ∈ N |x| ≤ n}, and B× = {x ∈ R : ∃n ∈ Nn−1 ≤ x ≤ n}. If u, v ∈ P±1
2 and m ∈ N>0, u ≡× v

(mod m) means uv−1 = wm for some w ∈ P±1
2 ; by Lemma 3.5, u ≡× 2l (mod m) for a unique

l such that 0 ≤ l < m.

Fix enumerations M = 〈ci : i ∈ ω〉 and P2 = 〈di : i ∈ ω〉. We will construct sequences

〈ai : i ∈ ω〉 ⊆ M and 〈bi : i ∈ ω〉 ⊆ P2 so that they satisfy the following properties for each

k ≥ 1 by induction on k:

(i) a0 = 1, b0 = 2, a2i+2 = ci, b2i+1 = di.

(ii) For all ~q ∈ Qk,
∑

i<k qiai = 0 =⇒ ∏

i<k b
qi
i = 1. (Here, bqii ∈ R>0.)

(iii) For all 0 ≤ l < m ∈ N and i < k, ai ≡ l (mod m) =⇒ bi ≡× 2l (mod m).

(iv) For all ~q ∈ Qk,
∏

i<k b
qi
i >

∑

i<k qiai.

We observe that conditions (ii) and (iii) can be stated with ⇐⇒ in place of =⇒ . For (iii),

this follows from the uniqueness of l < m such that ai ≡ l (mod m), resp. bi ≡× 2l (mod m).

For (ii), this follows from (iv): if
∑

i qiai 6= 0, then
∑

i nqiai ≥ 1 for some n ∈ Z, thus
(
∏

i b
qi
i

)n
> 1 by (iv), and in particular,

∏

i b
qi
i 6= 1. The same argument actually shows that

the conditions imply

(1)
∑

i<k

qiai > 0 ⇐⇒
∏

i<k

bqii > 1,

and likewise,

(2)
∑

i<k

qiai > N ⇐⇒
∏

i<k

bqii > N :

the left-to-right implication follows from (iv), while if
∑

i<k qiai < n for some n ∈ N, then (iv)

applied to na0 −
∑

i qiai > 0 gives
∏

i b
qi
i < 2n.
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We also observe that condition (iv) is equivalent to

(3)
∑

i<k

qiai > N =⇒
∏

i<k

bqii >
∑

i<k

qiai

for all ~q ∈ Qk, as other conditions imply the conclusion when
∑

i qiai > N does not hold: let

r =
∑

i qiai. If r ≤ 0, there is nothing to prove, as
∏

i<k b
qi
i > 0. If 0 ≤ r ∈ B, then r ∈ Q (if

qi = ni/m for some ~n,m ∈ Z, m > 0, then mr =
∑

i niai ∈ M ∩ B = Z as M is a model of

Presburger arithmetic). Then in view of (i),
∑

i qiai − ra0 = 0 implies b−r0

∏

i b
qi
i = 1 by (ii),

i.e.,
∏

i b
qi
i = 2r > r (referring to the standard exponential).

It is clear that after we finish the construction, the conditions ensure that ai 7→ bi defines

an isomorphism 2x : 〈M, 0, 1,+, <〉 → 〈P2, 1, 2, ·, <〉, and 〈M, 2x〉 |= TEIP+
2x .

We now proceed with the construction. For k = 1, we put a0 = 1, b0 = 2 as requested by (i);

then (ii)–(iv) hold. Having constructed 〈ai : i < k〉 and 〈bi : i < k〉 satisfying (ii)–(iv), we will

construct ak and bk as follows.

Assume that k is even. Put ak = ck/2−1; we need to find a matching bk ∈ P2. First, if

ak +
∑

i<k qiai ∈ B for some ~q ∈ Qk, then ak =
∑

i<k qiai for some ~q ∈ Qk by the same

argument as in the equivalence of (iv) and (3) above, and we define bk =
∏

i<k b
qi
i . Write

qi = ni/m for some ~n ∈ Zk and m ∈ N>0, and let 0 ≤ li < m be such that ai ≡ li (mod m).

Then 0 ≡ mak ≡ ∑

i nili (mod m). Using (iii) from the induction hypothesis, bi ≡× 2li

(mod m), thus
∏

i b
ni

i ≡× 2
∑

i nili ≡× 1 (mod m). This shows that bk =
(
∏

i b
ni

i

)1/m ∈ P2;

moreover, an analogous argument gives (iii). Conditions (ii) and (iv) follow from the induction

hypothesis.

Now, assume that ak +
∑

i qiai /∈ B for all ~q ∈ Qk. Then condition (ii) will follow from the

induction hypothesis for whatever choice of bk, hence we only need bk to satisfy (iii) and (3).

Condition (3) for qk = 0 follows from the induction hypothesis. For qk > 0, the condition

(4) qkak +
∑

i<k

qiai > N =⇒ bqkk

∏

i<k

bqii > qkak +
∑

i<k

qiai

is equivalent to

(5) ak >
∑

i<k

riai =⇒ bk
∏

i<k

b−rii >
[

qk

(

ak −
∑

i<k

riai

)]1/qk
,

where ri = −qi/qk (using that ak −
∑

i<k riai > 0 implies ak −
∑

i<k riai > N). Also, we have

qk

(

ak −
∑

i riai

)

<
(

ak −
∑

i riai

)2
, thus (5) holds for all qk > 0 and ~q ∈ Qk iff

(6) ak >
∑

i<k

riai =⇒ bk >
(

ak −
∑

i<k

riai

)n∏

i<k

brii

holds for all ~r ∈ Qk and n ∈ N. Likewise, (4) for all qk < 0 and ~q ∈ Qk is equivalent to

(7) ak <
∑

i<k

qiai =⇒ bk <
(

∑

i<k

qiai − ak

)−n∏

i<k

bqii
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for all ~q ∈ Qk and n ∈ N. Thus, to satisfy conditions (ii)–(iv), it is enough to take for bk any

realizer of the type

Γ(x) = {P2(x)} ∪
{

ak ≡ l (mod m) → x ≡× 2l (mod m) : 0 ≤ l < m ∈ N
}

∪
{

ak >
∑

i<k

riai → x >
(

ak −
∑

i<k

riai

)n∏

i<k

brii : ~r ∈ Qk, n ∈ N
}

∪
{

ak <
∑

i<k

qiai → x <
(

∑

i<k

qiai − ak

)−n∏

i<k

bqii : ~q ∈ Qk, n ∈ N
}

.

Observe that Γ(x) can indeed be expressed as a recursive type in LOR ∪ {P2} with parameters

~a,~b: e.g., if ri = ni/m with ~n ∈ Zk and m ∈ N>0, then x > (· · ·)n∏i b
ri
i is equivalent to

xm
∏

ni<0 b
−ni

i > (· · ·)nm∏ni>0 b
ni

i , etc. Thus, using the recursive saturation of M, it only

remains to check that every finite Γ0 ⊆ Γ is satisfiable.

Apart from P2(x), the formulas in Γ0 are implications whose premises do not depend on x; we

may discard those whose premises are false, and simplify the remaining ones by removing their

premises. If ak ≡ lj (mod mj) for j < t, then ak ≡ l (mod m), where m = lcm(m0, . . . ,mt−1)

and l ≡ lj (mod mj); then x ≡× 2l (mod m) implies x ≡× 2lj (mod mj) for each j < t. Thus,

we may assume Γ0 contains only one congruence x ≡× 2l (mod m). Likewise, we can take the

maximum (minimum) right-hand side among the inequalities x > · · · (x < · · · , resp.), thus we

may assume that Γ0 contains one inequality of the form x > · · · (we may assume there is at

least one by considering e.g. ~r = ~0 and n = 0, which gives x > 1), and at most one inequality of

the form x < · · · . If there is no inequality x < · · · , it is easy to see that Γ0 is satisfiable, hence

we may assume that

Γ0 =
{

P2(x), x ≡× 2l (mod m),
(

ak −
∑

i<k

riai

)n∏

i<k

brii < x, x <
(

∑

i<k

qiai − ak

)−n∏

i<k

bqii

}

for some 0 ≤ l < m ∈ N, ~q,~r ∈ Qk, and n ∈ N, where
∑

i<k

riai < ak <
∑

i<k

qiai.

