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Abstract. This paper examines the w-weight enumerators of weights
w with maximal symmetry over finite chain rings and matrix rings
over finite fields. In many cases, including the homogeneous weight,
the MacWilliams identities for w-weight enumerators fail because
there exist two linear codes with the same w-weight enumerator
whose dual codes have different w-weight enumerators.

1. Introduction

The MacWilliams identities [17] reveal a relationship between the
Hamming weight enumerator (hwe) of a linear code C over a finite
field Fq and the Hamming weight enumerator of its dual code C⊥:

hweC⊥(X, Y ) =
1

|C|
hweC(X + (q − 1)Y,X − Y ).

One way to try to generalize this result is to use any integer-valued
weight w on a finite ring R with 1. The homogeneous weight, suit-
ably normalized, is an example. Assume w(0) = 0 and w(r) > 0
for r ̸= 0. Denote the maximum value of w by wmax. For a vector
x = (x1, x2, . . . , xn) ∈ Rn, set w(x) =

∑n
i=1w(xi). Define the w-weight

enumerator (wwe) of a left R-linear code C ⊆ Rn by

wweC(X, Y ) =
∑
c∈C

Xnwmax−w(c)Y w(c).

Do MacWilliams identities hold for w-weight enumerators?
This paper will show that MacWilliams identities seldom hold for

weights having maximal symmetry when the ring is a finite chain ring
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2 J. A. WOOD

or a matrix ring over a finite field. For example, suppose R = Z/4Z
and w is an integer-valued weight on R with maximal symmetry (i.e.,
w(1) = w(3) for this ring). Then the only weights for which the
MacWilliams identities hold are multiples of the Hamming weight and
multiples of the homogeneous weight (the Lee weight for this ring),
Corollary 9.6. Similarly, let R =M2×2(Fq) and w be an integer-valued
weight with maximal symmetry (i.e., the value of w(r) depends only
on the rank of r). Then the only weights for which the MacWilliams
identities hold are multiples of the Hamming weight (any q) and mul-
tiples of the homogeneous weight (q = 2 only), Theorem 19.5. More
generally, the homogeneous weight on R = Mk×k(Fq), k ≥ 2, satisfies
the MacWilliams identities if and only if k = q = 2, Theorem 19.4.

The reason the MacWilliams identities often fail is that there exist
R-linear codes C,D ⊆ Rn for some n such that wweC = wweD but
wweC⊥ ̸= wweD⊥ . This claim presents two challenges:

• to construct linear codes C,D ⊆ Rn with wweC = wweD in
such a way that it is then possible . . .
• to detect differences wweC⊥ ̸= wweD⊥ in the w-weight enumer-
ators of their dual codes.

A weight w on a finite ring R with 1 has maximal symmetry when
w(uru′) = w(r) for all r ∈ R and units u, u′ in R. Any left linear code
C ⊆ Rn can be viewed as the image of an injective homomorphism
Λ : M → Rn of left R-modules, for some finite left R-module M . The
group of units of R acts on M on the left, and the maximal symmetry
hypothesis implies that x 7→ w(xΛ) is constant on each orbit of this
group action. Writing [x] for the orbit of x ∈M , we see that

(1.1) wweC(X, Y ) =
∑

orbits [x]

|[x]|Xnwmax−w(xΛ)Y w(xΛ).

In essence, the choice of homomorphism Λ determines the ‘orbit weights’
ω(x) = w(xΛ) assigned to each orbit [x] in M .

In order to find another linear code D ⊆ Rn with wweC = wweD,
one can try to permute the weights assigned to orbits while keeping the
sum in (1.1) unchanged. For example, in R = M2×2(F2) there is one
orbit of size 6 consisting of matrices of rank 2 and three orbits, each
of size 3, of matrices of rank 1. One can then try to construct linear
codes whose orbit weights behave as follows:

orbit [x1] [x2] [x3] [y]
size of orbit 3 3 3 6
w(xΛ) a b b c
w(xΛ′) a c c b
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It is not obvious a priori that such constructions are possible, but
Section 16 shows that constructions of this type can be carried out for
all matrix rings Mk×k(Fq) over finite fields.

When R is a finite chain ring, all the orbits have different sizes, so
the permutation idea does not work. However, one can use different
modules as the domains of the defining homomorphisms. For example,
the ring Z/8Z has three modules of size 8: M = Z/8Z itself, Z/4Z ⊕
Z/2Z, and M ′ = Z/2Z ⊕ Z/2Z ⊕ Z/2Z. Considering M and M ′, the
orbits of M are {1, 3, 5, 7}, {2, 6}, {4}, and {0}, while the orbits of M ′

are the 8 subsets of size 1. By choosing certain unions of orbits of M ′,
say {100, 101, 110, 111}, {011, 010}, {001}, {000}, of the same size as
the orbits ofM , one can try to construct homomorphisms Λ :M → Rn

and Λ′ :M ′ → Rn achieving the same weights on corresponding orbits.
While this may not seem possible at first glance, Section 8 details how
such constructions exist.

In order to show that wweC⊥ ̸= wweD⊥ , it is enough to show that
Aj(C

⊥) ̸= Aj(D
⊥) for some j > 0; here, Aj(C

⊥) is the number of code-
words v ∈ C⊥ with w(v) = j. The easiest case to understand is when
v ∈ C⊥ has exactly one nonzero entry; such a v is called a singleton.
When C ⊆ Rn is the image of a homomorphism Λ : M → Rn, the
components of Λ = (λ1, λ2, . . . , λn) are elements λi ∈ HomR(M,R).
By understanding how many elements r ∈ R annihilate any given λi,
i.e., λir = 0, one can write down formulas for the contributions of
singletons to Aj(C

⊥), Proposition 5.2. When j is sufficiently small,
only singletons can contribute to Aj(C

⊥), Corollary 5.4. This tech-
nique turns out to be surprisingly effective in allowing one to prove
that Aj(C

⊥) ̸= Aj(D
⊥) in a large number of situations.

