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We consider the emergence of edge states in a finite optical lattice and show that the boundaries of
the lattice play a decisive role for their location in the corresponding energy spectrum. We introduce
a simple parametrisation of the boundaries of the optical lattice and demonstrate the existence of
an optimal choice of the values of the parameters which lead to an approximate restoration of chiral
symmetry. A crucial property of this optimization is the suppression of tunneling between next-
nearest neighboring wells of the lattice. This in turn allows the mapping of the optical lattice set-up
to a finite SSH model. The topological character of the emerging edge states is discussed.

I. INTRODUCTION

Ever since the experimental realization of Bose-
Einstein condensation (BEC) [1–3] ultracold atomic plat-
forms have emerged as a highly versatile test-bed for a
wide range of phenomena in atomic, molecular and con-
densed matter systems [4, 5]. A crucial step in that direc-
tion is the ability to precisely control the inter-atomic in-
teraction strengths, via Feshbach resonances [6–8]. Mod-
ern optics can be utilized so that the shape of the external
confinement results in almost arbitrary trap geometries,
including setups of low-dimensional lattices [9]. This
level of control has enabled among others the realization
of Hubbard models and the study of the Superfluid-Mott
insulator transition [10, 11]. Moreover, it has facilitated
the realization of topological phases of matter related to
the quantum Hall effect and topological insulators such
as the Su-Schrieffer-Heeger (SSH) model [12, 13].

The simplicity of the SSH model establishes it as an
ideal starting point for understanding the topological
phases of matter. One of the most important features of
the SSH model is its chiral symmetry, which is strongly
connected to its topological properties. Namely, since
there is a strong bulk-edge correspondence (BDI symme-
try class [14]), one can predict when topologically pro-
tected edge states will be supported by the system. Those
states are of great interest because of their robustness
against certain disorders, rendering them promising can-
didates for quantum information processing [15–17]. The
SSH model can be easily extended to describe more com-
plex systems, such as higher dimensional systems with
enriched topological phases [18] or including interactions
[19–21].

Realizations of the SSH model in optical lattices are
mainly focused on the study of the quantized charge
transport both for fermionic [22] and bosonic [23] atoms.
In this context, the parameters of the discrete SSH model
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are derived from the continuous optical lattice potential,
by fitting their corresponding Bloch spectra primarily in
the two lowest bands, whose gap determines the topo-
logical properties of the system [12]. Importantly, in
principle next-nearest neighbor (NNN) hopping is always
present in optical lattices, although it is significantly sup-
pressed for deep potential wells and it is usually ignored
in studies of the SSH model. However, from the theo-
retical side, even a small next-nearest neighbor hopping
amplitude explicitly breaks the underlying chiral sym-
metry of the SSH model [24, 25], leading to an extended
SSH model (eSSH) belonging to a different symmetry
class (AI) and possessing a different topological invari-
ant. Additionally, edge states in 2D topological systems
were observed only recently by adding a sharp wall po-
tential to a driven honeycomb lattice [26] and a rotating
trap [27]. Other observations of edge states relied on ar-
tificial dimensions using internal states for defining sharp
edges [28–31]. Edge states were also probed in tweezer
arrays with Rydberg interactions [32], where the edges
also occur naturally.
For the above reasons, we focus on a systematic study

of the conditions under which a finite continuous optical
lattice may be mapped, within the tight-binding approx-
imation, to an SSH model. Specifically, we demonstrate
and analyze the problems that emerge when finite con-
fined systems are considered, and we provide the essen-
tial tools to control them. In particular, we introduce
a simple extension of the potential domain of the opti-
cal lattice, and we find the optimal choice of its param-
eters values so that the effects of the confinement are
maximally suppressed. Finally, we address the presence
of NNN hopping when the potential wells are not deep
enough, and propose criteria so that the corresponding
terms can be omitted.
This work is structured in the following way. In Sec-

tion II we mention the basic characteristics of the SSH
and eSSH models and describe the optical superlattice
potential we employ to realise them. The explicit map-
ping from the continuous to the discrete system is also
presented. Then, in Section III we analyze the criteria
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and in particular boundary conditions under which topo-
logical edge states emerge in the finite continuous system,
via directly solving the corresponding Schrödinger equa-
tion. In Section IV we present the results derived from
the mapping to the discrete (tight-binding) system and
examine their deviations from the (extended) SSH model
with the same bulk parameters. Finally, in Section V we
summarise our results and highlight future perspectives.

