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ABSTRACT. This paper examines the w-weight enumerators of weights
w with maximal symmetry over finite chain rings and matrix rings
over finite fields. In many cases, including the homogeneous weight,
the MacWilliams identities for w-weight enumerators fail because
there exist two linear codes with the same w-weight enumerator
whose dual codes have different w-weight enumerators.

1. INTRODUCTION

The MacWilliams identities [17] reveal a relationship between the
Hamming weight enumerator (hwe) of a linear code C' over a finite
field F, and the Hamming weight enumerator of its dual code C*:
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One way to try to generalize this result is to use any integer-valued
weight w on a finite ring R with 1. The homogeneous weight, suit-
ably normalized, is an example. Assume w(0) = 0 and w(r) > 0
for r # 0. Denote the maximum value of w by wya. For a vector
= (r1,22,...,2,) € R", set w(z) = > w(z;). Define the w-weight
enumerator (wwe) of a left R-linear code C' C R"™ by

WW60<X, Y) _ Z X wmax—w(c) yw(e)
ceC

hweq (X,Y) hwec(X +(¢—1)Y, X =Y.

Do MacWilliams identities hold for w-weight enumerators?
This paper will show that MacWilliams identities seldom hold for
weights having maximal symmetry when the ring is a finite chain ring
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or a matrix ring over a finite field. For example, suppose R = Z/4Z
and w is an integer-valued weight on R with maximal symmetry (i.e.,
w(l) = w(3) for this ring). Then the only weights for which the
MacWilliams identities hold are multiples of the Hamming weight and
multiples of the homogeneous weight (the Lee weight for this ring),
Corollary 9.6. Similarly, let R = M5 (F,) and w be an integer-valued
weight with maximal symmetry (i.e., the value of w(r) depends only
on the rank of 7). Then the only weights for which the MacWilliams
identities hold are multiples of the Hamming weight (any ¢) and mul-
tiples of the homogeneous weight (¢ = 2 only), Theorem 19.5. More
generally, the homogeneous weight on R = M (F,), k > 2, satisfies
the MacWilliams identities if and only if k = ¢ = 2, Theorem 19.4.

The reason the MacWilliams identities often fail is that there exist
R-linear codes C, D C R"™ for some n such that wwec = wwep but
wweor # wwepi. This claim presents two challenges:

e to construct linear codes C, D C R" with wwec = wwep in
such a way that it is then possible ...

e to detect differences wwep. # wwept in the w-weight enumer-
ators of their dual codes.

A weight w on a finite ring R with 1 has maximal symmetry when
w(uru') = w(r) for all » € R and units u, v’ in R. Any left linear code
C C R™ can be viewed as the image of an injective homomorphism
A : M — R™ of left R-modules, for some finite left R-module M. The
group of units of R acts on M on the left, and the maximal symmetry
hypothesis implies that x — w(zA) is constant on each orbit of this
group action. Writing [z] for the orbit of x € M, we see that

(11) WWer (X, Y) = Z | [.’,L'] |X”wmax—w($/\)yw(7;/\) )

orbits [z]

In essence, the choice of homomorphism A determines the ‘orbit weights’
w(z) = w(zA) assigned to each orbit [x] in M.

In order to find another linear code D C R"™ with wwec = wwep,
one can try to permute the weights assigned to orbits while keeping the
sum in (1.1) unchanged. For example, in R = Mayyo(F2) there is one
orbit of size 6 consisting of matrices of rank 2 and three orbits, each
of size 3, of matrices of rank 1. One can then try to construct linear
codes whose orbit weights behave as follows:

orbit ‘ (1] [xo] [xs3] ‘ [
size of orbit | 3 3 3
w(zA) a b b

w(zA) a ¢ c

]

O O



WEIGHTS WITH MAXIMAL SYMMETRY 3

It is not obvious a priori that such constructions are possible, but
Section 16 shows that constructions of this type can be carried out for
all matrix rings My, (F,) over finite fields.

When R is a finite chain ring, all the orbits have different sizes, so
the permutation idea does not work. However, one can use different
modules as the domains of the defining homomorphisms. For example,
the ring Z/8Z has three modules of size 8: M = Z /87 itself, Z/4Z @
Z2)27Z, and M' =7/27Z & )27 & 7Z/2Z. Considering M and M’, the
orbits of M are {1,3,5,7}, {2,6}, {4}, and {0}, while the orbits of M’
are the 8 subsets of size 1. By choosing certain unions of orbits of M’,
say {100, 101,110,111}, {011,010}, {001}, {000}, of the same size as
the orbits of M, one can try to construct homomorphisms A : M — R"
and A’ : M" — R"™ achieving the same weights on corresponding orbits.
While this may not seem possible at first glance, Section 8 details how
such constructions exist.

In order to show that wwes1 # wwep., it is enough to show that
A;(CH) # Aj(D4) for some j > 0; here, A;(C) is the number of code-
words v € C* with w(v) = j. The easiest case to understand is when
v € C* has exactly one nonzero entry; such a v is called a singleton.
When C C R" is the image of a homomorphism A : M — R", the
components of A = (A, Ag,...,\,) are elements \; € Homg(M, R).
By understanding how many elements r € R annihilate any given \;,
ie., \yr = 0, one can write down formulas for the contributions of
singletons to A;(CF), Proposition 5.2. When j is sufficiently small,
only singletons can contribute to A;(C*), Corollary 5.4. This tech-
nique turns out to be surprisingly effective in allowing one to prove
that A;(C*) # A;(D*) in a large number of situations.

This paper is divided into three parts. The first establishes notation
and ideas that can apply to any finite ring with 1. In particular, codes
will usually be linear codes over a finite ring with 1. A weight w on R
will be assumed to have maximal symmetry and have positive integer
values, and w will be extended additively to R". The second part
examines the construction of linear codes and the analysis of singleton
dual codewords over a finite chain ring, while the third part does the
same for matrix rings over finite fields. An appendix provides a short
outline of a proof of the MacWilliams identities over finite Frobenius
rings using the Fourier transform and the Poisson summation formula.
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Part 1. Generalities
2. PRELIMINARIES

This section will review without proof some terminology and results
from [28] about characters of finite abelian groups, finite Frobenius
rings, additive and linear codes and their dual codes, symmetry groups,
and weights.

Let A be a finite abelian group. A character of A is a group ho-
momorphism 7 : A — (C*,-) from A to the multiplicative group
of nonzero complex numbers. Denote by A the set of all characters
of A; A is a finite abelian group under pointwise multiplication of
functions. The groups A and A are isomorphic, but not naturally so;

|A| = |A|. The double character group is naturally isomorphic to the
group: (A) = A; a € A corresponds to evaluation at a of 7 € A, i.e.,
= m(a).

For a subgroup B C A, define its annihilator by
(A:B) = {7‘(62{17'((5) = 1,for all b € B}.

Then (A : B) is a subgroup of A, (ﬁ B) =~ (A/B) ", and |(A : B)| =
|A/B| = |A|/|B|. Identifying A 2 (A) ", we have (4: (A : B)) = B.

Throughout this paper R will denote a finite (associative) ring with 1;
R may be noncommutative. The group of units (invertible elements)
of R is denoted U = U(R). The Jacobson radical J(R) of R is the
intersection of all maximal left ideals of R; J(R) is itself a two-sided
ideal of R. The left/right socle soc(gR), soc(Rg) of R is the left/right
ideal generated by the minimal left /right ideals of R. A ring R (perhaps
infinite) is Frobenius if rJ(R) = soc(gR) and J(R)r = soc(Rg) [15,
Theorem (16.14)]; a theorem of Honold [13] says that one of these
isomorphisms suffices for finite rings.

Every finite ring R has an underlying additive abelian group. Its
character group R is a bimodule over R. ThAe two scalar multiplications
are written in exponential form, with 7 € R, r;s € R:

("m)(s) =m(sr), w"(s)=m(rs).

A finite ring R is Frobenius if and only if R = R as left (resp., right) R-
modules, [25, Theorem 3.10]. This implies that a finite Frobenius ring
admits a character y, called a generating character, such that r — "y
is an isomorphism of left R-modules (resp., r — " is an isomorphism
of right R-modules). A generating character has the property that any
one-sided ideal of R that is contained in ker y must be the zero ideal.
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An additive code of length n over R is an additive subgroup C' C R".
If C C R™is a left, resp., right, R-submodule, then C' is a left (resp.,
right) R-linear code. One way to present a left R-linear code is as the
image C' = im A of a homomorphism A : M — R" of left R-modules,
and similarly for right linear codes.

We will write homomorphisms of left R-modules with inputs on the
left, so that preservation of scalar multiplication is (rz)¢ = r(z¢),
where r € R, x € M, M a left R-module, and ¢ a homomorphism of
left R-modules with domain M

Define the standard dot product on R™ by

95'3/:2951‘%6]%7
i=1
for x = (x1,29,...,2,),y = (Y1,%2,..,yn) € R". Given an additive
code C' C R", define dual codes by
LIC)={ye R":y-x=0,forall x € C},
(2.1) R(C)={ye R":xz-y=0,forall z € C}.
When R is Frobenius, with generating character y, also define
LC)={ye R": x(y-z) =0,for all z € C},
(2.2) R(C)={ye R": x(z-y)=0,for all z € C}.

Using the isomorphisms r +— "y and r — x" of R to E, there are
isomorphisms R" — R" of left, resp., right, R-modules given by z — “y
and x — x*, where *x(y) = x(y-x) and x*(y) = x(z-y), for x,y € R™.
Under the isomorphism z +— %y, R(C) is taken to (R" : C), while
under the isomorphism z — x*, £(C) is taken to (R" : C).

Lemma 2.3. Suppose R is Frobenius and C' C R™ is an additive code.
Then

o [C]-[E(C) = |C|-[R(CO)] = |R"[;

e L(R(C)) = C =R(L(CO)).

Remark 2.4. Note that R(C) C R(C) and L(C) C £(C). In general
these containments will be proper. However, if C'is a left R-linear code,
then R(C) = R(C). Similarly, £(C) = £(C) if C is right R-linear.

A weight on R is a function w : R — C from R to the complex
numbers C with w(0) = 0. In most of this paper we will study weights
having positive integer values, except for w(0) = 0. A weight w will
be extended additively to R", so that w(v) = """, w(v;) € C, where
v =(v1,V9,...,0,) € R™.
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Every weight w on R has two symmetry groups, left and right:

Gr(w) ={u el :w(ur) =w(r) for all r € R},
(2.5) Gi(w) = {u e U : w(ru) = w(r) for all r € R}.

A weight w has mazimal symmetry when Gy (w) = G (w) = U.

Example 2.6. The most well-known weight on R is the Hamming
weight H, defined by H(0) = 0 and H(r) = 1 for r # 0. The Hamming
weight has maximal symmetry.

Example 2.7. Another well-known weight on R having maximal sym-
metry is the homogeneous weight w : R — R. The homogeneous weight
was first introduced in [5] over integer residue rings and generalized to
all finite rings and modules in [11] and [10]. A homogeneous weight is
characterized by the choice of a real number ¢ > 0 and the following
properties [10]:

e w(0) = 0;

o G (W) =U; and

® > cr W(x) = ¢|Rr| for nonzero principal left ideals Rr C R.

The last property says that all nonzero left principal ideals of R have the
same average weight (. In fact, the average weight property holds for all
nonzero left ideals of R if and only if R is Frobenius [10, Corollary 1.6].

When R = F,, all the nonzero elements are units, so W(u) = w(1)
for all units u. Thus w is a constant multiple (namely, w(1)) times the
Hamming weight. Note that ( = (¢ — 1)w(1)/q over F,.

Greferath and Schmidt [10, Theorem 1.3] prove that homogeneous
weights exist on any R by giving an explicit formula for W in terms of
¢ and the Md&bius function p (see [22, §5.5]) of the poset of principal
left ideals of R; namely:

(2.8) w(r) = ¢ (1 . %) , reR

This formula implies that all the values of W are rational multiples of (.
By choosing ( appropriately, one can produce a homogeneous weight
on R with integer values. Another consequence of the formula is that
any two homogeneous weights on R are scalar multiples of each other:
if w and W’ are homogeneous weights on R with average weights ¢ and
(', respectively, then w' = (¢'/¢)w.

Example 2.9. Let R = M;;(F,) be the ring of k£ x k matrices over the
finite field F,. The rank weight R is defined by R(r) = rk(r), the usual
rank of the matrix r € R. The rank weight has maximal symmetry.
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3. MACWILLIAMS IDENTITIES

In her 1962 doctoral dissertation, Florence Jessie MacWilliams gave
a formula relating the Hamming weight enumerator of a linear code
over a finite field to the Hamming weight enumerator of its dual code
[16, 17]. In this section we will describe this work of MacWilliams as
well as some of its generalizations.

For any linear code C' C R™ over a finite ring R, the Hamming weight
enumerator is the following homogeneous polynomial of degree n:

(3.1) hwec (X, Y) = > X1y,
zeC

where H is the Hamming weight, as in Example 2.6. The formula
relating hwes and hweo . is quoted next.

Theorem 3.2 (MacWilliams identities [10, 17]). If C' C F} is a linear
code over the finite field IFy, then
1
hweCL (X, Y) = th@C(X —+ (q — 1)Y,X — Y)

Remark 3.3. Note in particular that the formula for hweo. depends
only on hwee and not on a more detailed knowledge of the code C'. By
applying the MacWilliams identities to C* and C' = (C*)*, the roles
of C' and C* can be reversed.

We isolate one consequence of the MacWilliams identities.

Corollary 3.4. If C' and D are two linear codes over I, with hwec =
hwep, then hwes1 = hwep. .

The MacWilliams identities for the Hamming weight enumerator can
be generalized in several ways. One way is to generalize the algebraic
structure of the codes. There are versions of the MacWilliams identities
with the Hamming weight enumerator for additive codes over finite
abelian groups [0], as well as for left (or right) linear codes over a finite
Frobenius ring [25, Theorem 8.3]. In the latter, one replaces ¢ with |R|
and C* with R(C) (with £(C) if C' is right linear).

Another way to generalize the MacWilliams identities is to general-
ize the enumerator. There are two broad ways of doing this, stemming
from two interpretations of the exponents in (3.1). Following Gluesing-
Luerssen [%], one of the generalizations will be called partition enumera-
tors; the other will be called w-weight enumerators. These enumerators
will be defined below, and the Hamming weight enumerator will be an
example of both. While most of the following material can be formu-
lated for additive codes over finite abelian groups, the discussion here
will be restricted to linear codes over finite rings.
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Suppose S is a finite set. A partition of S is a collection P = {P;}
of nonempty subsets of S such that the subsets are pairwise disjoint
and cover S, i.e., S = W; P;. The subsets P; are called the blocks of the
partition.

Suppose a finite ring R has a partition P = {P,;},. Define counting
functions n; : R" = N, i = 1,2,...,m, by n;(z) = |{j : z; € B},
for v = (21, 29,...,2,) € R". The counting functions count how many
entries of x belong to each block of the partition. For a linear code C' C
R™ define the partition enumerator associated to C' and the partition P

to be the following homogeneous polynomial of degree n in the variables
Zl,ZQ, . ,Zm:

(3.5) pel(Zy, ... Z) = Zﬁz{”@

zeC i=1
Examples of such partition enumerators include:

e the complete enumerator (ce) based on the singleton partition
P ={{r}}rer:

e a symmetrized enumerator (se) based on a partition consisting
of the orbits of a group action on R;

e the Hamming (weight) enumerator based on the partition with

blocks {0} and the set difference R — {0}.

While the literature refers to the examples above as weight enumera-
tors, the first two do not involve weights, so I will use the shorter names
indicated.

Suppose R has two partitions P = {P;}7; and Q = {Q;}7,. Also
suppose P is a refinement of Q, i.e., each block P; is contained in some
(unique) block @;; write j = f(i). Write the partition enumerators of
a linear code C' C R™, using variables Z;, 1 = 1,2,...,m, for P, and
Z;,7=12,...,m for Q:

per(Zy, ..., Zy,) and  peg(Zi,...,2Zm).

The specialization of variables Z; ~ Z(;) allows us to write the Q-
enumerator in terms of the P-enumerator:

(3.6) peg(Zl,...,Zm/) = peb(Zi,..., Zy)

Zi=Zpay

The MacWilliams identities are known to generalize to the complete
enumerator and certain symmetrized enumerators, over finite fields [15]
and finite Frobenius rings [25]. The MacWilliams identities general-
ize to so-called reflexive partition enumerators over finite Frobenius
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rings; see [3] for details. For the symmetrized enumerator, see Theo-
rem 11.6. A short review of the main arguments used for proving the
MacWilliams identities over finite Frobenius rings is in Appendix A.

For the other type of enumerator, suppose R is a finite ring with 1,
and w is a weight on R with positive integer values (except w(0) = 0).
Denote the largest value of w by wya.x. For any left R-linear code
C C R", define the w-weight enumerator of C by

(3.7) wweo(X,Y) =) Xmome vy ),

zeC

The w-weight enumerator is a homogeneous polynomial of degree nwy,ax
in X and Y. Different codewords in C' may have the same weight. Col-
lecting terms in (3.7) leads to

NWmax

(3.8) wweo(X,Y) Z AY(C)XemeIYT

where AY(C) is the number of codewords of C' having weight j:
(3.9) AY(C) = [{r € C:w(x) = j}.

We write A;(C') when w is clear from context. To save space in exam-
ples in later sections we will often write wwe with X =1 and Y = ¢,
so that wwec = >, A;(C)#. When w = H, the Hamming weight, we
recover the Hamming weight enumerator hwe.

Remark 3.10. A disadvantage of using the notation wwec = > A;(C)t/
is that information about the length n of the code is lost. Of course, if
the length of C' is known, then the homogeneous form (3.7) of wwe is
easily recovered. For example, suppose C' is a linear code of length n,
and let D be the linear code of length n + 1 obtained by appending a
zero to each codeword of C. Since w(0) = 0, there are no changes in the
weights of the codewords, so that A;(C') = A;(D) for all j. However,
wwep(X,Y) = X wweo(X,Y).

The partition enumerators and the w-weight enumerators are related.
Given a weight w on R, let Q be the partition of R into the orbits orb(r)
of Gy (w) acting on R on the left, and let P be the complete partition
of R; P is a refinement of every partition, hence a refinement of Q. Use
variables Z,, r € R, for P, and Zq,) for Q. Then the specialization of
varlables Zorb(ry v X WmaxT “’(T)Y”“”(T allows us to write wwee in terms
of sec for any R-linear code C' C R™:

(3.11) wwee (X,Y) = se2(Zom(r))

(r s X wmax —w(r) yw(r) *

Zorb
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This specialization is well-defined by the definition of the symmetry
group Gy the value of w is constant on every left orbit of Gj;. Sec-
tion 11 gives details of this situation over finite chain rings.

One way to view the MacWilliams identities is in terms of the dia-
gram in Figure 1 below. In the diagram, the map R sends a left

{(n, M)-linear codes} {(n, |R|™/M)-linear codes}

se (C[Z)]n Al AR
e gp cpec é e
ClZob(r)n Al ClZob(r)n
éspec "é
(o], 0 g IR E—— — > C[X, Y

FIGURE 1. Relations among enumerators

R-linear code of size M to its right R-linear dual code R(C). Un-
der favorable circumstances (e.g., R Frobenius), the dual code has size
IR(C)| = |R|"/|C|. The vertical maps ce, se, wwe associate to a lin-
ear code its complete enumerator, Q-symmetrized enumerator, and w-
weight enumerator, respectively. The other vertical maps (both called
spec) are the specializations of variables described in (3.6) and (3.11).

Because the MacWilliams identities hold for ce and se, the horizontal
maps MW are the MacWilliams transforms that provide the linear
changes of variables. The solid arrows in the diagram commute.

The big question under study in this paper is whether there is a
horizontal map ‘?’ that makes the diagram commute for the w-weight
enumerator. If such a map exists, then the following property holds:
if wwec = wwep, then wweg ) = wweg(py. We refer to this property
by saying the weight w respects duality. To formalize:

Definition 3.12. A weight w on a finite ring R respects duality if
wweg = wwep implies wwegrcy = wweg(p) for all left R-linear codes
C,DCR"n>1.

Corollary 3.4 says that the Hamming weight on I, respects duality.
If a weight w does not respect duality, then the MacWilliams identities
cannot hold for wwe.
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As an example, let us see what happens when a weight is multiplied
by a positive constant. Suppose w : R — Z is a weight on R, and let
w = cw, with ¢ a positive integer. Denote the w-weight enumerators
for w and w by wwe and wwe® respectively.

Lemma 3.13. Let w : R — 7Z be a weight on R, and let w = cw, with
¢ a positive integer. Then

wweg (X, Y) = wwee (X Y).
Proof. For any element r € R, we have
Xu?max—u?(r)yw(r) — (Xc)wmax—w(r)(yc)w(r)‘ 0

Proposition 3.14. Let w: R — Z be a weight on R, and let w = cw,
with ¢ a positive integer. Then w respects duality if and only if w
respects duality.

Even if a weight w does not respect duality (and hence wwe does
not satisfy the MacWilliams identities), it is still possible to determine
both wwec and wwegr(c) by calculating sec, using the MacWilliams
identities for se to find ser(cy, and then specializing variables to get
wwec and wweg (o). But one cannot go directly from wwec to wweg c).