This paper is divided into three parts. The first establishes notation
and ideas that can apply to any finite ring with 1. In particular, codes
will usually be linear codes over a finite ring with 1. A weight w on R
will be assumed to have maximal symmetry and have positive integer
values, and w will be extended additively to Rn. The second part
examines the construction of linear codes and the analysis of singleton
dual codewords over a finite chain ring, while the third part does the
same for matrix rings over finite fields. An appendix provides a short
outline of a proof of the MacWilliams identities over finite Frobenius
rings using the Fourier transform and the Poisson summation formula.
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Part 1. Generalities

2. Preliminaries

This section will review without proof some terminology and results
from [28] about characters of finite abelian groups, finite Frobenius
rings, additive and linear codes and their dual codes, symmetry groups,
and weights.

Let A be a finite abelian group. A character of A is a group ho-
momorphism π : A → (C×, ·) from A to the multiplicative group

of nonzero complex numbers. Denote by Â the set of all characters

of A; Â is a finite abelian group under pointwise multiplication of

functions. The groups A and Â are isomorphic, but not naturally so;

|Â| = |A|. The double character group is naturally isomorphic to the

group: (Â)̂ ∼= A; a ∈ A corresponds to evaluation at a of π ∈ Â, i.e.,
π 7→ π(a).

For a subgroup B ⊆ A, define its annihilator by

(Â : B) = {π ∈ Â : π(b) = 1, for all b ∈ B}.

Then (Â : B) is a subgroup of Â, (Â : B) ∼= (A/B)̂ , and |(Â : B)| =
|A/B| = |A|/|B|. Identifying A ∼= (Â)̂ , we have (A : (Â : B)) = B.

Throughout this paperR will denote a finite (associative) ring with 1;
R may be noncommutative. The group of units (invertible elements)
of R is denoted U = U(R). The Jacobson radical J(R) of R is the
intersection of all maximal left ideals of R; J(R) is itself a two-sided
ideal of R. The left/right socle soc(RR), soc(RR) of R is the left/right
ideal generated by the minimal left/right ideals of R. A ring R (perhaps
infinite) is Frobenius if RJ(R) ∼= soc(RR) and J(R)R ∼= soc(RR) [15,
Theorem (16.14)]; a theorem of Honold [13] says that one of these
isomorphisms suffices for finite rings.

Every finite ring R has an underlying additive abelian group. Its

character group R̂ is a bimodule over R. The two scalar multiplications

are written in exponential form, with π ∈ R̂, r, s ∈ R:

(rπ)(s) = π(sr), πr(s) = π(rs).

A finite ring R is Frobenius if and only if R ∼= R̂ as left (resp., right) R-
modules, [25, Theorem 3.10]. This implies that a finite Frobenius ring
admits a character χ, called a generating character, such that r 7→ rχ
is an isomorphism of left R-modules (resp., r 7→ χr is an isomorphism
of right R-modules). A generating character has the property that any
one-sided ideal of R that is contained in kerχ must be the zero ideal.
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An additive code of length n over R is an additive subgroup C ⊆ Rn.
If C ⊆ Rn is a left, resp., right, R-submodule, then C is a left (resp.,
right) R-linear code. One way to present a left R-linear code is as the
image C = imΛ of a homomorphism Λ : M → Rn of left R-modules,
and similarly for right linear codes.

We will write homomorphisms of left R-modules with inputs on the
left, so that preservation of scalar multiplication is (rx)ϕ = r(xϕ),
where r ∈ R, x ∈ M , M a left R-module, and ϕ a homomorphism of
left R-modules with domain M
Define the standard dot product on Rn by

x · y =
n∑

i=1

xiyi ∈ R,

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. Given an additive
code C ⊆ Rn, define dual codes by

L(C) = {y ∈ Rn : y · x = 0, for all x ∈ C},
R(C) = {y ∈ Rn : x · y = 0, for all x ∈ C}.(2.1)

When R is Frobenius, with generating character χ, also define

L(C) = {y ∈ Rn : χ(y · x) = 0, for all x ∈ C},
R(C) = {y ∈ Rn : χ(x · y) = 0, for all x ∈ C}.(2.2)

Using the isomorphisms r 7→ rχ and r 7→ χr of R to R̂, there are

isomorphisms Rn → R̂n of left, resp., right, R-modules given by x 7→ xχ
and x 7→ χx, where xχ(y) = χ(y ·x) and χx(y) = χ(x ·y), for x, y ∈ Rn.

Under the isomorphism x 7→ xχ, R(C) is taken to (R̂n : C), while

under the isomorphism x 7→ χx, L(C) is taken to (R̂n : C).

Lemma 2.3. Suppose R is Frobenius and C ⊆ Rn is an additive code.
Then

• |C| · |L(C)| = |C| · |R(C)| = |Rn|;
• L(R(C)) = C = R(L(C)).

Remark 2.4. Note that R(C) ⊆ R(C) and L(C) ⊆ L(C). In general
these containments will be proper. However, if C is a left R-linear code,
then R(C) = R(C). Similarly, L(C) = L(C) if C is right R-linear.

A weight on R is a function w : R → C from R to the complex
numbers C with w(0) = 0. In most of this paper we will study weights
having positive integer values, except for w(0) = 0. A weight w will
be extended additively to Rn, so that w(v) =

∑n
i=1w(vi) ∈ C, where

v = (v1, v2, . . . , vn) ∈ Rn.
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Every weight w on R has two symmetry groups, left and right:

Glt(w) = {u ∈ U : w(ur) = w(r) for all r ∈ R},
Grt(w) = {u ∈ U : w(ru) = w(r) for all r ∈ R}.(2.5)

A weight w has maximal symmetry when Glt(w) = Grt(w) = U .

Example 2.6. The most well-known weight on R is the Hamming
weight h, defined by h(0) = 0 and h(r) = 1 for r ̸= 0. The Hamming
weight has maximal symmetry.

Example 2.7. Another well-known weight on R having maximal sym-
metry is the homogeneous weight w : R→ R. The homogeneous weight
was first introduced in [5] over integer residue rings and generalized to
all finite rings and modules in [14] and [10]. A homogeneous weight is
characterized by the choice of a real number ζ > 0 and the following
properties [10]:

• w(0) = 0;
• Glt(w) = U ; and
•
∑

x∈Rr w(x) = ζ|Rr| for nonzero principal left ideals Rr ⊆ R.

The last property says that all nonzero left principal ideals ofR have the
same average weight ζ. In fact, the average weight property holds for all
nonzero left ideals of R if and only if R is Frobenius [10, Corollary 1.6].