II. TIGHT-BINDING MODELS AND OPTICAL
LATTICE POTENTIALS

In this section, we begin by noting the basic character-
istics of the SSH model and its extension (eSSH) when
NNN hopping terms are considered (Sec. II A). We then
proceed with a continuous setup involving a superlattice
optical potential, which enables the implementation of
the SSH model in ultracold atomic platforms (Sec. II B).
Lastly, we present the tight binding (TB) approxima-
tion, which we employ for the detailed comparison be-
tween the continuous and the corresponding discrete sys-
tem (Sec. II C).

A. SSH and eSSH models

The Hamiltonian of an SSH model [33, 34] withM unit
cells can be written as:

HSSH = v

M∑
m=1

a†mbm + w

M∑
m=1

a†m+1bm + h.c (1)

where v, w are the intracell and intercell hopping ampli-

tudes, â†m (âm) and b̂†m (b̂m) are the creation (annihila-
tion) operators, creating (annihilating) a particle in the
m cell on the A/B sublattice respectively. A schematic
of the SSH model is provided in Fig. 1(a). We also con-
sider an extension of the SSH model with the addition of
NNN hopping terms of the form:

HNNN = t

M−1∑
m=1

(
â†m+1âm + b̂†m+1b̂m

)
+ h.c. (2)

where t is the NNN hopping amplitude (see Fig. 1(b)).
The Hamiltonian of this extended SSH (eSSH) is:

HeSSH = HSSH +HNNN (3)

These two models are of great interest because they can
both support topologically protected edge states (TESs),
i.e. states that are localized on the edges of the lattice
and their energies reside in the center of the band gap.
We emphasize that in the SSH model the existence and
protection of TESs are connected to the chiral symmetry
of the system (BDI symmetry class) [14], while in the
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FIG. 1. Schematics of (a) SSH and (b) eSSH models with
M = 3 cells.

case of the eSSH model they are related to the inversion
symmetry (AI symmetry class) [24, 25]. Specifically, in
the SSH model when v > w the system is in the topolog-
ically trivial phase and it does not support edge states.
In contrast, for v < w the system resides in the topolog-
ically non-trivial (i.e. topological) phase where it sup-
ports two edge states. On the other hand, for the case of
eSSH, even though the bulk-edge correspondence holds,
specifics of the edge states, such as their position on the
energy spectrum or their robustness, can not be easily
predicted. However, when edge states are supported by
eSSH, they are in fact of topological nature. In most of
the cases considered below the parameter t will always be
relatively small in comparison to the values of the v and
w parameters, hence the NNN terms could be treated as
a perturbation.

B. Superlattice potential

An optical lattice can be implemented experimentally
by forming a standing wave, utilizing two counter prop-
agating laser beams. A sequence of M double wells as
required to realize the SSH and eSSH models, can be
achieved by superimposing two such standing waves with
different frequencies [12, 35, 36], leading to the superlat-
tice (SL) potential:

VSL(x) = Vs cos
2 (2krx) + Vl cos

2 (krx) (4)

where Vs, Vl are the amplitudes of the two standing
waves, kr = 2π/λ0 is the single-photon recoil momentum,
and λ0 is the wavelength of the lattice. For a system of
M cells and total length 2L it holds that λ0 = 2L/M .
The stationary Schrödinger equation

Ĥ |Ψn⟩ = En |Ψn⟩ , with Ĥ = − ℏ2

2m

∂2

∂x2
+ ˆVSL (5)

can then be solved numerically, e.g. via exact diagonal-
ization (ED), to obtain the complete spectrum of eigen-
states and eigenenergies of the system. In the following,
our analysis will focus on the lowest band, i.e. the eigen-
states with the 2M lowest laying eigenvalues.
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FIG. 2. Schematic of the SL potential for M = 3, Vl = 15Er

and Vs = 40Er, and x in units of k−1
r .

