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On the first τ -tilting Hochschild cohomology of an

algebra

Claude Cibils, Marcelo Lanzilotta, Eduardo N. Marcos,

and Andrea Solotar ∗

Abstract

In this paper we introduce, according to one of the main ideas of τ -
tilting theory, the τ -tilting Hochschild cohomology in degree one of a finite

dimensional k-algebra Λ, where k is a field. We define the excess of Λ as the

difference between the dimensions of the τ -tilting Hochschild cohomology in

degree one and the dimension of the usual Hochschild cohomology in degree

one.

One of the main results is that for a zero excess bound quiver algebra Λ =
kQ/I , the Hochschild cohomology in degree twoHH2(Λ) is isomorphic to the

space of morphisms HomkQ−kQ(I/I
2,Λ). This may be useful to determine

when HH2(Λ) = 0 for these algebras.

We compute the excess for hereditary, radical square zero and monomial

triangular algebras. For a bound quiver algebra Λ, a formula for the excess

of Λ is obtained. We also give a criterion for Λ to be τ -rigid.
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1 Introduction

Let A be a finite dimensional algebra over a field k, that we will call an algebra
for short. Let M and N be finitely generated left A-modules, henceforth called
left A-modules. Let τ denote the Auslander-Reiten translation, see for instance
[2] or [15], and denote D(−) = Homk(−, k). We reproduce here an extract from
B. Marsh’s lecture notes in Cologne [17]: “the Auslander-Reiten duality suggests
that in contexts where Ext1A(M,N) appears, we might investigate replacing it with
DHomA(N, τM) and this can be regarded as one of the main ideas of τ -tilting
theory.” While D is absent in the original text, D is present in Auslander-Reiten’s
duality formula for it to be functorial. Of course adding D does not change the
dimensions. Recall that M is called τ -rigid if HomA(M, τM) = 0, see for instance
[15, Subsection 4.1].

On the other hand, let Λe = Λ⊗k Λop be the enveloping algebra of an algebra
Λ. Let X be a Λ-bimodule. The Hochschild cohomology of Λ with coefficients in
X is Hn(Λ, X) = ExtnΛe(Λ, X), see [7, 16, 19] and it is denoted HHn(Λ) when

X = Λ. Moreover, Hochschild homology is Hn(Λ, X) = TorΛ
e

n (Λ, X). Since left

∗
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Λe-modules are the same as Λ-bimodules, in the sequel we often replace Λe with
Λ− Λ.

According to the main idea of τ -tilting theory mentioned above, we will inves-
tigate in this paper the replacement of Ext1Λ−Λ(Λ, X) by the τ -tilting Hochschild
cohomology in degree one τH1(Λ, X) = DHomΛ−Λ(X, τΛ). Note that here τ
is the Auslander-Reiten translation of left Λe-modules, that is of Λ-bimodules.
When X = Λ, we denote τHH1(Λ) = τH1(Λ,Λ). The excess e(Λ) is defined
as dimk

τHH1(Λ)− dimkHH1(Λ).
One of the main results of this paper is that for a zero excess bound quiver alge-

bra Λ = kQ/I we have HH2(Λ) = HomkQ−kQ(I/I
2,Λ) – see Corollary 4.8. This

result will be useful in a future work to determine when an algebra with zero excess
has zero Hochschild cohomology in degree 2. The algebras Λ with HH2(Λ) = 0 are
important since they are rigid in the following sense. Suppose that k is algebraically
closed and let V be a k-vector space of dimension n. Let Algn be the affine open
subscheme of algebra structures with 1 of the affine algebraic scheme defined by
Sn(R) = {associative R-algebra structures on R⊗k V }, where R is a commutative
k-algebra. Corollary 2.5 of [13] states that HH2(Λ) = 0 if and only if the orbit of
Λ ∈ Algn under the general linear group GL(V ) is an open subscheme of Algn –
that is by definition, Λ is rigid. Moreover, P. Gabriel in [13, p. 140] mentions that
it should be one of the main tasks of associative algebra to determine for every n
the number of irreducible components of Algn. The determination of open orbits
makes it possible to obtain lower bounds for the number of irreducible components
of Algn, as G. Mazzola did in [18, p. 100].