(We may assume both inequalities use the same n by enlarging one if necessary.) Since P±
2 is an

IP of 〈R>0, 1, ·, <〉 (cf. Lemma 3.5), there exists an element x ∈ P2 satisfying x ≡× 2l (mod m)

in any interval [u, v) such that v ≥ 2mu > 0. Thus, Γ0 is satisfiable if

(

∑

i<k

qiai − ak

)−n∏

i<k

bqii > 2m
(

ak −
∑

i<k

riai

)n∏

i<k

brii ,

i.e.,

(8)
∏

i<k

bqi−rii > 2m
(

ak −
∑

i<k

riai

)n(∑

i<k

qiai − ak

)n
.

Now, using
∑

i(qi − ri)ai > N, we have

( 1

2n+ 1

∑

i<k

(qi − ri)ai

)2n+1
> 2m

(

ak −
∑

i<k

riai

)n(∑

i<k

qiai − ak

)n
,

10



whence (8) follows from the instance

∏

i<k

b
(qi−ri)/(2n+1)
i >

∑

i<k

qi − ri
2n+ 1

ai

of the induction hypothesis. This finishes the construction of ak and bk for k even.

Let k be odd, and put bk = d(k−1)/2; we will find a suitable ak. If bk
∏

i<k b
qi
i ∈ B× for

some ~q ∈ Qk, then as in the case of even k, we obtain bk =
∏

i<k b
qi
i for some ~q ∈ Qk, and then

ak =
∑

i<k qiai will satisfy (ii)–(iv). Thus, we may assume

(9) bk
∏

i<k

bqii /∈ B×

for all ~q ∈ Qk. Then (ii) and (iv) will hold if ak satisfies

bqkk

∏

i<k

bqii > 1 =⇒ bqkk

∏

i<k

bqii > qkak +
∑

i<k

qiai > 0

for all qk 6= 0 and ~q ∈ Qk. Similarly to the case of even k, one can check that this amounts to

the conditions

bk >
∏

i<k

bqii =⇒
∑

i<k

qiai < ak <
∑

i<k

qiai +
(

bk
∏

i<k

b−qii

)1/n
,

bk <
∏

i<k

bqii =⇒
∑

i<k

qiai −
(

b−1
k

∏

i<k

bqii

)1/n
< ak <

∑

i<k

qiai

for all ~q ∈ Qk and n ∈ N>0. Thus, using recursive saturation, it suffices to show that each finite

subset Γ0 of the type

Γ(x) =
{

x ≡ l (mod m) : 0 ≤ l < m ∈ N, bk ≡× 2l (mod m)
}

∪
{

x >
∑

i<k

qiai : ~q ∈ Qk, bk >
∏

i<k

bqii

}

∪
{

x <
∑

i<k

riai : ~r ∈ Qk, bk <
∏

i<k

brii

}

∪
{

x >
∑

i<k

siai −
(

b−1
k

∏

i<k

bsii

)1/n
: ~s ∈ Qk, n ∈ N>0, bk <

∏

i<k

bsii

}

∪
{

x <
∑

i<k

tiai +
(

bk
∏

i<k

b−tii

)1/n
: ~t ∈ Qk, n ∈ N>0, bk >

∏

i<k

btii

}

is satisfiable. (To make the type recursive, we would write it with implications as in the case of

even k.) Again, we may assume that Γ0 consists of one congruence x ≡ l (mod m), one lower

bound on x, and one upper bound; it will be satisfiable as long as the difference between the

upper and lower bounds is larger than m. Thus, assume that

∏

i<k

bqii ,
∏

i<k

btii < bk <
∏

i<k

brii ,
∏

i<k

bsii ;
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we need to check that
∑

i<k

qiai +m <
∑

i<k

riai,(10)

∑

i<k

qiai +m <
∑

i<k

tiai +
(

bk
∏

i<k

b−tii

)1/n
,(11)

∑

i<k

siai −
(

b−1
k

∏

i<k

bsii

)1/n
+m <

∑

i<k

riai,(12)

∑

i<k

siai −
(

b−1
k

∏

i<k

bsii

)1/n
+m <

∑

i<k

tiai +
(

bk
∏

i<k

b−tii

)1/n
.(13)

Since
∏

i b
ri−qi
i > N by (9), (10) follows from (2). For (11), we have

∑

i<k

(qi − ti)ai +m = n
(

∑

i<k

qi − ti
n

ai +
m

n
a0

)

< n2m/n
∏

i<k

b
(qi−ti)/n
i <

(

bk
∏

i<k

b−tii

)1/n
,

using (iv) and bk > nn2m
∏

i b
qi
i (from (9)); the argument for (12) is similar. Finally,

∑

i<k

(si − ti)ai +m = (2n + 1)
(

∑

i<k

si − ti
2n+ 1

ai +
m

2n+ 1

)

< (2n + 1)2m/(2n+1)
∏

i<k

b
(si−ti)/(2n+1)
i

<
∏

i<k

b
(si−ti)/(2n)
i ≤

(

b−1
k

∏

i<k

bsii

)1/n
+
(

bk
∏

i<k

b−tii

)1/n

using (iv),

∏

i<k

bsi−tii =
(

b−1
k

∏

i<k

bsii

)(

bk
∏

i<k

b−tii

)

≤ max
({

b−1
k

∏

i<k

bsii , bk
∏

i<k

b−tii

})2
,

and
∏

i<k b
si−ti
i > N, which follows from (9). ✷

Example 3.10 There exists a countable model of IOpen that expands to a model of TEIPP2
,

but not to a model of TEIP2x .

Proof: Let M± be the ring of Puiseux polynomials
∑

q∈Q aqx
q with Q ⊆ Q≥0 finite, aq real

algebraic, and a0 ∈ Z, ordered so that x > N. Its nonnegative part M is a model of IOpen by

Shepherdson [13], and it can be checked readily that 〈M, P2〉 � TEIPP2
, where

P2 = {2nxq : q ∈ Q≥0, n ∈ Z, (q > 0 or n ≥ 0)}.

On the other hand, assume for contradiction that 〈M, 2x〉 � TEIP2x . Then 2x extends to an

ordered group embedding 2x : M± → F
×
>0, where F

×
>0 = 〈F>0, 1, ·, <〉 is the multiplicative group

of positive elements of the fraction field F of M±. Since the image of 2x is an IP of F×
>0, 2x

induces an isomorphism of the ordered groups M±/Z and F×
>0/B

×, where B× = {x ∈ F>0 :

∃n ∈ Nn−1 ≤ x ≤ n}. But every coset of B× contains exactly one monomial xq, q ∈ Q, thus

F×
>0/B

× ≃ 〈Q, 0,+, <〉 is archimedean, whereas M±/Z, isomorphic to the additive group of

Puiseux polynomials with a0 = 0, is nonarchimedean. This is a contradiction. ✷
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4 Exponential integer parts in LOR

We now turn to the most interesting case, namely the theory of EIP of RCEF in the basic

language of arithmetic LOR. Our axiomatization of this theory will express the existence of

winning strategies in a certain game on integers. We describe the game first to motivate the

definition of the theory.

Definition 4.1 Let M � IOpen and α ≤ ω. The power-of-2 game PowGα(M) is played between

two players, Challenger (C ) and Powerator (P), in α rounds: in each round 0 ≤ i < α, C picks

xi ∈ M>0, and P responds with ui ∈ M>0 such that ui ≤ xi < 2ui. C wins the game if

uiuj < uh < 2uiuj for some h, i, j < α, otherwise P wins.

