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Recent work has studied fermion transport through a finite one-dimensional lattice of quantum
dots, with localized particle loss from the central lattice site. The dots at each end of the lattice
are connected to macroscopic leads, represented as zero-temperature reservoirs of free fermions with
a given potential difference. Here we show how this model represents one limiting case of a larger
class of models that can be realized with cold quantum gases in optical lattices. While quantum gas
realizations allow many system parameters to be varied, we note limitations from finite size effects,
and conclude that quantum dots and quantum gases offer complementary views on transport through
lossy finite lattices.

I. INTRODUCTION

A. Motivation and background

The effects of localized loss on quantum transport are
of high current interest both as examples of fundamental
phenomena and as practical tools for controlling quan-
tum states and processes [3–10]. In particular, recent
theoretical work [1, 2] has investigated fermions travel-
ing from one reservoir to another through a finite chain of
sites, with one of the sites having a finite rate of particle
loss. The finite number of sites means that the current is
dramatically affected by reflection and discrete eigenfre-
quencies, and so losing particles from one site does not
just drain away some current classically, but also modifies
quantum interference effects.

Reference [2] has solved this general problem with
nonequilibrium Green’s functions in the Keldysh formal-
ism extended to open quantum systems. The main result
for the steady-state fermionic current through the finite
chain is that conductivity shows discrete steps, as a func-
tion of voltage between the reservoirs across the chain of
sites, and that the lossy site systematically smooths out
these steps, even with moderate loss rates. Higher loss
rates also significantly lower the steps, reducing overall
conductivity.

Letting the single lossy site be the central site, with an
odd number of sites in the chain, elegantly isolates the
effect of loss on the conductivity steps. The conductiv-
ity steps are associated with energetic access to single-
particle eigenstates in the finite chain; with reflection
symmetry, odd-parity eigenstates have nodes at the loss
site, and transport through these channels is much less
affected by the loss than transport through even-parity
channels. This shows up clearly in [2] in conductivity
steps that alternate between smooth and steep.

Although [2] explicitly raises the possibility of experi-
mental realizations with ultracold fermi gases in optical
lattices, however, its concrete results are obtained for pa-
rameter regimes that rather represent electron transport
through a chain of quantum dots, with the reservoir roles
played by macroscopic wire leads. In this paper we there-

fore look critically at a quantum gas realization of this
lossy transport problem. Instead of applying an open-
system formalism, we replace the macroscopic fermion
reservoirs of [2] with more lattice sites like the ones in the
finite middle chain. The finite middle chain is only sep-
arated from the “reservoir” parts of the lattice by “weak
links” of slower tunneling rates between sites. We will
show, first of all, that this particular class of Hamilto-
nian realizations of the particle reservoirs can indeed re-
produce exactly the results of [2]. We will then re-tune
our parameters to represent experiments that will likely
be more straightforward with quantum gases. We will
investigate both finite-temperature and finite-size effects,
and conclude that experiments with quantum gases are
realistically feasible, and can provide complementary in-
sights to those offered by quantum dots.

B. Paper structure

In Section II immediately below we will introduce
our lattice Fermi gas and show how all single-particle
observables can be found by solving a single-particle
Schrödinger equation. Loss from the central lattice site,
which is defined through a Lindblad master equation, is
shown to be described exactly by an imaginary potential
term in the Schrödinger equation.
In Section III we will then explain the class of initial

states which let this infinite closed system exactly repro-
duce the observables of the open system in which a finite
lattice is coupled at its ends to particle reservoirs. In par-
ticular we will present a case of our model which exactly
reproduces the results of [2] for finite chains of quantum
dots coupled to macroscopic leads.
In Section IV we will then re-tune our infinite model to

correspond more closely to the most straightforward kind
of quantum gas experiments, with chemical potential dif-
ferences between the left and right reservoirs, but no on-
site potential differences, and with densities of states in
the middle and outer sections of the lattice all equal, in-
stead of having much greater densities of states in the
reservoirs. We predict steady-state currents that are
qualitatively similar to those found in [2] for the quan-
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tum dot system with leads. There are abrupt steps in
the conductivity at chemical potential differences corre-
sponding to eigenfrequencies of the isolated middle lat-
tice; the steps are smoothed by the loss at the central
site, or remain quite sharp, depending on the parity of
the corresponding eigenfunctions. Although qualitatively
very similar, the straightforward quantum gas scenario is
found to differ in detail from the quantum dot version of
the experiment.

In Section V we will consider the experimentally im-
portant constraint of finite lattice size, which in the pres-
ence of loss means that the only true steady state of the
system is absence of particles (except in cases with reflec-
tion symmetry, in which odd-parity modes may be occu-
pied, but no transport occurs). We will show, however,
that if the outer ends of the lattice contain sufficiently
many sites, then there is a time interval during which
the system can can sustain a quasi-steady flow of par-
ticles through the middle region. We will further show
that the current during this quasi-steady era corresponds
closely to the steady-state current in the infinite system,
with residual finite-size effects that are small for lattices
with total site numbers of order 100.

We will conclude in Section VI with a summary of our
results and an outlook toward further theoretical and ex-
perimental work to address bosons, finite temperatures,
interactions, and multiple loss sites. A series of Appen-
dices supply technical details and derivations of formulas
provided in the main text.

II. REDUCTION TO A ONE-PARTICLE
SCHRÖDINGER EQUATION

A. Infinite lattices with weak links as finite lattices
between reservoirs

We consider an infinite one-dimensional lattice of sites
that can be occupied by non-interacting particles that
can move between sites. In second-quantized notation
the Hamiltonian operator takes the form

Ĥ = h̄τ

∞∑
m=−∞

(
−Tm(â†m+1âm + â†mâm+1) + Vmâ

†
mâm

)
,

(1)

where m labels each site, τ is a frequency scale, and
âm and â†m are canonical destruction and creation oper-
ators. We will have effectively spinless fermions in mind
throughout this paper, but the reduction to a single-
particle problem that we are about to describe proceeds
identically for bosons as well; the only difference between
fermions and bosons in this problem is whether Fermi-
Dirac or Bose-Einstein distributions are appropriate as
initial states. Throughout this paper we will use m and
m′ to refer to sites or numbers of sites, and reserve n for
numbers of particles.

The site-dependent parameters Tm > 0 and Vm do
not depend arbitrarily on m, but have a simple pattern
that defines a symmetrical finite chain of 2M + 1 sites
(|m| ≤M) centered between semi-infinite reservoir zones
on the left and right:

Tm =


1 , −(M + 1) ≤ m ≤M
Λ , m < −(M + 2) or m > M + 1

τ1
√
Λ , m = −(M + 2) or m =M + 1

(2)

Vm =


0 , |m| ≤M

+V
2 , m < −M

−V
2 , m > M

. (3)

Our overall frequency scale τ is thus the inter-site hop-
ping rate in the middle chain of sites, while the dimen-
sionless parameters Λ and τ1 effectively define, respec-
tively, the density of states in the infinite outer ends of
the lattice, and the links between the outer ends and the
finite middle section. We have included the factor of

√
Λ

with the factor τ1 because this will turn out to leave a
non-trivial model in the limit Λ → ∞. In particular this
limit will let the infinite outer ends of the lattice repro-
duce the effects of macroscopic leads that are treated as
reservoirs, when τ1 < 1 implies a “weak link” between
the finite middle lattice and the outer “reservoir” ends.