The paper is organised as follows. In Section 2 we give a more detailed definition,
as well as properties of the τ -tilting Hochschild cohomology and of the excess.
Let Tr be the transpose of a bimodule, see for instance [2], and recall that XΛ

denotes the coinvariants of a Λ-bimodule X , see Remark 2.4. We prove that
τHH1(Λ) = (TrΛ)Λ and we give a formula for the dimension of the vector space
τHH1(Λ).

In Section 3, for an hereditary algebra Λ we prove that the dimensions of
τHH1(Λ) and HH1(Λ) are equal. We say that an algebra Λ has the H2 can-
cellation properties if HH2(Λ) = 0 = H2(Λ, ri) for all i > 0, where r is the
Jacobson radical of Λ. For instance hereditary algebras have the H2 cancellation
properties. We obtain that e(Λ) = 0 whenever Λ has theH2 cancellation properties,
based on a formula for the dimension of HH1(Λ) in [9].

In Section 3 we also consider radical square zero algebras and monomial algebras
whose quiver has no oriented cycles. For those algebras Λ we prove that HH1(Λ) =
0 if and only if τHH1(Λ) = 0, and this occurs precisely when Q is a tree. This
extends a result of [5]. We provide examples where the excess is not zero.

In Theorem 4.5 we give a formula for the excess of a bound quiver algebra. Fi-
nally we provide a criterium for the algebra Λ to be τ -rigid in terms of the dimension
of its Hochschild cohomology in degree 2.

2 τ -tilting Hochschild cohomology in degree one

We begin this section by briefly recalling the definition of the Auslander-Reiten
translation and the duality formula which is useful for our aims, for more details see
for instance [2] or [3]. Let A be an algebra and M a left A-module.
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First, the transpose TrM is defined as follows. Consider a minimal projective
presentation of M

P1
d1−→ P0

d0−→ M −→ 0.

Applying to d1 the functor HomA(−, A) which sends left A-modules to right A-
modules we get

HomA(P0, A)
d∗

1−→ HomA(P1, A).

By definition, TrM = Cokerd∗1.
This gives a bijection between the isomorphism classes of indecomposable non-

projective left A-modules and the isomorphism classes of indecomposable non-
projective right A-modules.

Next, the exact functor D = Homk(−, k) sends right A-modules to left A-
modules. We obtain an exact sequence of left A-modules

0 −→ DTrM −→ DHomA(P1, A)
Dd∗

1−→ DHomA(P0, A).

Finally by definition τM = DTrM .
This gives a bijection between the isomorphism classes of indecomposable non-

projective left A-modules and the isomorphism classes of indecomposable non-
injective left A-modules.

Let M and N be left A-modules. Let IHomA(M,N) be the k-subspace of
HomA(M,N) of morphisms which factor through an injective left A-module. The
quotient is denoted HomA(M,N). The Auslander-Reiten duality formula in [1] is

Ext1A(M,N) = DHomA(N, τM).

As mentioned in the Introduction, one of the main ideas of τ -tilting theory is to
replace Ext1A(M,N) with DHomA(N, τM), which in a sense amounts to recover
the missing morphisms which factor through injectives.

Let Λ be an algebra. To define the τ -tilting Hochschild cohomology in degree
one, recall that H1(Λ, X) = Ext1Λ−Λ(Λ, X). Note that this concerns bimodules,
hence in the following τ is the Auslander-Reiten translation for bimodules or equiv-
alently of left Λe-modules.

Definition 2.1 Let Λ be an algebra, and let X be a Λ-bimodule. The τ -tilting
cohomology of Λ with coefficients in X is

τH1(Λ, X) = DHomΛ−Λ(X, τΛ).

In this paper we will focus in the case X = Λ:

τHH1(Λ) = DHomΛ−Λ(Λ, τΛ).

Definition 2.2 The excess of an algebra Λ is

e(Λ) = dimk
τHH1(Λ)− dimkHH1(Λ).