More generally, if t ≤ α is finite, and u0, . . . , ut−1 ∈ M>0, let PowGt
α(M, ~u) denote the

PowGα(M) game where the first t responses by P are fixed as ~u (the values of xi, i < t, do not

matter, as they do not enter the winning condition; for definiteness, we may imagine xi = ui).

We may write just PowGt
α(~u) if M is understood from the context.

While not being part of the official rules as we want to keep them simple, we will often use

the following alternative conditions:

Observation 4.2

(i) If ui ≤ uj and ui ∤ uj for some i, j < h < α, then Challenger can win the game in round

h by playing xh = ⌊uj/ui⌋.

(ii) For any xi > 0, Challenger can force Powerator to respond with ui such that xi ≤ ui < 2xi.

Proof: (i): P must respond with uh such that uh ≤ xh < uj/ui < 2uh, i.e., uhui < uj < 2uhui.

(ii): Let C play 2xi − 1, so that ui ≤ 2xi − 1 < 2ui. ✷

Remark 4.3 C cannot go wrong by restricting their moves to even numbers: instead of playing

2x + 1, to which the valid responses of P are in {x + 1, . . . , 2x + 1}, C can play 2x with valid

responses in {x + 1, . . . , 2x}, unless x = 0. A move xi = 1, forcing P to reply with ui = 1,

can be eliminated as well: let C skip the move. The only way this can affect the game is

when we reach a position with uj < uh < 2uj for some h, j (which would make C win as

1 ·uj < uh < 2 · 1 ·uj); then C can play xl = 2(ujuh− 1) en lieu of the skipped round, forcing P

to reply with ujuh ≤ ul < 2ujuh and lose, as either ujuh < ul < 2ujuh or u2j < ul = ujuh < 2u2j .

The intuition behind the game is that Powerator can win by playing powers of 2:

Lemma 4.4 If 〈M, P2〉 � TEIPP2
, then Powerator has a winning strategy in PowGα(M) for

every α ≤ ω, and more generally, in PowGt
α(M, ~u) for every t < ω, t ≤ α, and ~u ⊆ P2.

Proof: By Lemmas 3.4 and 3.7, 〈M, P2〉 � TEIP′′
P2

. Given a move xi of C, let P respond with

ui ∈ P2 such that ui ≤ xi < 2ui, which exists by (P2-IP). Then uiuj < uh < 2uiuj is impossible

by (P2-Univ). ✷
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Definition 4.5 For any t ≤ n < ω, let PWintn(u0, . . . , ut−1) denote the formula

∀xt ∃ut . . . ∀xn−1 ∃un−1

(

∧

t≤i<n

(xi > 0 → ui ≤ xi < 2ui) ∧
∧

h,i,j<n

¬(uiuj < uh < 2uiuj)
)

,

expressing that Powerator has a winning strategy in PowGt
n(M, ~u).

TEIP is the LOR-theory axiomatized by IOpen + {PWin0
n : n ∈ ω}.

The basic properties below follow immediately from the definition:

Lemma 4.6 If t < n, then PWintn(~u) is equivalent to

∀xt > 0∃ut
(

ut ≤ xt < 2ut ∧ PWint+1
n (~u, ut)

)

.

If t ≤ m < n, then PWintn(~u) implies PWintm(~u). ✷

Theorem 4.7 The first-order theory of EIP of RCEF in LOR, with or without GA, is TEIP.

Proof: In view of Theorems 3.8 and 3.9, it suffices to show that TEIPP2
is a conservative

extension of TEIP. Clearly, M � IOpen is a model of TEIP iff Powerator has a winning strategy

in PowGn(M) for all n ∈ ω; in particular, TEIPP2
⊢ TEIP follows from Lemma 4.4.

On the other hand, let M be a countable recursively saturated model of TEIP; we will

expand M to a model of TEIPP2
. The basic idea is that due to recursive saturation, P also has a

winning strategy in PowGω(M), and then if we let C enumerate M>0, the responses of P form

a set P2 such that 〈M, P2〉 � TEIP′′
P2

.

Formally, let Γt(u0, . . . , ut−1) = {PWintn(~u) : t ≤ n < ω} for t < ω, and fix an enumeration

〈ai : i < ω〉 of M>0. We will construct a sequence 〈bi : i < ω〉 ⊆ M>0 such that bi ≤ ai < 2bi
and M � Γt(~b) by induction on t.

We have M � Γ0 as Γ0 ⊆ TEIP. Assuming M � Γt(b0, . . . , bt−1), we can take for bt any

realizer of the type Γt+1(~b, ut)∪{ut ≤ at < 2ut}, hence using recursive saturation, we only need

to check its finite satisfiability. In view of Lemma 4.6, it suffices to observe that for any n > t,

M � ∃ut
(

ut ≤ at < 2ut ∧ PWint+1
n (~b, ut)

)

follows from M � PWintn(~b).

When the construction of 〈bi : i < ω〉 is finished, let P2 = {bi : i < ω}. Then the properties

of ~a and ~b ensure 〈M, P2〉 � TEIP′′
P2

. ✷

Coupled with Lemma 4.4, the proof gives a characterization of LOR-reducts of countable

models of TEIPP2
:

Corollary 4.8 A countable model M � IOpen expands to a model of TEIPP2
iff Powerator has

a winning strategy in PowGω(M). ✷

Using our axiomatization of TEIP, it is now easy to answer negatively Question 7.3 from [7].

Example 4.9 The following consequence of TEIP is not provable in IOpen:

(14) ∀x ∃u ≥ x ∀y
(

0 < y < x→ ∃v (v ≤ y < 2v ∧ v | u)
)

.

(We can make it Π1 by further bounding u < 2x.) Thus, some models of IOpen have no

elementary extension to an EIP of a RCEF.
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Proof: First, (14) indeed follows from TEIP (specifically, PWin0
3) in view of Observation 4.2.

On the other hand, Smith [14] constructed a nonstandard M � IOpen which is a UFD (or

even PID): i.e., every x ∈M>0 can be written as a product of a sequence 〈pi : i < k〉 of primes

pi ∈ M>0 of standard length k ∈ N. It follows that x∗ =
∏

i:pi∈N
pi is the largest standard

divisor of x.

Assume for contradiction that (14) holds in M. Let x ∈ M be nonstandard, and u ∈ M

satisfy the conclusion of (14). Take y = 2u∗ (which is standard, thus y < x), and let v ∈M be

such that v ≤ y < 2v and v | u. Then v is a standard divisor of u, but v > u∗, a contradiction.

✷

We mention that IOpen ⊢ PWin0
2, hence the use of PWin0

3 in Example 4.9 is the best possible.

5 Analysis of PowG

Unlike TEIP2x and TEIPP2
, we defined TEIP by an infinite axiom schema, but it is not clear

whether this is necessary:

Question 5.1 Is TEIP finitely axiomatizable over IOpen?

We do not know how to resolve this question, but we can at least give a partial answer. Let

us observe that if there were only finitely many inequivalent formulas among {PWin1
n : n ∈ ω},

then TEIP would be finitely axiomatizable over IOpen by Lemma 4.6. We will show that this

is not the case, though: the formulas {PWin1
n : n ∈ ω} are strictly increasing in strength, even

over Th(N). This is equivalent to {c(u) : u ∈ N>0 r PN
2 } = N>0, using the notation below:

Definition 5.2 If M � IOpen and ~u ∈M t
>0, the PowG-complexity of ~u, denoted c(M, ~u), is the

least n ∈ ω such that C has a winning strategy in PowGt
t+n(M, ~u); if such an n does not exist,

we put c(M, ~u) = ∞. If M = N, we write just c(~u). (Observe that c(u) ≥ n iff N � PWin1
n(u).)

Let PN
2 denote the set of powers of 2 in N.

Lemma 5.3 For any ~u ∈ Nt>0, c(~u) is finite iff some ui is not a power of 2.