The main objective of this paper is to show that it is rare for a weight
having maximal symmetry to respect duality, at least over finite chain
rings or matrix rings over finite fields. In addition to Theorem 3.2
for the Hamming weight enumerator and its generalization to finite
Frobenius rings, the MacWilliams identities for w-weight enumerators
are known to hold for the Lee weight on Z/47 [12] (and see Theo-
rem 6.5) and the homogeneous weight on the matrix ring Mayo(IF5),
Theorem 12.12. The MacWilliams identities for w-weight enumerators
are known to fail for the Rosenbloom-Tsfasman weight on matrices [7],
the Lee weight on Z/mZ, m > 5 [1], and the homogeneous weight on
Z/mZ for composite m > 6 [30]. In all cases, the failure is proved by
showing that the weight does not respect duality: there exist linear
codes C' and D with wwec = wwep, yet wweg )y # Wweg(p), by virtue
of AY(R(C)) # AY(R(D)) for some j.

The hypothesis that w has maximal symmetry is important. There
are results about ‘Lee weights’ of different types that can be valid
because they secretly tap into the Hamming weight or the Lee weight
on Z/AZ; cf., [31].

4. LINEAR CODES VIA MULTIPLICITY FUNCTIONS

In later sections linear codes will be presented as images of homo-
morphisms of left R-modules. In turn, the homomorphisms will be
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described in terms of multiplicity functions. In this section, the use
of multiplicity functions to describe linear codes will be summarized
briefly. Addititonal information can be found in [26, §3] or [28, §7].

As throughout this paper, let R be a finite ring with 1. Suppose M
is a finite unital left R-module; unital means lx = z for all x € M.
We call any homomorphism A : M — R of left R-modules a linear
functional on M. Define M* = Homg(M, R) to be the set of all left
linear functionals on M. We will write inputs to linear functionals on
the left, so that (rz)\ = r(z)) for r € R, x € M, and A € M¥;, M* is
a right R-module, with A\r given by z(Ar) = (xA)r for r € R, x € M,
and A € M*. The left R-module M admits a left action by the group
of units U of R using left scalar multiplication. Denote the orbit of
x € M by orb(z) or by [z]. Similarly, the right R-module M* admits a
right U-action, with orbits denoted orb(\) or [A].

A left R-linear code of length n parametrized by M is the image
C = im A of a homomorphism A : M — R" of left R-modules. The
module M is the information module of the linear code C. Denote the
components of A by A = (Aq, Ao, ..., \,), with each \; : M — R being
linear functional on M. We call the \; the coordinate functionals of
the linear code C.

Suppose w is a weight on R. Then the weight w and a parametrized
code C given by A : M — R"™ define a weight function Wy : M — C
by Wi(x) = w(azA) =>7"  w(xN), © € M.

Lemma 4.1. Suppose w is a weight on R with symmetry groups (2.5),
and suppose C' is an R-linear code parametrized by A : M — R™. Then

(1) the weight function Wy : M — C is constant on each left
Ghi(w)-orbit orb(x) C M;

(2) War = Wy, if N = (Aryur, - .., Arm)Un), where T is a permu-
tation of {1,2,...,n} and uy, ..., u, € Gy(w).

Proof. These follow directly from (2.5). O

Remark 4.2. If the weight w has nonnegative integer values, the weight
function W)y determines the w-weight enumerator of the linear code C":

1
= — N "),
wwee |ker A| erM

When A is injective, the w-weight enumerator can be written in terms
of the sizes of orbits:

(4.3) wwee =y |[z][t"A).

[elcM
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Lemma 4.1 shows that the weight function W, depends only on the
numbers of coordinate functionals belonging to different G, (w)-orbits
in M*. We formalize this observation next. Write F(X,Y) for the set
of all functions from X to Y.

Given an information module M, define the orbit spaces:

O = Gy(w)\M, O = M*/Gy(w).

Lemma 4.1 shows that W, depends only on a function n € F(O% N),
where n([\]) is the number of coordinate functionals that belong to
the orbit orb(A) = [A]. (In [21, §3.6], Peterson and Weldon call n the
modular representation of the linear code C'.)

The weight w induces an additive map W : F(O* N) — F(O,C).
For n € F(O! N), define w = W (n), the list of orbit weights, by

(4.4) () = ) wlzN)n(A).

[\eot

By (2.5), the value of w(xz\) is well-defined. If w has values in Z or Q,
then W has values in F'(O,Z) or F(O,Q), accordingly. In these latter
cases, tensoring with Q yields a linear transformation W : F(O*, Q) —
F(0,Q).

By ordering the elements of © and OF, one can define a matrix W
whose rows are indexed by O, whose columns are indexed by Of, and
whose entry at position ([z], [\]) is the well-defined value w(z\):

(45) W[x]j[)\] = w(x)\), [ZL’] €0, [)\] € 0"

Treating 7 and w as column vectors, (4.4) is just matrix multiplication:
w = Wn.

Any element n € F(O% N), called a multiplicity function, determines
an R-linear code as the image of the homomorphism A, : M — RY of
left R-modules given by sending z € M to the N-tuple (..., zA,...),
where a representative of each orbit [\] € OF is repeated 7([)\]) times;
N = > neo: n([A]). Said another way, treat elements A € M* as
columns of a generator matrix, with representatives of [A] repeated
n([A]) times. The resulting linear code C,, is well-defined up to mono-
mial equivalence; its list w = Wn of orbit weights is well-defined. Using
w, one can write down the w-weight enumerator of C,, as in Remark 4.2:

wwee, = 306 = 37 [y,
xeM [z]€eO

assuming that A, is injective. (If A, is not injective, we must divide
by |ker A,|.)
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Remark 4.6. The definition of W : F(O* N) — F(O,C) is valid

whether or not w(0) = 0. When w(0) = 0, then W (n)([0]) = w([0]) =0

for any n € F(O% N). Also, when w(0) = 0, W ([djg)]) = 0, where ) is

the indicator function of the orbit [0] € OF of the zero-functional.
More formally, define

Fy(O%,N) = {n € F(O%,N) : 5([0]) = 0},
Fy(O,C) = {w € F(O,C) : w(]0]) = 0}

When w(0) = 0, the image of W is contained in Fy(O,C). We denote
the restriction of W to Fy(O* N) by W, : Fy(OF N) — Fy(O,C); Wy
is an additive map. The map W) is represented by a matrix whose
rows are indexed by the nonzero orbits [z] € O, whose columns are
indexed by the nonzero orbits [A\] € OF, and with entries given as in
(4.5). When w(0) = 0, the map W can never be injective (because
dj0) € ker W), but the map W} often is injective. When w has values in
Q and w(0) = 0, the linear transformation Wy : Fy(O%, Q) — F,(O, Q)
is often invertible. This will be an important tool in later sections.

We conclude this section with a short discussion of the effective
length of codes. The next lemma is a variant of [20, (6.1)].

Lemma 4.7. Suppose C' C R"™ is an R-linear code. Then

(4.8) Zw Z\ker)\ | Z

ceC beim \;

Proof. Write \q,...,\, for the coordinate functionals of C'. Then,

DeecW(€) = D eec 2oim wlci) = 3 ec Doimy w(cA;). Now interchange
the finite sums, and use that A; is a homomorphism, so ) .~ w(c)A;) =

|ker \;| Zbeim i w(b).

There are situations where (4.8) simplifies. Define a weight w on R
to be egalitarian if there exists a constant v such that, for any nonzero
left ideal B C R, > ,.pw(b) = ~v|B|. This definition is due to [I4].
The homogeneous weight on a finite Frobenius ring is an example of
an egalitarian weight; see Example 2.7.

Define the effective length of a linear code C' to be effing(C) = [{i :
Ai # 0}]. If C is given by a generator matrix, the effective length
counts the number of nonzero columns of the generator matrix.

Proposition 4.9. Suppose C' C R" is an R-linear code and w is an
egalitarian weight on R. Then

" w(e) = 4| effing(C).

ceC
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Proof. Use Lemma 4.7. For \; # 0, set B = im \; and note that
|C| = |ker A;| - [im Ay O

Corollary 4.10. Let w be an egalitarian weight on R. Suppose C, D C
R™ are two R-linear codes. If wwec = wwep, then the effective lengths
of C and D are equal.

Proof. The hypothesis means that AY(C) = AY(D) for all j. But

NWmax NWmax

Cl= > A7(C) and Y wle) =} jAY(C),

ceC 7=0

so |C|=|D]and ) . w(c) => ,cpw(d). Apply Proposition 4.9. [
5. SINGLETONS IN DUAL CODES

In this section we describe some general results on the contributions
to wweo. coming from singleton vectors.

As usual, suppose R is a finite ring with 1 and C C R" is a left
R-linear code. Its dual code C* is the right dual code R(C) of (2.1).
We assume w is an integer-valued weight on R with w(r) > 0 for r # 0
and w(0) = 0. Let w = min{w(r) : r # 0}, so that w > 0.

We say that a vector v € R" is a singleton if v has exactly one
nonzero entry. Given a vector v € R", recall that the weight of the
vector is w(v) = >_7_; w(v;). The smallest possible nonzero weight of
a vector is w, which is attained by any singleton whose nonzero entry
r has w(r) = w.

We want to write down the contributions of singletons to the w-
weight enumerator of a linear code, especially to a dual code. As
n (3.9), recall that A;(C) = |{x € C : w(x) = j}|. To track the

contributions of singletons we write
sing _ . : : — 4
AF(C) = {z € C : z is a singleton and w(x) = j}|.

Of course, Aj-ing(C’) < A;(C). Equality will be addressed in Corol-
lary 5.4 below.

For any A € M* and positive integer j, define anny(\,j) = {r €
R : Ar = 0and w(r) = j}, the set of elements in R of weight j that
annihilate .

Lemma 5.1. Suppose w has mazimal symmetry. For any A € M* and
u € U, anny (M, j) = utanny (N, 7). In particular, |ann,(\u, j)| =
lanny (A, §)| for any u € U, X € M*.

Proof. Suppose w(r) = j. By maximal symmetry, w(ur) = w(r) =
for all u € U. Because (Au)(u~'r) = Ar, we see that r € anny (), j)
and only if u~r € ann,(\u, 7).

J
f
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Proposition 5.2. Assume w is an integer-valued weight on R with
mazimal symmetry. If C is a linear code determined by a multiplicity
function n, then, for any positive integer 7,

ATE(CH) = > Janng (A, ) In([A]).

[Aeot

Proof. Suppose C' has coordinate functionals \q,...,\,. Let v be a
singleton vector with nonzero entry r € R appearing in position i.
Then v € C* if and only if \;» = 0. Thus

sing 1
A (C™) g lanng (A, J)|

which reduces to the stated formula because of Lemma 5.1. O

In later sections, formulas for |ann, (A, 7)| will be very specific, de-
pending on the nature of the ring R.

Lemma 5.3. Suppose v € R" has weight w(v) satisfying w < w(v) <
2w. Then v must be a singleton.

Proof. Suppose v has at least two nonzero entries, say in positions 71, Js.
Then w(v) > w(vj,) + w(v),) > 2w. O

Corollary 5.4. If i < d < 2u, then Ay4(C) = A3™(C).

In later sections, Corollary 5.4 will be applied mostly to dual codes,
in tandem with Proposmon 5.2.

Remark 5.5. In order that A;ing(C) be nonzero, it is necessary that
j = w(r) for some r € R.

It is possible that A;(C) = A;mg(C’) even when j > 2w. For exam-
ple: when j = w(r) is not equal to a linear combination of the form
D sw(s)<j Csw(8) with ¢; being nonnegative integers.

Part 2. Finite Chain Rings
6. DEFINITIONS AND A POSITIVE RESULT

A finite ring R with 1 is a chain ring if its left ideals form a chain
under set inclusion. In particular, R has a unique maximal left ideal,
denoted m, so that R is a local ring. Examples of chain rings include
finite fields, Z/p™Z with p prime, Galois rings, F,[X]/(X™); cf., [19].
Every finite chain ring is Frobenius [24, Lemma 14].

From [4, Lemma 1] we know that m is a principal ideal, say m =
RO = OR, that ™ = 0 for some (smallest) m > 1, and that every
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left or right ideal of R is a two-sided ideal of the form R#’ = ¢/R,
j =0,1,...,m. In particular, m is a two-sided ideal, so that R/m is
a finite field, say R/m = F,, of order ¢, a prime power. Write (67) for
RO = 7 R. Thus, all the ideals of R are displayed here:

(6.1) R=(6">(0)> (0% > - > O™ > @™ = (0).

Each quotient (67)/(6!) is a one-dimensional vector space over R/m,
with basis element 67 + (67*1). Tt follows that

(6.2) 1(07)] =q¢™ 7, j=0,1,...,m.

In particular, |R| = ¢™. The group of units of R, denoted U = U(R),
equals the set difference R —m. The group U acts of R on the left and

on the right by multiplication. The orbits of the actions are exactly
the set differences orb(6?) = (67) — (6#7*1), which have size

(6.3) lorth(67)| = ¢™ 7 (¢ — 1), for j < m.

In particular, the left orbits of U equal the right orbits: U67 = 67U.

From (6.1), we see that every element r € R has the form r = u6’
where u is a unit of R and j is uniquely determined by r (the largest ¢
such that r € (6%)). Note that the annihilator of (67) is (™).

Let w be a weight on R with positive integer values for r» # 0 in R.
Assume that w has maximal symmetry, so that w(ur) = w(ru) = w(r)
for all » € R and units u € Y. This means that w is constant on the
U-orbits orb(67) = (67) — (67*1). Define w; as the common value of w
on orb(6?), so that w; = w(ué’) = w(¢’u) for all units u € Y. Then
wo, W1, - . ., Wy_1 are positive integers, and w,, = 0.

Example 6.4. Choosing ( = ¢ — 1, we see from Example 2.7 and (6.1)
that the homogeneous weight W on a chain ring R has the following
integer values:

0, r=20,
w(r) =144, r € (0™ —(0),
qg—1, reR—(6m™1).
Then wog=---=W,, o =q—1, W,,_1 = ¢, and w,, = 0.

Do the MacWilliams identities hold for the homogeneous weight enu-
merator over a finite chain ring R? We will see that the answers depend
on ¢ and m.

When m =1, then 6 = 0, so that R is a finite field F,. As we saw in
Example 2.7, the homogeneous weight W on [F, equals a multiple of the
Hamming weight. By Theorems 3.2 and Lemma 3.13, the homogeneous
weight over finite fields respects duality.
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For m > 2, there is one special case (m = ¢ = 2, Theorem 6.5, below)
where the MacWilliams identities hold for the homogeneous weight. In
the remaining cases, we will see in Theorem 10.2 that the homogeneous
weight does not respect duality.

The results just described apply to the chain rings Z/p™Z, so that the
MacWilliams identities hold for the homogeneous weight over Z/pZ,
p prime, and over Z/4Z [12, Equation (9)], but not for other prime
powers. More generally, over Z/mZ, m not a prime power (so that
Z/mZ is not a chain ring), the homogeneous weight does not respect
duality [30, Theorem 6.2].

Theorem 6.5. The MacWilliams identities hold for the homogeneous
weight enumerator over a finite chain ring R with ¢ = 2 and m = 2.
If C C R™ is a linear code and CL 15 its dual code, then

howeg (X,Y) = — howec(X +Y, X - Y).

IC |
Proof. Appendix A outlines of a proof of the MacWilliams identities
over finite Frobenius rings and describes the Fourier transform. Here,
we provide details relevant to the chain rings appearing in this theorem.

We know that |R| = 4, with R = {0,1,0,1+ 6}. The values of the
homogeneous weight, with ¢ = 1, are:

r‘0101+0
N0 1 2 1

The additive group of R could be a cyclic group of order 4 (in which
case § = 2, in order that (#) be a maximal ideal) or a Klein 4-group. In
either case, there exists a generating character x of R with the following
values. (What is crucial is that x(0) = —1.)

r | 0 1 66 1+90
cyclic  x(r) z' -1 —
Klein x(r) 1 -1

Define f : R — C[X,Y] by f(r) = X2~V0OYW0) For either choice
of x, the Fourier transform f of (A.2) is the same:

r | 0 1 4 146
] X2 XY Y2 XY
fr) | (X+Y)? X2-V?2 (X-Y)? X?2-Y?

Note that the values of f have the form f(r) = (X +Y)>VO(X —

Y)VO . Te., f(r) = f(r)|xex+vyex—y. The rest of the argument in
Appendix A now carries through. O
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7. MODULES OVER A CHAIN RING

We continue to assume that R is a finite chain ring with maximal
ideal m = (6) such that R/m = F, and ™ = 0, for some integer
m > 2. By forming quotients from (6.1), we define cyclic R-modules
Zr = R/(0%), of order ¢*, k = 1,2,...,m. The module Z; is the unique
simple R-module. Also define semisimple modules S, = Z1 & --- ® Z;
with k summands, k = 2,3,...,m; |Sk| = ¢*.

In the next two sections, we will construct two families of linear
codes with the same w-weight enumerators. Here is a brief sketch of
the construction. We will build examples using Z; and Sy, 2 < k < m,
as the underlying information modules. On Zj, choose a multiplicity
function. The weights of elements will be constant along nonzero orbits
O, which have sizes ¢* —¢* 1, ¢* '—¢*2, ..., ¢*—q,q—1. We then need
to build a linear code based on Sy, with the same w-weight enumerator.
This entails choosing subsets of S;, with sizes matching the sizes ¢* —
gt —q¢"2, ..., ¢*—q,q—1. We do this by fixing a filtration of Sj,
using linear subspaces. We can then solve for a multiplicity function for
Sk. If the original multiplicity function on Zj calls for one functional
from each class, then the multiplicity function on S}, is reasonably nice.
We then calculate the common weight enumerator for these multiplicity
functions.

In this section we study the orbit structure of 7, as well as the
subsets arising from a filtration of S;. In Section 8, the multiplicity
functions are described and analyzed.

In order to define linear codes over Z;, and S, let us examine their
linear functionals. Recall first that the left linear functionals of R itself
are given by right multiplications by elements of R. That is, R* = R as
right R-modules, with » € R corresponding to the left linear functional
pr € R* defined by 'p, = r'r, r' € R.

IfXe Z,i, then the composition with the natural quotient map must
equal p, for some r € R.

)2 A— . > R
|
Zr = R/(6")

Conversely, p, : R — R factors through Z; if and only if (9*) C ker p,;
i.e., if and only if 6*r = 0. This occurs when r € (§™*). Thus
Z! = (™) as right R-modules. In particular, Z* = (§™1) as right
R-modules.
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Asfor Sy = Z1®---® Zy, we have St 2 (0™ ) @---& (™) as right
R-modules. For s = (sy1,...,8,) € S and p = (0™, ..., up0™ 1) €
S,z, Sp = Zle 5™t € R. Both S, and S,E are k-dimensional vector
spaces over R/m = F,.

In order to exploit maximal symmetry in Lemma 4.1, we want to
understand the orbit structures of the left actions of &/ on Z; and Sy,
and, to a lesser extent, the orbit structures of the right actions of & on
Z,E and S,’i.

Because (%) is a two-sided ideal of R, Z; is itself a chain ring. Its
left R-submodules are the same as its left ideals:

(7.1) 7, D RO D RO*D .- D RO o {0
Note that (7.1) can be viewed as a filtration of Z; by R-submodules.
Lemma 7.2. The orbits of the left action of U on Zy, are:
orb(1) = orb(6°), orb(#), ..., orb(6*1), {0} = orb(0) = orb(#*).
The sizes of the orbits are: |orb(0)| = 1 and
loth(6)| = ¢" (¢ —1), i=01,...,k—1.
Proof. Apply (6.3) to the chain ring Zj. O

Similar to Lemma 7.2, the orbits of the right action of & on Z}i are
orb(0™=k) orb(mF*1) ... orb(6™71), {0} = orb(6™).

Because Sy is a vector space over F, = R/m, the action of & on Sy
reduces to the action of the multiplicative group Fy . The U-orbits are
{0} and L — {0}, for every 1-dimensional subspace L C Si. The same
structure applies to the dual vector space S,E; the U-orbits are {0} and
the nonzero elements of 1-dimensional subspaces.

For later use in Section 8, we will identify subsets (say, Sy, ..., Sk)
of Sj that will be the counterparts to the orbits orb(1),...,orb(6*~1)
of Zj (in reverse order). In particular, we want two features:

e cach §; is a union of U-orbits in Sy;
o |Si| = |orb(6* )| = ¢ g —1) fori=1,... k.
To define the S;, we define a filtration on Sj,. Recall that S is
a k-dimensional vector space over R/m = [F,. Write elements of
Sy = Z1® --- @ Z; as row vectors of length k over F,. (Row vec-
tors will be written as (z1,...,zy), while column vectors will be writ-
ten as (xy,...,xx).) Define vector subspaces of Sy: Vo = {0} and
Vi=A@0,...,0,86—it1,...,5¢) € Sp : 855 € Fg}, fori =1,2,... k. In
Vi, the first k — 7 entries are zero; the last ¢ entries vary over F,. Then,
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dimg, V; =i for i = 0,1,...,k, so that |V;| = ¢’, and
(7.3) Spk=Vi D Vi1 D - D Vi DV ={0}.

Set S§; = V; — Vi, for i = 1,...,k; then |S;| = ¢ '(¢ —1). Set
So = {0}. Because the V; are vector subspaces, the S; are unions of
U-orbits.