The heights of the two barriers of the SL potential
shown in Fig. 2 are given by the following expressions:

Vlow = Vs(1−
Vl

4Vs
)2, Vhigh = Vs(1 +

Vl

4Vs
)2 (6)

Evidently, changing one of the amplitudes Vs,l results
in a non-linear shift of both the relative and absolute
heights of the potential barriers. Hence, it is convenient
to express our results in terms of the height of the higher
barrier Vhigh and the ratio between the lower and higher
barrier u = Vlow/Vhigh. Finally, for computational con-
venience, we recast the Schrödinger equation in a dimen-
sionless form by expressing the length in terms of k−1

r and
the energy in terms of the recoil energy Er = ℏ2k2r/2m,
where m is the atomic mass and ℏ the reduced Plank
constant.

C. Tight Binding Approximation

In the context of the tight binding (TB) approxima-
tion, we assume that in a deep enough lattice, the de-
scription of the system can be accurately truncated to
the first, or first few, energy bands [37, 38]. For a system
of M double wells (cells), i.e. a system with N = 2M
minima (sites), restricted to the lowest band, the TB
Hamiltonian takes the form:

ĤTB =

N∑
i=1

N∑
j=1

hi,jα̂
†
i α̂j , (7)

where α̂†
i (α̂i) are the creation (annihilation) operators,

creating (annihilating) either a bosonic or a fermionic
particle in the lowest band at the site i, and the matrix
elements

hi,j =

∫
w∗

i (x)
[ ℏ2

2m

∂2

∂x2
− ˆVSL

]
wj(x)dx (8)

are defined in terms of the Wannier functions wi(x) lo-
calized at each site i. In the following, we define the
Wannier functions as

wi(x) = ⟨x|χi⟩ (9)

where |χi⟩ are the eigenstates of the position operator

restricted to the lowest band (X̂band), which can be ob-

tained by solving the eigenvalue problem X̂band |χi⟩ =
χi |χi⟩, with

X̂band =

N∑
n=1

N∑
m=1

|Ψn⟩ ⟨Ψn| x̂ |Ψm⟩ ⟨Ψm| , (10)

and |Ψn⟩, |Ψm⟩ fulfilling the eigenvalue problem given by
Eq. (5). In 1D this definition of the Wannier functions
has been shown to produce uniquely defined maximally-
localized Wannier functions, even when generalized to
take into account higher bands [39]. In the following,
we aim to determine the conditions under which the TB
Hamiltonian (7), corresponding to the finite continuous
system subjected to the SL potential, can be accurately
mapped to the SSH or eSSH model.

III. IMPACT OF THE BOUNDARY
CONDITIONS ON THE FINITE CONTINUOUS

SYSTEM

In order to obtain a uniquely defined set of eigenstates
and eigenergies (up to an overall phase), specific bound-
ary conditions have to be implemented when we solve
the Schrödinger equation. For a periodic system, e.g. in
a ring geometry, one has to employ periodic boundary
conditions (PBC). In this case, it has been shown that
the lowest band of the energy spectrum of the continu-
ous system subjected to the SL potential given by Eq (4),
is in good agreement with that of the corresponding dis-
crete SSH model with PBC [11, 12]. However, in the case
of PBC the system cannot exhibit edge states by con-
struction. Hence, in order to directly observe topological
edges states we have to consider finite lattices with open
boundary conditions, i.e. systems with clearly defined
edges.
When considering finite systems, the choice of bound-