When R = Fq, all the nonzero elements are units, so w(u) = w(1)
for all units u. Thus w is a constant multiple (namely, w(1)) times the
Hamming weight. Note that ζ = (q − 1)w(1)/q over Fq.

Greferath and Schmidt [10, Theorem 1.3] prove that homogeneous
weights exist on any R by giving an explicit formula for w in terms of
ζ and the Möbius function µ (see [22, §5.5]) of the poset of principal
left ideals of R; namely:

(2.8) w(r) = ζ

(
1− µ(0, Rr)

|Ur|

)
, r ∈ R.

This formula implies that all the values of w are rational multiples of ζ.
By choosing ζ appropriately, one can produce a homogeneous weight
on R with integer values. Another consequence of the formula is that
any two homogeneous weights on R are scalar multiples of each other:
if w and w′ are homogeneous weights on R with average weights ζ and
ζ ′, respectively, then w′ = (ζ ′/ζ)w.

Example 2.9. Let R =Mk×k(Fq) be the ring of k×k matrices over the
finite field Fq. The rank weight r is defined by r(r) = rk(r), the usual
rank of the matrix r ∈ R. The rank weight has maximal symmetry.
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3. MacWilliams identities

In her 1962 doctoral dissertation, Florence Jessie MacWilliams gave
a formula relating the Hamming weight enumerator of a linear code
over a finite field to the Hamming weight enumerator of its dual code
[16, 17]. In this section we will describe this work of MacWilliams as
well as some of its generalizations.

For any linear code C ⊆ Rn over a finite ring R, the Hamming weight
enumerator is the following homogeneous polynomial of degree n:

(3.1) hweC(X, Y ) =
∑
x∈C

Xn−h(x)Y h(x),

where h is the Hamming weight, as in Example 2.6. The formula
relating hweC and hweC⊥ is quoted next.

Theorem 3.2 (MacWilliams identities [16, 17]). If C ⊆ Fn
q is a linear

code over the finite field Fq, then

hweC⊥(X, Y ) =
1

|C|
hweC(X + (q − 1)Y,X − Y ).

Remark 3.3. Note in particular that the formula for hweC⊥ depends
only on hweC and not on a more detailed knowledge of the code C. By
applying the MacWilliams identities to C⊥ and C = (C⊥)⊥, the roles
of C and C⊥ can be reversed.

We isolate one consequence of the MacWilliams identities.

Corollary 3.4. If C and D are two linear codes over Fq with hweC =
hweD, then hweC⊥ = hweD⊥.

The MacWilliams identities for the Hamming weight enumerator can
be generalized in several ways. One way is to generalize the algebraic
structure of the codes. There are versions of the MacWilliams identities
with the Hamming weight enumerator for additive codes over finite
abelian groups [6], as well as for left (or right) linear codes over a finite
Frobenius ring [25, Theorem 8.3]. In the latter, one replaces q with |R|
and C⊥ with R(C) (with L(C) if C is right linear).
Another way to generalize the MacWilliams identities is to general-

ize the enumerator. There are two broad ways of doing this, stemming
from two interpretations of the exponents in (3.1). Following Gluesing-
Luerssen [8], one of the generalizations will be called partition enumera-
tors ; the other will be called w-weight enumerators. These enumerators
will be defined below, and the Hamming weight enumerator will be an
example of both. While most of the following material can be formu-
lated for additive codes over finite abelian groups, the discussion here
will be restricted to linear codes over finite rings.
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Suppose S is a finite set. A partition of S is a collection P = {Pi}
of nonempty subsets of S such that the subsets are pairwise disjoint
and cover S, i.e., S = ⊎iPi. The subsets Pi are called the blocks of the
partition.

Suppose a finite ring R has a partition P = {Pi}mi=1. Define counting
functions ni : Rn → N, i = 1, 2, . . . ,m, by ni(x) = |{j : xj ∈ Pi}|,
for x = (x1, x2, . . . , xn) ∈ Rn. The counting functions count how many
entries of x belong to each block of the partition. For a linear code C ⊆
Rn define the partition enumerator associated to C and the partition P
to be the following homogeneous polynomial of degree n in the variables
Z1, Z2, . . . , Zm:

(3.5) pePC(Z1, . . . , Zm) =
∑
x∈C

m∏
i=1

Z
ni(x)
i .

Examples of such partition enumerators include:

• the complete enumerator (ce) based on the singleton partition
P = {{r}}r∈R;
• a symmetrized enumerator (se) based on a partition consisting
of the orbits of a group action on R;
• the Hamming (weight) enumerator based on the partition with
blocks {0} and the set difference R− {0}.

While the literature refers to the examples above as weight enumera-
tors, the first two do not involve weights, so I will use the shorter names
indicated.

Suppose R has two partitions P = {Pi}mi=1 and Q = {Qj}m
′

j=1. Also
suppose P is a refinement of Q, i.e., each block Pi is contained in some
(unique) block Qj; write j = f(i). Write the partition enumerators of
a linear code C ⊆ Rn, using variables Zi, i = 1, 2, . . . ,m, for P , and
Zj, j = 1, 2, . . . ,m′, for Q:

pePC(Z1, . . . , Zm) and peQC (Z1, . . . ,Zm′).

The specialization of variables Zi ⇝ Zf(i) allows us to write the Q-
enumerator in terms of the P-enumerator:

(3.6) peQC (Z1, . . . ,Zm′) = pePC(Z1, . . . , Zm)
∣∣
Zi⇝Zf(i)

.

The MacWilliams identities are known to generalize to the complete
enumerator and certain symmetrized enumerators, over finite fields [18]
and finite Frobenius rings [25]. The MacWilliams identities general-
ize to so-called reflexive partition enumerators over finite Frobenius
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rings; see [8] for details. For the symmetrized enumerator, see Theo-
rem 11.6. A short review of the main arguments used for proving the
MacWilliams identities over finite Frobenius rings is in Appendix A.

For the other type of enumerator, suppose R is a finite ring with 1,
and w is a weight on R with positive integer values (except w(0) = 0).
Denote the largest value of w by wmax. For any left R-linear code
C ⊆ Rn, define the w-weight enumerator of C by

(3.7) wweC(X, Y ) =
∑
x∈C

Xnwmax−w(x)Y w(x).