We also want to understand the linear functionals on S) in terms of
the filtration (7.3). To that end, we examine the dual filtration of S
defined by annihilators V; = ann(V;) = {u € Si : Viu = 0}. Then,
dim]pq VZ =k— diqu ‘/1 =k - i, ’Vz| = qk_i, and

(74) {O}:chvk_1C"'CV1CV0:S£.

If we view elements of S% as column vectors g = (0™ 1, .., upb™ 1),
then V; consists of those p whose last i entries equal zero. The zero
entries of V; align with the nonzero entries of elements of V;.

The set differences V; — Vi1 consist of all u = (0™, ... up™ 1)
with py_jp1 =+ = pp =0, pp—; # 0, and py, ..., pp——1 € Fy. The
U-orbit of p is the set of all nonzero scalar multiplies of . In each
orbit there is exactly one ‘normalized’ representative with ux_; = 1.
For i =0,1,...,k — 1, let B; be the subset of V; — V;,; consisting of
all the normalized representatives; i.e.,

(7.5) Bi={peSe:phi=1pip—ir1="---=pp =0}
as a special case, set By, = {0}. Then |B;| = ¢* "1, except |By| = 1.
Lemma 7.6. Let s € S;. Then, for j =0,1,...,k—1,
¢ i< <k-1,
|B; Nann(s)| = < 0, j=1i-1,
¢ 0<j<i—2.

Proof. The case Sy = {0} has ann(0) = S!. Then |B; N ann(0)| =
|Bj| =¢" 7 1 forall0 < j<k-—1.

Now let 1 < i < k. The element s € §; = V; — V,_; is nonzero
and has the form s = (0,...,0, Sk_s41,--.,58k), with sp_;11 # 0. Any
p € Vi1 — V; has the form p = (0™ ... g 160™71,0, ..., 0) with
fre—i+1 # 0. Thus sy = sp_ip1pt5—i10™ " # 0, so that |B;_;Nann(s)| =
0. For i < j < k —1, use the definition of V; to see that V; C V; =
ann(V;) C ann(s). So B; C ann(s) and |B; Nann(s)| = |B;| = ¢" 771

Because s # 0, ann(s) is a vector subspace of S% with dimp, ann(s) =
k—1. By dimension counting, dim(};Nann(s)) equals k—j—1or k—j.
The case dim(V; Nann(s)) = k — j occurs when V; C ann(s). This is
the case i < j < k — 1 above. When j =i — 1, V;_; Nann(s) =V, so
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that |B;_; Nann(s)| = 0, as we saw above. Finally, let 0 < j <1 — 2.
Then dim(V; Nann(s)) = k —j— 1 and dim(V;;; Nann(s)) = k—j —2.
This implies |(V; — Vj41) Nann(s)| = |V; Nann(s)| — |V,41 Nann(s)| =
q’;_J: _Z(q—l). Taking normalized representatives implies | B;Nann(s)| E
q

8. TwWO FAMILIES OF LINEAR CODES WITH THE SAME wwe

We continue to assume that R is a finite chain ring with maximal
ideal m = (6) such that R/m = F, and ™ = 0, for some integer m >
2. Let w be an integer-valued weight on R with maximal symmetry.

Denote the common value of w on orb(6%) by w; > 0,7 =0,1,...,m—1,
and w,, = w(0) = 0.
To begin, we use wy, . . ., w,,_1 to define several numerical quantities.

For i =0,1,...,m — 1, define

(81) a; = Z qum—j—l-
j=0

Also define, for k =2,3,...,m,

k—1
(8.2) Ay = k¢" twp,_y — qu_i_lai.

i=0

Recall the cyclic R-module Z, = R/(6%) and the semisimple R-

module Sy = Z; @ -+ @& Z; (k summands) from Section 6. We will
construct R-linear codes with Z; and Sj as their underlying information
modules. The linear codes will be images of homomorphisms A : 7, —
R" and I" : S, — R™ of left R-modules. As explained in Section 4, the
linear codes are determined by their multiplicity functions.

Definition 8.3. Define a left R-linear code C} parametrized by Z
by using the linear functionals given by right multiplication by each of
gm=Fk .., 0™ 1 each repeated ¢*'w,,_; times, and the zero functional,
repeated max{0, —Ax} times; cf., (8.2).

Equivalently, Cy has a generator matrix of size 1 x (k¢" 1w, +
max{0, —A.}), with entries ™% ... #m~1 each repeated ¢" 1w,
times, plus entries of 0, repeated max{0, —Ax} times. Thus, 0 does
not appear if A > 0, and 0 appears —Ay times when A, < 0.

Proposition 8.4. The linear code Cy of Definition 8.3 has length
kq* w1 +max{0, —Ay}. Its weight function Wy has values

WA<01) - qk_lwm—l(wm—k—‘ri +--+ wm—l)v
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fori=0,1,...,k—1, and the w-weight enumerator of C}, is
k-1 _
wwee, = 1+ Z|orb(01)|tWA(91)
i=0

k—1
=14 ¢ g - D e B e,
1=0

Proof. The formula for the length follows directly from Definition 8.3.
In calculating W, (%), remember that w,, = w(6™) = w(0) = 0.
m—1
Wa0') = > ¢ wnw(@'0’)

j=m—k

= qk_lwm—l (wi+m—k ++ wm—l) .

The functional in Z,g given by right multiplication by 8™~ is injective,

so that A is also injective. Then wwe¢, follows from (4.3). O

We now want to define linear codes Dy parametrized by I' : S, — R"
such that wwes, = wwep,. The form of wwer, was determined by
(4.3), in particular by the sizes of the orbits orb(#*) and the value of
W on those orbits. In order to be able to match terms in the equation
wwee, = wwep,, we make use of the subsets §y,...,S; of Si defined
following (7.3). Also recall the sets B; defined in (7.5). We will design
I' so that Wr is constant on each §;, with value equal to the value of
W, on orb(6%~%).

Definition 8.5. Define a left R-linear code D parametrized by I' :
S — R™ by using the linear functionals in U;B;, with each yu € B;
repeated a; times (cf., (8.1)),7=0,1,...,k—1, and the zero-functional
in By repeated max{Ay, 0} times (cf., (8.2)).

Equivalently, D, has a generator matrix of size k x (32 ¢ 'a; +
max{Ayg,0}), with columns given by p € U;B;, with each pu € B;
repeated a; times, ¢ = 0,1,...,k, the zero-column in B repeated
max{Ay, 0} times. Thus, zero-columns do not appear if A < 0, and
the zero-column appears Ay times when A, > 0.

We now express the values of Wr in terms of ag, ay,...,ax_1.

Proposition 8.6. The weight function Wy : Sy, — Z is constant on
each S;, with Wr(Sy) =0 and, fori=1,... k,

1—2
Wr(S;) = (qki@i1 + Z "7 (q - 1)%‘) Wiy —1-
=0
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Proof. If i = 0, then Sy = {0}, so that Wr(Sy) = 0. Now let i =
1,...,k, and let s € §;. Using Lemma 7.6, we see that
k—
J

Wels) = Y0, 3 ) = S0y 3 w(sn)

=0 HEB; Jj= neB;
1—2
= <qk_iaz‘—1 + Z qk_j_2(q — l)aj) Wyp—1-
§=0

This formula depends only on ¢, so Wr is constant on each S;. ([l

In order that wwec, = wwep, , we need W, (orb(6%7%)) = Wr(S;), for
1=1,..., k. That is, canceling a common factor, we need

i—2
87 ¢ Wi+ wa) = T+ Y (g - Dy,
=0

for i« = 1,...,k. The number of additive terms on each side of the
equation is ¢. Starting with ¢ = 1 and working upwards, we solve a
triangular system recursively for ag, aq, ..., ar_1.

Lemma 8.8. The solutions of (8.7) are

A = W1 + QW9+ + ¢ W1,
fori=0,1,...,k —1. This formula matches (8.1).
Proof. Exercise, by induction. The terms simplify by telescoping. [

Theorem 8.9. For each k = 2,3,...,m, the codes Cy and Dj, have
the same length and satisfy wwee, = wwep, .

Proof. The definition of A in (8.2) guarantees that the codes have the
same length. The a; of (8.1) were defined so that Lemma 8.8 holds.
Thus Wy (orb(6%7%)) = Wr(S;), for i = 1,..., k. Because |orb(6*~%)| =
|S;|, the equality of the w-weight enumerators follows from (4.3). O

Remark 8.10. It is possible to generalize the constructions of C and Dy,
by allowing more general expressions for the multiplicities of the linear
functionals appearing in C}. In Definition 8.3, ™%, ... 0™ ! could
be repeated ¢*  wm_1bm_i, . . ., ¢"  Wm_1b,_1 times, respectively. One
can then mimic (8.7) and Lemma 8.8 to solve for the multiplicities a;
used in defining Dj. One must be careful in choosing the b’s in order
that the a’s come out nonnegative. Sufficiently large b’s should work.
The factors of ¢* 'w,,_; are present so that the a’s are integers. The
present work does not need this level of generality.
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In later sections, we will use the formula below for Ay, which is
expressed in terms of some numerical quantities defined next.

Definition 8.11. For i = 1,2,...,m, define ¢, = w; — w;_1. For
example, ¢, = w; — wy, while €, = —w,,—1 (as w,, = 0). For ¢ =
1,...,m—2 define €, = ¢;, and define €, | = (¢ — Dwy—1 — Q2 =
q€m—1 + €m-

Also define these polynomial expressions in ¢: pg = 0, and

(8.12) pi=14+2¢+3¢3+--+i¢g™', i=1,2,....
Then for i = 1,2, ..., the p; are positive and satisfy the formulas
(8.13) pi—qpici=1+q+¢+--+q¢ .
Proposition 8.14. For k=2,3,...,m,
k—1
Ay = pr-1€y1 + Z quk—jdm,_j-
j=2

Proof. Start with (8.2), and replace a; using (8.1):

k—1 i
k—1 k—i—1 j
Ay =k¢" w1 — g q" E @ Wr—1-j.
i=0 =0

Interchange the order of summation and use (8.13):

k=1 k—1
Ak = k’qkilwmfl - Z Z qkiH»]ilwmflfj
j=0 i=j
k—1
= kq" w,_q — Z qj(pk—j — (Dk—j—1)Wm—1—j
=0
k—1 k—1
= kq" w1 — Z @ Pr—jWpm—1-j + Z qjﬂpk—j—lwm—l—j.
Jj=0 j=0

Re-index the last summation with ¢ = j +1 (the ¢ = k term vanishes),
separate some initial terms, and combine the rest using Definition 8.11:

k-1 k
Ap = kg* wn =Y PP jmo1—j+ Y q ProrWm
=0 =1
K1

= kq" " Wyno1 — PrWim—1 + qPr—16m—1 + Z @ Pr—j€m—;.
=2
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Simplify the coefficient of w,,_; and again use Definition 8.11:
k-1
Ap = Dr—1€m + qPr—1€m—1 + Z Cljpk—jﬁm—j
=2
k—1
= P16y + Z @ Pk i€ j- =
j=2

9. ANALYSIS OF DUAL CODEWORDS OF LOW WEIGHT

Our ultimate objective is to prove that for some & = 2,3,...,m,
the codes C) and D; of Theorem 8.9 have dual codes with different
weight enumerators: WWec.L + WWep.L. We will try to do this in the

most direct way—by showing that Ci- and D;- have different numbers
of codewords of the smallest possible weight. With that in mind, let’s
develop some notation.

Recall that we are assuming the chain ring R is equipped with an
integer-valued weight w of maximal symmetry. The common value on
orb(6") is denoted w; > 0, and w,, = w(0) = 0. Let w = min{w; :
i=0,1,...,m — 1}, so that w > 0. Define I = {i : w; = w}, the set
of exponents of # that achieve the minimum value of the weight; [ is
nonempty.

We now turn our attention to the linear codes ('} and D, of Theo-
rem 8.9 and codewords of weight d < 2w in their dual codes. All such
codewords must be singletons by Lemma 5.3. We will abuse notation
slightly by using the phrase ‘singleton 6" to mean a singleton whose
nonzero entry is a unit multiple of 6°.

Lemma 9.1. Suppose an integer d satisfies w < d < 2w. Let I; = {i :
w; =d}. If 0 € 1y, then, for k=2,3,...,m,

Ad(CF) = AlDE) = —lorb(1)[Ax — 37 (k = 1)¢" w1 ]orb(67)].

i€ly
0<i<k

If0 & 1; and 1 is nonempty, then, for k=2,3,...,m,
Ad(Cy) = Aa(Dyp) = =) (k= )" w1 orb(67)].

il

i<k
Proof. Nonzero contributions to A4(Ci-) — Aq(Dj-) are made by sin-
gletons of weight d in Ci- or Di-. The nonzero entry of a singleton of
weight d must be a unit multiple of §* with 7 € I;. In order for a sin-
gleton to belong to a dual code, its nonzero entry—located in position
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7, say—must annihilate column j of the generator matrix of the primal
code.

If 0 € 14, a singleton 1 annihilates only zero-columns. (Remember
that the nonzero entry of a singleton 1 is a unit.) The number of zero-
columns is determined by Ay: if Ax > 0, then D, has Ay zero-columns;
if A, < 0, then C} has —A}j zero-colums. The net contribution to
Ag(CH)—Ag(Dir) is —|orb(1)|Ag, the number of units times the number
of zero-columns.

If 0 < i € Iy, then a singleton #° annihilates all the columns of Dj,.
Such singletons contribute —|orb(6%)|-length(Dy,) to Ag(CiL) — Aq(Djb).
On the other hand, when ¢ > k, a singleton #° annihilates all columns
of Cy. Such singletons contribute |orb(6%)| - length(Cy) to Aq(Cit) —
Ag(Dit). When i < k, a singleton #° annihilates all columns of Cj,
except those with entries ™%, ... 6™~ =1, Such singletons contribute
lorb(6%)|(length(Cy) — (k —1)¢* wy_1) to Ag(Ci) — Ag(Djit). Because
O} and Dy, have the same length, the total contribution by singleton 6%’s
is 0 when i > k and —(k — 4)¢" Lw,,_1|orb(#")| when i < k. Summing

over i € I; completes the proof. O
Our main interest is dual codewords of weight w. For k =2,3,...,m,

define

(9.2) 5 = Aa(C) = AalD}).

Our aim is to show, whenever possible, for a given weight w, that d; # 0
for some k. We restate Lemma 9.1 for the case where d = w.

Lemma 9.3. Fix k=2,3,...,m. If0 € ID, then
0k = —lorb(1)|Ax = > (k — i)¢" wn_i|orb(6)].

iel
0<i<k

Ifo ¢ I, then
Ok == (k= i)¢" w1 ]orb(6)].

iel
i<k

We draw three corollaries, using notation from Definition 8.11.

Corollary 9.4. If0 & 12, then 0, < 0 for all k = 1+ min]o,...,m.
Weights w on R with wy > w do not respect duality.

Corollary 9.5. Suppose I = {0}. Then the following hold:
(1) If m >3 and j, 1 < j <m—1, is the largest index with €; # 0,
then 5m—j+1 7é 0.
(2) If m =2 and €, = (¢ — 1)w; — quy # 0, then 6 # 0.
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(3) If m =2, ¢, = (¢q— 1w, —qwo =0, and ¢ > 2, then A, (Cy) <
Ay, (Dy).
Weights w on R with wy < w; for alli=1,2,...,m —1 do not respect
duality, except when m =2, ¢ =2, and wy = 2wy; cf., Theorem 6.5.

Proof. Suppose m > 3. By the hypothesis on ]O, € =w; —wy > 0, so
there exists a maximal index j, 1 < j < m—1, with €; # 0. Thus, ¢, = 0
for ¢ =j+1,...,m—1. From Proposition 8.14, A,,_;1; = qm*jeg #0.
From Lemma 9.3 and the hypothesis, 6,,—j+1 = —|orb(1)|A,,—;4+1 # 0.

When m = 2, €] = (¢ — 1)w; — qug, not wy —wy. If €] # 0, the proof
proceeds as above: Ay # 0, and 95 # 0.

When m = 2 and €] = 0, then Ay = J, = 0. However, €| = 0 means
that (¢ — 1)w; = quwy, i.e., wy = (¢/(¢ — 1))wy > wp. But note, for
integers ¢ > 2, that ¢/(¢ — 1) < 2 with equality holding if and only if
q = 2. Assuming ¢ > 2, we have w = wy < w; < 2w. By Lemma 9.1
applied to d = w; and 0 ¢ I, we see that A,, (Cy) < A, (Dy).

When m = 2, ¢ = 2, and w; = 2wy, we are in the situation of
Theorem 6.5, where the MacWilliams identities hold. 0

Corollary 9.6. Let R be a finite chain ring with m = 2. Then every
weight w on R having mazimal symmetry does not respect duality, ex-
cept for multiples of the Hamming weight (any q) or the homogeneous
weight (¢ =2 only).

Proof. Because m = 2, there are only wy and wy. If wg > w;, Corol-
lary 9.4 implies w does not respect duality. If wg = wq, w is a multiple
of the Hamming weight, and the MacWilliams identities hold [25, The-
orem 8.3]. If wy < wy, then Corollary 9.5 applies: w does not respect
duality, except for multiples of the homogeneous weight if ¢ = 2. [

10. WEAK MONOTONICITY AND FINAL ARGUMENTS

When {0} C I, the formula for 6, in Lemma 9.3 is difficult to exploit
systematically; the combinatorics can be formidable. (But not always:
see Example 11.9.) In order to make progress, we will assume that the
weight w on the chain ring R is weakly monotone; i.e., we assume

(10.1) W=wy <wy < < Wypmg < Wep—1
This hypothesis implies that ¢; > 0 for ¢« = 1,2,...,m — 1 in Defini-
tion 8.11. However, €, = —w,,—1 < 0. The weakly monotone hypoth-

esis allows us to state our main result.

Theorem 10.2. Let R be a finite chain ring with a weakly monotone
weight w. Then w does not respect duality, except when
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e w is a multiple of the Hamming weight, or
e m =2 q=2, and w; = 2wy.

Theorem 10.2 will follow from Theorem 10.10, which we will prove
after we establish some technical lemmas.

Equalities are possible in (10.1). Given a weakly monotone weight
w, define jy to be the largest index such that

(10.3) W=wy="--+=wj, < Wjj11-

Similarly, define j; to be the smallest index such that

(10.4) Wy -1 < Wj; =+ = Wyp—1.

There are three situations to highlight, depending upon how many

nonzero values w takes.

e If w has only one nonzero value, then wy = --- = w,,_1, so
that jo = m — 1 and j; = 0. The weight w is a multiple of the
Hamming weight.

e If w has exactly two nonzero values, then wy = --- = w;, <
Wjo41 = **+ = Wpy—1, 50 that j; = jo + 1. The homogeneous
weight is an example of this, with jo =m — 2, j; =m — 1.

e If w has three or more values, define js so that

...wj2_1<wj2:...:wj1_1<wj1:...:wm_l.

Said another way, j; is the largest index less than m with ¢;, >
0, and j, is the second-largest index less than m with ¢€;, > 0.

The weight w has a least two nonzero values if and only if 7; > 0.
In that case, jo < 71 < m — 1, with

(105) €5, > 0 and €j141 = " = €p-1 = 0.

If w has at least three values, then j, < jo < 71 < m — 1 and, in
addition to (10.5), we have

(106) €j, > 0 and €jot+l = """ = €51 = 0.
The key to our analysis is a simplified expression for dy; cf., (8.12).

Lemma 10.7. Suppose {0,1,...,j0} = I, with jo > 1. If k is an
integer, 2 < k < jo+ 1, then

N

-1

or=—q"(g—1)Y ¢ 'pr_jemj-
1

<.
Il
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If k is an integer, jo +2 < k < m, then

6k’ — _((k. _ jO _ l)qm+k—j0—2 o qm-‘rk‘—jo—?) L. qm—l)em
k—1
—q™(¢—1) Zqﬁlpk—jﬁmf;‘-
j=1

Proof. For any integer k, 2 < k < m, Lemma 9.3 and (6.3) imply

min{jo,k—1}
Ok = —lotb()[Ay = > (k= i)¢" w1 |orb(6")]
i=1
min{jo,k—1} .
_ —qm_l(q—l)Ak— Z (/f—i)qurk_Z_z(q—l)wm_l.

i=1
In the formula for Ay given in Proposition 8.14, use €, | = q€,-1 +
€m = (€m_1 — Wm_1. Because of telescoping sums, the w,,_i-terms
cancel completely when 2 < k < jo+1 or cancel partially when jo+2 <
k < m. The terms that remain are as stated. U

In the case of jo + 2 < k < m, note that the ¢,,-term is positive,
as —€, = Wp,_1 > 0 and the numerical sum is positive. The other
terms are nonpositive. The balance between the terms appears to be
problematic. When 2 < k < jg+ 1, §, <0.

We will also need information about how ¢, changes when k& > jo+2.