ary conditions is not unique. A common choice, is the
consideration of hard wall boundary conditions (HWBC),
i.e. to demand that the eigenstates are exactly zero (van-
ish) at the boundaries of the potential landscape. More-
over, we expect a vanishing probability of observing a
particle in the regions where the energy lies below the
potential strength, namely in the classically forbidden
regions. So, the energetically low-lying eigenstates are
expected to take values close to zero in the vicinity of
the positions of the potential’s local and global maxima.
In the context of optical lattices the boundary condi-
tions are usually considered at its maxima, so the eigen-
states are expected to not exhibit an abrupt transition
of their profiles, even in the case of HWBC. Ultimately,
from a theoretical point of view HWBC seems at first
to be a particularly natural choice for our system, es-
pecially when the description is restricted to the lowest
band. However, in this section we illustrate that the
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FIG. 3. (a,b) The energy eigenvalues of the superlattice potential with hard-wall boundary conditions for Vhigh = 40ER,
Vlow = 20ER, and M = 9 in the trivial and topological regime obtain via ED. (c) The non-topologically protected edge states
appearing in the presence of hard-wall boundary conditions for the continuous system (x in units of k−1

r ). (d,e) The energy
eigenvalues of the SSH-model in the trivial and the topological regime. (f) The edge states of the associated SSH-model. The
relevant hopping amplitudes for the SSH model, in (d)-(f), have been obtained from the bulk values of the TB Hamiltonian
i.e. v, w = hM,M±1 and µ = hM,M . The overall energy scale offset of the graphs (a,b) and (d,e) is related to the larger on-site
amplitudes of the edge sites in comparison to the bulk sites, which in this case we have not taken into account.

they are not an appropriate choice for capturing topolog-
ically protected edge states in the continuous finite sys-
tem (Sec. IIIA) and we propose an alternative boundary
which instead allows for their emergence (Sec. III B).

A. The case of hard wall boundary conditions

First, we begin our analysis with a topologically trivial
setting where no edge states emerge. Namely, we consider
the continuous system with HWBC, potential barriers of
heights Vhigh = 40Er, Vlow = 20Er and M = 9 cells
and compare the energy spectrum in the lowest band
with the one obtained from the SSH model with open
boundary conditions (OBC) as shown in Fig. 3(a) and
(d) (see also Fig. 4(a) for a schematic of the potential
in the topologically trivial regime). Evidently, we indeed
find a good agreement with the corresponding SSH model
with OBC in the topologically trivial regime.

Surprisingly, the situation is profoundly different when
considering the topological phase for the same parame-
ters and HWBC (see Fig. 4(b) for a schematic of the
potential). Specifically, the energy spectrum for the con-
tinuous system in Fig. 3(b) exhibits a structure featuring
one sub-band with M − 1 states and a higher sub-band
with M+1 states, in sharp contrast with the spectrum of
the corresponding SSH model depicted in Fig. 3(e), which
features two sub-bands containing M − 1 states and the
two edge states residing in the center of the gap. Inter-
estingly, the states in the middle of the spectra of both
the continuous system and the SSH model (ΨM , ΨM+1),
exhibit localization at the edges as shown in Fig. 3(c) and
(f).

However, the edge localized states predicted by the
continuous system have support in both odd and even
sites –unlike the topologically protected states of the SSH
model– which is a strong signature of the particle-hole
symmetry breaking of the system. Moreover, we note
that the edge localized states of the continuous system
are significantly less localized, and become well separated
from the bulk only in the case of very large or deep lat-
tices (see Appendix A for an illustrative example).

Finally, it is clear that the edge localized states in the
continuous system are not topologically protected, since
they are not separated by a sub-band gap from the bulk
states. We interpret the results presented here as an in-
dication that the HWBC cause an offset to the potential
experienced by an atom at the edge sites 1 or 2M as
compared to an atom residing in the center of the lat-
tice. Evidently, this seems irrelevant when considering
a topologically trivial lattice, however it has a profound
effect in a topological lattice where edge states may be
found.