The w-weight enumerator is a homogeneous polynomial of degree nwmax

in X and Y . Different codewords in C may have the same weight. Col-
lecting terms in (3.7) leads to

(3.8) wweC(X, Y ) =
nwmax∑
j=0

Aw
j (C)X

nwmax−jY j,

where Aw
j (C) is the number of codewords of C having weight j:

(3.9) Aw
j (C) = |{x ∈ C : w(x) = j}|.

We write Aj(C) when w is clear from context. To save space in exam-
ples in later sections we will often write wwe with X = 1 and Y = t,
so that wweC =

∑
j Aj(C)t

j. When w = h, the Hamming weight, we
recover the Hamming weight enumerator hwe.

Remark 3.10. A disadvantage of using the notation wweC =
∑

j Aj(C)t
j

is that information about the length n of the code is lost. Of course, if
the length of C is known, then the homogeneous form (3.7) of wwe is
easily recovered. For example, suppose C is a linear code of length n,
and let D be the linear code of length n + 1 obtained by appending a
zero to each codeword of C. Since w(0) = 0, there are no changes in the
weights of the codewords, so that Aj(C) = Aj(D) for all j. However,
wweD(X, Y ) = X wweC(X, Y ).

The partition enumerators and the w-weight enumerators are related.
Given a weight w on R, letQ be the partition of R into the orbits orb(r)
of Glt(w) acting on R on the left, and let P be the complete partition
of R; P is a refinement of every partition, hence a refinement of Q. Use
variables Zr, r ∈ R, for P , and Zorb(r) for Q. Then the specialization of

variables Zorb(r) ⇝ Xwmax−w(r)Y w(r) allows us to write wweC in terms

of seQC for any R-linear code C ⊆ Rn:

(3.11) wweC(X, Y ) = seQC (Zorb(r))
∣∣
Zorb(r)⇝Xwmax−w(r)Y w(r) .
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This specialization is well-defined by the definition of the symmetry
group Glt: the value of w is constant on every left orbit of Glt. Sec-
tion 11 gives details of this situation over finite chain rings.

One way to view the MacWilliams identities is in terms of the dia-
gram in Figure 1 below. In the diagram, the map R sends a left

{(n,M)-linear codes} R //

ce

��
se

��
wwe

��

{(n, |R|n/M)-linear codes}
ce

��
se

��
wwe

��

C[Zr]n
MW //

spec

��

C[Zr]n

spec

��
C[Zorb(r)]n

MW //

spec

��

C[Zorb(r)]n

spec

��
C[X, Y ]nwmax

? // C[X, Y ]nwmax

Figure 1. Relations among enumerators

R-linear code of size M to its right R-linear dual code R(C). Un-
der favorable circumstances (e.g., R Frobenius), the dual code has size
|R(C)| = |R|n/|C|. The vertical maps ce, se,wwe associate to a lin-
ear code its complete enumerator, Q-symmetrized enumerator, and w-
weight enumerator, respectively. The other vertical maps (both called
spec) are the specializations of variables described in (3.6) and (3.11).

Because the MacWilliams identities hold for ce and se, the horizontal
maps MW are the MacWilliams transforms that provide the linear
changes of variables. The solid arrows in the diagram commute.

The big question under study in this paper is whether there is a
horizontal map ‘?’ that makes the diagram commute for the w-weight
enumerator. If such a map exists, then the following property holds:
if wweC = wweD, then wweR(C) = wweR(D). We refer to this property
by saying the weight w respects duality. To formalize:

Definition 3.12. A weight w on a finite ring R respects duality if
wweC = wweD implies wweR(C) = wweR(D) for all left R-linear codes
C,D ⊆ Rn, n ≥ 1.

Corollary 3.4 says that the Hamming weight on Fq respects duality.
If a weight w does not respect duality, then the MacWilliams identities
cannot hold for wwe.
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As an example, let us see what happens when a weight is multiplied
by a positive constant. Suppose w : R → Z is a weight on R, and let
w̃ = cw, with c a positive integer. Denote the w-weight enumerators
for w and w̃ by wwe and wwec respectively.

Lemma 3.13. Let w : R→ Z be a weight on R, and let w̃ = cw, with
c a positive integer. Then

wwecC(X, Y ) = wweC(X
c, Y c).

Proof. For any element r ∈ R, we have

X w̃max−w̃(r)Y w̃(r) = (Xc)wmax−w(r)(Y c)w(r). □

Proposition 3.14. Let w : R→ Z be a weight on R, and let w̃ = cw,
with c a positive integer. Then w̃ respects duality if and only if w
respects duality.

Even if a weight w does not respect duality (and hence wwe does
not satisfy the MacWilliams identities), it is still possible to determine
both wweC and wweR(C) by calculating seC , using the MacWilliams
identities for se to find seR(C), and then specializing variables to get
wweC and wweR(C). But one cannot go directly from wweC to wweR(C).
The main objective of this paper is to show that it is rare for a weight

having maximal symmetry to respect duality, at least over finite chain
rings or matrix rings over finite fields. In addition to Theorem 3.2
for the Hamming weight enumerator and its generalization to finite
Frobenius rings, the MacWilliams identities for w-weight enumerators
are known to hold for the Lee weight on Z/4Z [12] (and see Theo-
rem 6.5) and the homogeneous weight on the matrix ring M2×2(F2),
Theorem 12.12. The MacWilliams identities for w-weight enumerators
are known to fail for the Rosenbloom-Tsfasman weight on matrices [7],
the Lee weight on Z/mZ, m ≥ 5 [1], and the homogeneous weight on
Z/mZ for composite m ≥ 6 [30]. In all cases, the failure is proved by
showing that the weight does not respect duality: there exist linear
codes C and D with wweC = wweD, yet wweR(C) ̸= wweR(D), by virtue
of Aw

j (R(C)) ̸= Aw
j (R(D)) for some j.

The hypothesis that w has maximal symmetry is important. There
are results about ‘Lee weights’ of different types that can be valid
because they secretly tap into the Hamming weight or the Lee weight
on Z/4Z; cf., [31].

4. Linear codes via multiplicity functions

In later sections linear codes will be presented as images of homo-
morphisms of left R-modules. In turn, the homomorphisms will be
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described in terms of multiplicity functions. In this section, the use
of multiplicity functions to describe linear codes will be summarized
briefly. Addititonal information can be found in [26, §3] or [28, §7].