B. Localized loss at site m = 0

Following [2], we add particle loss at site m = 0 to our
model by assuming the time evolution of the many-body
density operator ρ̂(t) to be governed by the Lindblad
master equation

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] + γτ

(
â0ρ̂â

†
0 −

â†0â0ρ̂+ ρ̂â†0â0
2

)
. (4)

With the middle-chain hopping rate τ as our basic time
scale, the dimensionless rate factor γ defines the aver-
age rate γτ at which particles are lost, in a probabilistic
Poisson process, from site m = 0. In quantum gas real-
izations of our model, this loss can be tuned by ejecting
particles from the central lattice site using lasers or elec-
tron beams.

C. Reduction to a Schrödinger equation with a
complex potential

1. Single-particle observables

Equations (1) and (4) describe a many-body system
of arbitrarily many non-interacting fermions or bosons.
The most accessible experimental observables for many-
body systems, however, are usually operators of the form

Ô =
∑

m′mOmm′ â†m′ âm, which for appropriate matrix
elements Omm′ include particle density, momentum den-
sity, kinetic energy density, and kinetic energy current
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density, as well as first-order quantum coherences be-
tween arbitrary lattice sites.

Observables of this class are called single-particle ob-
servables because they do not directly probe interparti-
cle correlations. Their expectation values in an arbitrary
many-body mixed quantum state can be given in terms of
the (unnormalized)single-particle density matrix Rm′m:

⟨Ô⟩ = Tr(Ôρ̂) =
∑
m′,m

Omm′Tr(â†m′ âmρ̂)

=:
∑
m′,m

Omm′Rm′m . (5)

Rm′m is referred to as a single-particle density matrix be-
cause, as a Hermitian matrix with non-zero eigenvalues in
the Hilbert space of lattice sites m, it is indistinguishable
from the mixed-state density matrix of a single particle,
apart from a normalization factor.

(This normalization factor is simply the average total
particle number,

∑
m

Rm′m = Tr
(
ρ̂
∑
m

â†m′ âm

)
. (6)

If the particles are conserved, it is often conventional to
normalize Rm′m by dividing it by its trace. Since parti-
cles can be lost in our case at site m = 0, however, the
trace of Rm′m can in general be time-dependent. The
unnormalized Rm′m that we use is the more directly rel-
evant quantity, anyway, for the simple Ô-type observables
in the many-body system.)

Since no information about correlations between par-
ticles is included in Rm′m, Rm′m is in general a very in-
complete description of a many-body system. It is not an
approximation, however, but rather an exact representa-
tion of a restricted class of observables—which happens
to include most observables of physical interest.

2. Single-particle master equation

In the presence of interparticle interactions or non-
linear Lindblad operators, interparticle correlations can
still affect the single-particle observables indirectly, even
strongly, because time evolution couples Rm′m to expec-

tation values of higher-order combinations of â†m′ and
âm operators, in the typically infinite BBGKY hierarchy.
Since our Ĥ from (1) includes no interactions among the
particles, however, and our Lindblad operator is simply
â0, in our case the exact time evolution of Rm′m(t) is
given by a single-particle master equation which closes,
in the sense that it involves only Rm′m itself. Inserting
our many-body Lindblad equation (4) into the definition
of Rm′m and applying canonical (anti-)commutation re-

lations âmâ
†
m′ ± â†m′ âm = δm′m for either fermions or

bosons reveals

i

τ
Ṙm′m =Tm′Rm′+1,m + Tm′−1Rm′−1,m

− TmRm′,m+1 − Tm−1Rm′,m−1

+ (Vm − Vm′)Rm′m

− i
γ

2

(
δm′0R0m + δ0mRm′0

)
. (7)

3. Single-particle Schrödinger equation

Equation (7) can then be greatly simplified even fur-
ther, by noting that it can be solved by a factorizing
Ansatz of the form

Rm′m(t) =
∑
j,j′

∫
dω dω′Aj′j(ω, ω

′)

× eiτ(ω
′−ω)tΨj′∗

m′ (ω
′)Ψj

m(ω) (8)

as long as the Ψj
m(ω) are solutions ψm → Ψj

m(ω) of time-
independent single-particle Schrödinger equation

ωψm = −Tmψm+1 − Tm−1ψm−1 + (Vm − i
γ

2
δm0)ψm

(9)

with a complex potential at m = 0. The superscript j
in Ψj

m(ω) is used to distinguish independent solutions to
(9) having the same eigenfrequency ω, if these exist.

D. Open or closed?

This concludes our definition of our non-interacting
lattice gas with weak links and loss. Although our sys-
tem is open in the sense of having loss, the loss can be
represented exactly with an imaginary potential. We do
not include any external sources of particles or energy, or
noise of any kind. We nevertheless propose to consider
the middle chain of 2M+1 sites, between the weak links,
as an open system, for which the infinite outer ends of
the lattice constitute reservoirs that can send particles
into or through the middle chain of sites. In the next
Section we will explain how this works.

III. NON-EQUILIBRIUM STATIONARY
STATES

A. Non-equilibrium many-body system states from
single-particle wave functions?

So how do we use solutions to our single-particle
Schrödinger equation (9) to describe non-equilibrium
steady states as in [2], with particle transport between
the two reservoirs through the finite middle chain with
its single lossy site?
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We will consider special cases of (8) of the form

Rm′m =
∑

j=L,R

∫
dωDj(ω)fj(ω)Ψ

j∗
m′(ω)Ψ

j
m(ω) , (10)

with j = L,R denoting wave functions that are incident
from the left and right, respectively. Here Dj(ω) are the
corresponding densities of states, and fj(ω) are Fermi-
Dirac distributions with independent temperatures and
chemical potentials for j = L and j = R. (In future work
it will be straightforward to use Bose-Einstein distribu-
tions instead, and describe analogous transport problems
with quantum Bose gases. In our concluding Section VI
we suggest that the bosonic problem will be less interest-
ing, however, unless interactions are present.)

Since in general we allow a potential difference V be-
tween the left and right ends of our infinite lattice, as
well as different equilibrium distributions for fL and fR,
our stationary states will include transport in general.

In Appendix A we will explicitly construct the ΨL,R
m (ω)

solutions to (9); in the remainder of our main text we
will use reflection and transmission coefficients that are
derived in that Appendix. Here we explain why an Rm′m

of the form (10) really does represent non-equilibrium
steady states of our system, and then outline how we
will use these Rm′m to compute observable quantities in
these states.

B. Left- and right-incident normalized
eigenfunctions

The solutions ΨL,R
m (ω) that we construct explicitly in

Appendix A have the following “scattering” forms for
|m| > M :

√
2πΨL

n(ω) =

{
eikLm +RL(ω)e

−ikLm , m < −M√
sin(kL)
sin(kR)T (ω)eikRm , m > M

√
2πΨR

n (ω) =

{ √
sin(kR)
sin(kL)T (ω)e−ikLm , m < −M

e−ikRm +RR(ω)e
ikRm , m > M

,

(11)

for transmission and reflection coefficients T and RL,R

that we compute in Appendix A and will use below. The
behaviors of ΨL,R

m for |m| ≤ M are shown in Appendix
A, but will not be needed for any results we will present
in our main text.