B. Extension of the potential domain

To address the discrepancy between the continuous
system and the SSH model we introduce an extension
to the SL potential, in order to simulate a more physical
boundary than the infinite wall. This extension should
be simple enough to aid the theoretical analysis and at
the same time to be experimentally feasible. So we con-
sider a linear extension of length d and slope α, as follows
(see also Fig. 4(c)):
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Vext(x) =


Vs − α(x+ L), −(L+ d) ≤ x ≤ −L

0, −L < 0 < L

Vs + α(x− L), L ≤ x ≤ L+ d

(11)
Quite surprisingly, this rather simple extension readily
fixes the discrepancy of the spectral behaviour between
the continuous system and the SSH model. As shown
in Fig. 4(d) upon increasing the length d of the lin-
ear extension (for fixed α = 0) the edge state energies
move towards the center of the gap between the two sub-
bands. In contrast, upon increasing the slope α (for fixed
d = π/kr), and hence recovering the effect of a sharp wall
at the edge (in the limit α → ∞ and d ̸= 0), progres-
sively the edge state energies shift towards the higher sub-
band. This is shown in Fig. 4(e), where the logarithmic
scale of the x-axis highlights the relatively large values of
the slope α required for the HWBC effect to re-emerge.
Moreover, we indeed observe topologically protected edge
states, even for smaller systems withM = 3, 5 andM = 9
as shown in Fig. 5.

Finally, in Fig. 4(d) and (e) we observe asymptoti-
cally constant behaviour of the eigenenergies when d is
increased (or α decreased) beyond a certain value. Based
on this behavior we can make an estimation about the re-
quired length of the linearly extended boundary, so that
the energies of the two edge states reside in the center of
the two sub-bands. For all values of the parameters (M ,
Vhigh and Vlow), we find that a relatively small length
of the boundary extension is needed d ≤ 0.5π/kr for the
energies of the edges states to saturate with respect to d,

indicating that only the local behavior of the boundary
extension around the first and the last site is relevant.

IV. TIGHT-BINDING APPROXIMATION
ANALYSIS

In this section we are focusing on the results related
to the corresponding discrete system, i.e. the form of the
tight-binding Hamiltonian (ĤTB) and the solution of its
eigenvalue problem. Specifically, we introduce a decom-
position of the ĤTB into two terms, the Ĥ0 for the bulk
values and the δĤ that expresses the deviations due to
the HWBC (Sec. IVA). Then, we analyse the behaviour

of δĤ with respect to the parameters of the extension of
the potential (d and α), and we find the region in which
it is minimised (Sec. IVB). Finally, we consider systems

with δĤ = 0 and we focus on the behaviour of Ĥ0 (Sec.
IVC).

A. Introducing the H0 and δH terms

In order to make our analysis simpler, we establish spe-
cific notations for the hopping amplitudes hi,j , where i
and j are the indices of the sites of the discrete system
(corresponding to the minima of the superlattice poten-
tial). So we set the on-site (i = j) amplitudes as µi,
the nearest neighbour (|i− j| = 1) hopping amplitudes
as Jvi and Jwi

and the next-nearest neighbour hopping
amplitudes (|i− j| = 2) as Jti . In particular, Jvi and
Jwi

express tunneling through the odd and even barri-
ers of the superlattice potential respectively. Finally, we
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FIG. 5. The topologically protected edge states appearing in the presence of the linearly extended boundary at d = π/kr and
α = 0, for systems with M = 5, 9, 13.

consider hi,j = 0 for |i− j| > 2 because these terms are
significantly suppressed, due to the fact that they cor-
respond to tunnelling through at least three consecutive
barriers.