As throughout this paper, let R be a finite ring with 1. Suppose M
is a finite unital left R-module; unital means 1x = x for all x ∈ M .
We call any homomorphism λ : M → R of left R-modules a linear
functional on M . Define M ♯ = HomR(M,R) to be the set of all left
linear functionals on M . We will write inputs to linear functionals on
the left, so that (rx)λ = r(xλ) for r ∈ R, x ∈ M , and λ ∈ M ♯; M ♯ is
a right R-module, with λr given by x(λr) = (xλ)r for r ∈ R, x ∈ M ,
and λ ∈ M ♯. The left R-module M admits a left action by the group
of units U of R using left scalar multiplication. Denote the orbit of
x ∈M by orb(x) or by [x]. Similarly, the right R-module M ♯ admits a
right U -action, with orbits denoted orb(λ) or [λ].

A left R-linear code of length n parametrized by M is the image
C = imΛ of a homomorphism Λ : M → Rn of left R-modules. The
module M is the information module of the linear code C. Denote the
components of Λ by Λ = (λ1, λ2, . . . , λn), with each λi :M → R being
linear functional on M . We call the λi the coordinate functionals of
the linear code C.

Suppose w is a weight on R. Then the weight w and a parametrized
code C given by Λ : M → Rn define a weight function WΛ : M → C
by WΛ(x) = w(xΛ) =

∑n
i=1w(xλi), x ∈M .

Lemma 4.1. Suppose w is a weight on R with symmetry groups (2.5),
and suppose C is an R-linear code parametrized by Λ :M → Rn. Then

(1) the weight function WΛ : M → C is constant on each left
Glt(w)-orbit orb(x) ⊆M ;

(2) WΛ′ = WΛ, if Λ
′ = (λτ(1)u1, . . . , λτ(n)un), where τ is a permu-

tation of {1, 2, . . . , n} and u1, . . . , un ∈ Grt(w).

Proof. These follow directly from (2.5). □

Remark 4.2. If the weight w has nonnegative integer values, the weight
function WΛ determines the w-weight enumerator of the linear code C:

wweC =
1

|kerΛ|
∑
x∈M

tWΛ(x).

When Λ is injective, the w-weight enumerator can be written in terms
of the sizes of orbits:

(4.3) wweC =
∑
[x]⊆M

|[x]|tWΛ(x).
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Lemma 4.1 shows that the weight function WΛ depends only on the
numbers of coordinate functionals belonging to different Grt(w)-orbits
in M ♯. We formalize this observation next. Write F (X, Y ) for the set
of all functions from X to Y .

Given an information module M , define the orbit spaces:

O = Glt(w)\M, O♯ =M ♯/Grt(w).

Lemma 4.1 shows that WΛ depends only on a function η ∈ F (O♯,N),
where η([λ]) is the number of coordinate functionals that belong to
the orbit orb(λ) = [λ]. (In [21, §3.6], Peterson and Weldon call η the
modular representation of the linear code C.)

The weight w induces an additive map W : F (O♯,N) → F (O,C).
For η ∈ F (O♯,N), define ω = W (η), the list of orbit weights, by

(4.4) ω([x]) =
∑

[λ]∈O♯

w(xλ)η([λ]).

By (2.5), the value of w(xλ) is well-defined. If w has values in Z or Q,
then W has values in F (O,Z) or F (O,Q), accordingly. In these latter
cases, tensoring with Q yields a linear transformation W : F (O♯,Q)→
F (O,Q).

By ordering the elements of O and O♯, one can define a matrix W
whose rows are indexed by O, whose columns are indexed by O♯, and
whose entry at position ([x], [λ]) is the well-defined value w(xλ):

(4.5) W[x],[λ] = w(xλ), [x] ∈ O, [λ] ∈ O♯.

Treating η and ω as column vectors, (4.4) is just matrix multiplication:
ω = Wη.

Any element η ∈ F (O♯,N), called a multiplicity function, determines
an R-linear code as the image of the homomorphism Λη : M → RN of
left R-modules given by sending x ∈ M to the N -tuple (. . . , xλ, . . .),
where a representative of each orbit [λ] ∈ O♯ is repeated η([λ]) times;
N =

∑
[λ]∈O♯ η([λ]). Said another way, treat elements λ ∈ M ♯ as

columns of a generator matrix, with representatives of [λ] repeated
η([λ]) times. The resulting linear code Cη is well-defined up to mono-
mial equivalence; its list ω = Wη of orbit weights is well-defined. Using
ω, one can write down the w-weight enumerator of Cη, as in Remark 4.2:

wweCη =
∑
x∈M

tw(xΛη) =
∑
[x]∈O

|[x]|tω([x]),

assuming that Λη is injective. (If Λη is not injective, we must divide
by |kerΛη|.)
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Remark 4.6. The definition of W : F (O♯,N) → F (O,C) is valid
whether or not w(0) = 0. When w(0) = 0, thenW (η)([0]) = ω([0]) = 0
for any η ∈ F (O♯,N). Also, when w(0) = 0, W ([δ[0]]) = 0, where δ[0] is
the indicator function of the orbit [0] ∈ O♯ of the zero-functional.

More formally, define

F0(O♯,N) = {η ∈ F (O♯,N) : η([0]) = 0},
F0(O,C) = {ω ∈ F (O,C) : ω([0]) = 0}.

When w(0) = 0, the image of W is contained in F0(O,C). We denote
the restriction of W to F0(O♯,N) by W0 : F0(O♯,N) → F0(O,C); W0

is an additive map. The map W0 is represented by a matrix whose
rows are indexed by the nonzero orbits [x] ∈ O, whose columns are
indexed by the nonzero orbits [λ] ∈ O♯, and with entries given as in
(4.5). When w(0) = 0, the map W can never be injective (because
δ[0] ∈ kerW ), but the map W0 often is injective. When w has values in
Q and w(0) = 0, the linear transformation W0 : F0(O♯,Q)→ F0(O,Q)
is often invertible. This will be an important tool in later sections.

We conclude this section with a short discussion of the effective
length of codes. The next lemma is a variant of [26, (6.1)].

Lemma 4.7. Suppose C ⊆ Rn is an R-linear code. Then

(4.8)
∑
c∈C

w(c) =
n∑

i=1

|kerλi|
∑

b∈imλi

w(b).