Lemma 10.8. If k > jo+ 2 and k > m — j;, then

Opy1 — Op = —q"TF 072 (g — 1)

X {(k — Jo)em + ¢ Z (k—i+ 1)€m—i} .

i=m—j1

Proof. Because k > jo + 2, the second formula in Lemma 10.7 applies
to both 0’s. All but the highest order terms cancel, leaving

Ops1 — O = —(k — jO)qm+k_jO_2(q — Ve
k
—q" g - 1) Z(k — i+ 1)emy.

i=1

Because j; > m—k, (10.5) implies that terms vanish in the summation
fori=1,2,....,m—7; — 1. O



WEIGHTS WITH MAXIMAL SYMMETRY 31

Corollary 10.9. Suppose jo+j1=m — 1. If k> j0 + 2, then

Opt1 — O = —qm+k_j0_2(q — 1)(k — jo) (Gm + qj0+1€j1)
k
—¢" N g=1) Y (k—i+ Dens
i=m—j1+1
Proof. Note first that jo + j1 = m — 1 implies jo +2 = m — j; + 1.
Thus, if k£ > jo + 2, then £ > m — j; is automatic. Apply Lemma 10.8
and notice that the term inside the summation with ¢ = m — j; is
(k —m+ji+1)ej, = (k= Jo)ejy- O

The next theorem gives a more detailed description of the claims in
Theorem 10.2.

Theorem 10.10. Let R be a finite chain ring with a weakly monotone
weight w. Let jo and jy be as defined in (10.3) and (10.4). Then the
following statements hold.
(1) If jo =m — 1, then w is a multiple of the Hamming weight.
(2) If jo =0, then Corollary 9.5 applies.
In the following statements, assume 1 < jo < m — 1.
(3) If jo+ j1 > m, then 6 <0 form —j1 +1 <k < jo+ 1.
(4) If jo+j1 <m —2, then 6 >0 for jo+2 <k <m— j;.
(5) If jo+ 71 =m—1 and wy,—1 # ¢ lej,, then 6042 # 0.
(6) Suppose jo+j1 =m—1 and wy,—1 = ¢°e;,. If w has at least
three nonzero values, then 6, <0 for k > m — jo + 1.
(7) Suppose jo +j1 = m — 1, wp_1 = ¢°ej,, and w has two
nonzero values. Then j; = jo+ 1, m = 279 + 2 s even, and

Awm—l(cli_) - Awm—l (Dli_) < O

for k> j;.
Remark 10.11. The length of the ‘run’ w;, = -+ = Wy,—1 is m — j;.
The length of the ‘run’ wy = - -+ = wj, is jo + 1. Their difference is

-+, jO + jl <m-— 2a
(m—=j1) =(o+1) =40, Jot+ji=m-—1,
) jO + jl > m.
Proof of Theorem 10.10. The first two claims were explained after (10.4).
If 1 < jo<m—1and jy+ji > m, then any k satisfying m —j; +1 <
kE < jo+ 1 has §; < 0 by Lemma 10.7 and (10.5). Namely, the first

formula in Lemma 10.7 applies, and €; > 0 appears in the formula
because j; > m — k + 1.
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If 1 <jo<m—1and jo+j1 <m—2, then any k satisfying jo+2 <
k < m—j; has 9, > 0. Now the second formula in Lemma 10.7 applies,
and only the (positive) €,,-term survives, because j; < m — k + 1.

If1<jo<m-—1and jo+ 71 =m—1, then jo+2 =m — j; + 1.
Setting k = jo+ 2, we see from the second formula of Lemma 10.7 that

m m—l)

Sjore =— (™ — ¢ Nem — ¢™(q — 1€,
=—¢""g—1) (em + e, .

As €, = —wy,_1, we see that wy,,_1 # ¢°*te;, implies 6,2 # 0.

Next, suppose 1 < jo <m—1, jo+j1 = m—1, and wy,—1 = ¢ e,
We just saw that this implies d;,,2 = 0. Applying Corollary 10.9, first
with k = jp + 2, and then recursively, we see, for any k > jo + 2, that
0 has the form:

k—1
Op = — Z c(k)i€m—,

i=m—j1+1
where each c¢(k); is a positive integer depending on k. Because each
€m—i > 0, each 9, < 0, and 0, < 0 if at least one ¢,,_; > 0 in the
interval of summation. Remember (10.6). If & > m — jo + 1, then
m—jo+1>m—ji1+1=jo+2 m—(k—1) < js, and €, > 0 appears
in the expression for dx. Thus 9, < 0.

Finally, suppose 1 < jo <m —1, jo+j1 =m — 1, w,_1 = ¢ ey,
and w has exactly two nonzero values. That means that j; = jo+ 1, so
that m = 2jp + 2. In addition, we must have €¢;, = w,,—1 — wp. Using
this in the equation wy,_1 = ¢?*e;, yields ¢ lwg = (¢! — 1)wy,—_1.

Because the coefficients in this last equation are relatively prime,
there exists a positive integer s such that wy = (¢! —1)s and w,,,_; =
¢°ts. Calculate: 2wy — w,,_1 = (¢! — 2)s > 0, because jo > 1 and
q > 2. (But see Remark 10.12.) Thus w = wy < wy,—1 < 2w. Using
the second formula of Lemma 9.1, with d = w,,_; and 0 & I, we see
that A, (Ci) — A, (Dit) <0 for any k > j; = min I,. O

Remark 10.12. In general, for positive integers ¢ > 2, ¢/o*! — 2 > 0,
with equality if and only if jo = 0 and ¢ = 2. Equality, again, points
to Theorem 6.5.

Example 10.13. When m = 3, the only situation not covered by
Corollaries 9.4, 9.5, or Theorem 10.2 is when wy = wy < w;. In
this case, €] = wy —wy > 0 and €, = (¢ — 1)wy — qwy; < 0. Then
Proposition 8.14 and Lemma 9.3 imply that

5y = —|orb(1)]Ay = —¢*(q¢ — 1)((qg — 1wy — qwy) > 0.
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Thus, this w does not respect duality. We conclude that, for m = 3,
the only weights that respect duality are multiples of the Hamming
weight.

11. SYMMETRIZED ENUMERATORS AND EXAMPLES

In this section there are details of the MacWilliams identities for
the symmetrized enumerator for the action of the full group U of units
on a finite chain ring R, followed by several examples. The details
supplement the general outline provided in Appendix A.

Suppose R is a finite chain ring with m = (), R/m = F,, and
0™ = 0. As we have seen earlier, the group of units U acts on R on
the left, with orbits orb(1),orb(f),...,orb(d™~1), orb(d™) = {0}. The
dual action of U on R* 2 Ry has the same orbit structure.

For an element r € R, define v(r) via r € orb(6*™); i.e., v(r) is
the exponent i of § such that r = uf® for some unit v € U. Define
[:R—=ClZ,...,Zy,) by f(r) = Z,t), r € R. Then define F': R" —
ClZo, ..., Zm] by

/=1 /=1

The symmetrized enumerator of an additive code C' C R" is the fol-
lowing element sec € C|Zy, ..., Z,]:

sec =sec(Zoy -y Zm) = Z F(z) = Z H Zy(zy)-

zeC zeC (=1

Any finite chain ring R is a Frobenius ring, with a generating char-
acter x. We will use the following properties of y [25]:

(1) for any nonzero ideal I of R, Y _, x(r) = 0;

(2) every 7 € R has the form © = x" for some unique r € R;
(3) x"(0) =1 for all r € R.

We first calculate the sum of a character over the orbits orb(6).
Lemma 11.2. Suppose i,j =0,1,...,m and r € orb(6’). Then
0, itj<m-—2,

> X @={ i iti=m-l,
o m—i—1(, _ S .
s€orb(6%) q (¢q—1), i+j>m,i<m,

1, 14+7>m,i=m.
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Proof. When i = m, ™ = 0. Then ZsEorb(Om) X"(s) =1,as x"(0) = 1.
Fori=0,1,...,m — 1, orb(6") = (6") — ("), so, for x itself,

S ox(s) =D xs)— > x(s)

s€orb(67) s€(07) s€(0°+1)

0, +=0,1,... —2

(11.3) e
-1, 1=m-—1,

using property (1) of x.

Now suppose r € orb(67), so that r = u6?, u € U. Left multiplication
by r maps orb(6") onto orb(6™7), with each element in orb(#**7) being
hit Jorb(#?)|/|orb(0"7)| times. (Because U#' = U, units can be moved
across powers of 6; for any unit u, uf® = ' for some unit u’.) This
implies that

. lorb(6"))|
D X()= ) xlrs)= > x(®).
, _ lorb(67+7)] "
s€orb(6?) s€orb(6%) t€orb(0it7)
Using (6.3) and (11.3), we get the stated result. O

Remark 11.4. The formulas in Lemma 11.2 depend only on the orbit
of r, not r itself. This is a general feature of character sums over the
blocks of a partition coming from a group action [3, Theorem 2.6].

Define the generalized Kravchuk matriz K by
K = Z X"(s), 7€ orb(#).
s€orb(0?)
We calculate the Fourier transform of f and F' as in (A.2).

Lemma 11.5. For any r € R, the Fourier transform of f is

m

fir)=3"ZKy, reob(@?).

1=0

The Fourier transform of F' is
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Proof. The identity F(r1,7a,...,r) = I, F(re) is well-known, [25,

o~

Proposition A.5], so it is enough to calculate f(r):

Fr) =3 x(rs)f(s) = Y X'(5) Zut)

SER SER
=2 2 X@Z4=3Z 3, X, =
1=0 scorb(6?) =0 s€orb(67)

We now have the MacWilliams identities for the symmetrized enu-
merator over a finite chain ring; cf., [25, Theorem 8.4], [¢, Theorem 3.5].

Theorem 11.6. Suppose R is a finite chain ring and C' C R™ is a left
R-linear code. Then, using C*+ = R(C),
1

seci (Zoy -y Zm) = m sec(Z0, .-y Zm)

Zj=311%0 Zikij '
Proof. Follow the outline in Appendix A, apply Lemma 11.5, and note
that R(C) = R(C) for left R-linear codes. O

A version of this theorem, valid for the partition determined by the
homogeneous weight, appears in [20, Theorem 2.1]

Example 11.7. Let R = Z/8Z. Then U = {1,3,5,7}. The U-orbits
are orb(1) = U, orb(2) = {2,6}, orb(4) = {4}, and orb(0) = {0}. The

generalized Kravchuk matrix is

0 0 —4 4
0 -2 2 2
K=1_1 1 11
1 1 11

Let w be the homogeneous weight, so that wy = w; = 1, Wy = 2, and
W3 = 0. The linear codes C3 and D3 of Theorem 8.9 have the following
codewords, with multiplicities listed above the horizontal line, telling
how many times the given entry is repeated.

8 8 8 22 2 2 4 48
000 000O0O0O0O© O
1 2 4 4 444000
240 0044440
3 6 4 4400440
4 0 0 0404¢0414
5 2 4 40400414
6 4 0 044042014
76 4 4 004404
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Then the symmetrized enumerators of the codes are:

sec, = 4287878 42287578 + Z5 7235 + 734,

sep, = 472,078 +27,° 7% + Z87,% + Z3*.
One can compute the symmetrized enumerators of the dual codes (via
Theorem 11.6 and SageMath [23], say), but the results have too many
terms to include here.

Specializing Z; ~» tV (and taking a Taylor expansion for the dual
codes) yields the homogeneous weight enumerators:

howec, = 1 + 10 4 2t** 4 4¢°2
howep, = 1 + 0 + 2t 4 41%2,
howegy = 1+ 16t + 1848t% + 604004° 4 - - -,
howeps = 14 48t + 1832> + 64656t° + - - - .

The computed value §3 = A;(Cy) — A;(D3) = —32 matches the value
given in the second formula of Lemma 10.7.

Example 11.8. Still use R = Z/8Z, but change the weight to wy =
1,w; = we = 2, w3 = 0. The multiplicities of both codes (call them Cs
and Ds/) change accordingly:

8 8

(@}

O U W~ Ol
B NO ORI O
O OB OhRO

cCoococooc oo
e BT o B N o S [ )
OB RO O

OR R OO R RO

OO O R R O

N e B R N N o i e

e R BT S N N N o i e

O O SO e e S e B ] )

~J

6 4
Now the symmetrized enumerators are:
sec, = AZ§ZVZ525 + 22325250 + 23257 + Z3°,
sep, = 42323 +22,°Z;* + 23257 + Z3°.
The w-weight enumerators are
wweg,, = 1+ "0 + 2t%% + 4,
wwep,, = 1+ 10 4 2432 4 440,
wwegy = 1+ 24t + 1074t% 4 36584t% 4 - - -
wwep. = 1 + 135412 4 34304¢% + - - - .

W
o
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For this w, I = {0}. Lemma 9.3 implies that d3y = —4Agz = 24, which
matches the computed value.

Example 11.9. For a final example, still use R = Z/8Z, but change
the weight to wy = 1,w; = 2,ws = 1,w3 = 0, which lies outside the
scope of the main results given in previous sections; cf., Example 10.13.
The multiplicities of both codes (call them Cs» and Dsr) change ac-
cordingly:

4 4 4 11 1111559
000 O 000O0O0O0O
1 24 0 4444000
240 0 0044440
36 4 0 4400440
4 0 0 O 0 404¢0414
52 4 0 40400 4 4
6 4 0 0 04404¢0 4
76 4 0 4 004404

Now the symmetrized enumerators are:
sec,, = A2y 21 Zy 23" + 22125 25° + Z3 237 + Z3°,
sep,, = 42,7 + 22,223 + Zy 230 + Z3°.
The w-weight enumerators are
wwee,, = 1+ ¢ + 26" + 4¢'°,
wwep,, = 1+ t* + 2t + 4¢'°,
wwees, = 1463t + 2111t% 4+ 51635¢3 4 - - - |
wwepy =1+ 23t + 1195t + 38431¢% + - --

In this example 0 € I , and Lemma 9.3 implies that d3» = 44 — 4 = 40,
which matches the computed value. The weight w does not satisfy the
hypotheses of Corollaries 9.4, 9.5 or Theorem 10.2; nonetheless, we see
that w does not respect duality. Example 10.13 uses k£ = 2 to reach
the same conclusion.

Part 3. Matrix Rings over Finite Fields
12. MATRIX MODULES, THEIR ORBITS, AND A POSITIVE RESULT

We begin our study of matrix rings by describing certain matrix
modules, the orbits of the group of units, the homogeneous weight,
and the MacWilliams identities for Mayo(FF5).

Fix integers k,m with 2 <k < m. Let R = Mj,x(FF,) be the ring of
k x k matrices over a finite field Fy, and let M = M., (F;) be the left
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R-module of k£ x m matrices over [F,. Both R and M are vector spaces
over F,. The scalar multiplication of R on M is the multiplication
of matrices. The group GL(k,F,) of invertible k£ x k matrices is the
group of units U = U(R) of R; U acts on M on the left via matrix
multiplication. The size of GL(k,F,) is:

(12.1) IGL(k, Fo)| = (¢" = 1)(¢" —q) - (¢" = ¢"7").

Our first objective is to understand the cyclic left R-submodules of M
and the U-orbits in M.

Given a k x m matrix x € M, denote by rowsp(z) the row space
of z, i.e., the F -linear subspace of F;" spanned by the rows of z. A
left R-module is cyclic if it is generated by one element; i.e., it has the
form Rz for some element x in the module. Denote the orbit of x € M
under the action of U by orb(z) or [z]; denote the rank of a matrix x
by rkz.

Lemma 12.2. Let v € M = Myxm(F,). Then

o forye M, y € Rx if and only if rowsp(y) C rowsp(x);

e fory € M, Ry = Rz if and only if rowsp(y) = rowsp(z) if and
only if orb(y) = orb(z);

e if y € orb(x), then rky = rkx.

Proof. If y = rx, then the rows of y are linear combinations of the rows
of . This implies rowsp(y) C rowsp(z). Conversely, if rowsp(y) C
rowsp(z), then each row of y is a linear combination of the rows of z,
say y; = Z§:1 rijx;, for some r;; € F,, where the rows of x and y are
denoted with subscripts. Define r € R by r = (r;;); then y = rx.

For the second item, apply the first item twice, symmetrically in y
and x. When rowsp(y) = rowsp(z), both x and y row reduce to the
same row-reduced echelon form, which means they are in the same
U-orbit. O

Let Py be the partially ordered set (poset) of all cyclic left R-
submodules of M = M.y, (F,), and let Py, be the poset of all linear
subspaces of dimension at most k£ in [y Define p : Pyr — Prm by
p(Rx) = rowsp(z); p is well-defined by Lemma 12.2. Conversely, given
a linear subspace V' C F}", define

(V) ={x € M :rowsp(xz) C V}.

Proposition 12.3. When dimV < k, (V') is a cyclic left R-submodule
of M. The map p : Py — Prm 15 an isomorphism of posets, with in-
verse given by 1.
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Proof. Suppose dim V' < k. Choose a basis of V| and define x € M to
have the chosen basis of V' as its first dim V' rows, followed by rows of
zeros. Then rowsp(z) = V. By Lemma 12.2, ¢(V) = Rx is a cyclic
module. The argument also shows that p is surjective. Lemma 12.2
implies that p is injective and preserves inclusion. U

Corollary 12.4. The orbits orb(x), x € M, of the left action of
U = GL(k,F,) on M = Myyn(F,) are in one-to-one correspondence
with the linear subspaces of dimension at most k contained in Fy'. More
precisely, the orbits of matrices of rank j are in one-to-one correspon-
dence with linear subspaces of dimension j in Fy'. The linear subspace
corresponding to orb(z) is rowsp(x).

There are similar results for linear functionals on M. A linear func-
tional on M is a homomorphism A : M — R of left R-modules; inputs
will be written on the left, so that (rz)\ = r(z\) forr € R and x € M.
The collection of all linear functionals is denoted M* = Hompz(M, R);
M?* is a right R-module, with addition defined point-wise and \r de-
fined by z(A\r) = (zA)r, where A\ € M¥, r € R, x € M. When
M = My (F,), then M* = M,,.x(F,), with the evaluation z\ € R,
x € M, A\ € M*, being matrix multiplication.

The orbits orb(\), A € M¥ of the right action of U = GL(k,F,)
on Mt = M, «x(F,) are in one-to-one correspondence with the linear
subspaces of dimension at most k& contained in F;'. More precisely,
the orbits of linear functionals of rank j are in one-to-one correspon-
dence with linear subspaces of dimension j in F7". The linear subspace
corresponding to orb(\) is the column space colsp(\).

Remark 12.5. Given a linear functional A € M* ie., A\ : M — R, its
kernel consists of x € M such that rowsp(z) C colsp(\)*. Here, for a
linear subspace Y C F*, denote by Y+ its orthogonal with respect to
the standard dot product on Fj". Given \; € M* i=1,2,...,n, define
A: M — R"by zA = (zA,...,z\,) € R". Then ker A consists of
r € M with rowsp(z) C Ncolsp(\;)* = (colsp(A1) + - - - + colsp(\,))*.
This latter uses the fact that (X +Y)t = X1tNY*, for linear subspaces
X, Y CF. In particular, if colsp()1),.. ., colsp(A,) span Fy*, then A
is injective.

We record the number of U-orbits and their sizes, depending on their
rank. The g-binomial coefficient [’} ], for 1 < j < m is defined by

[m] _ (=D 1) (" - 1)

J (¢ =1)(¢Z 1 =1)---(¢—1)

For m >0, [¢],=1. If j <0 or j >m, then [}] =0.



40 J. A. WOOD

Proposition 12.6. There is one orbit of rank 0, of size Sy =1, in M.
For any integer 7, 1 < 7 < k, all orbits of rank 7 matrices in M have
the same size. The number and size 7} of orbits of rank j matrices in
M are:

number ‘ size
71
m i
{ } S =1 - )
J1q i=0

The ratio 41/ satisfies Sji1/ S5 =¢" — ¢, for 0 < j <k —1.
The size of a cyclic submodule Rr depends only ontkr: |Rr| = ¢F™r.

We note that the sizes .; and |Rr| do not depend on m.

Proof. 1t is well-known (e.g., [22, Theorem 3.2.6]) that the g-binomial
coefficient [}’ ], counts the number of j-dimensional linear subspaces in
[Fy", so the number of orbits follows from Corollary 12.4.

In addition to the left action of U = GL(k,F,) on M = M (F,),
there is also a right action of GL(m,F,) on M via matrix multipli-
cation; both actions preserve rank. As matrix multiplication is as-
sociative, these two actions commute. Thus right multiplication by
P € GL(m,F,) maps the U-orbit orb(z), x € M, to orb(xP), and the
two orbits have the same size.

Suppose the integer j satisfies 1 < j < k. Choose zy € M to have the
first j standard basis vectors (i.e., (1,0,...,0), etc.) as its first j rows,
with the remaining rows being all zeros. Pick any y € M with rky = j.
Choose a basis of rowsp(y), and extend it to a basis of F*. Use this
basis of " as the rows of a matrix P € GL(m,F;). Then the rows of
xo P consist of the chosen basis of rowsp(y), followed by k— j zero-rows.
Thus we have rowsp(zoP) = rowsp(y), so that orb(y) = orb(x¢P), by
Lemma 12.2. We conclude that |orb(y)| = |orb(zoP)| = |orb(zo)|, so
that all orbits of rank 5 matrices have the same size.