In the case of periodic boundary conditions (PBC), as
the potential landscape is also periodic, it is evident that
µi = µ, Jvi = Jv, Jwi

= Jw and Jti = Jt ∀i. In essence,
all the corresponding sites have the same potential envi-
ronment. However, we are interested in the realization
of edge states via a finite optical lattice so the latter has
to possess both a left and a right end at a finite x-value.
This necessarily implies that the external potential has
to be confining, breaking the translation symmetry. In
our analysis the confinement comes from the hard wall
boundary conditions (HWBC) or from the boundary ex-
tension described above. Our mapping is mostly affected
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FIG. 6. (a) The elements λ11, λ12 and λ13 versus the length
of the linearly extended boundary d and α = 0. (b) The spec-
tral radius of the matrix δH versus the length of the linearly
extended boundary d and three cases of the slope α = 0, 0.1, 1
in units of Er · kr.

by the boundaries in the case of the topologically non-
trivial configuration of the potential landscape. In par-
ticular, the tails of the localized states related to the edge
sites are forced to zero in a sharp (unnatural) way. An-
other perspective of the finite boundaries effect, is that
every site of the discrete system is mapped to a minimum
of the superlattice potential that features a different en-
vironment. With that in mind, we define:

hi,j =


µ+ δµi i = j

Jv,w + δJvi,wi
|i− j| = 1

Jt + δJti |i− j| = 2

(12)

where µ, Jv, Jw and Jt are the bulk values correspond-
ing to the center sites (M and M ± 1, M ± 2), while
δµi, δJvi , δJwi and δJti denote the deviations from these
bulk values at each site. Those deviations will be present
in any confining potential, since they express the grad-
ual modification of the potential environment towards
the edges of the system. So, even though the following
analysis is based on the consideration of HWBC or of
a linear boundary, the techniques that we develop here
can be applied to any kind of confining potential. The
Hamiltonian of the system can be written as:

HTB = H(0) + δH (13)

where H(0) has as elements the bulk values, and δH the
deviations.

B. Minimising the δH term

In order to examine the behaviour of the δH term, we
can define the λ matrix, with elements:

λij =
∣∣δHij

∣∣/∣∣H(0)
ij

∣∣ (14)

expressing the relative deviation from the bulk values.
As we can see in Fig. 7(a), the strongest (and only sig-
nificant) deviations arise from the terms that correspond
to the endpoints, in accordance with the results of the
continuous system. Furthermore, we see that the ele-
ments of the λ matrix depend on the parameters of the
linear extension of the potential domain. Specifically, as
we can see in Fig. 6 (a), for fixed α and increasing d,
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(and α = 0) for different values of the ratio u of the heights of the potential. In all cases, we have used color plots as a visual
tool to display the elements of the matrices. The elements HTB

ij are in units of Er.

they decrease down to certain minimum values and then
increase until they stabilize and become d-independent.
In order to determine the critical length dcrit for which
the elements of the λ matrix are minimized, we employ
the spectral radius [40]. Namely, we solve the eigenvalue
problem of the matrix δH for specific values of the pa-

0.5 0.7 0.9

u

0.0

0.2

0.4

0.6

0.8

1.0

α
(E

r
·k

r
)

M= 5,   Vhigh = 40Er

0.1

0.2

0.3

0.4

0.5

dcrit(Lcell)

FIG. 8. Color plot of the dcrit in units of Lcell defined as the
point of minimum of the spectral radius versus the ratio of
the heights of the potential barriers u and the slope α. The
area colored in deep red indicates the parameter region where
the spectral radius has no minimum.

rameters d and α, and we find the eigenvalue with the
maximum absolute value, which is the spectral radius
ρ(δH) of the matrix. We repeat this process for different
values of the parameter d. Finally, we identify as dcrit
the value of d for which ρ(δH) is minimized. As shown
in Fig. 6 (b) for three different cases of the slope α there
is indeed a dcrit. Moreover, we observe in Fig. 8 that
for specific values of the parameters of the system there
is no minimum in the spectral radius, and one should
find a different way to define dcrit. For example, in those
cases dcrit could be defined as the value of d for which
the elements of the λ matrix become d-independent.