Proof. Write λ1, . . . , λn for the coordinate functionals of C. Then,∑
c∈C w(c) =

∑
c∈C
∑n

i=1w(ci) =
∑

c∈C
∑n

i=1w(cλi). Now interchange
the finite sums, and use that λi is a homomorphism, so

∑
c∈C w(cλi) =

|kerλi|
∑

b∈imλi
w(b). □

There are situations where (4.8) simplifies. Define a weight w on R
to be egalitarian if there exists a constant γ such that, for any nonzero
left ideal B ⊆ R,

∑
b∈B w(b) = γ|B|. This definition is due to [14].

The homogeneous weight on a finite Frobenius ring is an example of
an egalitarian weight; see Example 2.7.

Define the effective length of a linear code C to be efflng(C) = |{i :
λi ̸= 0}|. If C is given by a generator matrix, the effective length
counts the number of nonzero columns of the generator matrix.

Proposition 4.9. Suppose C ⊆ Rn is an R-linear code and w is an
egalitarian weight on R. Then∑

c∈C

w(c) = γ|C| efflng(C).
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Proof. Use Lemma 4.7. For λi ̸= 0, set B = imλi and note that
|C| = |kerλi| · |imλi|. □

Corollary 4.10. Let w be an egalitarian weight on R. Suppose C,D ⊆
Rn are two R-linear codes. If wweC = wweD, then the effective lengths
of C and D are equal.

Proof. The hypothesis means that Aw
j (C) = Aw

j (D) for all j. But

|C| =
nwmax∑
j=0

Aw
j (C) and

∑
c∈C

w(c) =
nwmax∑
j=0

jAw
j (C),

so |C| = |D| and
∑

c∈C w(c) =
∑

d∈D w(d). Apply Proposition 4.9. □

5. Singletons in dual codes

In this section we describe some general results on the contributions
to wweC⊥ coming from singleton vectors.

As usual, suppose R is a finite ring with 1 and C ⊆ Rn is a left
R-linear code. Its dual code C⊥ is the right dual code R(C) of (2.1).
We assume w is an integer-valued weight on R with w(r) > 0 for r ̸= 0
and w(0) = 0. Let ẘ = min{w(r) : r ̸= 0}, so that ẘ > 0.

We say that a vector v ∈ Rn is a singleton if v has exactly one
nonzero entry. Given a vector v ∈ Rn, recall that the weight of the
vector is w(v) =

∑n
j=1w(vj). The smallest possible nonzero weight of

a vector is ẘ, which is attained by any singleton whose nonzero entry
r has w(r) = ẘ.
We want to write down the contributions of singletons to the w-

weight enumerator of a linear code, especially to a dual code. As
in (3.9), recall that Aj(C) = |{x ∈ C : w(x) = j}|. To track the
contributions of singletons we write

Asing
j (C) = |{x ∈ C : x is a singleton and w(x) = j}|.

Of course, Asing
j (C) ≤ Aj(C). Equality will be addressed in Corol-

lary 5.4 below.
For any λ ∈ M ♯ and positive integer j, define annrt(λ, j) = {r ∈

R : λr = 0 and w(r) = j}, the set of elements in R of weight j that
annihilate λ.

Lemma 5.1. Suppose w has maximal symmetry. For any λ ∈M ♯ and
u ∈ U , annrt(λu, j) = u−1 annrt(λ, j). In particular, |annrt(λu, j)| =
|annrt(λ, j)| for any u ∈ U , λ ∈M ♯.

Proof. Suppose w(r) = j. By maximal symmetry, w(ur) = w(r) = j
for all u ∈ U . Because (λu)(u−1r) = λr, we see that r ∈ annrt(λ, j) if
and only if u−1r ∈ annrt(λu, j). □
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Proposition 5.2. Assume w is an integer-valued weight on R with
maximal symmetry. If C is a linear code determined by a multiplicity
function η, then, for any positive integer j,

Asing
j (C⊥) =

∑
[λ]∈O♯

|annrt(λ, j)|η([λ]).

Proof. Suppose C has coordinate functionals λ1, . . . , λn. Let v be a
singleton vector with nonzero entry r ∈ R appearing in position i.
Then v ∈ C⊥ if and only if λir = 0. Thus

Asing
j (C⊥) =

n∑
i=1

|annrt(λi, j)|,

which reduces to the stated formula because of Lemma 5.1. □

In later sections, formulas for |annrt(λ, j)| will be very specific, de-
pending on the nature of the ring R.

Lemma 5.3. Suppose v ∈ Rn has weight w(v) satisfying ẘ ≤ w(v) <
2ẘ. Then v must be a singleton.

Proof. Suppose v has at least two nonzero entries, say in positions j1, j2.
Then w(v) ≥ w(vj1) + w(vj2) ≥ 2ẘ. □

Corollary 5.4. If ẘ ≤ d < 2ẘ, then Ad(C) = Asing
d (C).

In later sections, Corollary 5.4 will be applied mostly to dual codes,
in tandem with Proposition 5.2.

Remark 5.5. In order that Asing
j (C) be nonzero, it is necessary that

j = w(r) for some r ∈ R.
It is possible that Aj(C) = Asing

j (C) even when j ≥ 2ẘ. For exam-
ple: when j = w(r) is not equal to a linear combination of the form∑

s:w(s)<j csw(s) with cs being nonnegative integers.

Part 2. Finite Chain Rings

6. Definitions and a positive result

A finite ring R with 1 is a chain ring if its left ideals form a chain
under set inclusion. In particular, R has a unique maximal left ideal,
denoted m, so that R is a local ring. Examples of chain rings include
finite fields, Z/pmZ with p prime, Galois rings, Fq[X]/(Xm); cf., [19].
Every finite chain ring is Frobenius [24, Lemma 14].

From [4, Lemma 1] we know that m is a principal ideal, say m =
Rθ = θR, that θm = 0 for some (smallest) m ≥ 1, and that every
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left or right ideal of R is a two-sided ideal of the form Rθj = θjR,
j = 0, 1, . . . ,m. In particular, m is a two-sided ideal, so that R/m is
a finite field, say R/m ∼= Fq, of order q, a prime power. Write (θj) for
Rθj = θjR. Thus, all the ideals of R are displayed here:

(6.1) R = (θ0) ⊃ (θ) ⊃ (θ2) ⊃ · · · ⊃ (θm−1) ⊃ (θm) = (0).