Lemma 2.3 The excess is a non negative integer, equal to dimkIHomΛ−Λ(Λ, τΛ).
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Proof. By definition

τHH1(Λ) = DHomΛ−Λ(Λ, τΛ),

while
HH1(Λ) = Ext1Λ−Λ(Λ,Λ).

The Auslander-Reiten duality formula is

Ext1Λ−Λ(Λ,Λ) = D

(

HomΛ−Λ(Λ, τΛ)

IHomΛ−Λ(Λ, τΛ)

)

.

⋄

Next we recall some well known facts about invariants and coinvariants.

Remark 2.4 Let Λ be an algebra and let X be a Λ-bimodule.

• The subspace of invariants of X is

H0(Λ, X) = XΛ = {x ∈ X | ∀λ ∈ Λ, λx = xλ} = HomΛ−Λ(Λ, X)

where the last canonical isomorphism sends ϕ ∈ HomΛ−Λ(Λ, X) to ϕ(1).

• The vector space of coinvariants of X is

H0(Λ, X) = XΛ = X/〈λx− xλ | λ ∈ Λ and x ∈ X〉 = Λ⊗Λ−Λ X

where the last canonical isomorphism sends λ ⊗ x ∈ Λ ⊗Λ−Λ X to the class
of λx.

• It is easy to show that D
(

XΛ
)

= (DX)Λ. Observe that more generally we
have in all degrees

DHn(Λ, X) = Hn(Λ, DX).

Proposition 2.5 Let Λ be an algebra. We have

τHH1(Λ) = (TrΛ)Λ.

Proof. Let Y = DTrΛ. According to Remark 2.4 and using that D2 is the
identity, we have the following chain of equalities and canonical isomorphisms of
vector spaces:

τHH1(Λ) = DHomΛ−Λ(Λ, Y ) = D
(

Y Λ
)

= (DY )Λ = (DDTrΛ)Λ = (TrΛ)Λ.

⋄

In this paper a quiver Q is a finite oriented graph, given by a set of vertices Q0, a
set of arrows Q1, and two maps called source and target s, t : Q1 → Q0. The quiver
algebra kQ is a vector space with basis the set B of all oriented paths in Q, including
those of length 0, that is Q0. The product of two paths is their concatenation if it
is possible and 0 otherwise. The algebra structure of kQ is obtained by extending
linearly the product on paths. Note that Q0 is a set of orthogonal idempotents,
their sum gives the unit of kQ. The set of paths of strictly positive length B>0 is

4



a basis of the ideal F = 〈Q1〉. An ideal I is admissible if there exists n ≥ 2 such
that Fn ⊂ I ⊂ F 2. The quotient algebra kQ/I is called a bound quiver algebra.

An algebra Λ is called sober if the endomorphism algebra of each simple left
Λ-module is reduced to k, which is always the case if k is algebraically closed. A
well known result of P.Gabriel is that any sober algebra is Morita equivalent to a
bound quiver algebra kQ/I for a unique quiver Q. Note that the admissible ideal
I is in general not unique.

Theorem 2.6 Let Λ = kQ/I a bound quiver algebra, and let ZΛ be its center.
We have

dimk
τHH1(Λ) = dimkZΛ−

∑

x∈Q0

dimkxΛx+
∑

a∈Q1

dimkt(a)Λs(a).

Proof. By Proposition 2.5, we have to compute dimk(TrΛ)Λ. To begin with,
we will consider TrΛ. Let E = kQ0, which is a maximal commutative semisimple
subalgebra of kQ. The projective minimal presentation of Λ as Λ-bimodule is known
to have the following form, see [6, p. 324] and [4, p. 72]

Λ⊗E kQ1 ⊗E Λ
f

−→ Λ⊗E Λ −→ Λ −→ 0 (2.7)

where Λ ⊗E Λ −→ Λ is given by the product of Λ. For a ∈ Q1 we have

f(t(a)⊗ a⊗ s(a)) = a⊗ s(a)− t(a)⊗ a.