Since we have neither time-reversal nor (unless V = 0)
spatial reflection symmetry, the fact that the transmis-
sion coefficient T (ω) is the same for both left- and right-
incident waves is not obvious, but it turns out to be so in
all possible cases of our model. The reflection coefficients
RL,R(ω), in contrast, do not coincide in general. In the
special cases that we will consider explicitly within our
main text, however, RL,R → R(ω) are in fact the same,
because kL,R are the same, because these cases will either
have V = 0 or Λ → ∞.

In the |m| > M regions the wave numbers kL,R(ω)
can be identified immediately, by recognizing that plane
waves e±ikLm are local solutions to the single-particle
Schrödinger equation (9) for m < −M , as are e±ikRm for
m > M , if

−2Λ cos(kL,R)±
V

2
= ω (12)

where the +(−) branch of ± applies for L(R). The ratios
of sin(kL,R) that appear as factors before TL,R are the
usual ratios of group velocities dω/dk that appear in one-
dimensional transmission and reflection problems when
the left and right asymptotic group velocities may be
different, as here if V ̸= 0. We can also note from (12)
that the densities of states which appear in our stationary
Rm′m integral (10) are

DL,R(ω) =
1
dω

dkL,R

=
1

2Λ sin
(
kL,R(ω)

) , (13)

which as usual in one-dimensional systems are the inverse
group velocities.

C. Why scattering wave functions?

The first reason for defining the left- and right-incident
wave functions ΨL,R

m in this way (11) is that they allow
us easily to create arbitrary incident wave packets at in-
finity. For example, in a superposition of the form∫

dkL e
− 1

2∆m2(kL−k̄)2e−ikLm̄ΨL
m (14)

for arbitrary k̄ ∈ [0, π] and large ∆m ≫ 1 but even
larger negative m̄≪ −∆m, only the incoming wave term
∝ eikLm in ΨL

m will contribute significantly—and it will
contribute essentially the same Gaussian wave packet,
centered on m = m̄ and wave number kL = k̄, that we
would obtain if ΨL

m consisted of nothing but that incom-
ing wave because we were dealing with an infinite uniform
lattice with no weak or lossy links anywhere.
It is then the implication of these incoming wave pack-

ets from infinity that is our main reason for defining the
ΨL,R

m . An equilibrium ensemble of incoming wave packets
represents the particles which approach our finite middle
chain, with its lossy site, from an infinite reservoir of
particles in equilibrium. Consequently we must be able
to represent the single particle density matrix Rm′m of
a steady state of our system, with distinct equilibrium
distributions at left and right infinity, in the form (10)
that we defined at the beginning of this Section.

D. Cases with imaginary kL,R

In general it may happen that one or the other of
kL,R(ω) as given by (12) is complex. No cases with com-
plex kL,R will need to be considered here in our main
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text, but for possible use in future work we discuss this
technicality further in Appendix B.

E. Observables in the steady state

From our steady-state single-particle density matrix
(10), and the explicit eigenfunctions we derive in Ap-
pendix A, it is straightforward to compute several steady-
state observables as functions of the Hamiltonian param-
eters and the initial states of the left and right lattice
ends. The most basic observable is the local occupation
number at each site m, which is simply a diagonal ele-
ment of the unnormalized density matrix:

n̄m = Tr(ρ̂â†mâm) = Rmm . (15)

Within the finite middle chain of sites, n̄m for |m| ≤
M will depend on the ΨL,R

m (ω) for |m| ≤ M , and will
therefore not have any simple relation to the T and RL,R

coefficients that define the wave functions for |m| > M .
We will focus instead on observables that relate directly
to transport.

The simplest of these is the particle current. From the
single-particle master equation (7) we obtain

d

dt
n̄m = −γτδm0n̄0 − (Jm+1 − Jm)

Jm = iτTm−1(Rm,m−1 −Rm−1,m) . (16)

Since the first line of (16) is an obvious discrete version
of the continuous continuity equation, we recognize Jm
as the particle number current from left to right, which
is also proportional to the average momentum at site m.
In a stationary state, n̄m is time-independent, and so

we conclude that the particle number current is piecewise
constant as a function of m:

Jm = τ

{
I + γn̄0

2 , m ≤ 0
I − γn̄0

2 , m > 0 ,
(17)

for constant average current I. Since the difference be-
tween the piecewise constant currents on each side of
m = 0 thus represents particle transport into the cen-
tral lossy site from the two reservoirs, we can follow [2]
and take I as a representation of net transport through
the finite middle lattice from the left reservoir into the
right reservoir. With our stationary Rm′m represented
in the form (10), we can evaluate JL,R by evaluating Jm
for |m| > M , and then use our |m| > M forms for ΨL,R

m

in (11) to conclude

I =
1

4π

∫
dω
(
fL(ω)− fR(ω)

)(
1 + |T |2 − |R|2

)
, (18)

where fL,R(ω) are equilibrium occupation distributions
that can be different for the two ends of the lattice. In
(18) we have assumed RL,R → R as they do in the cases
V = 0 or Λ → ∞; a more general formula for I is given in

Appendix C. The density of states factors DL,R(ω) from
(10) have not been omitted accidentally from (18): they
are truly absent, being conveniently canceled by group
velocity factors that appear in Jm.
Additional single-particle observables that may be of

interest, and that can probably be measured in quantum
gas experiments, include the local energy at sitem, which
is also simply related to the momentum current, as well
as the energy current, which could offer insight into how
the central lossy cite absorbs heat as well as particles.
We will only consider the particle current I here in our
main text, but we derive the corresponding formulas for
the other observables in Appendix C.

F. Semi-infinite lattices as macroscopic leads: The
Λ → ∞ limit

We now confirm that our infinite lattice model, with
weak links between the finite middle chain and the semi-
infinite ends, does indeed represent a finite middle chain
coupled to particle reservoirs.

1. Transmission and reflection coefficients T and R for
Λ → ∞

As we show in Appendix A, the dimensionless param-
eter Λ does not appear explicitly anywhere in the ex-
pressions for RL,R and T . Λ decisively affects kL,R(ω)
according to (12), however, and kL,R do both appear in
RL,R and T . In the limit Λ → ∞, in particular, the com-
plicated general formulas of Appendix A for RL,R and T
simplify dramatically.