As for the size .} of an orbit of rank j matrices, it is enough to
calculate |orb(z)| using |orb(xg)| = [U|/|stab(zo)|, where stab(zg) =
{u € U : uxg = x} is the stabilizer subgroup of xy. Then u € stab(x)

has the form
_ | LB
Y10 D |

with [; the j x j identity matrix, B arbitrary, and D invertible. Then
Jorb(xo)| = |GL(k, Fy)| /(¢ V|GL(k — 5, F,)]),

which simplifies as claimed.
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The same argument using the right action of GL(m,F,) implies that
the size of a cyclic submodule Rr C M depends only on rkr. In-
deed, suppose rkr; = rkry. By row and column operations, there are
units u; € GL(k,F,) and us € GL(m,F,) such that ro = uyrius. By
Lemma 12.2, Rry = Rrijus. Right multiplication by uy maps Rry iso-
morphically to Rrijus. We conclude that |Rry| = |Rrius| = |Rry|. For
1=1,2,...,k, let r € M be the following matrix of rank j:

- 4]

Then Rr consists of all matrices in M whose last m — j columns are
zero. The cyclic submodule Rr has size |Rr| = ¢* = ¢*™&r. O

We now turn our attention to the homogeneous weight on R =
My (F,). Because of Proposition 12.3, the Mdbius function for the
poset of principal left ideals of R equals the Md6bius function for the
poset of linear subspaces of IF’;, which, following [11, (2.7)], is

c (¢ k
(12.7) n(Vi, Vo) = (—1)7), v C v, C Y,

where ¢ = dim V5 — dim V] is the codimension of V; in V5.

Equation (2.8) yields the following formula for the homogeneous
weight W on R; this formula also appears in [14, Proposition 7]. We
write p =rk(r), r € R:

(12.8) =1 p=0,
. Wl(r) =
(=1°
C (1 - (qk—l)(qkfl_1)...(qk7p+1_1)) , P > (.

Note that w(r) depends only on p, which is consistent with w being
constant on left Uf-orbits. Write w, for the common value of wW(r)
where rkr = p. By choosing ¢ appropriately, namely

(=" -1 =1 (¢g—-1)/g,

the homogeneous weight will have integer values.

Example 12.9. For Msy»(F,), the homogeneous weight is

‘Wo Wy Wa
generalg| 0 ¢*—q ¢#—q—1
¢=2 |0 2 I
7=3 | 0 6 5

with average weight ¢ = (¢ — 1)(¢ — 1)/q in general, so that ¢ = 3/2
for ¢ =2, and ¢ = 16/3 for ¢ = 3.
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Example 12.10. For M;,3(F,), the homogeneous weight is:

| Wo | Wy | Wy | W3
¢ |0 ——F+¢ |- —F+q|@—¢" —F+q+1
g=21]0 12 10 11 )
g=3|0 144 138 139

with average weight ¢ = (¢ —1)(¢* — 1)(¢ — 1)/q in general, so that
¢ =21/2 for ¢ =2, and ¢ = 416/3 for ¢ = 3.

Lemma 12.11. The homogeneous weight on My (F,) satisfies
0=Wp < Wy < Wy < - < (< <W3<Wy.

Moreover, 2Wy — Wy > 0 for all k > 2, ¢ > 2, except for k = q = 2,
where 2wy — W1 = 0.

Proof. The denominator in (12.8) is an increasing function of p = rk(r).
This, together with the alternating sign of (—1)”, yields the inequalities
among the w,. By moving ( to the left side of (12.8), one sees that
w,—C¢=—(=1)¢/((¢"=1)---(¢" "™ —1)). This implies that w, — ¢
is positive when p is odd and negative when p is even.

For k > 2, one calculates that

(" —2)(¢" 1 —1) -2
(¢* =1 -1
Using k£ > 2 and ¢ > 2, the numerator satisfies
(@ =2 =1) =22 (@ -2)(@—1) —2=q(g+1)(g—2).

This last expression is positive when ¢ > 2 and vanishes when ¢ = 2.
Even for ¢ = 2, the earlier inequality is strict when £ > 2. Thus,
2Wy — W1 > 0, except for k = g = 2, where 2wy — W1 = 0. O

2Wy — Wy =¢(

Using Lemma 5.3, we see that any nonzero vector v with w(v) < wy
must be a singleton. Any nonzero vector with w(v) = w; must be a
singleton (or a doubleton, i.e., two nonzero entries, only for Msy(FF5)).

Theorem 12.12. The MacWilliams identities hold for the homoge-
neous weight over R = Mayo(Fs3). For a linear code C' C R,

1
hOwecL (X, Y) = m hOWGC(X + 3}/, X — Y)
Proof. As in the proof of Theorem 6.5, we provide details to be used
in the argument outlined in Appendix A.
From Example 12.9, we have that wo = 0, w; = 2, and wy = 1. A
generating character for R is x(r) = (—=1)"", r € R, where tr is the
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matrix trace. Define f : R — C[X,Y] by f(r) = X?>"VOYyW") The
value of f(r) depends only on rkr:

rkr ‘ 0 1 2
fr)| X* Y? XY
A calculation shows the Fourier transform (A.2) depends only on rkr:
X24+9Y2+6XY = (X +3Y)?, rkr =0,
fr)=¢X?+Y?-2XY = (X —-Y)% rkr =1,
X2 —3Y?4+2XY = (X +3Y)(X -Y), rkr=2.

~

Note that f(r) has the form of f(r) with a linear substitution: X <
X +3Y,Y <« X —Y. Applying these details, the rest of the argument
in Appendix A carries through. O

There is a Gray map from Msyo(F2) equipped with the homogeneous
weight to F? equipped with the Hamming weight (of Fy) [2].

13. W-MATRIX

In this section we determine the W-matrix of (4.5) for a weight w
on R = My (F,) that has maximal symmetry.

As usual, let R = My« (F,), and suppose w is a weight on R with
maximal symmetry. Suppose r € R. By row and column reduction
there exist units uy,us € U = GL(k,F,) such that

I,|0
U1rus = 010 s

where p = rkr. Thus w(r) = w(uirug) = w([ % J]), which says that
the value of w(r) depends only on the rank of r. Write wy, wy, ..., wy

for the value of w on matrices of rank 0, 1,..., k, respectively.

Remark 13.1. While w(0) = 0 is part of the definition of a weight, some
of the results of this section will be more natural to state if we allow
wp to be viewed as an indeterminate. We will proceed with w, as an
indeterminate, and later show, in Theorem 13.16 and Corollary 13.18,
how the general results are affected when we set wy = 0.

The information module M will be M = My, (F,) with m >
k. Then Hompg(M,R) = M,«x(F,), achieved by right multiplication
against M; i.e., the evaluation pairing M x Hompg(M, R) — R sends
x € M and A € Homg(M, R) to z\ € R.

Because of maximal symmetry, the symmetry groups of w are Gy, =
Gy = GL(k,F;). The orbit space O = Gy \M is represented by row-
reduced echelon matrices of size k x m, and O = Hompg(M, R)/Gy
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is represented by column-reduced echelon matrices of size m x k. The
matrix transpose maps @ < O! bijectively. The sets O and OF are
partitioned by rank, and elements of @ and O% correspond to linear
subspaces of " of dimension at most k, by Corollary 12.4. (Left
orbits in O are viewed in terms of row spaces; their transposes, right
orbits in O%, are viewed in terms of column spaces.)

The rows of W are indexed by elements [x] € O, ordered so that
ranks go from 0 to k. Similarly, the columns of W are indexed by
elements [\] € O% ordered to match O under the bijection O «+» OF.
The [z], [A-entry of W is simply w(z)), i.e., the value of w at the
evaluation A € R. The value w(x ) is well-defined by the definition of
the symmetry groups. By maximal symmetry, the value w(z\) depends
only on the rank rk(xzA). The matrix W is square of size Nj,,, the
number of linear subspaces of dimension at most & in F;".

Suppose [z] € O corresponds to the linear subspace X C Fy" and
[\] € OF corresponds to Y. We seek to express rk(z)), and hence
w(zA), in terms of X and Y.

For a linear subspace X C /", denote by X L its orthogonal with
respect to the standard dot product on [Fj". Then dim X L =m—dim X
and (X*+)* = X, for all linear subspaces X C F/". Also, (X NY)*+ =
X+ 4+ Y+, for linear subspaces X,Y C FJ".

Lemma 13.2. For linear subspaces X,Y C Fi" representing [z] € O
and [\ € OF, respectively:

(1) dim X —dim(X NY1) =dimY — dim(Y N X1), and

(2) tk(zA) = dim X —dim(X NY+) =dimY — dim(Y N X4).

Proof. Consider (X NY+): = X+ +V, and compare dimensions:
m—dim(X NY*+) = dim X+ +dimY — dim(X*-NY)
=m—dimX +dimY — dim(X*NY).

We conclude that dim X —dim(X NY*+) =dimY — dim(X+NY).
Choose as a representative x a k x m matrix whose first dim(XNY")
rows form a basis for X NY*+, whose next dim X — dim(X NY*) rows
complete to a basis of X, and whose remaining rows are zeros. Choose a
representative \ by reversing the roles of X and Y: its first dim(YNX+)
columns form a basis for YN X", its next dim Y —dim(Y NX*) columns
complete to a basis of Y, and its remaining columns are zeros. Then

z\ has the form
0010

xA=10]Z2|0 |,
0,00
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where Z is a square matrix of size (dim X —dim(X NY"1)) x (dimY —
dim(X+ NY). The matrix Z is nonsingular. If not, there exists a
nonzero vector v with vZ = 0. Then [0|v|0]z € Y+, which violates the
choice of basis of X NY" in the construction of z. The formula for

rk(zA) now follows. O

The matrix W is symmetric when we use the bijection © < O% to
align the indexing.

Because some of our later results depend upon inverting W, we need
to understand when the matrix W is invertible. We will be able to
transform W into a block diagonal format by making use of the Mobius
function of the poset Py, of linear subspaces of dimension at most k
in F7". Versions of this block diagonal format can be found in [9, §4],
[28, Theorem 9.6], and [29, §6].

Recall that we index the rows and columns of W by linear subspaces
of dimension at most & in F7", with ranks increasing from 0 to k.

Define a matrix P, with rows and columns indexed by linear sub-
spaces of dimension < k in F7", using the same ordering as for W. The
entry P, 3 is given by
dim B)

(13.3) Py = n(0,8) = (-1, i pCa
| R (¢ it 3¢ a.

Because we are ordering rows and columns so that ranks increase,
we see that P is lower triangular. Its diagonal entries are FP,, =
. dim «
(—1)dlm°‘q( 27 # 0. Thus P is invertible over Q.
For j = 0,1,...,k, define an incidence matrix .#; over QQ, square
of size [}'],, with rows and columns indexed by linear subspaces of

dimension j in F}", using the dimension j portion of the ordering used
for W and P. The «, d-entry of .#; is given by

1, andé-=0
j‘a _ 9 9
(Fi)as {Q an st £0.

The incidence matrices .#; are invertible by [29, Proposition 6.7].
Our main objective in this section is to prove the next theorem.

Theorem 13.4. For positive integers 2 < k < m and a weight w on
My (F,) having mazimal symmetry and wy indeterminate, we have

Cojo 0 --- 0

PWPT— 0 Cljl 0

0 o --- ijk
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where, for 7 =0,1,...,k,
J , .
(13.5) ¢ = (~1Yq®) ;—nfq@ [‘ész.

Before we prove Theorem 13.4, we prove some preliminary lemmas
and propositions that will be used in the proof. We begin by quoting
the well-known Cauchy Binomial Theorem, e.g., [22, Theorem 3.2.4].

Theorem 13.6 (Cauchy Binomial Theorem). For a positive integer k,

k-1 k o [k
1+2q) = DN 2
H( + 24" Zq u @
=0 7=0 q
In particular, using x = —1, for k positive,
=g [k
13.7 —1)igl2 H = 0.
(1.7) > [j

In a vector space, a frame is an ordered set of linearly independent
vectors; if there are b such vectors, we call the frame a b-frame.

Lemma 13.8. Let V' be a vector space over Fy, with dimV = v, and
let D be a linear subspace of V. with dim D = d. Then

{BCV:dimB=bBND=0}=q¢" {v;d} |
q

Proof. We count the number of b-frames outside of D, and divide by
|GL(b,F,)|, (12.1). Then, factoring out b factors of ¢¢ from
(¢" = q¢")(q" = q™")---(¢" — ¢**"7")
(@ =1 —q)--- (" —¢"")
yields the stated result. U

v

Lemma 13.9. Let V be a vector space over F, with dimV = v, and let
D be a linear subspace of V with dim D = d. For any j =1,2,...,d,

{B CV :dimB =b,dim(BN D) = j}| = ¢t M [“ B d] :
il 10—l
Proof. The count equals the number of j-dimensional subspaces J C D
times the number of B’s of dimension b with BN D = J. The number

of j-dimensional subspaces of D is [d}q. The set of b-dimensional sub-

J
spaces B C V with BN D = J is in one-to-one correspondence with the
set of (b— j)-dimensional subspaces of V/.J that intersect D/.J trivially.

By Lemma 13.8, the number of such subspaces is ¢(®=7)(@=7) [Z:ﬂ . 0
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Lemma 13.9 sharpens [29, Lemma 6.9]; the latter’s Cy(b) is ¢*™).

Lemma 13.10. Let V' be a vector space over F, with dimV = v, and
let A and D be linear subspaces of V with dim A = a and dim D = d.
If dim(A N D) =i, then, for any j =0,1,...,1,

{BC A:dimB = b,dim(B N D) = j}| = =969 m [Z:;]
q q

Proof. Note that BN D = BN (AN D). Apply Lemmas 13.8 and 13.9
with ambient space A and subspace AN D. U

Lemma 13.11. Suppose o, § C F;* are linear subspaces. Then dim(an
6t) > dima — dimd. If dima > dimd, then dim(andt) > 0.

Proof. Using o + §+ C F, compare dimensions:
m > dim(a + 0+) = dima +m — dim § — dim(a N §+),
from which the result follows. U

Proposition 13.12. Ifdim(andt) > 0, then (PW),s = 0. Ifand* =
0, then, writing a = dim «,

(PW)as = S0, By = (-1 7] o
BCa r=0 q

In particular, the matriz PW s block upper triangular.
Likewise, if dim(y N B+) > 0, then (WP )g, =0. IfyN B+ =0
then, writing ¢ = dimy,

T _ - s (3 c
(WP") Zu (0, €)Waime = Z( 1) q(2) L} ws.

eCry s=0 q
In particular, the matrizc W PT is block lower triangular.

Proof. From the definition of the matrix P and Lemma 13.2,

(PW)as = ZM(O, B)wdimﬁ—dim(ﬁﬁéi)-

BCa

In this formula, the subscript dim 8 — dim(8 N §+) = dim § — dim(6 N
L) < dimé — dim(d N at) = dima — dim(a N §*), as B C a, so
that ot C B+. Writing i = dim(a N 6+), we see that the subscript
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dim 3 — dim(8 N §+) < a — i. Thus

PWes=3" S w0, 8w,

BCa
dim B—dim(8NéL)=r

=22 2 nopfw.
r=0 j=0 BCa
dim B=r+j

dim(Bné+)=j

By Lemma 13.10 and (12.7), the coefficient C,. of w, is

C, = ioq’”(u) BL {a ; 1 (—1) (%)

q

To simplify, we used the identity ("}7) = (1) +jr + () and (13.7).
If dim ¢ < dim v, Lemma 13.11 implies i = dim(a N §+) > 0. Using
dimension to create blocks, we see that PW is block upper triangular.

Essentially the same arguments yield the results about WP, U

Recall that the matrix P is lower triangular, so that P' is upper
triangular. Thus PW P will be both lower and upper block triangular,
hence block diagonal. The exact form of PW PT is the next result.

Proposition 13.13. If dima # dimd, then (PWP"),s = 0. If
dima = dimd = a, then

(PWPT)OMS - {(_1)(1(](;) Z?ZO(_lyq(é) [?]qwﬁ afl 6J_ = 07
7 0, andt #£0.

Proof. We first show that aNd* # 0 implies (PWPT), s = 0. Assume
anNét #0. For any v C 6, we have 6+ C v+, so that andt C anyt.
Thus a Nyt # 0 for all v C 4.

Using the definition of P, we see that

(13.14) (PWPT)os=> (PW)anyu(0,7).

~vCE6
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By Proposition 13.12, all the (PW),_,-terms in (13.14) vanish, so that
(PWPT),s =0, as claimed.
Essentially the same argument using

(PWPT)as = n(0.8) (WP )s;

BCa

shows that § N ot # 0 implies (PWPT), s = 0.

From Lemma 13.2 we have the equation dima — dimé = dim(a N
61t) —dim(d Nat). If dima # dimd, at least one of a N d+ or § N at
is nonzero. Thus (PWPT"),s = 0.

At last, suppose dim o = dim 4. In this situation, note that aNdét+ =
0 if and only if 5Na® = 0. As above, if aNd* # 0, then (PWPT),s = 0.
If aNd* = 0, then the equality of dimensions yields F/'=a® 5+. For
any v C §, we have 0+ C v+, so that aN~y* # 0. By Proposition 13.12,
(PW)a,y =0 for v C §. Thus, (13.14) implies that

(PWPT)(X,é = (PW)m(;p,(O,(S),
which gives the stated formula. O

Proof of Theorem 13.4. The nonzero entries in Proposition 13.13 de-
pend only on dim o and equal the ¢; in the statement of Theorem 13.4.
Whether a N §+ = 0 is marked by the incidence matrix .%;. O

Corollary 13.15. The matriz W is invertible over Q if and only if
o .
o = (174 -1 [)) w0
q
forall j =0,1,... k.

Proof. The matrices P, PT, and .#; are all invertible over Q. O

Recall from Remark 13.1 that we have been treating wy as an indeter-
minate. When wy is set equal to 0, the first row and first column of the
matrix W consist of 0’s. Then W cannot be invertible. Equivalently,
co = 0 in Corollary 13.15.

To get around this lack of invertibility, we make the following adjust-
ments, as in Remark 4.6. Define a matrix W, with rows and columns
indexed by the nonzero elements of @ and OF, respectively, ordered
so that ranks go from 1 to k. The [z], [\]-entry is again w(zA), with
w(0) = 0 now. Similarly, define a matrix P, with rows and columns
indexed by the nonzero elements of O and («, §)-entry given by (13.3).
Then the counterparts of Theorem 13.4 and Corollary 13.15 are the
following.
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Theorem 13.16. For positive integers 2 < k < m and a weight w on
My (F,) having mazimal symmetry and w(0) = 0, we have

c1 4 0o --- 0
R B
d 0o -- ~' ckfk.
where, for 7 =1,....k,
(18.17) = (1 S ] e
=1 q

Proof. The relationships between the matrices P and F, and between
W and Wy, when wy = 0, are given below. The notations row(a) and
col(a) mean a row, resp., column, vector, all of whose entries are a.

B 1 | row(0) B 0 | row(0)
P= { ol P } + Whio=o = { o) Wo |-
Then
0 | row(0)
T —
(PWE =0 = [ col(0) | WPy |
and the result follows from Theorem 13.4, with wy = 0. U

Corollary 13.18. The matriz Wy is invertible over Q if and only if
o J ) .
= (-1 Y1 [7] w20,
q

forallj=1,... k.

Remark 13.19. The extension property (EP) for w holds when the W
map is injective (zero right null space) for all information modules. We
see that EP holds if and only if all ¢; # 0 for j = 1,2,...,k. See
(28, Theorem 9.5]. In particular, when W is invertible, then Wj :
Fyo(OF, Q) — Fy(O,Q) is an isomorphism, Remark 4.6.

Remark 13.20. It is possible to generalize Propositions 13.12 and 13.13
to the context of an alphabet A = M;,(F,) and information module
M = Mjym(F,), with m > ¢ > k. This paper does not require such a
level of generality.
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14. LOCALLY CONSTANT FUNCTIONS

In this section we examine a type of multiplicity function that will
feature prominently in the construction of linear codes in Section 16.

As in previous sections, R = My, (F,) and M = My, (F,), with
k< m. The ring R is equipped with a weight w having maximal
symmetry and positive integer values. As in Remark 13.1, we will
treat wy as an indeterminate. Recall that the orbit spaces © and O*
are ordered by rank, from 0 to k. Write @; and O for the collections
of orbits of rank equal to i. Recall that orbits are denoted by orb(z)
or [z]. Given sets B C A, we denote the indicator function of B by

1p: A — Z, with
1, ze€B
1 ) = Y Y
5(2) {0, z ¢ B.
The type of multiplicity function to be considered has the form 1, or
a linear combination of such indicator functions.

Given a multiplicity function  : O — N (or, more generally, 7 :
OF — Q), we refer to w = W as the list of orbit weights of n. The list
w is a function w : O — Q. We say that n, resp., w, is locally constant
ifn = Z?:o a;lye, resp., w = Z?:o bjlo,, for rational constants a;, b;.

J
Said another way, 7 is locally constant if rk A\; = rk Ay implies n([\1]) =

n([A2]); i-e., n is constant on each (92. Similar comments apply to w.
Let n; = 1, and w; = Wn;. We show that w; is locally constant.
J

Proposition 14.1. Let n; = 1,:. Then w; = Wn; is locally constant.
J
If 1 =rkx, then

min{j,m—i}

wllel) = 3 gmi0u-o [md—i]q[jjd]qwj_d.

d=0
In particular, when j =1, 1=1kx =1,2,...,k, and wy = 0,
m—1 i m—1 m—1i m—
wi([2]) = ¢ M wr = (" T g T
q

is an increasing function of i.
Proof. Because w; = Wn;, we have
wille)) = D w@Nm(N) = Y wlzh).
Aot Neo!