Consequently, for λ, µ ∈ Λ we obtain

f(µ⊗ a⊗ λ)) = µa⊗ s(a)λ− µt(a)⊗ aλ.

We write ⊗ instead of ⊗k. Also note that the enveloping algebra Λe viewed as a
Λ-bimodule is isomorphic to Λ ⊗ Λ with action λ(a⊗ b)µ = λa⊗ bµ.

The functor HomΛ−Λ(−,Λ ⊗ Λ) applied to (2.7) provides the exact sequence
defining TrΛ

HomΛ−Λ(Λ ⊗E Λ,Λ⊗ Λ)
f∗

−→ HomΛ−Λ(Λ⊗E kQ1 ⊗E Λ,Λ⊗ Λ) −→ TrΛ −→ 0.

Next we use that for an E-bimodule U and a Λ-bimodule X there is a canonical
isomorphism

HomΛ−Λ(Λ ⊗E U ⊗E Λ, X) = HomE−E(U,X)

and observe that Λ ⊗E Λ = Λ ⊗E E ⊗E Λ. We thus obtain the following exact
sequence, where we kept the same notation for the Λ-bimodule morphism f∗

HomE−E(E,Λ⊗ Λ)
f∗

−→ HomE−E(kQ1,Λ⊗ Λ) −→ TrΛ −→ 0. (2.8)

In the following we work out the exact sequence (2.8). Let y, x ∈ Q0 and let ykx
be the simple E-bimodule of dimension 1 given by the idempotent y ⊗ x ∈ Ee,
namely ykx = yE ⊗ Ex. Let U be an E-bimodule. Clearly we have a canonical
isomorphism

HomE−E(ykx, U) = yUx.

Observe that as E-bimodules we have

E = ⊕x∈Q0 xkx and kQ1 = ⊕a∈Q1 t(a)ks(a).
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The exact sequence (2.8) becomes, by still keeping the same notation for f∗

⊕x∈Q0 (xΛ⊗ Λx)
f∗

−→ ⊕a∈Q1 (t(a)Λ⊗ Λs(a)) −→ TrΛ −→ 0. (2.9)

Let M be a right Λ - module and N be a left Λ-module, M ⊗N is a Λ-bimodule
for the internal action λ(m ⊗ n)µ = mµ ⊗ λn. On the other hand N ⊗ M is
a Λ-bimodule for the external action λ(n ⊗ m)µ = λn ⊗ mµ. Of course, these
Λ-bimodules are isomorphic through the flip map σ(n⊗m) = m⊗ n.

We rewrite 2.9 using the flips maps

σx : xΛ ⊗ Λx → Λx⊗ xΛ and σa : t(a)Λ ⊗ Λs(a) → Λs(a)⊗ t(a)Λ

thus getting an exact sequence for bimodules with external action. By abuse of
notation we still write f∗ instead of (⊕a∈Q1σa) f

∗
(

⊕x∈Q0σ
−1
x

)

.

⊕x∈Q0(Λx⊗ xΛ)
f∗

−→ ⊕a∈Q1(Λs(a)⊗ t(a)Λ) −→ TrΛ −→ 0. (2.10)

It is an easy but rather meticulous computation to track the morphism of Λ-
bimodules f∗ along the previous steps. In the end, we obtain the following formula
in the context of (2.10):

f∗(x⊗ x) =
∑

a∈Q1

s(a)=x

x⊗ a −
∑

b∈Q1

t(b)=x

b⊗ x. (2.11)

Recall that our aim is to compute the dimension of the coinvariants of TrΛ, that is
of Λ⊗Λ−Λ TrΛ by Remark 2.4. The functor Λ⊗Λ−Λ− is right exact and preserves
direct sums, so we obtain the exact sequence

⊕x∈Q0(Λx⊗ xΛ)Λ
f∗

Λ−→ ⊕a∈Q1(Λs(a)⊗ t(a)Λ)Λ −→ (TrΛ)Λ −→ 0. (2.12)

Moreover, as before, let N (resp. M) be a left (resp. right) Λ-module. Consider
the Λ-bimodule with external action N⊗M . We have that (N⊗M)Λ is isomorphic
to M ⊗Λ N via the flip map. Note that this is the degree 0 instance of the graded
isomorphism (see for example [7, p.170 Corollary 4.4])

H∗(Λ, N ⊗M) = TorΛ
∗
(M,N).