For Λ → ∞ the continuous bandwidth |ω∓ V/2| ≤ 2Λ
of the semi-infinite outer parts of the lattice becomes
much broader than the bandwidth |ω| ≤ 2 of the finite
middle chain of sites. Wave vectors for |ω| ≫ 2 decay so
sharply within |m| < M that they contribute negligibly
to any observables within the middle chain, including
the particle current through the middle chain, so as far
as any such observables are concerned, we can restrict
our attention to |ω| ≪ Λ. For all these ω, the limit
Λ → ∞ means that kL,R are both negligibly different
from π/2. This implies that the density of states in the
“reservoir” ends of the lattice is uniform over the entire
frequency range that matters for transport through the
finite middle chain.
With the replacement kL,R → π/2, then, our expres-

sions from Appendix A simplify—in particular RL,R →
R because kL = kR. Defining k(ω) without subscript to
be the wave number in the middle chain,

k(ω) = cos−1
(
− ω

2

)
, (19)

we obtain (see Appendix A)
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1 + |T |2 − |R|2 =
2

|Z(ω)|2

[
sin2(k) +

γ

4

(
sin2[k(M + 1)]

τ21
+ τ21 sin2(kM)

)]
|Z(ω)|2 =

(
sin[k(M + 1)] cos[k(M + 1)]

τ21
+ τ21 sin(kM) cos(kM)

)2

+

[
sin(k) +

γ

4 sin(k)

(
sin2[k(M + 1)]

τ21
+ τ21 sin2(kM)

)]2
. (20)

Since we consider small τ1, to make weak links be-
tween the outer ends and the middle chain, the impor-
tant feature in (20) is that the denominator |Z(ω)|2 is
large (of order τ−4

1 ), making the current contribution
from a given ω small, unless either sin[(M + 1)k(ω)] or
cos[(M + 1)k(ω)] is small. These are precisely the con-
ditions sin[2k(ω)(M + 1)] = 0 that define the 2M + 1
discrete eigenfrequencies

ωn = −2 cos(kn)

kn =
nπ

2(M + 1)
, n ∈ [1, 2M + 1] (21)

of the middle chain when it is isolated (τ1 → 0 so that
the outer ends of the lattice can be ignored). Transport
through the weakly linked middle chain will therefore be
small except for particles with frequencies close to one of
these resonant frequencies ωn.

It can further be noted, however, that the numerator
in 1 + |T |2 − |R|2 in (20) can also somewhat large—
of order γτ−2

1 —unless sin[(M + 1)k(ω)] is small. For
moderate γ this broadens the transmission resonances at
cos[(M+1)kn] = 0, although for large γ the denominator
term of order γ2τ−4

1 also lowers the contributions of these
resonances.

At the resonances with sin[(M+1)kn] = 0, in contrast,
all the terms with negative powers of τ1 vanish, and small
τ1 makes the transmission factor (1+ |T |2−|R|2)/2 close
to one. This is easy to understand: the isolated-chain
eigenfrequencies ωn with sin[(M+1)kn] = 0 are those for
which the isolated-chain eigenfunctions are odd functions
ofm and so have nodes at the lossy sitem = 0. Transport
through these channels is protected against loss by parity
symmetry, as reported in [2]. Transport at their resonant
frequencies is only affected by loss insofar as the weak
links provide non-resonant coupling to other modes of
the finite chain that do not have nodes at m = 0 and so
do have loss.

2. Current I through the chain for Λ → ∞

To confirm that we are reproducing the results of [2],
we follow it in considering fermions at zero temperature,
with a non-zero voltage difference V ranging through the
finite chain bandwidth −2 < ω < 2. Since the density of

FIG. 1. The dimensionless current I through a finite mid-
dle chain of five sites (M = 2), divided by τ2

1 as in [2], as a
function of potential difference V between the left and right
semi-infinite ends of the infinite lattice, for four different val-
ues of γ (from top to bottom at the left side of the plot: γ = 0,
0.5, 5, 100.) In all cases τ1 = 0.1. The thin, dark curves that
only extend to V = 4.5 are computed by numerical integra-
tion of our (18) with (20) and (22), while the broader, fainter
curves that extend to the right edge of the plot are taken from
Figure 5a) of Reference [2]. The thin, dark curves lie directly
on top of the broad, faint curves, confirming the equivalence
of the present model for Λ → ∞ and the open system treated
in [2].

conduction-band electrons in a metal lead is a nearly con-
stant property of the material regardless of electrostatic
potential, we keep the chemical potentials (i.e. Fermi en-
ergies) µL,R in the left and right reservoir fL,R(ω) equal
to the voltages ±V/2, so that the reservoirs differ in po-
tential but have equal fermion densities:

fL,R(ω) = θ
(
± V

2
− ω

)
. (22)

As we see in Fig. 1, our infinite lattice model exactly re-
produces the results from [2] for a finite lattice between
two macroscopic leads, treated with Kheldysh path in-
tegrals. Figure 1 differs only in plotting resolution from
Figure 5 of [2]. Scaling the lattice weak link as τ1τ

√
Λ

while the outer lattice ends have hopping rate Λτ , and
then taking Λ → ∞ to make the reservoir density of
states effectively constant, maps the infinite lattice gas
model onto the macroscopic leads problem of [2].
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IV. A QUANTUM GAS VERSION

A. The quantum gas set-up

Having confirmed that the infinite lattice model with
weak links can indeed describe the finite chain of quan-
tum dots coupled to leads as studied in [2], we now exam-
ine a version of the lattice problem that would be more
straightforward to realize with an ultracold Fermi gas in
a one-dimensional optical lattice (or a three-dimensional
array of many one-dimensional lattices, allowing single-
shot measurements of ensembles of the one-dimensional
system). While the limit of large Λ could be achieved by
making τ small, with high potential barriers between the
sites in the middle chain, this would slow the system’s
approach to a steady state, possibly to the point where
steady-state behavior could not be seen within the sam-
ple lifetime. We therefore focus on the experimentally
more straightforward case Λ = 1.

The on-site potential in the lattice can also be made
non-uniform in cold atom experiments, but it may be
challenging to make the potential piecewise uniform with
abrupt steps between the middle and the outer ends of
the lattice. We therefore set V → 0, leaving the two weak
links as the only nonuniformity in the lattice. With no
analogous constraint to the fixed fermion density of metal
leads, however, we are free to let the chemical potentials
µL,R in the two lattice ends be arbitrary. Varying µL−µR

while keeping V = 0 will turn out to have similar effects
to varying V with Fermi energies locked to µL,R = ±V/2;
the mechanism of opening more transmission channels as
the Fermi level rises is exactly the same, after all.

With no need to maintain fixed Fermion densities in
both reservoirs, moreover, we are free in the quantum gas
scenario to let µR lie below the ground state energy, so
that no particles at all are incident from the right, and
the entire current is from left reservoir to right reservoir,
through the middle chain with its central site loss, minus
reflection from the weak links back into the left reservoir.
This means that instead of (22) we now take

fL(ω) = θ(µL − ω) (23)

and fR = 0.
This less symmetrical but simpler set-up also has the

advantage of showing more conductivity steps. In the
±V ̸= 0 scenario with equal fermion densities in leads,
the currents from right and from left exactly cancel in
the frequency range ω < −V/2, so that the integral (18)
over ω is effectively over the symmetrical middle range
|ω| < V/2. Since the resonant frequencies of the trans-
mission channels through the finite middle chain are in
symmetrical pairs ±ωn, raising V effectively only opens
new channels in pairs, producing only M + 1 conduc-
tivity steps. In the quantum gas scenario with particles
coming only from the left reservoir, in contrast, raising
µL through the system’s frequency band sweeps through
each of the 2M + 1 transmission resonances separately.