C. The behaviour of the HNNN term

In this subsection we consider systems with d = dcrit
so that we can omit the δH term. Hence, we can write
HTB as:

HTB = H(0) = Hµ +HSSH +HNNN (15)

whereHµ andHNNN express the on-site and next-nearest
neighbour hopping terms respectively. We can also ne-
glect the Hµ term, since it represents an overall offset in
the energy scale that does not affect the phenomenology
of our systems. So we reach to HTB = HSSH + HNNN
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which is clearly the exact same as Eq. (3). Thus, we
have ultimately obtained the usual SSH model with the
addition of NNN hopping terms (eSSH). In Fig. 7 (b)
we present how the final form of the TB Hamiltonian is
affected by the ratio of the heights of the two potential
barriers u. For fixed Vhigh and increasing u we see Jv
increasing, Jw decreasing and Jt slightly decreasing (see
also Fig. 10 for the exact values for three different cases
of Vhigh).

In order to neglect the HNNN term we have to make
a strong assumption, since we have to take into account
the different scales of magnitude of the hopping ampli-
tudes. To this end, we define the ratios that we present
in Fig. 9. Specifically, Jv/Jw and Jt/Jv express relative
sizes of the weak to strong and NNN to weak hopping
amplitudes, respectively. As we increase u, we observe
Jv/Jw increasing and Jt/Jv decreasing. Therefore, there
is a specific value of u for which the two ratios are cross-
ing (orange point in the graph of Fig. 9). We could in
principle define this value as a ucrit and omit the HNNN

term for u > ucrit. Alternatively, we could define ucrit

as the value of u for which Jv/Jw and (Jt/Jv)/(Jv/Jw)
are crossing (red point in the graph of Fig. 9). The ra-
tio (Jt/Jv)/(Jv/Jw) expresses how Jv varies from small
(close to Jt) to large (close to Jw) orders of magnitude
(for fixed Vhigh and increasing u). This is naturally a
more strict definition, since for the first definition we
omit the HNNN term when Jv/Jw > Jt/Jv while for

the second when Jv/Jw >
√
Jt/Jv. We mention that for

both definitions ucrit is Vhigh dependent.

We close this subsection by noting that both SSH and
eSSH support edge states. However, when it comes to
their experimental realization via an optical lattice, the
NNN terms will always be present if both wells are not
deep enough. Thus, the eSSH model is the easier to
be implemented. We note that next-neighbor tunneling
terms in the SL were, e.g., considered in the context of
Thouless pumps, where they can lead to a deviation of
the pumped charge [41].

D. Experimental Considerations

An extension of the boundary as proposed here is ex-
perimentally feasible by combining an optical lattice with
an arbitrary optical dipole potential projected via a high
resolution imaging system. This allows shaping the po-
tential at the scale of a single lattice site and also to pre-
pare desired lattice occupations [42, 43] and was recently
used to create sufficiently steep walls for the creation of
edge states in 2D systems [26, 27]. The above analysis
shows that the correct mid-gap states are reached for a
range of parameters without fine tuning, making it exper-
imentally feasible. The selective preparation of the edge
states could be achieved, e.g., by an appropriate charge
pump or by heating away all other atoms via an ampli-
tude modulation that leaves the edge state unaffected.

0.5 0.6 0.7 0.8 0.9

u

0.0

0.5

1.0

1.5

Jv/Jw

Jt/Jv

JtJw/J
2
v

M= 5,  Vhigh = 40Er,   d= 0.14Lcell,   α= 0

FIG. 9. The ratios Jv/Jw, Jt/Jv and (Jt/Jv)/(Jv/Jw) for the
hopping amplitudes of a system with M = 5, Vhigh = 40Er

and d = dcrit. The horizontal dashed line shows the 0.2 ratio
value, while the vertical dashed lines show the values of u
where the crossing of Jv/Jw with Jt/Jv and (Jt/Jv)/(Jv/Jw)
occurs.