Using Lemma 13.2, represent orb(z) = [z] by a linear subspace X C
Fr, dim X = i, and orb(\) = [A] by Y, dimY = j. Then w(z)) =
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Wi_dim(xnyL) = Wj_dim(vnxL). Lemma 13.9 now implies
min{j,m—i}
wiz) = > HY:dimY =jdim(Y N X") = d}|wj_q
d=0

min{j,m—i}

_ (m—i—d)(j—d) | =1 i ,
=y o [P [ ] e
q q

d=0
When j = 1, the formula simplifies as stated. 4

Corollary 14.2. If n s locally constant, then so is w = Wn.

15. W-MATRIX

There is an ‘averaged’ version W of the W-matrix that will be useful
in our analysis of dual codewords in Section 18. We describe W in
this section. We continue to assume that the information module is
M = Myym(F,) and that wy is indeterminate.

Lemma 15.1. Fori=0,1,...,k and [\] € (’)5-, the value of

i i—d)(m—j—d) |V —J J
> W = g [ d ] [Z - d] Wi
d=0 q q

[33} €0;

depends only on v and j = rk \.
Proof. The proof of Proposition 14.1 applies, interchanging the roles of

t =rkx and j =rk A O
Definition 15.2. Define W to be the integer (k + 1) x (k + 1) matrix
(15.3) Wi = Z Wiy, [N € O

[J}]Eoi

fori,j =0,1,..., k. The definition is well-defined by Lemma 15.1.
Example 15.4. When k£ = 2 and m = 3, we see that

. Wo Wo Wo
W= |14+qg+¢@Pw (1+q@uwo+w wo+(q+¢*)w
(1+g+®wy wo+ (g+¢*wr (1 +quwi + ¢*ws

We next formalize the relationship between W and W, in order to
determine when W is invertible.

Recall that W is square of size Nj ,,,, the number of linear subspaces
of dimension at most k in F;". Define B to be a (k + 1) x Ny, matrix.
For ¢« = 0,1,...,k, row i of B is the indicator function 1y, for the
collection of linear subspaces of dimension ¢ in [F;". Similarly, define
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an Ny, X (k+ 1) matrix £. For j = 0,1,...,k, column j of F is
(1/ [?]q)loq. Notice that BE = Iy,1, and EB is block diagonal, with
the block indexed by rank j being 1/['], times the square all-one

matrix of size [77],.

Lemma 15.5. We have: W = BWE.

Proof. Left multiplication by B givens the sums of Lemma 15.1. Right
multiplication by E averages those (equal!) sums over [A\] € Og. O

Recall the P-matrix of (13.3).
Lemma 15.6. We have: BPEB = BP and EBP'E = P'E.

Proof. The matrix BP has rows that are locally constant, and EB
acts as the identity when it right multiplies matrices with rows that
are locally constant. Similarly, P"E has columns that are locally con-
stant, and E' B acts as the identity when it left multiplies matrices with
columns that are locally constant. 0

Our next result is the counterpart of Theorem 13.4. Set ()1 = BPFE
and Q2 = BPTE. One verifies that @, is lower triangular and @, is
upper triangular. Their i, j-entries are

o T i .

157 @y =08 7] @y = o ]
q q

In particular, the diagonal entries of both are (—1)jq(2), j=0,1,... k,

so that both @), and ()5 are invertible.

Theorem 15.8. We have Q1WQ, = BPWP'TE and

Co 0 .. 0 .. 0
0 ¢ ey ... 0 o 0
@QWR:=1 o g . gmie .. 0 |
| 0 0 o 0 o gFm TR ]
where co, c1, ..., are in (13.5).

Proof. The first equation follows from Lemma 15.6. The second equa-
tion follows from Proposition 13.13. The factor ¢/ ) arises from
counting the number of v of dimension j in F}" that satisfy aN =0
for a fixed § of dimension j. That count uses Lemma 13.8. U

Corollary 15.9. The matriz W is invertible if and only if W is in-
vertible.
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When wy = 0 one can define a k x k matrix W using (15.3), but
only for 7,7 =1,2,..., k. By defining smaller versions of B, E, ()1, Q)2,
one can prove the following results using a proof similar to that of
Theorem 13.16.

Theorem 15.10. Suppose wy = 0. Then Qo1 WoQo2 = BoPsWo P, Ey
and

[ ¢ e .. 0 e 0 i
Q071W0Q0’2 = 0 oo qj(m_j)Cj ce 0 s
.0 e 0 o gFm R, |
where ¢, ..., cx are in (13.5), but with wy = 0.

Corollary 15.11. When wo = 0, the matriz Wy is invertible if and
only if Wq 1is invertible.

16. CONSTRUCTIONS

In this section we construct two linear codes C' and D over R =
My, (F,) with wwec = wwep, assuming that w has maximal sym-
metry, that wy = 0, and that the associated W, matrix is invert-
ible, Corollary 13.18. Both linear codes will have information module
M = Myym(F,), with m > k.

Here is a sketch of the main idea behind the construction. Suppose
C is the image of A : M — R". Recall that the maximal symmetry
hypothesis means that W, is constant on any left ¢-orbit in the infor-
mation module M. Suppose A has the property that N chosen orbits of
rank s have the same value v; of Wj. Pick one orbit of rank s+ 1, and
denote by vy its value of W,. Now try to swap values on those orbits:
try to find a linear code D, the image of I' : M — R"™, so that W has
value v5 on the N chosen orbits of rank s, value v; on the chosen orbit
of rank s+ 1, and Wr = W), on all other orbits. If N times the size of
a rank s orbit equals the size of a rank s+ 1 orbit, then wwes = wwep,
provided such a D exists and provided that C' and D have the same
length; cf., Remark 3.10. If the codes have different lengths, we append
enough zero-functionals to the shorter code so that the lengths become
equal. Because wy = 0, the additional zero-functionals have no effect
on the weights.

We first need a few facts about g-binomial coefficients.
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Lemma 16.1. For integers 0 < s < m,

- _ ) - s+1 )
_s_q m sq s+1q gst 1 sq
m m
< .
s —{3—1—11’ 0<s<m/2;
L dg q
m :qm_s{m—l] _}_[m—l} C0<s<m:
S s—1 s
- -q q q
m :{m—l] +qs{m—1] C0<s<m
5 s—1 S
- - q q
Proof. Most of the identities are in [22, Chapter 3] or its exercises. The
inequality follows from the preceding identity, because the multiplying
fraction is at least 1 for s < m/2. O

Lemma 16.2. Suppose integers k,m, s satisfy 0 < s < k <m. Then

k m{  |m-—1
=i -1,
q q
Proof. The result is true for s = 1: [T], — [ml_l]q = ¢! > ¢*. Now
suppose s > 2, so that 2 < s < m — 2. By symmetry and monotonicity
in Lemma 16.1, we see that [?jll]q >, =TT
q+1>¢™ 2 Use Lemma 16.1 again to see that
m m — 1 _ m—s m — 1 2 m—2 . m k
] e ] e
q q q
For the constructions, assume k£ > 2, m > k, and set wy = 0. We
assume a weight w on R has maximal symmetry, and we assume the
associated Wy-matrix is invertible. There will be a construction for
each value of s = 1,2,...,k— 1. The integer s determines the ranks of
the orbits that will be swapped.
Fix an integer s with 1 < s < k < m, and choose an orbit orb(\g) €
O% with tk \g = 1. As in Corollary 12.4, this orbit corresponds to the
linear subspace Ly = colsp()\g) C F™, with dim Ly = 1. As dim L =

q

m — 1, there are [™] linear subspaces of dimension s contained in

Ly, leaving 7], — [™;!], linear subspaces of dimension s in F}" that
are not contained in Ly . By Lemma 16.2, there are at least ¢* —¢* < ¢*
linear subspaces of dimension s in Fj" that are not contained in Lg.

Similarly, using m — s > 2, there are [Zﬁf]q > 1 linear subspaces of

dimension s + 1 contained in Lj.
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Choose distinct s-dimensional linear subspaces X1, Xy, ..., X x4 of
F* that are not contained in Lg. Also choose one (s + 1)-dimensional

linear subspace Y C Lg. By Corollary 12.4, these linear subspaces

correspond to distinct orbits [z1] = orb(x1), ..., [Tk _gs| = orb(zr_g)
and [y] = orb(y) in O, with rkz; = s and tky = s+ 1. Then |orb(y)| =
qk_qs

¢ " orb(z;)|, by Proposition 12.6.

We now consider several indicator functions on O* and find the
weights they determine at the orbits [z1],. .., [zx_4] and [y].

Let 1)), : O = Z be the indicator function of [Ag] = orb()\g) € O%:

w5 B30

From Lemma 13.2, the weights of 11, at the orbits [z;], 1 < i < ¢*—¢°,
and [y] are (Wolpg))([z]) = w(zAo) = Waim X —dim(XNLE)

(Wl (o)) = {g’h =l

The exact values of Wyljy,) at other inputs will not be relevant. What
is crucial is that the value at [y] is 0 and that the values at the [x;] are
equal and positive.

Recall that OF = {orb(\) € O% : tk A = 1}; let Loz be its indicator
function. The orbit weights wy = Woloﬁ are found in Proposition 14.1.
The indicator function 1 o, of the set of all nonzero orbits Oi is locally
constant, so ngogr is also locally constant, Corollary 14.2. Set oy =
(Woloi)(orb(x)), when tkz = 1, and ay = (Woloi)(orb(x)) when
rkx = 2. Both ay, ay are positive integers.

Define a function ¢<® € Fy(O,Z) by

—1, orb(z) = orb(z;),
¢W(orb(z)) =<1, orb(z) = orb(y),

0, otherwise.

Because we are assuming W, is invertible, Remark 13.19 says that W} :
Fo(0%, Q) — Fy(0,Q) is an isomorphism. Thus W, 's®) € Fy(O%, Q)
exists, but it has rational values of both signs. To clear denominators,
choose a positive integer ¢ sufficiently large so that o(*) = cw, W '¢(®)
has integer values. Then o®)(orb(0)) = 0, as ¢® € Fy(OF, Z), and
Woo® = cwis®, so that (Wyo'®)(orb(z)) equals 0 or +cw.
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We collect the values of Wyn at the [z;] and [y], for various 7.

U (Won)([w:]) (Won)([y])
1) w 0
(16.3) Lot B b
1Oﬁ (qus 4+t qul)wl (qusfl 4+t qul)wl
O—(SB —Cwy CW1

For later use, write B, s =¢™ 5 '+ -+ +¢™ % By, > 0.
Some of the values of ¢(®) will be negative. Choose a positive integer a
sufficiently large so that all the values of aw;1 +0) are nonnegative.
+
Choose an integer b > 1 large enough that a(a; — ap) < bg™ 1. (If
a; < (g, then b = 1 suffices.) Set

(16.4) A= Y o@(orb(N)),

orb()\)eog_

e =awly + bl + (c+alaz — 1) +bg™ 1

Define two multiplicity functions ne, np € F(OF, Q) by setting
Nc =€+ maX(A, 0)1[0],
(16.5) np =€+ o) —min(A, 0)1(.

Theorem 16.6. Let R = My (F,), k > 2, and M = My, (F,),
E < m. Let w be a weight on R with maximal symmetry, positive
integer values, and w(0) = 0. Assume the associated Wy-matriz is
wnvertible.

Then, for any integer s, 1 < s < k, the multiplicity functions no and
np of (16.5) have nonnegative integer values, i.e., no,np € F(O! N),
and they define left R-linear codes C and D, respectively. The two
codes have the same length. Their weights at the orbits orb(z;), i =
1,2,...,4" — ¢°, and orb(y) are

n | (Wn)(orb(zi)) [ (Wn)(orb(y))
ne | (c+aag + By )wy | (aqg + bByy, ¢ )w,
np (acg + bB,, s)wy (¢ + aag + bB,y, s )wy

At all other orbits, their weights agree. In particular, wwec = wwep.

Proof. All of a,wy,b,c,ar, az, max(A,0), and —min(A, 0) are nonneg-
ative integers. The integer b > 1 was chosen so that a(ay — a;) +
bg™ "1 > 0, so the values of n¢ are nonnegative integers. The posi-
tive integer a was chosen so that aw;1 o + o) has nonnegative values,

which implies that the values of np are nonnegative integers.
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Both n¢ and np contain the term blo§ . Because the linear subspace

spanned by {colsp(A) : A € O} is all of Fy, Remark 12.5 implies that
Ac and Ap are both injective. The value of A was chosen to satisfy
A = effing(D) — effing(C). If A > 0, then D is longer, and we add
A zero-functionals to C'; if A < 0, then C' is longer, and we add —A
zero-functionals to D. Thus the codes have the same length.

The weights (Wn)(orb(z;)) and (Wn)(orb(y)) follow from (16.3) and
(16.5). Because Wnp—Wne = Wo®) = cw;s®, the form of ¢(®) implies
that the weights for C' and D are equal at all other orbits. As noted
earlier, |orb(y)| = Zfi;qslorb(xm, by Proposition 12.6. We conclude
that wwes = wwep. ]

Remark 16.7. Here is a summary of the motivations for various parts
of the construction. The integer ¢ was chosen to clear denominators
so that ¢ would have integer values. However, ¢(*) has both positive
and negative values, because W has nonnegative entries and Weo(®) =
cw<® has mixed signs. So, a was chosen so that awr 1 +0() has non-

negative integer values. The function 1,: (resp., 1,¢) is used because
+ 1

its weights are the same at all the [x;]’s. The integer b > 1 was chosen
so that (Wo(awlloi + blog))(orb(xi)) < (VVO(awllogr + blog))(orb(y))
and also to guarantee that Ac and Ap are injective. Then the coeffi-
cient of 1p),) was chosen so that the weights interchange when o) is
added to nc. The function 1, is used because it changes the weights
at the [x;]’s in the same way but not the weight at [y].

17. DEGENERACIES

The constructions of Theorem 16.6 made use of the invertibility of
the matrix Wy. In this section, we describe a construction in the situ-
ation where W, is not invertible. We continue to assume information
module M = My, (F,) and weight w with maximal symmetry, posi-
tive integer values, and wy = 0.

Corollary 13.18 says that W) is singular when at least one

¢; = (=1)q) Zj:(—l)sq(i) qus,

j=1,2,...,k, vanishes. By hypothesis on w, w; > 0, so that ¢; # 0.

Lemma 17.1. Suppose ¢; =0 for some j =2,3,...,k. Then any row
of the matriz Py indexed by a linear subspace v C " with dim~y = j
belongs to ker Wj.
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Proof. The second part of Proposition 13.12 shows that, if dim~v = 7,
then (WPT)g, = 0. This holds for any 8 and any ~ with dim~y = j.
This means the columns of P' indexed by ~ with dim~y = j belong
to ker W. Those columns are the same as the rows of P indexed by ~y

with dimvy = j. Because wy = 0, the same analysis applies with W,
and P(). ]

Suppose ¢; = 0 for some j = 2,3,..., k. Pick a row v,, of % indexed
by a linear subspace v C Fi" with dim~y = j. Define two multiplicity
functions ne € Fy(O% N) based on the positive, resp., negative, parts
of vy:

Ny = (Uv + |U’Y|)/2 + 1(9§a
n- = _(UW - |Uv|)/2 + 1(/)%,

where |v,| means the vector obtained from v, by taking the absolute
value of each entry. The terms 1, are included so that the associated
1

homomorphisms A, are injective; see Remark 12.5. Note that n; —
n- = v,, so that Wyn, = Wyn_. Modify n, by setting 7, ([0]) = 1; set
n-([0]) = 0.

Proposition 17.2. Let Cy be the linear codes determined by n+. Then
Cy and C_ have the same length, and wwec, = wwec._.

Proof. In (13.3), there are [], nonzero terms in rank r positions of the
row v,. Then the difference in lengths of C'y and C_ is

length(C) — length(C_) = io q) mq B i ) Mq

by (13.7). Zero-functionals don’t change the value of Wn,. We then
have Wn, = Wn_, so that the w-weight enumerators are equal. 0

This same construction was used (with the Hamming weight) in [27,
p. 703] and [28, p. 145].

Remark 17.3. The swapping idea in Theorem 16.6 does not always
work in the degenerate case because ¢(*) is not always in im Wy. See
Remark 18.13 for more details.
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18. ANALYSIS OF SINGLETON DUAL CODEWORDS

In this section we analyze dual codewords that are singleton vectors.
We will then apply this analysis to the codes constructed using (16.5).
The key result, Theorem 18.12, shows how the contributions of single-
tons of rank i to Ar8(D+) — Ase(C*) depend on the parameter s
used in (16.5).

Given a left R-linear code C' C R", recall the right dual code R(C')
from (2.1). We will often denote R(C) by C*.

When an R-linear code C' is given by a multiplicity function 7, a
singleton vector v belongs to C+ when the nonzero entry r of v right-
annihilates the coordinate functional A in that position: Ar = 0. Re-
member that A € Hompg(M, R) = M,,«,(F,) and r € R = M (F,).

Given a functional A with rk A = j, we will determine how many
elements € R with rkr = i satisfy A\r = 0. For A € Homg(M, R),
define

ann(i, \) = {r € R:rkr =i and Ar = 0}.
Recall that the sizes .#; of U-orbits were given in Proposition 12.6.

Lemma 18.1. Suppose A € Homg(M, R). Then the size of ann(i, \)
depends only on tk X\. If tk A = 7, then

F),, i<k—],

|ann(é, A)| = { ' . .
0, 1>k — 7.
Proof. View M,,xx(F,) and M.x(F,) as spaces of F,-linear transfor-
mations Fj* — F} and F¥ — F, respectively, with inputs written on
the left. Then Ar = 0 means that im A C kerr. Given that tk A = j
and rkr = i, we see that a necessary condition for A\r = 0 is that
Jj=dimim A < dimkerr =k —i.
Given im A C IF’;, the number of linear subspaces K (candidates for
ker r) satisfying im A C K C ]F’; and dim K = k — 7 equals the number
of linear subspaces of dimension k — ¢ — j in IF’; /im A\, a vector space

of dimension k£ — j. That number is [k’:j'j]q — [k;j]q, For a given
K, there is a U-orbit’s worth of matrices r» with kerr = K, and hence

rkr = 4. The size of that orbit is .¥;. O

We will abuse notation and write |ann(i, j)| for the common value
lann (i, \)| when rk A = j.
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Example 18.2. Let k£ = 2. We display the values of |ann(¢, 7)| in a
matrix with row index ¢ and column index j, 7,7 = 0,1, 2:
1 1 1
(@>=1(@+1) ¢—10
(@-D(@-q9 0 0

Suppose a left R-linear code C' is given by a multiplicity function
n:O = N. For j =0,1,....,k, define

m= Y n(\)
Neo!

Then 7; counts the number of coordinate functionals having rank j.
Set 1= (7,71, - - - ) € NFF1. We call the 7; ‘rank-sums’.

Proposition 18.3. Suppose a left R-linear code C' is given by a mul-
tiplicity function n. Then the contribution of singletons of rank i to
Ane(CHF) s

k—1
> lann(i, j)[7;.
j=0

In particular, the contribution of singletons of rank k to A

|GL(k, Fq)[7o-

ne(CL) s

Wi
Proof. There are a total of 7); coordinate functionals of rank j. For
each one, apply Lemma 18.1. O
The larger ¢ is, the fewer terms there are in the summation.

Corollary 18.4. For a linear code C given by multiplicity function n,

k—i

APECH) = Y Y lann(, )l
imw;=d j=0

Having seen the importance of the rank-sums 77;, we next see how

they behave with respect to the W-matrix. Given a function w : O —
Q, define

[l‘] €0;

Set W = (Wo, W1, . - ., W)-
Proposition 18.5. Suppose n: Of — Q. Ifw = W), then @ = W7.

Proof. Sum the rows indexed by rank ¢ elements of O in w = Wr,
change the order of summation, and use Lemma 15.1 and (15.3). O
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Because our ultimate objective is to find linear codes C' and D of the
same length with wwes = wwep and wwes1 # wwepi, we now apply
Proposition 18.3 and Corollary 18.4 to two linear codes C' and D of the
same length. Write 6n = np — nc and §AY" = AJ"8(D+) — AS"8(CH).
The net contribution of rank i singletons to d A% then simplifies to

k—i
(18.6) > lann(i, )|o7;,
=0

and AT =3, S8 lanm(i, 7)07;.

Remark 18.7. The last two formulas will be the main tools for showing
that two dual codes have different w-weight enumerators. But the
fomulas cut both ways. If all the 07; vanish, then singletons cannot
detect differences between wwes and wwep. See Example 21.5.

Now consider specifically the linear codes C' and D constructed by
(16.5). In this case, we see that
on =o' — Aly,

Np —Ne = <_A’6§S)a SR >6l(c8)>a

Wp —we =Wa® =(0,...,0, —cuy (¢* — ¢°), cwy,0,...,0),
where the nonzero entries of wp — Wy are in positions s and s + 1.

Recall from Theorem 16.6 that C' and D have the same length. This
is reflected in the fact that the sum of the entries of B — 7 is —A +

> ; 5§8) = 0, from (16.4). This allows us to re-write the net contribution

(18.6) of rank i singletons to J A% as Z§=1 (Jann(i, )| — |ann(z, 0)]) &j(.s).

To write this equation in matrix form, define a k x k£ matrix Ann by
Ann, ; = |ann(s, j)| — |ann(¢,0)] i, =1,2,... k.