Proof: The left-to-right implication follows from Lemma 4.4. On the other hand, if c(~u) = ∞,

i.e., P has a winning strategy in PowGt
n(~u) for all n ≥ t, and M is a countable recursively

saturated model of Th(N), then M expands to a model 〈M, P2〉 � TEIPP2
such that ~u ⊆ P2

by the proof of Theorem 4.7. Taking one more elementary extension if necessary, it expands

to a model 〈M, 2x〉 � TEIP2x such that ~u ⊆ im(2x). But TEIP2x implies that 2x extends the

standard function and maps nonstandard values to nonstandard values, hence ~u ⊆ PN
2 .

(The reader is invited to construct a simple explicit winning strategy for C if some ui is not

a power of 2. We will present an optimized one below in Theorem 5.8.) ✷

For the application to finite non-axiomatizability of {PWin1
n(u) : n ≥ 1}, it would be clearly

enough to show that {c(u) : u ∈ N>0 r PN
2 } is unbounded. Let us observe that this is, in fact,

equivalent to {c(u) : u ∈ N>0 r PN
2 } = N>0:
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Lemma 5.4 {c(u) : u ∈ N>0 r PN
2 } is an initial segment of N>0.

Proof: There are u such that c(u) = 1, see Example 5.11. Let n > 1, and assume that there

exists u /∈ PN
2 such that c(u) ≥ n. Let u be the smallest such number; we will give a strategy

for C showing c(u) = n. First, C plays u− 1, thus P responds with a v such that u/2 ≤ v < u.

If u/2 < v, then v ∤ u, thus C can win in the second round by Observation 4.2; otherwise,

v = u/2 /∈ PN
2 , thus c(u/2) < n by the minimality of u, and C can just follow the optimal

strategy for u/2. ✷

While our goal is to prove lower bounds on c(u), we will start with upper bounds to get

an idea of what is in the realm of possible: it turns out that C can very efficiently exploit

irregularities in exponents of the prime factorization of u, hence our lower bounds will need to

be somewhat delicate. The main tool of Challenger is the following divide-and-conquer strategy.

Lemma 5.5 Let n > 1 and u, v, ~u ∈ N>0.

(i) If un < v < 2un, then c(u, v) ≤ ⌈log⌊log n⌋⌉ + 1.

(ii) c(~u, u) ≤ max
{

c(~u, u, un) + 1, ⌈log⌊log n⌋⌉ + 2
}

.

Proof: (i): Let k = ⌊log n⌋, and put i0 = 0, j0 = k, v0 = v so that u⌊n/2
i0 ⌋ < v0 < 2u⌊n/2

i0 ⌋ and

u⌊n/2
j0 ⌋ = u. Using Observation 4.2, let C play 2u⌊n/2

m1 ⌋ − 1 for m1 = ⌊k/2⌋ = ⌊(i0 + j0)/2⌋ so

that P responds with a w1 such that u⌊n/2
m1 ⌋ ≤ w1 < 2u⌊n/2

m1 ⌋. If w1 = u⌊n/2
m1 ⌋, put i1 = i0,

j1 = m1, and v1 = v0; otherwise, i1 = m1, j1 = j0, and v1 = w1. Either way, the responses of P

include u⌊n/2
j1 ⌋ and v1 satisfying u⌊n/2

i1 ⌋ < v1 < 2u⌊n/2
i1 ⌋, where i1 < j1 and j1 − i1 ≤ ⌈k/2⌉.

We continue a binary search in the same way: after ⌈log k⌉ rounds, the responses of P will include

u′ = u⌊n/2
i+1⌋ and v′ such that u⌊n/2

i⌋ < v′ < 2u⌊n/2
i⌋ for some i < k. If ⌊n/2i⌋ = 2⌊n/2i+1⌋,

we have u′2 < v′ < 2u′2, hence P loses. Otherwise ⌊n/2i⌋ = 2⌊n/2i+1⌋ + 1; in a final round, C

plays u′2, and P responds with u′2 ≤ u′′ < 2u′2. Then u′2 < u′′ < 2u′2 or u′u′′ < v′ < 2u′u′′,

thus P loses either way.

(ii): In the first round, C makes P respond with a v such that un ≤ v < 2un. If v = un, C

continues with the strategy for PowG(~u, u, un), otherwise with the strategy from (i). ✷

Remark 5.6 Extending Observation 4.2, Lemma 5.5 (ii) implies the following for n ≥ 2: if

v ≤ un and v ∤ un, then c(u, v) ≤ ⌈log⌊log n⌋⌉ + 2.

Definition 5.7 For any prime p and n ∈ N>0, νp(n) denotes the p-adic valuation of n: the

maximal k such that pk | n. (If it comes up, νp(0) is understood as +∞.)

Observe that any n ∈ N>0 r PN
2 can be written uniquely as n = 2ν2(n)vr, where v (which

is necessarily odd) is not a perfect power (which implies v > 1), and r > 0. We have r =

gcd{νp(n) : p odd prime}.

Theorem 5.8 Let u = 2ν2(u)vr, where v is not a perfect power, and let d ∤ r. Then

(15) c(u) ≤ ⌈log⌊log d⌋⌉ + 4.
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Proof: In the first round, C can play ⌊u1/d⌋ so that P responds with a w such that w ≤ u1/d <

2w, hence 2iwd < u < 2i+1wd for some i < d: 2iwd = u is impossible as the odd part of u is not

a dth power. It remains to show that for any such w, c(u,w) ≤ ⌈log⌊log d⌋⌉ + 3.

Since c(u,wd, 2i) = 0, we have c(u,w, 2i) ≤ ⌈log⌊log d⌋⌉+2 by Lemma 5.5 (ii). One more ap-

plication of Lemma 5.5 gives c(u,w, 2) ≤ max{⌈log⌊log d⌋⌉+3, ⌈log⌊log i⌋⌉+2} = ⌈log⌊log d⌋⌉+3,

thus c(u,w) ≤ ⌈log⌊log d⌋⌉ + 4 (if C plays 2, P has to respond with 2).

We can improve this to c(u,w) ≤ ⌈log⌊log d⌋⌉ + 3 by observing that 2 is needed only in one

branch. Mimicking the proof of Lemma 5.5, let C play 2i+1−1 so that P responds with a z such

that 2i ≤ z < 2i+1. If z = 2i, C wins in c(u,w, 2i) ≤ ⌈log⌊log d⌋⌉ + 2 more rounds for a total of

⌈log⌊log d⌋⌉+ 3. Otherwise, C makes P play 2 in the second round, and wins in ⌈log⌊log i⌋⌉+ 1

more rounds by Lemma 5.5 (i) for a total of ⌈log⌊log i⌋⌉ + 3. ✷

Remark 5.9 Ignoring the exact constants, Theorem 5.8 is equivalent to

c(u) ≤ min{log νq(νp(u)) + log log q : p, q primes, p odd} +O(1).

Recall our convention that log x = 0 for x < 1.

Theorem 5.10 Let u = 2ν2(u)vr, where v is not a perfect power, and r > 0. Then

c(u) ≤ ⌈log log log log u⌉ + 4,(16)

c(u) ≤ ⌈log log log r⌉ + 4,(17)

c(u) ≤ ⌈log log log ν2(u)⌉ + 5.(18)

Proof: We start with (17). There exists a d ≤ n such that d ∤ r if r < lcm{1, . . . , n} = eψ(n),

where ψ(n) =
∑

pk≤n ln p is Chebyshev’s function. By the prime number theorem, ψ(n) ∼ n,

hence we can find d ∤ r such that d ≤ (1 + o(1)) ln r, thus d ≤ log r if r is large enough. Then

(15) implies (17).