FIG. 2. Dimensionless fermion current I at zero temperature,
as a function of left-side chemical potential µL, for two dif-
ferent central-site loss rates γ. Both plots show τ1 = 0.1 as
in Fig. 1, but with V = 0, Λ = 1, and no fermions incident
from the right. Although the middle chains here have seven
sites (M = 3), the leftmost and rightmost current steps are
small and gentle in a), and completely flattened in b), leaving
only five current steps clearly visible. In a) we have γ = 0.5,
while b) shows γ = 5. As well as suppressing the outermost of
the seven current steps, the moderate loss in a) has noticeably
smoothed out two of the five more visible steps in the current,
while the stronger loss in b) has smoothed them completely
into gradual slopes. The other three visible current steps are
not significantly affected by loss in either case, since they are
due to transport through odd-parity channels having nodes
at the lossy site m = 0. Although I(µL) differs in detail from
analogous plots of I(V ) for quantum dots between leads, the
same phenomena of conductivity steps with parity-dependent
smoothing by loss are revealed.

Figure 2 shows two quantum gas analogs of Fig. 1, plot-
ting the dimensionless steady-state current I as a func-
tion of left-side chemical potential µL, with no fermions
incoming from the right. The current plotted in Fig. 2 is
the same integral (18) as in Fig. 1, but with the different
fL,R(ω) of (23) as well as the more complicated R and T
coefficients that are given by inserting V → 0 and Λ → 1
in the general formulas of Appendix A.

Five steplike rises in conductivity through the finite
middle chain of seven sites (M = 3) are clearly visible in
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Fig. 2; looking closely at a), one can also discern two more
small, smooth steps at the left and right edges of the plot.
Also apparent is the effect of loss in making some steps
noticeably steeper than others. In Fig. 2a) the tiny first
and seventh steps, as well as the more visible third and
fifth steps, are all due to even-parity channels that are
affected by the loss at m = 0, and so more gently sloped
than the three other steeper steps, which are due to odd-
parity channels with nodes at m = 0. The ten-times-
higher loss rate in Fig. 2b) is enough to suppress the first
and seventh steps entirely, and eliminate the shoulders of
what were the third and fifth steps in a), leaving them
as gradual slopes, while still leaving the three parity-
protected transport resonances as sharp steps.

Many different parameter regimes of this kind of lossy
transport can be investigated in quantum gas experi-
ments, which are highly tunable. While quantum gases in
optical lattices may in this sense be a more flexible plat-
form than quantum dots, quantum gases do have their
own constraints. While room temperature can easily be
effectively zero temperature for conduction electrons in
metals, even nanokelvin temperatures may not be negli-
gible for ultracold Fermi gases. And while macroscopic
leads are effectively infinite in size, optical lattices in ex-
periments are bound to be finite. We will examine fi-
nite temperature effects next, and treat the conceptually
greater difference of finite system size in the following
Section.

B. Finite temperature effects

Finite temperature effects are incorporated straight-
forwardly by replacing the step function form (22) of the
zero-temperature Fermi-Dirac function with the general
case

fL(ω) =
1

e
ω+µL

T + 1
(24)

for temperature TL → T , leaving fR(ω) = 0. The effect
of finite temperature is likewise simple: it smears out
sharp features of frequency.

Since the main phenomena to be studied in this kind
of transport are the conductivity steps and their parity-
and γ-dependent steepness, thermal smearing of the con-
ductivity curve is a serious issue for experiments. Since
the frequency spacing of our transmission resonances is
of order 2/(2M +1), temperatures higher than this spac-
ing (in units of h̄τ/kB) will wash out the conductivity
steps. Even if T/τ is below the 2/(2M + 1) threshold,
moreover, thermal smoothing of the conductivity steps
can reduce their dramatic signature of discrete transmis-
sion channels to only a slight waviness in I(µL), as seen in
Fig. 3a); in this regime, moreover, the additional smooth-
ing of even-parity channels due to the m = 0 loss can be
hard to discern. Both the steps and the effect of parity
can still be seen at sufficiently low temperatures, as in

Fig. 3b), but such low temperatures may be experimen-
tally challenging. If the basic T < 2τ/(2M + 1) limit
can be beaten, the problem of losing visibility of the par-
ity effect for T <∼ γ can be solved by increasing γ, as in
Fig. 3c).

In condensed matter systems with Fermi temperatures
in thousands of Kelvin, even room temperature is negli-
gibly different from zero temperature. In quantum gas
experiments, in contrast, the ratio kBT/(h̄τ) of temper-
ature to hopping rate cannot be made arbitrarily low.
While it is easy to make τ small by increasing laser
power in the optical lattice to reduce tunnelling rates
exponentially, reducing the lattice strength in order to
accelerate tunnelling will also weaken the tight bind-
ing approximation and turn on excitations out of the
lowest band, so that our single-band lattice model (1)
breaks down. A realistic upper bound on τ is probably
in the range of 104 s−1, corresponding to a temperature
range in hundreds of nanoKelvin[11]. With the currently
achievable temperatures for lattice fermions in tens of
nK, reaching kBT/(h̄τ) < 0.1 will likely require future
technical progress. As Fig. 3 shows, a lower ratio like
kBT/(h̄τ) = 0.01 may be needed to compete with the
current step sharpness of quantum dot experiments, but
a ratio of 0.1 can still be sufficient to show the steps
as well as the smoothing effect of loss in dependence on
parity. As in many potentially interesting cold atom ex-
periments, reaching significantly lower temperatures will
be an important challenge.

We now turn to the issue of finite size effects in quan-
tum gas realizations, which requires some new concepts
but probably poses less serious problems than finite tem-
perature.

V. FINITE SIZE EFFECTS

A. Finite size and finite time

Cold atom experiments can flexibly tune many param-
eters, but the number of lattice sites cannot really be
tuned to infinity. Although the finite sizes of cold atom
“reservoirs” can limit the effects that can be seen in cold
atom experiments, we will now show how measurements
of finite time evolution can in fact reproduce the steady-
state behavior of infinite systems.

In the finite system with a lossy impurity there can
be no steady state current: currents can only be tran-
sient, strictly speaking, because in the limit of infinite
time all initial particles will have simply been lost. Tech-
nically transient currents do not have to be short-lived
phenomena, however. They can easily be quasi-steady
over intermediate time scales.
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FIG. 3. Ultracold Fermi gas current I through the lossy im-
purity, as a function of left-side chemical potential µL, at
finite left-side temperature (thin black curves), with zero-
temperature results for comparison (thick gray curves). All
three plots show V = 0, τ1 = 0.1, and M = 3 as in Fig. 2
(seven sites in the middle chain, although at most five current
steps are large enough to see clearly), with no fermions incom-
ing from the right. In a) we have γ = 0.5 and kBTL = 0.1h̄τ
(black curve); the comparatively high temperature smooths
out all the abrupt zero-temperature steps into slopes that
are similarly gradual. In b) we lower the temperature to
kBT = 0.01h̄τ ; the steepest zero-temperature steps are only
slightly less steep at this low temperature, and the effect of
loss in smoothing out the second and fourth visible steps is
still noticeable. In c) we raise the loss rate γ to 5; with
stronger loss, the same temperature kBT = 0.1h̄τ as in a)
no longer buries the smoothing effect of the loss on the sec-
ond and fourth visible steps.