In summary, the net contributions of singletons of rank ¢ to 5Afj?g are
given by the entries of

(18.8) Anna®.
Lemma 18.9. The matriz Ann is invertible over Q.
Proof. Define a (k+ 1) x (k + 1) matrix A by

A; ;= lann(i, 5)], 4,7 =0,1,2,... k.

Then A is upper ‘anti-triangular’ by Lemma 18.1, i.e., A; ; = 0 when
147 > k. Then det A = + Hf:o #; is nonzero. Thus A is invertible.
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Subtract the zeroth column of A from every other column. The
resulting matrix is still invertible and has the form

[ R |

where col(x) is a column of nonzero entries. Thus Ann is invertible. [J

The matrices W, and Ann are both k x k, so they both define Q-
linear transformations Q¥ — QF. We next explore how these linear
transformations behave with respect to certain filtrations of Q.

Define a k x k matrix T over Q:

By standard conventions, H ]q = 0 when ¢ > j. This implies that T is
upper-triangular and invertible. (By (15.7), T' is just Qg 2.)
Lemma 18.10. The matrices WoT and AnnT are lower triangular.
The proof of Lemma 18.10 will utilize the next lemma.
Lemma 18.11. For integers 0 <1 < j <k,
J .
¢ (49 17 k—/ .
S f] 7 -
=0 q q

Proof. We first prove the edge cases ¢ = 0 or j = k, and then prove the
remaining cases by induction on k.
Suppose i = 0. Then the term [ko_e]q =1forall £=0,...5. The

sum reduces to (13.7), which vanishes, as j > 0.
Suppose j = k. We observe that

A B,

and that [’“;é]q =0 for ¢ > k —i. Then

() k o k—1

e (L - -

O] 7] =X HM
q a =0 a q

B k:} ’“ {k—@} 0
) / T
q ¢=0 q

~
||M»
o
—
|

by (13.7), as k —i > 0.
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We prove the remaining cases, 0 < ¢ < j < k, by induction on k.
The first case is when k£ = 3, with i = 1 < j = 2. By direct calculation,

i(—l)gq@) EL [316}61 =(@+q+1)—(¢g+1)*+q=0.

=0

For the induction step, suppose 0 < ¢ < j < k+1. Apply an identity
from Lemma 16.1, so that

S -1y R zi:(_lyq@ dRE)

: St f] [ o

because both sums on the right side vanish by the induction hypothesis
or the edge cases. 0

Proof of Lemma 18.10. We need to show that the i, j-entry of each
product vanishes when ¢ < j. For WT', the result is the wy = 0 analog
of Proposition 13.12, as T"is (Qp2. For Ann T,

- ([ ) o ],

Note that the sum does not change if we include ¢ = 0. Applying the
distributive law and (13.7), as j > 0, we see from Lemma 18.11 that

(AnnT),, _yz () Hq{k;ﬂq:o. O

We now define two filtrations of Q*. Let e; = (1,0,...,0),...,e, =
(0,...,0,1) be the standard basis vectors of Q*. For i = 1,2,...,k,
define linear subspaces of Q*:

V; = span{e;, €411, ..., €L},
T; = span{columns 7,7 + 1, ..., k of the matrix T'}.
Then dimV; =dim7; = k — i+ 1, and
Q"=Vi >V, DDV, D {0},
Q"=Ti DT> DT D{0}.

Lemma 18.10 shows that the matrices Ann and Wy (when invertible)
map the T-filtration isomorphically to the V-filtration.
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Theorem 18.12. Let C' and D be the linear codes constructed using
(16.5) and < for some s, 1 < s < k, with Wy invertible. Then the
contribution by rank i singletons to JASE = AsShe(D+) — Asing(Ch) s
zero if i < s. The contribution of rank s singletons to 5Afjfg 18 NONZero.

Proof. The vector ¢ belongs to Vs — V,y1. Then ) = Walg_(s) €
Ty — Tos1. This, in turn, implies that Anna®) € V, — V, ;1. By (18.8),
singletons of rank i, ¢ < s, make zero contribution to (5Aff;g, while the
singletons of rank s make a nonzero contribution to § A3". O

We point out that Theorem 18.12 makes no claims about the contri-
bution of singletons of rank k to d A3re.

Remark 18.13. If W, is degenerate because ¢; = 0, then W, is also
degenerate, and W, maps T, into Vj11, and T;, © < j, will map to a
proper linear subspace of V;. If j is the largest index such that ¢; = 0,
then ® will be in the image of W, provided j < s. Recalling that
s < k and that ¢; # 0, we see that 7®) € im W, when 2 < j < s < k.
For example, when k£ = 3, no such s can exist.

19. MAIN RESULTS

We are now in a position to prove that a large number of weights
with maximal symmetry, including the homogeneous weight, do not
respect duality.

As usual in this part of the paper, let R = M (F,) with & > 2.
Suppose w is a weight on R that has maximal symmetry, positive
integer values, and w(0) = 0. The value w(r), r € R, depends only on
the rank rkr of r. Write w; for the common value w(r) when rkr = i.

We will say that a weight w is nondegenerate if the expressions c;
of (13.5) are nonzero for all i = 1,2,...,k. (Note that ¢y = 0 because

w(0) = 0, and ¢; = wy > 0.) If at least one of cs,. .., ¢, vanishes, we
say that w is degenerate.
Let w = min{wy, ws, ..., w}; w is a positive integer. Write I = {i :

w; = w} for set of indices i where w; achieves the minimum positive
value w. In general, for an integer d > w, set I, = {i : w; = d};
depending on d, I; may be empty. Of course, [ = [; is nonempty.

Theorem 19.1. Assume w is a nondegenerate weight on R = My (F,),
with mazimal symmetry, positive integer values, and w(0) = 0. Suppose
there is an integer d such that w < d < 2w, I; is nonempty, and k & 1.
Then w does not respect duality: there exist linear codes C' and D over
R of the same length such that wwec = wwep and Ag(Ct) # Aq(D4).

In particular, if k & _f, then w does not respect duality.
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Proof. Suppose d satisfies the stated hypotheses, and let s = max Iy;
then s < k. Construct linear codes C' and D over R using (16.5) using
s = max I;. Because s < k, Theorem 16.6 implies that the codes have
the same length and that wwes = wwep.

As for the dual codes, Corollary 5.4 says that Ay(D+) — Ay(C) =
ASE(DL) — ATME(CH) = §A™. The only singletons that can con-
tribute to 5Azing are those of rank ¢ with ¢ € I;, Corollary 18.4. The-
orem 18.12 says that singletons of rank ¢ < s make zero contributions
to 0A3™, while singletons of rank s make a nonzero contribution to

0 A%, We conclude that Ag(D+) — Ag(CH) = §AZ™E £ 0. O

Remark 19.2. If k € I, the arguments given above are not conclusive.
In Theorem 18.12 there is always the possibility that the contributions
of singletons of rank k could cancel the contributions of singletons of
lower rank i € I;. Even if I; = {k}, it is possible that singletons of
rank k& make zero contributions. This happens for the homogeneous
weight, for example; see Corollary 4.10 and Proposition 18.3.

Corollary 19.3. Suppose a nondegenerate w satisfies w < w; < 2w
for some i, 1 <i <k. Then w does not respect duality.

Proof. By the definition of w, there is some index j so that w; = w.
As w; < w;, we have 7 # j. The index k can equal at most one of 7 or
j. Apply Theorem 19.1 to the other one. U

We can, at long last, prove that the homogeneous weight on My, (F,)
does not respect duality, provided £ > 2 or ¢ > 2. The homogeneous
weight on any finite Frobenius ring has the Extension Property [10,
Theorem 2.5]. Since the matrix ring My, (F,) is Frobenius, it follows
that W, and W are invertible for the homogeneous weight and any in-
formation module M, Remark 13.19. This says that the homogeneous
weight is nondegenerate.

Theorem 19.4. Let R = My (F,), k > 2, with the homogeneous
weight W. Then W respects duality if and only if k =2 and g = 2.

Proof. The ‘if” portion is Theorem 12.12. For the ‘only if’ portion,
Lemma 12.11 says Wy = W is the smallest nonzero value of w, while
Wi is the largest value, with wo < w; < 2wy. There is equality
Wi = 2Ws if and only if £ = 2 and ¢ = 2. For all other values of k and
q, there is strict inequality: Wy < Wy < 2Wy. Now apply Theorem 19.1

The last result of this section determines, for k£ = 2, all the weights
with maximal symmetry (nondegenerate or not) that respect duality.
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The list is a short one: the Hamming weight (any ¢) and the homoge-
neous weight (only when ¢ = 2).

Theorem 19.5. Let w be a weight on R = My o(F,) having mazimal
symmetry, positive integer values, and w(0) = 0. Assume w is neither
a multiple of the Hamming weight (w; = ws) nor, when ¢ = 2, a
multiple of the homogeneous weight (wy = 2wy when ¢ = 2). Then w
does not respect duality.

Proof. Using m =k +1 =3 and s = 1 (the only possible value of s),
Example 15.4 gives the W y-matrix:

o | @ (@° + q)w
0 (q2 + q)w1 (q + 1)w1 + q2w2
Then det Wy = ¢®wi(—(q + 1)w; + qus). As w; > 0 by hypothesis,
det W vanishes only when —(q + 1)w; + qw; = 0.

First consider the nondegenerate case, where —(q + 1)w; + qws # 0.
Use the construction of (16.5) with m = 3 and s = 1 to produce linear
codes C' and D with wwec = wwep. The net counts of singleton vectors
in the dual codes depends only on &. A calculation shows that

Wo((g + Dwr + (¢° — @)wa, —¢*wy)
= (q(— (g + L)wy + qua)){—(¢* — q), 1)
= (q(— (g + 1)w; + quy))c™).
Thus, up to scaling, we take &Y = ((q 4+ 1)w; + (¢ — Qwz, —¢*w1).
Using Example 18.2, we see that the matrix Ann is
S gl —1 (P—1)(g+1
A= [—<q2 @ ) - qﬂ |
By (18.8), the net contributions to JA5" = A3 (D+) — AS(C) by

rank j singletons are given by the entrles of Anna:

¢ —q—Dwi — (¢° — Qs
The contribution for j = 1 is nonzero because w is nondegenerate. The
contribution for j = 2 is nonzero, provided w is not a multiple of the
homogeneous weight; see Example 12.9.
Because k = 2, there are just a few (nondegenerate) cases:
o If wy < wy, then §A,, = JAS"E £ 0, by (19.6).
e If wy < wy and w is not homogeneous, then 64, = 5Af£g # 0,
by (19.6).
e If w is homogeneous, apply Theorem 19.4 (except when ¢ = 2).

19.0)  Rano =glg - (e 1) | (o D m ]
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e If w; = woy, w is a multiple of the Hamming weight.

Now suppose w is degenerate, so that qus = (¢ + 1)w;. Because ¢
and ¢ + 1 are relatively prime, there exists a positive integer 7 such
that wy = g7 and wy = (¢ + 1)7. Then wy < wy < 2wy, as ¢ > 2. The
degenerate matrix W, becomes

q-+ )wl]
4 )

( 1
q+1> w1

2
_ 7wy q
Wdegen - [q(qu 1)w1 (

A basis for ker W gegen is (—(q + 1), q).

Use the linear codes C1 of Proposition 17.2. They have the same
length and w-weight enumerators. Their net rank-sums 77,(Cy ) —7,;(C-)
are 1, —(q+1), q, respectively. Then the contributions of singletons are:

—— [—(g+1) 0
Ann (a = )
{ q } {(q2 —1)(¢* - CD}

Because w; < wy < 2wy, Corollary 5.4 applies to wy. Then A, (CF) —
Ay, (CL) = Are(Cr) — A5pe(CL) = (¢* = 1)(¢* — q) > 0. O

In Section 22, the case of R = Msy3(F3) is discussed in detail.

20. RANK PARTITION ENUMERATORS

Section 3 described various enumerators including the complete enu-
merator and symmetrized enumerators. In this section we focus on a
particular enumerator, the rank partition enumerator, over the matrix
ring My«x(F,). The rank partition enumerator is a partition enumera-
tor associated to rank, and it is coarser than the symmetrized enumer-
ator associated to the group action of GL(k,[F,) acting on My (F,).

On R = M.y (F,), define the rank partition RK = {R;}¥_,, with

R,={s€ R:rks=1}.

As in Section 3, define counting functions n; : R* - N, ¢ =0,1,...,k,
by ni(x) = |{j : x; € R;}|, for x = (21, 29,...,2,) € R". For a linear
code C' C R", define the rank partition enumerator rpe. associated
to C' to be the homogeneous polynomial of degree n in the variables
2o, L1y - -y Ly given by

n k
rpeq(Z) = ZHZrkxj = ZHZ;”(I).

zeC j=1 zeC 1=0

If w is a weight on R with maximal symmetry and positive integer
values, then the value of w(r), r € R, depends only on the rank rkr
of r. Write w; for w(r) when rkr = ¢, and denote by wp.x the largest
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value of w. Then the specialization of variables Z; ~» XWmax—wiy i
allows one to write wwec in terms of rpe:

(201) Wweo (X, Y) = rpeC(Z)‘Ziwxwmax—wiywi .

As an example of some of the results of [3], we will show that the
rank partition enumerator satisfies the MacWilliams identities. Then
(20.1) will allow us to calculate wwes. for many examples. This will
be one way to illustrate the main results of Section 19 (and to prove
additional results).

In order to show that the MacWilliams identities hold for the rank
partition enumerator, we refer to the argument outlined in Appendix A
and provide details on the relevant Fourier transforms.

It is well-known ([25, Example 4.4]) that R = My« (F,) is a Frobe-
nius ring with a generating character y. To describe the standard
generating character y, we first recall the standard generating char-
acter 0, of F,: 0,(a) = (T2 q € F,, where ¢ = p°, p prime,
¢ = exp(2mi/p) € C*, and Tr,,, is the absolute trace from F, — F,,.
Then define x(s) = 0,(trs), s € R, where tr is the matrix trace. Be-
cause the matrix trace over I, satisfies tr(rs) = tr(sr), we see that
x(rs) = x(sr) for all r;s € R. As is the case for all generating char-
acters, y has the property that ker y contains no nonzero left or right
ideal of R, [25, Lemma 4.1].

Lemma 20.2. Fach partition block R; of RK is invariant under left
or right multiplication by units. If tkry = rkry, then Y p x(s11) =

Zsem X(sra) for all i.

Proof. The rank of a matrix is invariant under multiplication by units.
If rkry = rkrg, then, using row and column operations, there are units
U1, ug such that ro = uyrjus. Thus,

Z X(s72) = Z X(surriug) = Z X (ugsurr) = Z X(s71),

sER; sER; SsER; sER;

using the property x(rs) = x(sr) and the bi-invariance of R;. O

Define the Kravchuk matriz K of size (k+ 1) x (k + 1) for the rank
partition RIXC by

Kij = ZX(ST), 1,7 =0,1,...,k,

SER;

where € R has rkr = j. This sum is well-defined by Lemma 20.2.
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In order to develop an explicit formula for K ;, we first remark that
R;, being invariant under left multiplication by units, equals the dis-
joint union of the left U-orbits it contains. We already know the num-
ber and sizes of the U-orbits in R, Proposition 12.6. So, we turn our
attention to sums of the form .., ) x(tr), for r € R.

Let Pgr be the poset of all principal left ideals of R under set contain-
ment; all the left ideals of R are principal. (This is the type of poset
used in Proposition 12.3, with M = R and m = k.) Fix an element
r € R, and define two functions f,, g, : Pr — C by

fo(Rs) =" x(tr), g.(Rs)= Y_ x(tr).

tERs teorb(s)

The definition of g, is well-defined by Lemma 12.2. We collect some
facts about f, and g, in the next lemma. For r € R, its left annihilator
is anny(r) = {s € R : sr = 0}; the left annihilator is a left ideal of R.

Lemma 20.3. For any r,s € R, we have

fo(Rs) = Y g.(Rt).

RtCRs

The values of f,. are

fr(Rs) = {|R8|7 if Rs C anny (),

0, otherwise.

Proof. The first equality reflects the fact that the left ideal Rs is invari-
ant under left multiplication by units, and hence Rs equals the disjoint
union of the left -orbits it contains.

As in (2.2), denote R(Rs) = {r € R: x(tr) = 1,for all t € Rs}. We
claim that r € R(Rs) if and only if Rs C anny(r). The ‘if’ direction is
clear: if Rs C anny(r), then tr = 0, and hence x(tr) = 1, for all t € Rs.
Conversely, suppose r € R(Rs). Then Rsr C kery. We conclude
that Rsr = 0, because any left ideal in ker y must be zero. Thus
Rs C anny(r). The second formula now follows from Lemma A.1. O

Proposition 20.4. Let ju be the Mébius function of the poset Pr. Then
g9:(Rs)= > u(Rt,Rs)f.(Rt), Rs€ Pr.
RtCRs
Simplifying, we have

rk s—rk(sr)

w(R) = 30 (Il {rks ‘jk<5"°>] 2
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Proof. The first equation comes from Mobius inversion, [22, Theo-
rem 5.5.5], because of the first equation in Lemma 20.3.

By Proposition 12.3, the poset Pg is isomorphic to the poset Py
of linear subspaces of ]F’;. This allows us to translate the equation
for g.(Rs) into geometric language. Let r € R correspond to a linear
subspace Y C IF’;, with dimY = rk7. Then |Rr| = ¢FdmY = gkrkr,
by Proposition 12.6. Similarly, let s,t € R correspond to X, T, with
dim X = rks and dim7" = rk¢. The Mobius function of Py is in
(12.7). The condition Rs C anny(r) becomes X C Y+

Using Lemma 20.3, the formula for g.(Rs) simplifies:

g:(Rs)= > p(Rt,Rs)|Rt]

RtCRsNanny (r)

_ Z (_1)dimX—dimTq(dimX;di"‘T)qk dim T

TCXNY L
dim(XNY+) ' . 1
= 2 g [dlm(X'm ' )} |
=0 J a
Finally, Lemma 13.2 implies dim(X NY+) = rks — rk(sr). O

To simplify notation slightly, define

¢

20.5 B(i,0) =S (=1)i=ig("2)) ghi H ,
(205) (60 = 2 i
for i =0,1,...,kand 0 < ¢ < 4. Then >, . x(r) = g,(Rs) =
B(rk s,rks —rk(sr)). In addition, suppose there are linear subspaces
CCAC ]F’; with dim A = @ and dim C' = ¢. Then define I(a, b, ¢, d) =
{B C A:dimB =0b, and dim(BNC) = d}|. By Lemma 13.10 (with
D=AnNC0),

—de—d) |Cc] |la—c
I(a,b,c,d) = ¢ M {b— d}
q q

Proposition 20.6. The Kravchuk matrix K has entries

Kij =Y I(kik—j()B(i0),
{=0

fori,7=0,1,... k.

Proof. As mentioned earlier, if j = rkr, the sum in K;; =, x(s7)
can be split up into sums over the left U-orbits contained in R;. The
individual sums over orbits depend upon rks and rk(sr), so we need



72 J. A. WOOD

to count the number of orbits orb(s) with rk s = 4 for various values of
rk(sr).

In terms of linear subspaces, we need to count the number of linear
subspaces X of FF with dim X = i and dim(X NY*) = /. Because
dimYt =k —rkr = k — j, this count is I(k,i,k — j, (). O

Example 20.7. For k = 2, the Kravchuk matrix is:

1 1 1
K=| (@—1)(g+1) ¢#—q—1 —¢q—1
(- —1) —¢*+q q

Suppose C' C R™ is an additive code. The annihilators £(C') and
R(C) were defined in (2.2). The MacWilliams identities for the rank
partition enumerator are next.

Theorem 20.8. Let R = My (F,) with Kravchuk matriz K. If C' is
an additive code in R", then

1
rpes(C)(Zi> = E rpeC(Zj>’Zj:Zi Ki jZis

1
rpem(c)(Zi> = m rpeC(Zj)’Zj:Zi KijZi-

The formulas are reversible in C' and £(C), resp., C' and R(C).
If C C R"™ is a left, resp., right, R-linear code, then R(C) = R(C),
resp., L(C) = £(C).

Proof. We add details to the outline provided in Appendix A. Let V =
ClZo, Z1, ..., Zy], and define f : R — V by f(s) = Zxs, s € R. We
calculate the Fourier transform of f, as in (A.2). Write j = rkr.