Thus,
(Λx⊗ yΛ)Λ = yΛ⊗Λ Λx = yΛx

which leads to the exact sequence

⊕x∈Q0 xΛx
f∗

Λ−→ ⊕a∈Q1 t(a)Λs(a) −→ (TrΛ)Λ −→ 0. (2.13)

We underline that for y, x ∈ Q0, the multiplicity of the vector space yΛx in the
second direct sum is the number of parallel arrows from x to y.

Another easy and rather meticulous computation gives a formula for f∗

Λ in the
context of (2.13). For λ ∈ xΛx we have

f∗

Λ(λ) =
∑

a∈Q1

t(a)=x

λa−
∑

b∈Q1

s(b)=x

bλ
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where λa ∈ t(a)Λs(a), that is the direct summand corresponding to a. Similarly,
bλ ∈ t(b)Λs(b), that is the direct summand corresponding to b.

Let C =
∑

a∈Q1
a ∈ Λ. Note that for λ ∈ ⊕x∈Q0 xΛx we have

f∗

Λ(λ) = λC − Cλ.

To show that Kerf∗

Λ = ZΛ, it is convenient as usual to consider the k-category
CΛ associated to Λ: its set of objects is Q0, while the set of morphisms vCu from u
to v is vΛu; composition is given by the product of Λ. The center of Λ viewed in
this category is

{(xλx)x∈Q0 | vλv vαu = vαu uλu for all vαu ∈ vCu}.

On the other hand as already observed, in case of parallel arrows there is one direct
summand for each arrow in ⊕a∈Q1t(a)Λs(a). Note also that Q0 ∪ Q1 is a set
of generators of CΛ as an algebra. Using these three observations, the proof of
Kerf∗

Λ = ZΛ is immediate. ⋄

3 Hereditary, radical square zero and triangular monomial

algebras

In this section we compute the excess (see Definition 2.2) of some families of
algebras.

3.1 Hereditary algebras and algebras with the H
2 cancellation prop-

erties

We first prove that the excess is zero for hereditary algebras. The proof is based
on the fact that the set of morphisms which do not factor through injectives is zero
and we believe it provides a useful method in other contexts.

Later in Theorem 3.4 we generalize the result for algebras with the H2 cancel-
lation properties (see the Introduction for the definition). Its proof relies on the
fact that for an algebra Λ with the H2 cancellation properties a formula for the
dimension of HH1(Λ) is known, see [9].

Theorem 3.1 Let Q be a finite connected quiver without oriented cycles. Let
Λ = kQ be the corresponding hereditary algebra. We have e(Λ) = 0.

Proof.

We will show that if I is an injective Λ-bimodule, then HomΛ−Λ(I, τΛ) = 0. A
fortiori IHomΛ−Λ(Λ, τΛ) = 0. By Lemma 2.3, it follows that e(Λ) = 0 .

We have that pdΛ−ΛΛ ≤ 1. Indeed kQ is the tensor algebra TkQ0kQ1. It is
well known (see for instance [8, Theorem 2.3]) that there is a minimal projective
resolution of kQ as a kQ-bimodule as follows:

0 −→ kQ⊗kQ0 kQ1 ⊗kQ0 kQ −→ kQ⊗kQ0 kQ −→ kQ −→ 0. (3.2)

We recall [2, Proposition 1.7(a) p. 319]: let A be an algebra and let M be
an indecomposable left A-module. The projective dimension of M is at most 1 if

7



and only if HomA(DA, τM) = 0. We will use this result for Λ-bimodules, that
is replacing A by the enveloping algebra of Λ. We have supposed Q connected,
therefore Λ is indecomposable as a Λ-bimodule, and the aforementioned proposition
of [2] applies.