B. Quasi-stationary currents

For example, a natural initial state to prepare exper-
imentally is a finite-system analog of the current-from-
the-left scenarios shown for infinite lattices in Fig. 2. To
prepare the initial state we set τ1 → 0, fully breaking
the weak link and isolating the middle chain of our lat-
tice from its outer ends. We then populate the isolated
left end of the lattice with fermions in equilibrium, leav-
ing the middle and right-end lattices empty. At t = 0
we then restore non-zero τ1 and let the left-end popula-
tion of fermions flow through the weakly linked middle
chain, with its loss at m = 0, and into the right lattice
end. At different times t > 0 we measure the decreasing
population difference between left and right sides,

∆N
2

=
1

2

M+N∑
m=M+1

(n−m − nm) , (25)

which is due to the same left-to-right current that we
have examined in previous Sections, albeit no longer
in a steady state. For clarity we return to the zero-
temperature scenarios; the frequency smoothing effect of
finite temperature can be added straightforwardly to the
finite-size and finite-time effects that we now examine.

As we can see in Fig. 4a), there is a brief initial pe-
riod in which the fermions first begin to move through
the middle chain of sites, via the weak links. Within a
time of orderM/τ , however, this initial onset phase ends
and we can see a remarkably steady fall of ∆N . The ini-
tial equilibrium state in the left end of the lattice can be
viewed as an ensemble of wave packets moving in both
directions; these packets move to and through the mid-
dle chain from further back in the left reservoir, just as
they would if the reservoir were infinite. Even the pack-
ets which begin moving to the left, and then approach
the middle chain after reflecting from the left end of the
lattice, simply reproduce the effect of incoming packets
from beyond the lattice end. The first effect which does
not look just like an infinite system, in fact, is the return
to the weak link of packets which have been reflected
from it, and then reflected again from the left end of the
lattice. This occurs for packets with group velocity vG
at time t = 2N/vG. The maximum group velocity in our
system is 2τ , occurring at ω = 0, and so the earliest finite
size effects are those that appear in Fig. 4 at t = N/τ .
Between t <∼ M/τ and t < N/τ there can be plenty of
time to observe a quasi-stationary current, as long asN is
sufficiently larger than M . And as Fig. 4 shows, the rate
at which ∆N falls, during this quasi-stationary epoch
between the initial transient and the onset of finite-size
effects, can closely match the steady-state current of the
infinite system.
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FIG. 4. Finite-time evolution in finite systems. The initial
state is prepared in a finite lattice with N = 20, 40, or 80 sites
in the outer lattice on each side. With the weak links between
reservoir ends and middle chain initially turned off completely
(τ1 → 0), the N -site left end lattice is initially half-filled at
zero temperature, with the right end and central chain of
seven sites (M = 3) both initially empty. At t = 0 the weak
links are turned on τ1 → 0.1 and the system’s single-particle
density matrix is evolved in time under (7) numerically, for
a duration 2.5N/τ . The difference in total left- and right-
side populations ∆N/2 = (NL − NR)/2 is plotted in each
case of N . The dashed line has the slope −I, where I is the
steady-state current for the N → ∞ limit as shown in Fig. 2.
The early transient epoch is so brief that it can only be seen
clearly with shorter time axis of the N = 20 plot. The onset
of finite-size effects at t = N/τ is clear in all cases: with
group velocity 2τ for half filling, this is how long it takes for
particles that initially reflect from the weak link to return to
the weak link after reflecting again from the end of the lattice.
For times after the short initial transient and before t = N/τ ,
the finite system’s particle difference closely reproduces the
infinite system’s steady-state current—in the case µL = 0 of
initial half-filling. See Fig. 5 for other cases of µL.

C. Extended transient effects near transmission
resonances

In fact Fig. 4 provides an overly optimistic view of how
easy it is to see steady-state current with finite-time mea-
surements: although µL = 0 is the worst case for finite-
size effects, since vG is highest there, it turns out to be
the best case for short duration of the initial transient
period. While µL = 0 is not so much better than typical
µL that are not close to resonances, the slope of ∆N can
take longer to settle down steadily for µL near transmis-
sion resonances other than the one at µL = 0; see Fig. 5.
The curves of ∆N (t) appear quite similar for different
outer-lattice sizes N , when both t and µL are rescaled
with N appropriately, indicating that the extended tran-
sient epochs near transmission resonances are probably
not really finite-size effects, but rather finite-time effects.
We cannot avoid these problems by letting the system
evolve for longer times, however, because finite-size ef-
fects will appear if we wait too long.

D. Quasi-stationary current versus µL

While finite lattices may thus force finite-time prob-
lems upon us, though, these problems may not actu-
ally be too severe. Fig. 6 shows finite-system analogs
of Fig. 2a), with three different cases of N (20, 40,
and 80 in Figs. 6a), 6b), and 6c), respectively). Each
of these three plots further shows three different sim-
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FIG. 5. Zero-temperature fermion flow over time in finite
systems with different N as in Fig. VB, for µL near the first
conductivity step at µL = −

√
2, and times less than t = 2.5N .

Top row: N = 20 sites in the lattice ends, with initial Fermion
numbers 3,4,5,6 from left plot to right. Middle row: N = 40,
initial numbers 8,9,10,11. Bottom row: N = 40, initial num-
bers 19, 20, 21, 22. The different initial particle numbers all
correspond to µL near −

√
2; in particular the second column

of plots have µL just below −
√
2 and the third column have

µL just above it. Since the group velocities at frequencies
near these µ are near

√
2 rather than 2 as at ω = 0, finite-size

effects are not yet apparent. Finite-time effects, however, are
clear: the initial transient epoch lasts much longer near the
conductivity resonance.

ple attempts to extract the quasi-steady current from
the growth of ∆N (t) before the onset of finite-size ef-
fects at t = N/τ . These attempts represent I as local
slopes [∆N (tm + 1/τ) −∆N (tm − 1/τ)]/(2τ), for three
different choices of the measurement time tm: the early
choice tm = N/(4τ), the late choice tm = 3N/(4τ), and
the intermediate choice tm = N/(2τ). If ∆N (t) were as
straight as it is in Fig. 4, at µL = 0, these three choices
of tm would all yield very similar I estimates. Discrep-
ancies between the three attempts to find I show the
non-stationary nature of the fermion flow at other µL.

As Fig. 6 shows, it is possible to resolve the steady-
state current I(µL) from Fig. 2a) fairly well with finite
lattices as small as N = 20, and lattices as large as N =
80 allow essentially duplicating the steady-state current
curve of the infinite system, with clear conductivity steps
that are noticeably smoother for the even-parity channels
that are affected by loss. Even though extended transient
effects near the steps still exist even for N = 80, as shown
in Fig. 5, this issue only really affects the two data points
on either side of the step, and for N = 80 there are many
other points to map the curve out accurately.