Each quotient (θj)/(θj+1) is a one-dimensional vector space over R/m,
with basis element θj + (θj+1). It follows that

(6.2) |(θj)| = qm−j, j = 0, 1, . . . ,m.

In particular, |R| = qm. The group of units of R, denoted U = U(R),
equals the set difference R−m. The group U acts of R on the left and
on the right by multiplication. The orbits of the actions are exactly
the set differences orb(θj) = (θj)− (θj+1), which have size

(6.3) |orb(θj)| = qm−j−1(q − 1), for j < m.

In particular, the left orbits of U equal the right orbits: Uθj = θjU .
From (6.1), we see that every element r ∈ R has the form r = uθj

where u is a unit of R and j is uniquely determined by r (the largest i
such that r ∈ (θi)). Note that the annihilator of (θj) is (θm−j).

Let w be a weight on R with positive integer values for r ̸= 0 in R.
Assume that w has maximal symmetry, so that w(ur) = w(ru) = w(r)
for all r ∈ R and units u ∈ U . This means that w is constant on the
U -orbits orb(θj) = (θj)− (θj+1). Define wj as the common value of w
on orb(θj), so that wj = w(uθj) = w(θju) for all units u ∈ U . Then
w0, w1, . . . , wm−1 are positive integers, and wm = 0.

Example 6.4. Choosing ζ = q−1, we see from Example 2.7 and (6.1)
that the homogeneous weight w on a chain ring R has the following
integer values:

w(r) =


0, r = 0,

q, r ∈ (θm−1)− (0),

q − 1, r ∈ R− (θm−1).

Then w0 = · · · = wm−2 = q − 1, wm−1 = q, and wm = 0.

Do the MacWilliams identities hold for the homogeneous weight enu-
merator over a finite chain ring R? We will see that the answers depend
on q and m.

When m = 1, then θ = 0, so that R is a finite field Fq. As we saw in
Example 2.7, the homogeneous weight w on Fq equals a multiple of the
Hamming weight. By Theorems 3.2 and Lemma 3.13, the homogeneous
weight over finite fields respects duality.
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Form ≥ 2, there is one special case (m = q = 2, Theorem 6.5, below)
where the MacWilliams identities hold for the homogeneous weight. In
the remaining cases, we will see in Theorem 10.2 that the homogeneous
weight does not respect duality.

The results just described apply to the chain rings Z/pmZ, so that the
MacWilliams identities hold for the homogeneous weight over Z/pZ,
p prime, and over Z/4Z [12, Equation (9)], but not for other prime
powers. More generally, over Z/mZ, m not a prime power (so that
Z/mZ is not a chain ring), the homogeneous weight does not respect
duality [30, Theorem 6.2].

Theorem 6.5. The MacWilliams identities hold for the homogeneous
weight enumerator over a finite chain ring R with q = 2 and m = 2.
If C ⊆ Rn is a linear code and C⊥ is its dual code, then

howeC⊥(X, Y ) =
1

|C|
howeC(X + Y,X − Y ).

Proof. Appendix A outlines of a proof of the MacWilliams identities
over finite Frobenius rings and describes the Fourier transform. Here,
we provide details relevant to the chain rings appearing in this theorem.

We know that |R| = 4, with R = {0, 1, θ, 1 + θ}. The values of the
homogeneous weight, with ζ = 1, are:

r 0 1 θ 1 + θ
w(r) 0 1 2 1

.

The additive group of R could be a cyclic group of order 4 (in which
case θ = 2, in order that (θ) be a maximal ideal) or a Klein 4-group. In
either case, there exists a generating character χ of R with the following
values. (What is crucial is that χ(θ) = −1.)

r 0 1 θ 1 + θ
cyclic χ(r) 1 i −1 −i
Klein χ(r) 1 1 −1 −1

Define f : R → C[X, Y ] by f(r) = X2−w(r)Y w(r). For either choice

of χ, the Fourier transform f̂ of (A.2) is the same:

r 0 1 θ 1 + θ
f(r) X2 XY Y 2 XY

f̂(r) (X + Y )2 X2 − Y 2 (X − Y )2 X2 − Y 2

Note that the values of f̂ have the form f̂(r) = (X + Y )2−w(r)(X −
Y )w(r). I.e., f̂(r) = f(r)|X←X+Y,Y←X−Y . The rest of the argument in
Appendix A now carries through. □
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7. Modules over a chain ring

We continue to assume that R is a finite chain ring with maximal
ideal m = (θ) such that R/m ∼= Fq and θm = 0, for some integer
m ≥ 2. By forming quotients from (6.1), we define cyclic R-modules
Zk = R/(θk), of order qk, k = 1, 2, . . . ,m. The module Z1 is the unique
simple R-module. Also define semisimple modules Sk = Z1 ⊕ · · · ⊕ Z1

with k summands, k = 2, 3, . . . ,m; |Sk| = qk.
In the next two sections, we will construct two families of linear

codes with the same w-weight enumerators. Here is a brief sketch of
the construction. We will build examples using Zk and Sk, 2 ≤ k ≤ m,
as the underlying information modules. On Zk, choose a multiplicity
function. The weights of elements will be constant along nonzero orbits
O, which have sizes qk−qk−1, qk−1−qk−2, . . . , q2−q, q−1. We then need
to build a linear code based on Sk with the same w-weight enumerator.
This entails choosing subsets of Sk with sizes matching the sizes qk −
qk−1, qk−1−qk−2, . . . , q2−q, q−1. We do this by fixing a filtration of Sk

using linear subspaces. We can then solve for a multiplicity function for
Sk. If the original multiplicity function on Zk calls for one functional
from each class, then the multiplicity function on Sk is reasonably nice.
We then calculate the common weight enumerator for these multiplicity
functions.

In this section we study the orbit structure of Zk as well as the
subsets arising from a filtration of Sk. In Section 8, the multiplicity
functions are described and analyzed.

In order to define linear codes over Zk and Sk, let us examine their
linear functionals. Recall first that the left linear functionals of R itself
are given by right multiplications by elements of R. That is, R♯ ∼= R as
right R-modules, with r ∈ R corresponding to the left linear functional
ρr ∈ R♯ defined by r′ρr = r′r, r′ ∈ R.