It follows that HomΛ−Λ(D(Λ⊗Λ), τΛ) = 0. Of course, for an algebra A, every
injective left A-module is isomorphic to a direct summand of a direct sum of copies
of DA, where A is viewed as a right A-module and A a left A-module. ⋄

Corollary 3.3 [9, 14, 11] Let B the set of paths of Q, and let |yBx| be the number
of paths from x to y. For Λ = kQ we have

dimkHH1(Λ) = 1− |Q0|+
∑

a∈Q1

|t(a)Bs(a)| = dimk
τHH1(Λ).

We provide in the following a generalisation of Theorem 3.1 for algebras having
the H2 cancellation properties.

For a bound quiver algebra Λ with the H2 cancellation properties, the dimension
of HH1(Λ) is known by [9, p. 647]. This allows to prove the following

Theorem 3.4 The excess of a bound quiver algebra Λ = kQ/I with the H2 can-
cellation properties is zero.

Proof. Let B be the basis of paths of a bound quiver algebra.
We know from [9] that

dimkHH1(Λ) = dimkZΛ−
∑

x∈Q0

|xBx| +
∑

x,y∈Q0

|yBx||yQ1x|.

Clearly |yBx| = dimkyΛx. Hence by Theorem 2.6 the equality of dimensions
holds. ⋄

Lemma 3.5 An hereditary algebra kQ has the H2 cancellation properties.

Proof. It follows from (3.2) that pdΛ−ΛΛ ≤ 1. Then for any kQ-bimodule X we
have H2(kQ,X) = 0. ⋄

Remark 3.6 We will show in Subsection 3.2 that not only the hereditary algebras
have the H2 cancellation properties.

3.2 Radical square zero algebras

A radical square zero algebra is a bound quiver algebra of the form kQ/F 2.
Let P and P ′ be two sets of paths of a quiver Q. The set of parallel paths is

P//P ′ = {(p, p′) ∈ P × P ′ | s(p) = s(p′) and t(p) = t(p′)}.

For instance Q1//Q0 is the set of loops of Q. We denote by Qi the set of paths of
length i.

A c-crown is a quiver C with c vertices cyclically labelled and c arrows, each one
joining each vertex with the next one in the cyclic labelling. For instance a 1-crown
is a loop, and a 2-crown is a two-way quiver · ⇆ ·. The behaviour of the Hochschild
cohomology of kC/F 2 is exceptional, see [10] and it will be considered separately.
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Proposition 3.7 Let Q be a connected quiver which is not a crown. The radical
square zero algebra Λ = kQ/F 2 has the H2 cancellation properties if and only if
Q2//Q1 = ∅.

Proof. Since r is a semisimple Λ-bimodule, the complex of cochains of Section 2
of [10] has zero coboundaries and dimkH

2(Λ, r) = |Q2//Q1|.
Consequently if Λ = kQ/F 2 has theH2 cancellation properties, then |Q2//Q1| =

0.
Reciprocally, note first that if |Q2//Q1| = 0 then |Q1//Q0| = 0. From [10,

Theorem 3.1] we have

dimkHH2(Λ) = |Q2//Q1| − |Q1//Q0| = 0.

Hence if Q2//Q1 = ∅ then H2(Λ, r) = 0 = HH2(Λ). ⋄

There are zero excess algebras without the H2 cancellation properties, as the
next result shows.

Proposition 3.8 Let Q be a connected quiver which is not a crown and let Λ =
kQ/F 2. We have e(Λ) = 0.

Proof. Observe that dimkZΛ = 1+ |Q1//Q0|. The formula of Theorem 2.6 gives

dimk
τHH1(Λ) = 1+|Q1//Q0|−|Q0|−|Q1//Q0|+|Q1//Q1| = 1−|Q0|+|Q1//Q1|.

On the other hand we know from [10, Theorem 3.1], together with the obser-
vation in the next paragraph, that the same formula holds for dimkHH1(Λ).

In the proof of Theorem 3.1 in [10] it is stated that “D is injective for a positive
n”. However for n = 0 the kernel of D has dimension one. Hence the formula for
dimkHH1(Λ) in the statement of [10, Theorem 3.1] has to be modified by adding
1. ⋄

Proposition 3.9 Let C be a c-crown, and let Λ = kC/F 2.