To show that (17) holds for all rather than just sufficiently large r, we need to check small

cases. First, if d = 2, 3, then ⌈log⌊log d⌋⌉ = 0 ≤ ⌈log log log r⌉, thus (17) holds unless 6 | r,
whence r ≥ 6 > 4. Next, if d ≤ 7, then ⌈log⌊log d⌋⌉ = 1 ≤ ⌈log log log r⌉ (using r > 4), thus

(17) holds unless 22 × 3 × 5 × 7 = 420 | r, whence r ≥ 420 > 28. Finally, it follows from known

explicit bounds on ψ that lcm{1, . . . , n} > 2n for n > 8 (in fact, it holds for n ≥ 7): Nagura [10]

proved ψ(n) > 0.916n − 2.318 for all n > 0, which implies ψ(n) > n ln 2 for n ≥ 11, and one

can check the cases n = 9, 10 by hand. Thus, if r > 28, there is a d ∤ r such that d ≤ ⌈log r⌉,
whence ⌈log⌊log d⌋⌉ ≤ ⌈log log⌈log r⌉⌉ = ⌈log log log r⌉.

Since r ≤ log3 u ≤ log u, (17) implies (16).

For (18), let C play 2ν2(u)+1 < u in the first round so that P responds with a u′ such that

2ν2(u) < u′ ≤ 2ν2(u)+1. If u′ = 2ν2(u)+1 ∤ u, then C can win in the next round by Observation 4.2.

Otherwise, C can win in ⌈log log log log3 u
′⌉ + 4 ≤ ⌈log log log ν2(u)⌉ + 4 further rounds by (the

proof of) (16). ✷

Example 5.11 c(u) = 1 iff u = 5, 6, 7, 17.
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Proof: If u = 5, 6, 7, C wins by playing 2, forcing P to respond with 2, as 22 < u < 2 · 22. If

u = 17, C plays 4, and P responds with v = 3, 4; then v2 < u < 2v2. Conversely, if c(u) = 1, let

2x be the winning move of C (assumed even by Remark 4.3); then v2 < u < 2v2 or u2 < v < 2u2

for all v ∈ (x, 2x], i.e., [x + 1, 2x] ⊆
[

⌊
√

u/2⌋ + 1, ⌈√u⌉ − 1
]

∪ [u2 + 1, 2u2 − 1]. There is a gap

between the last two intervals as ⌈√u⌉−1 < u < u2+1, thus [x+1, 2x] ⊆
[

⌊
√

u/2⌋+1, ⌈√u⌉−1
]

or [x + 1, 2x] ⊆ [u2 + 1, 2u2 − 1]. The latter makes u2 ≤ x and 2x < 2u2, which is impossible.

The former amounts to
√

u/2 − 1 < x < 1
2

√
u; in particular,

√
2u − 2 <

√
u, thus

√
u <

2/(
√

2 − 1) = 2(
√

2 + 1) and x <
√

2 + 1, i.e., x = 1 (in which case 4 < u < 8) or x = 2 (in

which case 16 < u < 18). ✷

Example 5.12 We have c(u) ≤ 2 whenever u satisfies one of the following conditions:

(i) u > 8 and 16 ∤ u.

(ii) The odd part of u is not a square.

(iii) u < 2304 is not a power of 2. (With some effort, one can check that c(2304) = 3.)

(iv) u =
∏

i<k p
ei
i for primes p0 < · · · < pk−1, and there is i < k such that pi > 2

∏

j<i p
ej
j .

Proof: Observe that C can force P to play 1, 2 (by playing the same), and in the first round,

also 4 (by playing 6: if P responds with 5, 6, C wins in the second round by Example 5.11) and

8 (by playing 8; if P responds with 5, 6, 7, we use Example 5.11 again).

(i): C makes P play 8 in the first round, and then plays ⌈u/8⌉ − 1, thus P responds with v

such that u/16 < v < u/8 (v = u/16 is impossible by assumption); C wins as 8v < u < 2 · 8v.

(ii): C plays ⌊√u⌋, thus P responds with v such that 1
2

√
u < v ≤ √

u; since u 6= v2, 2v2, we

have v2 < u < 2v2 (and C wins) or 2v2 < u < 4v2. In the latter case, C plays ⌈u/v⌉− 1, thus P

responds with w such that w < u/v ≤ 2w. Then C wins as either vw < u < 2vw, or w = u/(2v)

and w2 < u < 2w2.

(iii): For u = 3, C forces P to play 1 and 2. For 4 < u < 8, C makes P play 2 as in

Example 5.11. For 8 < u < 64, we can use (i), unless u = 48, in which case we use (ii). For

64 < u < 128, C makes P play 8 and wins as 82 < u < 2 · 82. For 128 < u < 256, C makes

P play 4, and then plays 32 so that P responds with 16 < v ≤ 32: either 42 < v < 2 · 42, or

v = 32 and 4 · 32 < u < 2 · 4 · 32, thus C wins. For 256 < u < 512, C makes P play 4, and then

plays 31, thus P plays 16 ≤ v < 32. Either 42 < v < 2 · 42, or v = 16 and 162 < u < 2 · 162.

For 512 < u < 1024, C makes P play 8, and then plays 127 so that either 82 < v < 2 · 82 or

8 · 64 < u < 2 · 8 · 64. For 1024 < u < 2048, C makes P play 4, and then plays 32 so that either

42 < v < 2 · 42 or 322 < u < 2 · 322. (One can also do 4096 < u < 8192 and 16384 < u < 32768

using similar arguments.) For 2048 < u < 2304 = 16 · 144, one of (i) or (ii) is applicable.

For u = 2304 = 482, P can survive two rounds by playing in the first one an element of

{un2l : n ∈ N, |l| ≤ 4} ∪ {un+1/22l : n ∈ N, |l| ≤ 1}, but it is a bit tedious to check all cases.

(iv): The assumption implies (and, actually, is equivalent to) that for some x < u, namely

x =
∏

j<i p
ej
j , there is no divisor v | u such that x < v ≤ 2x. Thus, C can play 2x, and win in

the second round by Observation 4.2 (i). ✷
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The significance of point (iv) of Example 5.12 is that the upper bounds from Theorems 5.8

and 5.10 cannot be asymptotically optimal: there are u for which these bounds are arbitrarily

large, yet c(u) = 2 (e.g., take u = (2p)n! for a large n, where p > 2n!+1 is a prime). Nevertheless,

we will show that the bounds are tight up to an additive constant under suitable conditions

precluding (iv) and similar cases (viz., in the decomposition u = 2ν2(u)vr, v is sufficiently smaller

than 2ν2(u)).

We now come to the main technical part of our lower bound on c(u). Recall that the 1-norm

of a vector ~x ∈ Rt is ‖~x‖1 =
∑

i<t|xi|.

Lemma 5.13 Let v ∈ N>0, and define the sequences 〈Dk, Nk, Bk : k ∈ N>0〉 by D1 = 1,

N1 = 3, B1 = 0, Dk+1 = Dk lcm{1, . . . , Nk}, Nk+1 = N2
k , and Bk+1 = 2NkBk + N2

k ⌈Dk log v⌉.
Then the following holds for all k ≥ 1 and all ~u ∈ Nt>0 of the form ui = 2livri , li, ri ∈ N, for
each i < t:

If

(19) Dk | ri

for each i < t, and

(20) ‖~n‖1 ≤ Nk &
∑

i<t

niri > 0 =⇒
∑

i<t

nili ≥ Bk

for all ~n ∈ Zt, then c(~u) ≥ k.

Proof: We prove the statement by induction on k. We may assume v is not a power of 2

(whence v ≥ 3), as otherwise c(~u) = ∞ trivially satisfies the conclusion.

For k = 1, we have to show that there are no h, i, j < t such that uiuj < uh < 2uiuj. Fixing

h, i, j, put ~n = eh − ei − ej , where eg denotes the gth standard unit vector (i.e., if h, i, j are

distinct, then nh = 1 and ni = nj = −1). Clearly, ‖~n‖1 ≤ 3 = N1, thus we may apply (20):

if rh − ri − rj > 0, then lh − li − lj ≥ 0 = B1, hence uh/(uiuj) = 2lh−li−ljvrh−ri−rj ≥ v > 2.