Ultimately the main limitation from finite lattices
turns out to be the fundamentally limited frequency reso-
lution from only having an N -dimensional single-particle
Hilbert space in an N -site lattice. As long as N is larger
than M by enough both to delay finite-size effects until
the initial transient epoch is mostly over and to resolve
the 2M + 1 conductivity steps in the frequency band
−2 < ω < 2, experiments with ultracold Fermi gases
in finite optical lattices can indeed reveal the same inter-
esting transport phenomena with a lossy site that have
been predicted for finite chains of quantum dots coupled
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FIG. 6. Zero-temperature current I versus initial left-side
chemical potential µL = µ computed at three different times
before the onset of finite-size effects, for each of three different
finite lattice sizes. All cases have τ1 = 0.1, γ = 0.5, M =
3, and initial µR < −2 (no particles in the right reservoir
section). All three plots a), b), c) show the same thick, gray
curve, which is I(µ) for the steady state of the infinite lattice
with Λ = 1 and V = 0. In plots a), b), and c) we show cases
with N = 20, 40, 80. Each plot shows I computed as

(
[nR(t+

1) − nL(t + 1)] − [nR(t − 1) − nL(t − 1)]/2 for t = 0.25N (o
markers), t = 0.5N (+ markers), and t = 0.75N (x markers).
The markers are discrete points rather than continuous lines
because zero-temperature fermions in a finite lattice simply
occupy the n lowest modes, for integer n between 1 and N .
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FIG. 7. Current I through the finite chain of seven sites
(M = 3) as in Fig. IVA, but for non-interacting bosons
at maximal chemical potential µL = −2, as a function of
temperature. No conductivity steps are apparent: while the
sharp edge of the zero-temperature Fermi-Dirac distribution
rises with increasing µ, increasing temperature in the Bose-
Einstein distribution merely spreads the distribution out flat-
ter, steadily overlapping more and more with all seven con-
ductivity resonances.

to leads.

VI. DISCUSSION AND OUTLOOK

In conclusion, we have constructed a class of fermionic
lattice gas models which can reproduce the results of [2]
in the limit Λ → ∞, and then represent quantum gas
experiments in the limit Λ → 1. Different but similar ef-
fects are predicted for quantum gases in optical lattice, in
comparison with the parity-dependent conductivity steps
that are predicted to be seen in quantum dot chains be-
tween leads. Finite-temperature effects seem likely to
be a practical challenge in near-future experiments with
quantum gases. While these effects will not prevent ob-
servation of the most interesting conductivity features,
they will likely prevent quantum gas experiments from
matching the sharpness of conductivity steps that can be
seen in condensed matter systems.
One new possibility that can appear with quantum

gases in lattices is transport of bosons instead of fermions.
In the absence of interactions, however, bosons do not
readily display the dramatic step-like conductivity of
zero-temperature fermions, because Bose-Einstein distri-
butions cannot replicate the moveable sharp edge of a
low-temperature Fermi-Dirac distribution with variable
Fermi energy. For non-interacting bosons, the chemi-
cal potential can rise no higher than the bottom of the
single-particle energy band; the only way to have vary-
ing exposure to the different discrete transport channels
through the finite middle chain is to vary the reservoir
temperatures.
As Fig. 7 disappointingly shows, increasing tempera-

ture simply mixes in higher-frequency channels continu-
ously. No conductivity steps can be seen—at least not



12

in scenarios like those we have considered in this paper,
and not without interactions among the bosons. Per-
haps different kinds of experiments will be able to show
more abrupt unlocking of discrete transport channels for
bosons. Further studies may also reveal more interest-
ing transport behavior in interacting bosons, which can,
among other complications, have higher chemical poten-
tials.
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VII. APPENDIX A: THE SINGLE-PARTICLE
WAVE FUNCTIONS ΨL,R

m (ω)

A. Unnormalized eigenfunctions of definite parity
for |m| ≤ M

For V ̸= 0 our entire system lacks reflection symme-
try, but there is always reflection symmetry within the
middle chain |m| ≤M . This makes it straightforward to
construct ψm eigenvectors that are either odd or even in
m, for |m| ≤M . Once we have these solutions, we will be
able to combine them into left-incident and right-incident
ΨL,R

m , and finally normalize them.
The odd solutions are the simplest, since they vanish

at m = 0 and are therefore unaffected by the imaginary
potential term γ. They can simply be written as

ψ−
m(ω) =

|m|≤M
sin
(
k(ω)m

)
ω = −2 cos(k)

k(ω) = cos−1
(
− ω

2

)
. (26)

Note that we may need to consider |ω| > 2, for which
k(ω) is complex, because for Λ > 1 the outer parts of the
lattice support eigenmodes in a wider bandwidth than
that of the middle chain.
The modes that are even in the middle chain are a bit

less trivial, because of the complex potential at n = 0:

ψ+
m(ω) =

|m|≤M
cos
(
k(ω)m

)
− iγ

4 sin
(
k(ω)

) sin (k(ω)|m|
)
.

(27)

How these eigenvectors behave for |m| > M is then
determined firstly by solving (9) for |m| > (M+1), which
implies

ψ±
n (ω) =

|m|>M
α±
L,Re

ikL,R(ω)|m| + β±
L,Re

−ikL,R(ω)|m| ,

(28)



13

for |m| > M , with the subscript L applying for m < −M
and R for m > M , and with kL,R(ω) defined in (12)
above.

To fix the separate left and right coefficients α±
L,R and

β±
L,R, we finally solve (9) for |m| =M and |m| =M + 1,

which provide two conditions at each end of the finite
middle chain that are analogous to the continuity con-
ditions on the wave function and its first derivative in
continuous Schrödinger problems. After some algebra we
obtain

ψ−
m =

|m|>M
sgn(m)

[AL,R

2
eikL,R|m| +

A∗
L,R

2
e−ikL,R|m|

]
ψ+
m =

|m|>M

(
BL,R − iγ

4 sin(k)
AL,R

)eikL,R|m|

2

+
(
B∗

L,R − iγ

24 sin(k)
A∗

L,R

)e−ikL,R|m|

2
(29)

where the L subscripts apply for m < −M and the R
subscripts for m > M . The coefficients here are

AL,R(ω) =
e−ikL,RM

i sin(kL,R)

×
(

1

τ1
sin[k(M + 1)]− τ1 sin(kM)e−ikL,R

)
BL,R(ω) =

e−ikL,RM

i sin(kL,R)

×
(

1

τ1
cos[k(M + 1)]− τ1 cos(kM)e−ikL,R

)
,

(30)

where k without L,R subscripts is the middle-chain k(ω)
from (19), which is reproduced in (26). Although we have
the same Λ for both m > M and m < −M , if V ̸= 0 then
kL ̸= kR and so ψ±

m do not actually have definite parity
for |m| > M .