Fr) =" X(rs) Zucs = > x(57) Zus

SER sER
k k
=D D _X(s)Zi=) KisZ:
i=0 sER; i=0

~ ~

Note that f(r) depends only on rkr, so that f(r) equals f(r) after

applying the linear substitution Z; < Z?:o K, ;Z;.
To reverse roles, use Lemma 2.3 and apply the formulas to the pair
£(C) and R(L(C)) = C and the pair R(C) and £(R(C)) = C. For
O

the case of linear codes, see Remark 2.4.
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21. EXAMPLES

In this section we calculate a number of examples over R = Mayo(F2).
Set m = 3, so that the information module is M = Myy3(Fs). The or-
bit spaces O; and O, have representatives in reduced row-echelon form
and are ordered as follows:

O1=1600l:[060),[066]:[600l:[850),[606].[6601,
L1 O =[[g%06),[av0l-[o01] [o00] (62 8],[661]. [0 1]]-

The rank 1 orbits have size 3, and the rank 2 orbits have size 6, as in
Proposition 12.6. The representatives of (9? and (92 are the transposes
of the representatives of O; and O,, using the same orderings, with

rank 1 coming before rank 2. The Wy-matrix has size 14 x 14, while
Wo is 2 x 2:

O O
O O

1 011 100
0 000 000
0 100 010
1 011 001

ro 0 wi 0 wy w1 wi wi 0 wi; wy w1 wi wi
0 wiy 0 wi wi 0 wi wy w1 0 wi wy wy wy
wi 0 wy wpy wiy 0 0 0 wi; wp wy wy wi wi
0 wiy wiy wi 0 wy 0 w; wy w1 w; wy wy O
wi wip wyp 0 0 0 wy wy wi w; wy 0 wi wi
wi 0 0 wy 0 w; wy wy wy w; wy wy 0 wq
W wi w; 0 0 wy w1 0 wy wy w1 0 wy wy wi
0 wi wyp 0 wi w; w; wy w2 we w; wy wg wy wg |
0 w; w) wy w w; W] w2 W] W] W W W2 Wi
wi; 0 wp wy w; w] wy Wy W wg W2 W2 Wi W2
wi wp wy w; w; wi 0 wp we wg wy w2 w2 wi
wi] wp wyp wy 0 w; wy w2 we wy w2 Wy Wi Wi
wi] wp wyp w; w; 0 wp wy we w; w2 Wy w2 w2
Lw; wy w1 0 wp wy w; wg wy w2 wy; wi; wa wa

-4’11)1 6’(1)1
6w1 31111 + 4w2

WOI

Akin to Figure 1 on page 10, the rank partition enumerator of a
linear code specializes to the w-weight enumerator of the code under
the specialization Zy ~ 1, Z7 ~ t** and Zy ~» t*2. Using the Kravchuk
matrix K from Example 20.7, with ¢ = 2:

1 1 1
K=|9 1 -3/,
6 —2 2

the MacWilliams identities for the rank partition enumerator yield the
rank partition enumerator for the dual code, Theorem 20.8. Using
the same specialization, the w-weight enumerator of the dual code is
obtained.

In all of the examples that follow, multiplicity functions 1 and lists w
of orbit weights are written in terms of the ordering of O given in (21.1),
with ranks separated by vertical lines. All calculations were performed
in SageMath [23]. Rank partition enumerators of dual codes are not
listed because they would use too much space. Only the lowest order
terms in the w-weight enumerators of dual codes are displayed.
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It is differences such as A;(D*) — A;(C*) that ultimately matter,
so we will write 7 = (D) — 77(C). By (18.6) and Example 18.2
with ¢ = 2, the net contributions of rank ¢ singletons to 5Af;?g =
Asre(D+) — Asne(C) appear as the entries in the vector

(21.2)

D O =
O W =

1
0| 7.
0

Example 21.3. Set w; = 2 and wy = 3. Then w = 2, and w <
w; < 2w for i = 1,2. This is a degenerate case, as det Wy = 0. Use
the codes in Proposition 17.2, with an extra rank 1 functional so that
the associated homomorphisms A are injective; see Remark 12.5. The
multiplicity functions and lists of orbit weights are:

n+ = (1/1,0,0,0,0,0,0/2,0,0,0,0,0,0),
wy = (0]4,4,2,4,6,6,6|8,6,6,6,8,6,8),
n- =(0/1,1,0,0,0,1,1/0,0,0,0,0,0,0),
w_ = (0]4,4,2,4,6,6,6|8,6,6,6,8,6,8).
The equation w, = w_ is a feature of the construction in Proposi-
tion 17.2. Both codes have length 4, and 67 = (—1,3,-2). Then
(21.2) implies that A, = §AS"™ = 0, while 043 = §A3™ = —6. The
enumerators are
sec, = Zy + 32571 + 92527 + 212073 + 623 Z3 + 18202, 73,
sec_ = Zy + 3237, + 97377 + 332,73 + 1874,
wwee, = 1+ 3t + 9t* + 33t° + 18¢%,
wwee = 14 3t* + 9t* + 33t° + 18¢5;
wWegL = 1412t + 63 +36t1 + - - -,
wweer = 1+ 12¢° + 54t 4
Example 21.4. Set w; = 1 and wy = 2, so the weight of a matrix

equals its rank. Then w = 1, but wy, = 2w, so Corollary 5.4 applies
only to w; = 1. Use the codes given by (16.5), with ¢ and o given here:

¢=(0,-1,-1,0,0,0,0/0,0,0,0,0,0,1),
o=(-1,-1,-1,-1,-3,1,-1/0,0,0,0,0, 2, 2).
The scaling is such that Wyo = 2¢, so that ¢ = 2. One calculates that

a; = 10w; = 10 and ay = 9w, + 4w, = 17. It suffices to take a = 3
and b = 0. Then A = —3. The multiplicity functions and lists of orbit
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weights are

ne, = (013,3,3,26,3,3,3(3,3,3,3,3,3,3),
np, = (3]2,2,2,25,0,4,2(3,3,3,3,3,5,5);
we, = (0[30,53,53,53, 30,53, 30(74, 74, 74, 74, 74, 74, 51),
wp, = (0|30,51,51,53,30, 53, 30|74, 74, 74, 74, 74, 74, 53).

Both codes have length 65, and 67 = (3, -7, 4). Then, using (21.2),
dA; = 0AT"™ = 6 and A" = 18. The enumerators are

sec, = 280 + 97370 112227 + 62327 732 + 3623 23° 7,2,
sep, = Zy + 9Z3 730 + 6 Zy 27 + 6 Zy° 27 + 6 Z3 Z7° Z5*
+ 247020 25" + 6 255 23 7,° + 6 Z4 2717 2,7
wwee, = 1+ 9% + 67 4+ 124 + 36¢™,
wwep, = 14+ 980 +61°" + 124 4 36¢™;
wwegyr = 1+ 1324 + 157621% + 1674894 1° + - - - |
wweps = 141381 4 161761 + 1695210° + - - - .

Even though §A5™ = 18, 64, = 414; there are dual codewords of
weight 2 coming from vectors with two nonzero entries, both of rank 1,
that account for the difference. This illustrates the importance of the
strict inequality w < d < 2w in Corollary 5.4.

Example 21.5. Set w; = 4 and wy = 5. Then w = 4 and w < w; <
2w, i = 1,2, so Corollary 5.4 applies to both w; and ws.

In this example, the codes given by (16.5) will be used; call then Cj
and Dj3. In addition, two other codes Cy, D4 will be given. They are
designed so that their lists of orbit weights have just three different
values. One of the values applies to all the rank 2 orbits. The other
two values apply to three, resp., four, rank 1 orbits. For the code C}y,
the three rank 1 orbits are linearly independent, while for D, they are
linearly dependent.

For C5 and D3, ¢ and o are given here:

¢=(0,-1,-1,0,0,0,0/0,0,0,0,0,0,1),
o=1(2,2,2,-1,3,1,2/0,0,0,0,0, —4, —4).
The scaling is such that Wyo = 8¢, so that ¢ = 2. One calculates that

a1 = 10w; = 40 and ay = 9w + 4wy = 56. It suffices to take ¢ = 1
and b = 0. Then A = 3. The multiplicity functions and lists of orbit
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weights are

no, = (3[4,4,4,22,4,4,4/4,4,4,4,4,4,4),
np, = (0[6,6,6,21,7,5,6|4,4,4,4,4,0,0);
we, = (0[160, 232, 232, 232, 160, 232, 160
206, 296, 296, 296, 296, 296, 224),
wp, = (0|160,224, 224, 232, 160, 232, 160
206, 296, 296, 296, 296, 296, 232).

Both codes have length 77, and on = (—3,11,—8). Then, using
(21.2), 6A4 = 0AJ™ = 6 and 0A; = §A;™ = —18. The enumerators
are

sec, = Zy' + 925 210 +122° 73 + 6 25° 23° 2,° + 36 20 271 Z,°,
sep, = Za' + 9257710 4 622 77 +623°78 + 622 7878
+ 62520 Z8 + 2425270 23 + 625 23 235
wwee, = 1+ 9¢'% + 6% + 12¢%°% + 361>,
wwep, = 1+ 9t'% + 624 + 124232 4 36>,
wwegr = 141656 +18¢° +21186¢° 4 - -+,
wwep: = 141711 4219185 + -+ .

The codes Cy, D4 have multiplicity functions and lists of orbit weights:

ne, = (0[2,3,3,1,2,3,2[2,6,2,6,6,2,6),
np, = (0[2,2,4,2,2,2,2(6,6,2,2,6,2,6);
we, = (0[136, 144, 144, 136, 136, 144, 136
192,192,192, 192, 192, 192, 192),
wp, = (0|136, 144, 136, 136, 136, 144, 144
192,192,192, 192, 192, 192, 192).
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Both codes have length 46, and 67 = (0,0,0). Then, using (21.2),
dAy =A™ =0 and §A5 = §AL™ = 0. The enumerators are

sec, = Zo0 + 12232234 + 92073 + 62,232 7,
+ 18727287, + 1873 73 73,
sep, = Z38 + 122273 + 923073 + 3622728 73° + 6724 2.8 734,
wwee, = 1+ 12¢136 1 94144 4 424192
wwep, = 1 + 124130 4 94141 4 424192,
wwegy = 1+ 481 44059 1° + 14407 + 522¢'% 4 2901602 + - - - |
wwepr = 1+ 481" +40591° + 14401” + 522" 4+ 290112¢% + -~ - .

The calculation shows that A5 # 0, but this would be difficult to
detect theoretically.

Example 21.6. Set w; = 3 and wy = 7. Then w = 3, but wy > 2w,
so Corollary 5.4 applies only to wy; = 3. Use the codes given by (16.5),
with ¢ and o given here:

¢ =(0,—1,-1,0,0,0,0/0,0,0,0,0,0,1),
o =(-3,-3,-3,-5—11,5,-3/0,0,0,0,0,6, 6).

The scaling is such that Wyo = 30g, so that ¢ = 10. One calculates
that oy = 10w; = 30 and oy = 9w, + 4w, = 55. It suffices to take
a =4 and b = 0. Then A = —11. The multiplicity functions and lists
of orbit weights are

nes = (012,12,12,122,12,12, 1212, 12,12, 12, 12,12, 12),
np, = (11]9,9,9,117,1,17,9(12, 12, 12,12, 12, 18, 18);
we, = (0[360, 690, 690, 690, 360, 690, 360
1990, 990, 990, 990, 990, 990, 660),
wp, = (0360, 660, 660, 690, 360, 690, 360
1990, 990, 990, 990, 990, 990, 690).
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Both codes have length 278, and 61 = (11,-23,12). Then, using
(21.2), 0As = 0A5™ = 30 and JA7™ = 66. The enumerators are
secy = Zo° + 9ZyS 21 + 12255 27 + 6207 21" Z5°
+ 36232738 758,
sep, = Zg"® + 92587210 + 6258770 + 62,5770 + 625 27 2
+ 2472073473 + 623720 78 + 6228 2190 Z5°;
wwece, = 1+ 9% + 610 4+ 12459 4 367,
WWGD5 — 1 + 9t360 + 6 t660 4 12 t690 + 36 t990;
wwees = 14 582¢% 4 316947 t° +152382900¢° + - - -,
wweps =14 6121° +326649° + 6617 + 154592448 + - - - .

Even though wy = 7 > 2t = 6, we still have §A; = §A3™. The reason
is that wy is not an integer multiple of w;: a vector can have weight 7
only if it is a singleton with nonzero entry of rank 2. See Remark 5.5.

22. THE CASE OF Ms;,3(F,)

In this section we show that most weights of maximal symmetry on
M3y3(F,) do not respect duality. There is one situation that remains
unsettled.

Theorem 22.1. Let R = M3.3(F,), and suppose w in a weight on R
with mazimal symmetry, positive integer values, and w(0) = 0. If w is
nondegenerate and not a multiple of the Hamming weight, then w does
not respect duality. If w is degenerate because —(q + 1)w; + quwe = 0,
then w does not respect duality.

The situation where w is degenerate because —(q*+q+1)w; +q(¢*+
q+ 1wy — 3wz = 0 is unsettled.

Proof. In order to display the matrices W, and Ann in a way that fits
on the page, we name certain polynomials in ¢:

L=q+1, fo=q-1, fi=¢+q+1
The Wy-matrix is

o ¢’ ¢ frw qfawr
Wo = |@Pfowr  qfiw + ¢*'ws  fowr + ¢ fows
qfowr  frwr + @ frwy  fows + ¢Pws

Consistent with Theorem 15.10, the determinant of W, factors as

det Wo = —¢wi (— w1 + qua)(— fowr + qfows — ¢*ws).
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The annihilator matrix Ann is

_ —*f_fo —qf+f-[2 —ﬂch2
Ann = |=@Pf2 2 fs —af+ L2f5  —af+ 213
2 fe —CI 2~ 2 f
Suppose w is nondegenerate, i.e., Wy is invertible. We first collect
the results of some calculations of (18.8) made using SageMath. The
leading terms of Anna®, where () = ngg_(”, for the swaps ¢V =
(—¢® 4+ ¢,1,0) and @ = (0, —¢® + ¢>, 1) are:

5__ .3 _ .2 1
(22.2) Anna<1>:<q ¢ oat *ﬂ>
w1y B
7 6 5 3 2
(22.3) Ann6(2):<0,q il ik ik _q,%>.
frwr — quy B

Note that the denominators are nonzero because Wy is invertible.
The term at rank 3 of Anna") has numerator:

ar = fi 2 fo(d® + ¢ — ¢ = 2¢° + ¢ + Dui

—af 2 f2(a° +2¢° = 3¢° — 2¢° + Vwiws + ¢* 3 2 fFw)

+ @[ 2 fa(g = 267 — g+ Dwyws — ¢° f7 2 fowaws,
and nonzero denominator

Bi = wi (= frwr + qus) (= fowr + g fowy — g ws).
The term at rank 3 of Anna® has numerator:

az = qfi 2 fold® — 4" —q— 1w
— 2 fo(@ — g = Dwa + ¢* f1 f2 fows
and nonzero denominator
By = (= frwr + qus) (= fawr + g fows — ¢’ws).

Using SageMath, one can solve for those nonzero weights with a; =
ay = 0, namely (up to uniform scale factors):

wy =1 w2:—q3—q—1 w3:q5—q4—q3+q—|—1'
’ @e—q - =P+
qg+1 P +q+1
wy =1, Wy = —, W3 = ———5
q q

In the first case, one confirms that w is nondegenerate and that ws <
w3 < w;. In the second case, one notes that w is degenerate (both
— frwy + quwy and — fow, + q fows — g>ws vanish in the factorization of
det Wy) and that w; < wy < ws.
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One can also solve for those nonzero weights where the sum of the
entries of Ann & vanishes:

(22.4) wy = (q + 1wy — qus,
or where w; = ws and ay = 0:
(22.5) Wy = (q4 - q2 —q—- 1)w1/(q4 - q2 —q) < w; = ws.

Now apply the results of the calculations, still assuming that w is
nondegenerate.

o If wy < min{w,, w3}, then 64,, = JAS" £ 0, using (22.2).

o If wy < min{wy, w3}, then 64,, = JASE =£ 0, using (22.3).

o If wy < min{wy,w,}, then §A4,, = 0AS"E # 0. At least one of
aq, g is nonzero (because w3 < wy), so use the corresponding
(22.2) or (22.3).

o If w = w; = wy < ws, then A, = 5Afgng # 0, using (22.3).

o If 0 = w; = wy < wy, then §A; = AT # 0, using (22.3).
Here, as # 0 by (22.5).

o If ) = wy = wg < wy, then 0A; = (5Afji}ng # 0, using (22.3). The
sum of the rank 2 and rank 3 contributions does not vanish. If
it did, (22.4) and ws = w3 would imply w; = ws = ws. This
contradicts the hypothesis that wy = w3 < wy.

o If w; = wy = ws, then w is a multiple of the Hamming weight.

If w is degenerate with —(q¢ + 1)w; + qwy = 0, then wy < wy < 2w;.
The construction of Proposition 17.2, with j = 2, has 077 = (1, —(¢q +
1),q,0). Then, dropping the initial term of 677, we have

Annon = ¢* f1 f2 f2(0,1, f-).
o If w; < ws, then 6A,, = §A%"e =£ 0, using Corollary 5.4. This

w2

still works if wy = w3 because 1 + f_ = ¢ # 0.
o If wy < wy, then 0A,,, = 0ASE # 0. O

In the situation where w is degenerate with —(¢? + ¢+ 1)w; + q(¢® +
q+ 1wy — ¢dws = 0, the construction of Proposition 17.2, with j = 3,
has 07 = (1,—(¢* +q+1),q(¢* + g+ 1), —¢*). After dropping the rank
0 term, we have

Annor = ¢* 1 2 £2(0,0,1).
If w < ws < 2w, then 04,, = 6Afj§g # 0, and w does not respect
duality.

From the degeneracy equation we have (¢*+q+1)(qus —w;) = ¢*ws.
Because ¢® and ¢®> + ¢ + 1 are relatively prime, there exists a positive
integer a such that quws —w; = ¢3a and w3 = (¢*> + ¢ + 1)a. Similarly,
wy = q(wy — ¢*a), so there exists a positive integer b such that w; = gb
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and wy —¢?a = b. In all, w; = ¢b, wy = ¢*a+b, and w3 = (¢*+q+1)a,
for some positive integers a, b.

Because of Proposition 3.14, only the ratio p = a/b € Q, p > 0,
matters. One can show that @ = w3 when 0 < p < ¢/(¢* + ¢+ 1) and
that = w; < wz < 2w; when q/(¢* +q+1) < p <2¢/(¢*+q+1).
Thus, for 0 < p < 2¢/(¢> + ¢ + 1), w does not respect duality. For
p > 2q/(¢* +q+1), singletons alone are not enough to decide whether
w respects duality.

For example, when the weight w over Fy has wy; = 2, wy = 5, and
w3 =17 (so p=1>4/7), calculations like those in Example 21.5 show
that 0Ag # 0. The dual codewords involved have three nonzero entries
of rank 1. The combinatorics of dual codewords of this type can be
very complicated (see [, §3] for the situation over finite fields), and we
will not pursue the matter further.

APPENDIX A. FOURIER TRANSFORM

This appendix will be a brief review without proof of the use of the
Fourier transform and the Poisson summation formula in proving the
MacWilliams identities for additive codes over a finite Frobenius ring.
The main ideas go back to Gleason (see [3]) and can be generalized to
additive codes over a finite abelian group. Details can be found [25].

In this appendix, R is a finite Frobenius ring with generating char-
acter x. The annihilators £(C') and R(C) were defined in (2.2).

Lemma A.1. Suppose C' C R" is an additive code. If y € R", then

> xlz-y) = {|C|a if y € R(O),

0, otherwise,
zeC

Cl, ifye L£(0),
S = {10 Tves0
= , otherwise.

Let V be a vector space over the complex numbers C. If f: R* — V
is any function, define its Fourier transform f : R® — V by

(A.2) fl@)=>"x(z yfly), zeR"
yeER™

There is an inversion formula:
1 -

1) = 17 > x(-y-2)fly), zeR"
yeR?
This version of the Fourier transform differs from that in [28] in that

the isomorphism x — *y has been incorporated into the definition.
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Suppose, in addition, that V' is an algebra over C. If f; : R - V
fori =1,2,....n, and F' : R" — V is given by F(ri,ra,...,rp) =

[T, fi(rs), then F(xl,xg, oo x) =111, fz(xz)

Theorem A.3 (Poisson summation formula). Suppose R is Frobenius

and C' C R" is an additive code. [ff : R* =V, then

> fly) Zf

yeR(C) mEC

Remark A.4. There is another version of the Fourier transform, with
f(x) =2 ,crn x(y-x)f(y), that incorporates the isomorphism z — x*
instead. Then the Poisson summation formula has the form

Zf Zf

yel(C a:EC

If x has the property that x(rs) = x(sr), r,s € R, then the two
versions of the Fourier transform agree and both forms of the Poisson
summation formula are valid. This situation occurs over My (F,).

In order to prove the MacWilliams identities over a finite Frobenius
ring R for a partition enumerator pe or a w-weight enumerator wwe
as described in Section 3, here is the standard argument. There are

generalizations of this argument in [$]. For a partition enumerator
whose partition P = { P}, of R has m blocks, set V = C[Z1, ..., Z,)],
with one variable for each block. Define [r] = ¢ when r € P,. For a

w-weight enumerator, whose weight w has positive integer values with
maximum value Wyay, set V = C[X,Y]. Define f: R — V by

Zials for pe,
f(a)={ .

X’wmax_w(a)yw(a)7 for WWwe.

On R", define F : R" — V by F(x1,2s,...,2,) = [, f(z;). For an
additive code C' C R", note that

ZF {peC(Zlv"w)Zm)v for pe,

= wweeo (X, Y), for wwe.

The next steps depend on the specific ring, partition, and weight w:

calculate the Fourier transform of f: R — V;

find F by the product formula above;

recognize the form of F as an enumerator (if possible);
apply the Poisson summation formula.
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Some care must be taken to show that the form of F is that of an
enumerator. Care must also be taken to check if one can reverse the
roles of the code and its annihilator. See [¢] for details.
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[16]
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