Likewise, if rh−ri−rj < 0, we may apply (20) to −~n, and obtain uh/(uiuj) ≤ v−1 < 1. Finally,

if rh − ri − rj = 0, then uh/(uiuj) is a power of 2, hence it cannot be strictly between 1 and 2.

Assume the statement holds for k, and that ~u, ~l, and ~r satisfy (19) and (20) for k + 1 in

place of k. Using the induction hypothesis, it suffices to show that for every x ≥ 1, there exists

ut = 2ltvrt such that ut ≤ x < 2ut, and 〈~u, ut〉 ∈ Nt+1
>0 satisfies (19) and (20) for k. We will

write r = rt and l = lt for short. Observe that ut ≤ x < 2ut amounts to l = ⌊log x − r log v⌋,
thus we can only vary r; we will check that (19) and (20) translate to conditions on r ∈ Z that

are satisfiable together, using our assumptions on ~u. (We also need to ensure r, l ≥ 0, but this

easily follows from (20), hence we need not worry about it.)

Condition (19) clearly holds for i < t as Dk | Dk+1, thus we only need to make sure r is

a multiple of Dk. Condition (20) also holds automatically when nt = 0, as Nk ≤ Nk+1 and

Bk ≤ Bk+1. The other cases give upper or lower bounds on r, depending on the sign of nt. For

nt > 0 (renamed to n, and the rest of ~n negated), (20) amounts to

‖~n‖1 + n ≤ Nk & r >
∑

i<t

niri
n

=⇒ l ≥ Bk
n

+
∑

i<t

nili
n
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for all ~n ∈ Zt and n ∈ N>0, i.e.,

‖~n‖1 + n ≤ Nk =⇒ r ≤
∑

i<t

niri
n

or log x− r log v ≥
⌈

Bk
n

+
∑

i<t

nili
n

⌉

.

The largest integer multiple r = Dkr
′ that satisfies this condition is characterized by

r′ ≤ U~n,n := max

{

∑

i<t

niri
Dkn

,

⌊

1

Dk log v

(

log x−
⌈

Bk
n

+
∑

i<t

nili
n

⌉)⌋}

for all ~n ∈ Zt and n ∈ N>0 such that ‖~n‖1 + n ≤ Nk, using the fact that for 1 ≤ n ≤ Nk,

Dkn | Dk+1 | ri.
Likewise, the cases of (20) with nt < 0 (renamed to −m, and the rest of ~n to ~m) amount to

‖~m‖1 +m ≤ Nk =⇒ r ≥
∑

i<t

miri
m

or log x− r log v <

⌊

−Bk
m

+
∑

i<t

mili
m

⌋

+ 1

for all ~m ∈ Zt and m ∈ N>0, and the least multiple of Dk with this property is characterized by

r′ ≥ L~m,m := min

{

∑

i<t

miri
Dkm

,

⌊

1

Dk log v

(

log x +

⌈

Bk
m

−
∑

i<t

mili
m

⌉

− 1

)⌋

+ 1

}

for all ~m ∈ Zt and m ∈ N>0 such that ‖~m‖1+m ≤ Nk. Thus, an r that satisfies all the necessary

conditions exists iff for every ~n, ~m ∈ Zt and n,m ∈ N>0,

(21) ‖~n‖1 + n ≤ Nk & ‖~m‖1 +m ≤ Nk =⇒ L~m,m ≤ U~n,n.

This clearly holds if 1
m

∑

imiri ≤ 1
n

∑

i niri, hence we may assume 1
m

∑

imiri >
1
n

∑

i niri.

Then the assumption (20) for ~u, applied to n~m−m~n, implies

∑

i<t

mili
m

−
∑

i<t

nili
n

≥ Bk+1

nm
≥ Bk

m
+
Bk
n

+ ⌈Dk log v⌉,

using the bounds

‖n~m−m~n‖1 ≤ n‖~m‖1 +m‖~n‖1 ≤
(

n+ ‖~n‖1
)(

m+ ‖~m‖1
)

≤ N2
k = Nk+1

and

Bk+1 = 2NkBk +N2
k ⌈Dk log v⌉ ≥ (n+m)Bk + nm⌈Dk log v⌉.

It follows that
⌈

Bk
n

+
∑

i<t

nili
n

+
Bk
m

−
∑

i<t

mili
m

⌉

≤ −⌈Dk log v⌉ ≤ −Dk log v,

thus
⌈

Bk
n

+
∑

i<t

nili
n

⌉

+

⌈

Bk
m

−
∑

i<t

mili
m

⌉

≤ 1 −Dk log v

and
(

log x+

⌈

Bk
m

−
∑

i<t

mili
m

⌉

− 1

)

+Dk log v ≤ log x−
⌈

Bk
n

+
∑

i<t

nili
n

⌉

.

This yields (21). ✷
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Theorem 5.14 Let u = 2lvr, where v > 1, r > 0, and l/ log v ≥ 108. Then

(22) c(u) ≥ min
{

⌊log⌈log3 d⌉⌋ + 1 : d ∤ r
}

∪
{

⌊log log3 log4(l/ log v)⌋ + 3
}

.

We may use the simpler bounds ⌈log log3 d⌉ or ⌊log⌈log d⌉⌋ in place of ⌊log⌈log3 d⌉⌋ + 1.

Proof: Applying Lemma 5.13 with t = 1, we see that c(u) ≥ k whenever Dk | r and l ≥ Bk; it

remains to estimate these quantities. Expanding the recurrences, we have

Nk = 32
k−1

, Dk =

k−2
∏

i=0

L
(

32
i)

, where L(n) = lcm{1, . . . , n}.

Observe that L(n)L(m) | L(nm): whenever 1 ≤ a ≤ n and 1 ≤ b ≤ m, we have ab | L(nm).

Thus,

Dk

∣

∣

∣
L
(

k−2
∏

i=0

32
i
)

= L
(

32
k−1−1

)

,

and a sufficient condition for Dk | r is that d > 32
k−1−1 for all d ∤ r. Since

d > 32
k−1−1 ⇐⇒ ⌈log3 d⌉ ≥ 2k−1 ⇐⇒ log⌈log3 d⌉ + 1 ≥ k,

we see that Dk | r holds for any k such that

k ≤ min{⌊log⌈log3 d⌉⌋ + 1 : d ∤ r}.

We also observe that ⌊log⌈log3 d⌉⌋ + 1 ≥ ⌈log⌈log3 d⌉⌉ = ⌈log log3 d⌉ and ⌊log⌈log3 d⌉⌋ + 1 =

⌊log(2⌈log3 d⌉)⌋ ≥ ⌊log⌈log d⌉⌋, as log d ≤ 2 log3 d implies ⌈log d⌉ ≤ 2⌈log3 d⌉.
The recurrence for Bk resolves to

Bk = Nk

k−1
∑

i=1

2k−1−i⌈Di log v⌉ ≤ 32
k−1

k−1
∑

i=1

2k−1−i(Di + 1) log v =: B′
k log v.

Recalling Chebyshev’s function from the proof of Theorem 5.10, we have lnL
(

32
j )

= ψ
(

32
j) ∼

32
j

, whence lnDi =
∑

j≤i−2 ψ
(

32
j) ∼ 32

i−2

. It follows that the above sum for B′
k is dominated

by the i = k − 1 term, and lnB′
k ∼ 32

k−3

; thus, for all sufficiently large k, log4B
′
k < 32

k−3

and

k > 3 + log log3 log4B
′
k. That is, l ≥ Bk if k ≤ ⌊log log3 log4(l/ log v)⌋ + 3, provided the latter

is large enough.