B. Left- and right-incident wave functions

We then simply construct linear combinations of ψ±
m

which contain no incoming wave on one side, and in which
the amplitude of the incoming wave on the other side is
1/
√
2π. The result is

ΨL
m(ω) =

A∗
Rψ

+
m(ω)−

(
B∗

R − iγ
4 sin(k)A

∗
R

)
ψ−
m(ω)

√
2πZ

ΨR
m(ω) =

A∗
Lψ

+
m(ω) +

(
B∗

L − iγ
4 sin(k)A

∗
L

)
ψ−
m(ω)

√
2πZ

Z(ω) =
A∗

RB
∗
L +A∗

LB
∗
R

2
− iγ

4 sin(k)
A∗

LA
∗
R (31)

which further implies

T =
i

Z

sin(k)√
sin(kL) sin(kR)

RL =
1

2Z

(
A∗

RBL +B∗
RAL − iγ

2 sin(k)
A∗

RAL

)
RR =

1

2Z

(
A∗

LBR +B∗
LAR − iγ

2 sin(k)
A∗

LAR

)
. (32)

As we note in Section III of our main text, the dimen-
sionless parameter Λ does not appear explicitly in the
results for RL,R and T . Λ does appear in Equation (12),
however, which defines kL,R(ω), and so Λ actually does
affect RL,R and T substantially. In particular both for
Λ = 1 and for Λ → ∞ we obtain kL = kR and the dis-
tinctions between AL,R, BL,R disappears, so that we can
take RL,R → R as in our main text.

C. Infinite Λ limit

As we note in Section IV of our main text, the Λ → ∞
limit which makes the reservoir density of states constant
over the middle chain bandwidth lets us replace kL,R →
π/2. Our expressions for Z, T , and RL,R then simplify
greatly. We obtain
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AL,R −→
Λ→∞

(−i)M+1

(
sin[k(M + 1)]

τ1
+ iτ1 sin(kM)

)
BL,R −→

Λ→∞
(−i)M+1

(
cos[k(M + 1)]

τ1
+ iτ1 cos(kM)

)
|Z|2 −→

Λ→∞

[
sin[k(M + 1)] cos[k(M + 1)]

τ21
+ τ21 sin(kM) cos(kM)

]2
+

[
sin(k) +

γ

4 sin(k)

(
sin2[k(M + 1)]

τ21
+ τ21 sin2(kM)

)]2
|T |2 −→

Λ→∞

sin2(k)

|Z|2

|RL,R|2 −→
Λ→∞

1

|Z|2

[(
sin[k(M + 1)] cos[k(M + 1)]

τ21
+ τ21 sin(kM) cos(kM)

)2

+
γ2

16 sin2(k)

(
sin2[k(M + 1)]

τ21
+ τ21 sin2(kM)

)2
]
, (33)

as used in our main text.

VIII. APPENDIX B

As we noted in Section III of our main text, for the class
of models that we have defined it can in general happen
that one of kL,R is complex—or even that both of them
are. This can happen for one of kL,R, for V > 0, because
the bandwidth 4Λτ of the outer lattice ends is finite, and
so a relative shift of V between the bands of the outer
ends means that they do not fully overlap. Wherever
an ω is in the continuous part of the infinite model’s
spectrum, because it is in the band of one lattice end,
kL,R will be purely imaginary for ω < −2Λ± V/2, below
the corresponding lattice end’s frequency band, and it
will be π plus an imaginary term for ω > 2Λ ± V/2,
above the band.

It can also happen that both kL,R are complex, for
a discrete set of complex ω that are in the spectrum of
our non-Hermitian Hamiltonian which includes the imag-
inary potential at m = 0, if Λ < 1 so that the middle
chain possesses eigenstates outside the bands of both the
outer lattice ends.

We have only considered Λ ≥ 1 in this paper, leaving
other cases for future work. In fact we have only ex-
plicitly considered cases either with V > 0 but Λ → ∞,
so that kL,R are both real for all ω that are involved in
transport through the middle chain, or else with Λ = 1
but V = 0, so that all kL,R are real. For the benefit of
future work, however, we note that our formulas extend
straightforwardly to include complex kL,R, when they are
taken in the general forms shown in Appendix A above,
and when the observables include the XL,R factors as in
Appendix C below.

If for example kR(ω) has an imaginary part for some
ω but kL(ω) is real, we can keep our ΨL

n(ω) as described
above, with the stipulation that we take the positive
imaginary branch of kR, but there will simply be no ΨR

n

for this ω, because the “incoming” wave would be ex-
ponentially growing. It will also be important to note
that the evanescent transmitted waves in these cases of
ΨL

n(ω) carry no particle or energy currents to n → +∞
even though |T | > 0.

IX. APPENDIX C

1. Particle current with complex kL,R

In the general case where kL,R are not equal, and may
be complex, it is necessary to modify our main text’s
formula (18) for the particle current through the middle
chain, by distinguishing RL and RR, and by including
additional factors XL,R(ω):

I =
1

4πτ21

∫
dω
[
fL(ω)

(
1 +XL|T |2 − |RL|2

)
− fR(ω)

(
1 +XR|T |2 − |RR|2

)]
. (34)

The factor XL here is equal to one if kR is real, and is
zero if kR has a non-zero imaginary part; XR depends in
the same way on whether kL is purely real. These factors
do not have to be inserted by hand, but come out simply
in evaluating Jm in the cases where kL or kR is either
imaginary or imaginary plus π.
The subscripts are not accidentally switched: the fac-

tor XL depends on kR, and vice versa, because the issue
is whether or not the wave which is transmitted through
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to the right from the left, or vice versa, is evanescent or
propagating.

2. Local energy at site m

The Hamiltonian (1) is a sum over sites m, and apart
from site m = 0, where there is an imaginary potential,
each term in the m-sum in (1) is an observable that can
be interpreted as the local energy associated with site m;
we can treat each site’s two neighbors symmetrically by
averaging their contributions. The expectation value of
this local energy is then

Em =h̄τ
(
− Tm

2

(
Rm+1,m +Rm,m+1

)
− Tm−1

2

(
Rm,m−1 +Rm−1,m

)
+ VmRmm

)
(35)

according to (1).

3. Energy current

Just as the particle number current Jm could be in-
ferred from the time derivative of the average local num-
ber n̄m, we can also compute from (7) that

d

dt
Em = −(Qm+1 −Qm)− γτ

2
E0(δm,−1 + δm0)

Qm = −i h̄τ
2

2
Tm−1

[
Tm(Rm+1,m−1 −Rm−1,m+1)

+ Tm−2(Rm,m−2 −Rm−2,m)

− (Vm + Vm−1)(Rm,m−1 −Rm−1,m)
]
, (36)

and recognize Qm as the local energy current. In the
steady state Ėm = 0 then implies that Qm is piecewise
constant,

Qm =
τ

4π

(
Q− 2πγ sgn(m)E0

)
, (37)

with Q0 = Q also being the average energy current
through the finite middle chain from left to right.

Evaluating Q = limm→∞(Q−m + Qm)/2 in (10) and
using (9) then reveals a result which we might well
have guessed without even thinking much about what it
meant: the average energy current in the stationary state
is a similar integral to the integral (18) for the average
particle current I, with the integrand simply multiplied
by h̄τω.

Q =
h̄τ2

4π

∫
dω ω

[
fL(h̄τω)

(
1 +XL|T |2 − |RL|2

)
−fR(h̄τω)

(
1 +XR|T |2 − |RR|2

)]
. (38)
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