• If c > 1, then e(Λ) = 0,

• If c = 1 and the characteristic of k is not 2, then e(Λ) = 1,

• If c = 1 and the characteristic of k is 2, then e(Λ) = 0.

Proof. Observe that if c > 1, by Theorem 2.6 we have

dimk
τHH1(kC/F 2) = 1− c+ c = 1.

If c = 1 then kC/F 2 = k[x]/(x2), the algebra of dual numbers and

dimk
τHH1(k[x]/x2) = 2− 2 + 2 = 2.

On the other hand, it is easy to compute that if c > 1 then dimkHH1(Λ) = 1
regardless the characteristic of k.

If the characteristic of k is not 2, then dimkHH1(k[x]/(x2)) = 1 while if the
characteristic of k is 2, then dimkHH1(k[x]/(x2)) = 2. ⋄
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3.3 Triangular monomial algebras

A monomial algebra is a bound quiver algebra Λ = kQ/I where I is generated by
a minimal set of paths denoted by Z. The algebra Λ is triangular if it is a quotient
of a finite dimensional hereditary algebra kQ, that is if Q has no oriented cycles.
We set the following.

• B is the set of paths of Q which do not contain any path of Z. Note that
Z = ∅ if and only if B is the set of all the paths of Q. Moreover, B gives a
basis of Λ.

• (Q1//B)u is the set of pairs (a, ǫ) ∈ Q1//B such that for every γ ∈ Z,
replacing each occurrence of a in γ by ǫ, gives a path which is 0 in Λ. Note
that {(a, a) | a ∈ Q1} ⊂ (Q1//B)u.

• (Q1//B)nu = (Q1//B) \ (Q1//B)u, that is the set of pairs (a, ǫ) ∈ Q1//B
such that there exists γ ∈ Z where a occurs, verifying that at least one of
the replacements of a in γ by ǫ, gives a non zero path in Λ.

Theorem 3.10 Let Λ = kQ/〈Z〉 be a triangular monomial algebra. We have

e(Λ) = |(Q1//B)nu|.

Proof. When Q has no oriented cycles, the formula for the dimension of HH1(Λ)
given in [12] is as follows:

dimkHH1(Λ) = dimkZΛ− |Q0|+ |(Q1//B)u|. (3.11)

Note that since Q has no oriented cycles, for all x ∈ Q0 we have xΛx = k.
Hence Theorem 2.6 gives

dimk
τHH1(Λ) = dimkZΛ− |Q0|+ |(Q1//B)|. (3.12)

⋄

Theorem 3.13 Let Q be a connected quiver without oriented cycles and let Λ =
kQ/〈Z〉 be a triangular monomial algebra. The following are equivalent:

(1) HH1(Λ) = 0.

(2) Q is a tree.

(3) τHH1(Λ) = 0.

Remark 3.14 The equivalence between (1) and (2) is proved without the triangular
hypothesis in [5, Theorem 2.2].

Proof.

For (1) implies (2), the formula (3.11) gives

1− |Q0|+ |(Q1//B)u| = 0.

We have {(a, a) | a ∈ Q1} ⊂ (Q1//B)u hence 1 − |Q0| + |Q1| ≤ 0. The Euler
characteristic of the underlying graph of Q is χ(Q) = |Q0|− |Q1|, hence χ(Q) ≥ 1.
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Any finite graph has the homotopy type of a graph with 1 vertex and n loops, which
fundamental group is free on n = 1 − χ(Q) generators. We infer n ≤ 0, hence
n = 0 and Q is a tree.

Concerning (2) implies (3), since Q is a tree we have χ(Q) = |Q0| − |(Q1| = 1.
On the other hand (Q1//B) = {(a, a) | a ∈ Q1}, and we have |Q1//B| = |(Q1|.
The formula 3.12 gives τHH1(Λ) = 0.