For an explicit bound, we claim that log log3 log4B
′
k < k − 3 for all k ≥ 5, thus (22) holds

whenever l/ log v ≥ B′
4 = 99,353,223. For k = 5, direct computation gives B′

5 ≈ 6.333 × 1046

and log log3 log4B
′
5 < 1.9865 (this can be verified e.g. in Sage, along with the value of B′

4 given

above). Assume k ≥ 6. Nagura [10] proved ψ(n) < 1.086n for all n > 0, thus

log4Dk−1 < 1.086 log4 e
∑

i≤k−3

32
i

< 0.7834αk−3 32
k−3

,

where αj =
∑

i≤j 32
i−2j . For j ≥ 1, 32

j

(αj − 1) =
∑

i<j 32
i ≥ 3 > αj , thus αj+1 = 1 + 3−2jαj <

αj , i.e., αj is decreasing. Since α3 = 1 + 3−4 + 3−6 + 3−7 = 2218/2187 < 1.0142, we get

log4Dk−1 < 0.7834α3 32
k−3

< 0.795 × 32
k−3
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and

log4(NkDk−1) < 0.795 × 32
k−3

+ 2k−1 log4 3 ≤
(

0.795 +
25

323
log4 3

)

32
k−3

< 0.799 × 32
k−3

.

Since Di+1/Di = L
(

32
i−1) ≥ 6, we have

B′
k

NkDk−1
− 1 =

2k−1 − 1

Dk−1
+
k−2
∑

i=1

2k−1−i Di

Dk−1
<

2k−1 − 1

Dk−1
+ 3

Dk−2

Dk−1

≤ 31

D5
+

3

L
(

323
) < 4 × 10−2846,

thus log4(B′
k/(NkDk−1)) < 4 × 10−2846 log4 e < 3 × 10−2846, and log4B

′
k < 0.8 × 32

k−3

. ✷

Example 5.15 k + 1 ≤ c
(

62
2k !) ≤ k + 4 for all k ≥ 0.

Proof: We write u = 62
2k ! = 2lvr where v = 3 and l = r = 22

k

!. The least d not dividing r is

the least prime larger than 22
k

, thus 22
k

< d < 22
k+1 by Bertrand’s postulate, and c(u) ≤ k+ 4

by Theorem 5.8. For a lower bound, we have c(36) = 2 and c(64) ≥ 2 by Examples 5.11

and 5.12, thus we may assume k ≥ 2. Since n! > 4n for n ≥ 9, we have 43
2
k−1

log 3 < 43
2
k−1

+1 <

44
2
k−1

= 42
2
k

< 22
k

! for k ≥ 2, i.e., log log3 log4(22
k

!/ log 3) > k− 1, and 22
k

/ log 3 > 108. Thus,

Theorem 5.14 gives c(u) ≥ ⌊log⌈log3 d⌉⌋ + 1 ≥ k.

To improve this to c(u) ≥ k + 1, we may apply Lemma 5.13 directly. We know l ≥ Bk+2

from the proof of Theorem 5.14, thus it suffices to show that Dk+1 | r. Any prime p | Dk+1 is

bounded by 32
k−1

; since νp(L(n)) = ⌊logp n⌋, we have

νp(Dk+1) =

k−1
∑

i=0

⌊

logp 32
i
⌋

≤
⌊

k−1
∑

i=0

2i
log 3

log p

⌋

≤
⌊

2k

log3 p

⌋

,

while νp(r) =
∑

i≥1⌊22
k

/pi⌋ ≥ ⌊22k/p⌋. It remains to observe that 22
k

/p ≥ 2k/ log3 p as

p/ log3 p ≤ 32
k−1

/2k−1 ≤ 22
k

/2k. ✷

Theorem 5.16 If T is any Σ1-sound LOR-theory, then the formulas {PWin1
k(u) : k ≥ 1} are

pairwise inequivalent over T .

Proof: Since T remains Σ1-sound after adding any set of true Π1 sentences, we may assume

T ⊇ I∆0. In view of Lemma 4.6, it suffices to prove T 0 PWin1
k(u) → PWin1

k+1(u) for

any k ≥ 1. By Example 5.15 and Lemma 5.4, there exists n ∈ N such that c(n) = k, i.e.,

N � PWin1
k(n) ∧ ¬PWin1

k+1(n). We observe that the existential quantifiers in Definition 4.5

can be bounded with ui ≤ xi, thus ¬PWin1
k+1 is equivalent to a Σ-formula (i.e., a formula

built using existential and bounded universal quantifiers from a ∆0 formula). It follows that

¬PWin1
k+1(n) is provable in Q ⊆ T , and if we assume that T is Σ-sound, then T 0 ¬PWin1

k(n).

If we only have the weaker assumption that T is Σ1-sound, we need to be a bit more careful.

If we fix t, k ≥ 1 and v > 1, then Dk, Nk, and Bk are constants, and properties (19) and (20)
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can be written as a ∆0 formula αtv,k(~u): ~r and ~l are bounded by ~u, and we can express the

condition ui = 2livri by a bounded formula as the graph of powering xy = z is ∆0-definable [5,

§V.3(c)]; also, there is only a constant number of choices for ~n. Then the Π1 sentences

∀~u
(

αtv,1(~u) → PWintt(~u)
)

,(23)

∀~u, x
(

αtv,k+1(~u) ∧ x > 0 → ∃ut ≤ x (x < 2ut ∧ αt+1
v,k (~u, ut))

)

(24)

are true in N and imply αtv,k(~u) → PWintt+k−1(~u). Thus, if we fix k and n = 62
2k−1

! from

Example 5.15, there is a true Π1 sentence that implies PWin1
k(n), while Q ⊢ ¬PWin1

k+4(n).

Using the Σ1-soundness of T , there is a model M � T + PWin1
k(n) + ¬PWin1

k+4(n). By the

argument in Lemma 5.4, there is m ≤ n such that M � PWin1
k(m) ∧ ¬PWin1

k+1(m). ✷

Remark 5.17 Without going into the details, we claim that the lower bound in Lemma 5.13

can be formalized for standard k, t, and v in the theories I∆0 and ∆b
1
-CR (or equivalently,

VTC0); that is, these theories prove (23) and (24). It follows that Theorem 5.16 holds for all

consistent extensions of I∆0 or ∆b
1
-CR, regardless of their Σ1-soundness.

6 Oddless interpretation

We determined the LOR-fragment of TEIPP2
to be TEIP in Section 4. But for completeness,

we mention that there is another natural approach of relating TEIPP2
to LOR-theories which

places an upper bound on the strength of TEIP: it is common to define the set of powers of 2

in arithmetical theories by the formula

Pow2(u) ⇐⇒ ∀x (x | u→ x = 1 ∨ 2 | x),

expressing that u has no nontrivial odd divisors (hence we may call such elements “oddless”).

Let π2 denote the interpretation of LOR∪{P2} in LOR which is absolute on LOR, and interprets

P2 by Pow2. We are particularly interested in relating TEIP and friends to standard fragments

of bounded arithmetic using π2.

Recall that x | y is an E1 formula equivalent to an U1 formula over IOpen, thus Pow2 is

equivalent to a U1 formula (the quantifier over x in the definition can be clearly bounded by u).

Observation 6.1 IOpen proves Pow2(u) ∧ v | u→ Pow2(v). ✷

Theorem 6.2 The smallest theory that interprets TEIPP2
via π2 is the theory TEIPPow2

, ex-

tending IOpen by the axioms

∀x > 0 ∃u
(

Pow2(u) ∧ u ≤ x < 2u
)

,(Pow2-IP)

∀u, v
(

Pow2(u) ∧ Pow2(v) ∧ u ≤ v → u | v
)

.(Pow2-Div)

It is included in IE1 +

(Pow2-Cof) ∀x ∃u > x Pow2(u),

in IE2, and in ∆b
1
-CR (or equivalently, VTC0).
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Proof: (Pow2-IP) and (Pow2-Div) are almost literally the π2-translations of axioms (P2-IP)

and (P2-Div). The only difference is that to get (P2-Div), we should also require Pow2(v/u);

but this follows from Observation 6.1.

It is well known that IE1 proves that any two integers have a gcd (even with Bézout cofactors;

see the argument in Wilmers [17, Lemma 2.4]). This implies (Pow2-Div): if Pow2(u) and

Pow2(v), let d = gcd(u, v). Then u′ = u/d and v′ = v/d are coprime, hence one of them is odd.