V. SUMMARY AND PERSPECTIVES

We have studied the mapping of a finite continuous
optical lattice, within the tight-binding approximation,
to an SSH and an eSSH model. We revealed the com-
plications that emerge from the confinement of the sys-
tem, when hard wall boundary conditions are considered.
Specifically, we found that especially in the topologically
non-trivial case, there is a substantial discrepancy in the
characteristics of the edge states of the system between
what is expected for the SSH model and the results pro-
vided by the ED. We found that this is related to the
fact that the potential environment is gradually chang-
ing from the bulk towards the ends of the system, due
to the confinement. We then proceeded by providing a
solution to this problem through a linear extension of
the potential area. In detail, we established and used
qualitative criteria in order to describe the minimization
of the effects related to the HWBC. We also examined
the behaviour of the NNN hopping terms in system with
experimentally feasible depths of wells.

The goal of the present work was to reveal the problems
occurring in the mapping of a continuous optical lattice
potential to a discrete SSH model when finite size and
open boundary conditions are considered. From a theo-
retical point of view, these problems are resolved with the
boundaries extension we proposed here. Nevertheless, for
the design of an optimal experimental set-up capable to
detect the associated edge states, a more advanced opti-
mization procedure, involving a more general functional
form of the potential extension, may be needed. This
functional form should be eventually also adapted to the
experimental requirements for the specific set-up. Addi-
tionally, the observability of the continuous formed edge
states may be influenced significantly by their dynamics.
However, a corresponding dynamics analysis goes beyond
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(a)
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Jt

M= 5,  Vhigh = 40Er,   d= 0.14Lcell,   α= 0

(b)
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Jv

Jw

Jt

M= 5,  Vhigh = 60Er,   d= 0.15Lcell,   α= 0

(c)

FIG. 10. The Jv, Jw and Jt hopping amplitudes values in units of Er for systems with M = 5, (a) Vhigh = 20Er and
d = 0.15Lcell (b) Vhigh = 40Er and d = 0.14Lcell and (c) Vhigh = 60Er and d = 0.15Lcell. In (a) the x-axis starts from 0.6,
since for u < 0.6 not all eigenergies of the first band lies below the lowest barrier (Vlow).

the scope of the present work and will be investigated in
the future.

The exact realization of tight-binding models for ul-
tracold atoms was recently also considered for tweezer
arrays, including the homogeneity of the on-site interac-
tion strength [44]. The study of interacting superlattice
systems is particularly interesting, because the bosonic
model with weak interactions lacks chiral symmetry and
the edge states are no longer mid-gap [19]. Further inter-
esting extensions would be to consider optimal parame-
ters for mid-gap states in the bulk of the system induced
by impurities [45] or by a step in the confining poten-
tial [19], as well as optimal boundaries when combining
superlattices with a Floquet drive to realize the AIII sym-
metry class [46]. It would also be interesting to perform
a similar anaylsis for engineered systems with indirect
band gaps, where surprisingly no localized edge states
were found [47].
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APPENDIX

Appendix A: Edge localized states of very
large/deep lattice

In Fig. 11 we present the energy spectrum and the edge
localized states of a very (a) large and (b) deep lattice
when HWBC are considered, i.e. without the extension
of the potential domain. In both cases the energies of the
two edge localized states feature an energy shift towards
the upper band. This is to be expected, since it is related
to the consideration of HWBC for the system. However,
in the case of the very deep lattice we observe that the
profiles of the two edge localized states look similar to
those of an eSSH model. This is remarkable, since the
discrepancy on the energies is still present.
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FIG. 11. The energy spectrum and the profiles of the cor-
responding edge localized states for a very (a) large and (b)
deep lattice (x is in units of k−1

r ).
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