The implication (3) ⇒ (1) follows from Lemma 2.3. ⋄

Example 3.15 Let Q and R respectively denote the quivers

• • •
b

a
c

and
•

• • •a

b c

d

The following table lists the results for the corresponding oriented monomial
algebras:

Quiver Z (Q1//B)nu e(Λ) dimkHH1(Λ) dimk
τHH1(Λ)

Q {ca} {(a, b)} 1 2 3
R {ba} ∅ 0 2 2
R {da} {(d, bc)} 1 1 2

4 The excess

The proof of the next result relies on the calculation of the dimensions of two vector
spaces and the observation that they are equal. An explicit isomorphism between
these two vector spaces remains unknown to us.

Proposition 4.1 Let Λ = kQ/I be a bound quiver algebra. We have

dimkH
1(kQ, kQ/I) = dimk

τHH1(Λ).

Proof. Let X be a kQ-bimodule. We assert that

dimkH
1(kQ,X) = dimkX

kQ −
∑

x∈Q0

dimkxXx+
∑

a∈Q1

dimkt(a)Xs(a). (4.2)

Recall the projective resolution of kQ as a kQ-bimodule (3.2)

0 −→ kQ⊗kQ0 kQ1 ⊗kQ0 kQ
g

−→ kQ⊗kQ0 kQ −→ kQ −→ 0. (4.3)

The functor HomkQ−kQ(−, X) gives the complex of cochains

0 −→ HomkQ−kQ(kQ⊗E kQ,X)
g∗

−→ HomkQ−kQ(kQ⊗E kQ1 ⊗E kQ,X) −→ 0
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where Kerg∗ = H0(kQ,X) and Cokerg∗ = H1(kQ,X). The same way we have
obtained (2.8) and (2.9) leads to an exact sequence

0 −→ H0(kQ,X) −→ ⊕x∈Q0 xXx
g∗

−→ ⊕a∈Q1 t(a)Xs(a) −→ H1(kQ,X) −→ 0.

which gives the equality (4.2).
We assert that if X is a kQ/I-bimodule, that is IX = XI = 0, then XkQ =

XkQ/I . Indeed, we have

XkQ = HomkQ−kQ(kQ,X) = HomkQ/I−kQ/I (kQ/I,X) = XkQ/I .

Note that for X = Λ we have ΛΛ = ZΛ. We obtain the following

dimkH
1(kQ, kQ/I) = dimkZΛ−

∑

x∈Q0

dimkxΛx+
∑

a∈Q1

dimkt(a)Λs(a)

which is the same formula than the one for dimk
τHH1(Λ) in Theorem 2.6. ⋄

Next we recall Corollary 2.4 of [8].

Proposition 4.4 [8] Let Λ = kQ/I be a bound quiver algebra and let X be a
Λ-bimodule. There is an exact sequence

0 −→ H1(Λ, X) −→ H1(kQ,X) −→ HomkQ−kQ(I/I
2, X) −→ H2(Λ, X) −→ 0.

An immediate consequence of the above is a formula for the excess of an algebra,
which involves the dimension of the Hochschild cohomology in degree 2.

Theorem 4.5 Let Λ = kQ/I be a bound quiver algebra. We have

e(Λ) = dimkHomkQ−kQ(I/I
2,Λ) − dimkHH2(Λ).

Remark 4.6 If I = 0, then HH2(kQ) = 0 and so e(kQ) = 0. This confirms
Theorem 3.1, as well as Theorem 3.4 for an hereditary algebra.

We infer three corollaries for a bound quiver algebra Λ = kQ/I.

Corollary 4.7 If Λ verifies the H2 cancelling properties then

HomkQ−kQ(I/I
2,Λ) = 0.

Corollary 4.8 If e(Λ) = 0 then

HH2(Λ) = HomkQ−kQ(I/I
2,Λ).

Corollary 4.9 The algebra Λ is τ -rigid as a Λ-bimodule if and only if

• HH1(Λ) = 0,

• dimkHH2(Λ) = dimkHomkQ−kQ(I/I
2,Λ).
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Córdoba 65, (2000) 73–80.
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