Being divisors of the oddless u or v, this implies u′ = 1 or v′ = 1, i.e., u | v or v | u.

Working in IE1, let x > 0 be given, and assume there exists an oddless v > x. The E1 formula

ϕ(u) ≡ ∃u′ ≤ x (u′ ≥ u ∧ u′ | v) satisfies ϕ(0) ∧ ¬ϕ(x + 1), thus using E1-induction, there is u

such that ϕ(u)∧¬ϕ(u+1); then u is the largest divisor of v such that u ≤ x. Since v/u > 1 must

be even, we have 2u | v, hence x < 2u by the maximality of u, and Pow2(u) by Observation 6.1.

Thus, IE1 + (Pow2-Cof) ⊢ (Pow2-IP).

IE2 proves the E2 formula ∃u ≤ 2x (u > x ∧Pow2(u)) by induction on x, as it is easy to see

that Pow2(u) implies Pow2(2u).

In VTC0, there is a canonical 2n function from unary to binary integers, and every binary

X > 0 can be written as X = 2nX ′ with X ′ odd. It follows easily that Pow2(X) holds iff X

is in the image of 2n. Then (Pow2-IP) follows as 2n−1 ≤ X < 2n for n given by the length

function |X| of VTC0, and (Pow2-Div) follows from 2m = 2n2m−n (for n ≤ m). ✷

Corollary 6.3 The theories TEIPPow2
, IE1 + (Pow2-Cof), IE2, and ∆b

1
-CR contain TEIP.

Any model of any of these theories has an elementary extension M = 〈M, . . . 〉 which is an

EIP of a RCEF 〈R, exp〉 satisfying GA such that exp[M ] = {u ∈M : M � Pow2(u)}. ✷

We mention that Corollary 6.3 does not quite reprove the main result of [7], which guarantees

that every countable model of ∆b
1
-CR is outright an EIP of a RCEF satisfying GA, without

taking an elementary extension first.

If T is TEIPPow2
or any of the stronger LOR-theories from Theorem 6.2, and M � T , it is a

natural question whether the expansion 〈M,PowM
2 〉 of M to a model of TEIPP2

is unique: is it

necessary that P2 consists of oddless numbers for every expansion of a model of T to a model

of TEIPP2
, perhaps if T is sufficiently strong? In other words, is T + TEIPP2

equivalent to the

expansion of T by the definition P2(u) ↔ Pow2(u)?

Our results from the previous section give a negative answer, even when T is as strong as

the true arithmetic:

Theorem 6.4 Let T be a Σ1-sound LOR-theory. Then

T + TEIPP2
0 P2(u) → 3 ∤ u,

thus there exists a model 〈M, PM
2 〉 � T + TEIPP2

such that PM
2 * PowM

2 * PM
2 .

Proof: Since adding true Π1 sentences preserves Σ1-soundness, we may assume T ⊇ I∆0 ⊇
TEIPPow2

. By the proof of Theorem 5.16, for each k there exists n ∈ N divisible by 3 (in

fact, a power of 6) such that T + PWin1
k(n) is consistent. Thus by compactness, there exists

a countable M � T and u ∈ M such that 3 | u and M � {PWin1
k(u) : k ≥ 1}. We may
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assume M to be recursively saturated; then by the proof of Theorem 4.7, there exists P2 ⊆ M

such that 〈M, P2〉 � TEIPP2
and u ∈ P2. Clearly, M 2 Pow2(u). On the other hand, since

〈M,PowM
2 〉 � TEIPP2

, there is v < u < 2v such that M � Pow2(v), and we cannot have v ∈ P2.

✷

Let us mention that we do get uniqueness (for sufficiently strong T , namely including

(Pow2-Div)) if we extend TEIPP2
with an axiom ensuring the downward closure of P2 under

divisibility:

Proposition 6.5 An LOR-structure M � (Pow2-Div) has at most one expansion to a model of

TEIPP2
+

(P2-Down) ∀u, v
(

P2(u) ∧ v | u→ P2(v)
)

,

namely 〈M,PowM
2 〉.

This follows from the next lemma, characterizing extensions of TEIPP2
in which P2 is provably

defined by Pow2.

Lemma 6.6 These theories are equivalent:

(i) TEIPP2
+ ∀u

(

P2(u) ↔ Pow2(u)
)

.

(ii) TEIPP2
+ ∀u

(

P2(u) → Pow2(u)
)

+ (Pow2-Div).

(iii) TEIPP2
+ ∀u

(

Pow2(u) → P2(u)
)

+ (Pow2-Cof).

(iv) TEIPP2
+ (P2-Down) + (Pow2-Div).

Proof:

(i) → (iv): (P2-Down) follows from ∀u
(

P2(u) ↔ Pow2(u)
)

using Observation 6.1, and

∀u
(

Pow2(u) → P2(u)
)

and (P2-Div) imply (Pow2-Div).

(iv) → (ii): We will show TEIPP2
+ (P2-Down) ⊢ P2(u) → Pow2(u). Assume P2(u), and let

v | u be such that v > 1. Then P2(v) by (P2-Down), and P2(2) by Lemma 3.4, thus v is even

by (P2-Div).

(ii) → (i): We need to show Pow2(u) → P2(u). Assuming Pow2(u), (P2-IP) gives v ≤ u < 2v

such that P2(v). Then ∀u
(

P2(u) → Pow2(u)
)

yields Pow2(v), thus v | u by (Pow2-Div). Since

1 ≤ u/v < 2, we obtain v = u, i.e., P2(u).

(i) → (iii): TEIPP2
proves ∀x∃u > xP2(u), which together with ∀u

(

P2(u) → Pow2(u)
)

yields (Pow2-Cof).

(iii) → (i): We need to show P2(u) → Pow2(u). Assuming P2(u), let v > u be such that

Pow2(v). Then P2(v) as well, hence u | v by (P2-Div). We get Pow2(u) by Observation 6.1. ✷

25



7 Discussion

We managed to axiomatize the first-order consequences of being an EIP of RCEF. While we

obtained a simple finite list of “obvious” axioms in languages including 2x of P2, the axioma-

tization in the basic language of arithmetic involves an unexpected infinite schema of axioms

expressing the existence of winning strategies in PowG.

Unlike the original Shepherdson’s theorem, our results only characterize EIP of RCEF up to

elementary equivalence, as models of the resulting first-order theories may require an elementary

extension to become an EIP of a RCEF. (We know this is sometimes necessary for models of

TEIP and TEIPP2
from Example 3.10; we do not have a similar example for TEIP2x , but it seems

very likely that it should exist as well.) We leave open the problem whether a more precise

characterization is possible, at least for countable structures.

Another problem we left open is whether TEIP is finitely axiomatizable over IOpen. Theo-

rem 5.16 provides some heuristic support for a negative answer, though the evidence it provides

is quite limited (notice that Theorem 5.16 exhibits a strict hierarchy even over Th(N), whereas

TEIP clearly is finitely axiomatizable over sufficiently strong theories, e.g. IE2).

While TEIP is a strict extension of IOpen, it is not quite clear how much stronger it really

is. In terms of literal inclusion of theories, TEIP is contained in IE2 and ∆b
1
-CR, but we do not

know if it is contained in IE1. But perhaps a better assessment of the relative strength of TEIP

is to estimate the minimal complexity of sentences separating TEIP from IOpen. In particular, a

problem suggested by L. Ko lodziejczyk is to determine what Diophantine equations are solvable

in (extensions with negatives of) models of TEIP, and whether they are the same as those

solvable in models of IOpen (or equivalently, in Z-rings, cf. Wilkie [16]); recall that it is an old

open question, going back to Shepherdson [13], whether solvability of Diophantine equations in

models of IOpen is decidable. A closely related question is whether TEIP is ∀1-conservative over

IOpen.
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