If λ ∈ Z♯
k, then the composition with the natural quotient map must

equal ρr for some r ∈ R.

R
ρr //

����

R

Zk = R/(θk)
λ

66

Conversely, ρr : R→ R factors through Zk if and only if (θk) ⊆ ker ρr;
i.e., if and only if θkr = 0. This occurs when r ∈ (θm−k). Thus

Z♯
k
∼= (θm−k) as right R-modules. In particular, Z♯

1
∼= (θm−1) as right

R-modules.



20 J. A. WOOD

As for Sk = Z1⊕· · ·⊕Z1, we have S
♯
k
∼= (θm−1)⊕· · ·⊕(θm−1) as right

R-modules. For s = (s1, . . . , sk) ∈ Sk and µ = ⟨µ1θ
m−1, . . . , µkθ

m−1⟩ ∈
S♯
k, sµ =

∑k
i=1 siµiθ

m−1 ∈ R. Both Sk and S♯
k are k-dimensional vector

spaces over R/m ∼= Fq.
In order to exploit maximal symmetry in Lemma 4.1, we want to

understand the orbit structures of the left actions of U on Zk and Sk,
and, to a lesser extent, the orbit structures of the right actions of U on
Z♯

k and S♯
k.

Because (θk) is a two-sided ideal of R, Zk is itself a chain ring. Its
left R-submodules are the same as its left ideals:

(7.1) Zk ⊃ Rθ ⊃ Rθ2 ⊃ · · · ⊃ Rθk−1 ⊃ {0}.

Note that (7.1) can be viewed as a filtration of Zk by R-submodules.

Lemma 7.2. The orbits of the left action of U on Zk are:

orb(1) = orb(θ0), orb(θ), . . . , orb(θk−1), {0} = orb(0) = orb(θk).

The sizes of the orbits are: |orb(0)| = 1 and

|orb(θi)| = qk−i−1(q − 1), i = 0, 1, . . . , k − 1.

Proof. Apply (6.3) to the chain ring Zk. □

Similar to Lemma 7.2, the orbits of the right action of U on Z♯
k are

orb(θm−k), orb(θm−k+1), . . . , orb(θm−1), {0} = orb(θm).
Because Sk is a vector space over Fq

∼= R/m, the action of U on Sk

reduces to the action of the multiplicative group F×q . The U -orbits are
{0} and L− {0}, for every 1-dimensional subspace L ⊆ Sk. The same

structure applies to the dual vector space S♯
k; the U -orbits are {0} and

the nonzero elements of 1-dimensional subspaces.
For later use in Section 8, we will identify subsets (say, S1, . . . ,Sk)

of Sk that will be the counterparts to the orbits orb(1), . . . , orb(θk−1)
of Zk (in reverse order). In particular, we want two features:

• each Si is a union of U -orbits in Sk;
• |Si| = |orb(θk−i)| = qi−1(q − 1) for i = 1, . . . , k.

To define the Si, we define a filtration on Sk. Recall that Sk is
a k-dimensional vector space over R/m ∼= Fq. Write elements of
Sk = Z1 ⊕ · · · ⊕ Z1 as row vectors of length k over Fq. (Row vec-
tors will be written as (x1, . . . , xk), while column vectors will be writ-
ten as ⟨x1, . . . , xk⟩.) Define vector subspaces of Sk: V0 = {0} and
Vi = {(0, . . . , 0, sk−i+1, . . . , sk) ∈ Sk : sj ∈ Fq}, for i = 1, 2, . . . , k. In
Vi, the first k− i entries are zero; the last i entries vary over Fq. Then,
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dimFq Vi = i for i = 0, 1, . . . , k, so that |Vi| = qi, and

(7.3) Sk = Vk ⊃ Vk−1 ⊃ · · · ⊃ V1 ⊃ V0 = {0}.
Set Si = Vi − Vi−1, for i = 1, . . . , k; then |Si| = qi−1(q − 1). Set
S0 = {0}. Because the Vi are vector subspaces, the Si are unions of
U -orbits.

We also want to understand the linear functionals on Sk in terms of
the filtration (7.3). To that end, we examine the dual filtration of S♯

k

defined by annihilators Vi = ann(Vi) = {µ ∈ S♯
k : Viµ = 0}. Then,

dimFq Vi = k − dimFq Vi = k − i, |Vi| = qk−i, and

(7.4) {0} = Vk ⊂ Vk−1 ⊂ · · · ⊂ V1 ⊂ V0 = S♯
k.

If we view elements of S♯
k as column vectors µ = ⟨µ1θ

m−1, . . . , µkθ
m−1⟩,

then Vi consists of those µ whose last i entries equal zero. The zero
entries of Vi align with the nonzero entries of elements of Vi.

The set differences Vi−Vi+1 consist of all µ = ⟨µ1θ
m−1, . . . , µkθ

m−1⟩
with µk−i+1 = · · · = µk = 0, µk−i ̸= 0, and µ1, . . . , µk−i−1 ∈ Fq. The
U -orbit of µ is the set of all nonzero scalar multiplies of µ. In each
orbit there is exactly one ‘normalized’ representative with µk−i = 1.
For i = 0, 1, . . . , k − 1, let Bi be the subset of Vi − Vi+1 consisting of
all the normalized representatives; i.e.,

(7.5) Bi = {µ ∈ Sk : µk−i = 1, µk−i+1 = · · · = µk = 0};
as a special case, set Bk = {0}. Then |Bi| = qk−i−1, except |Bk| = 1.

Lemma 7.6. Let s ∈ Si. Then, for j = 0, 1, . . . , k − 1,

|Bj ∩ ann(s)| =


qk−j−1, i ≤ j ≤ k − 1,

0, j = i− 1,

qk−j−2, 0 ≤ j ≤ i− 2.

Proof. The case S0 = {0} has ann(0) = S♯
k. Then |Bj ∩ ann(0)| =

|Bj| = qk−j−1 for all 0 ≤ j ≤ k − 1.
Now let 1 ≤ i ≤ k. The element s ∈ Si = Vi − Vi−1 is nonzero

and has the form s = (0, . . . , 0, sk−i+1, . . . , sk), with sk−i+1 ̸= 0. Any
µ ∈ Vi−1−Vi has the form µ = ⟨µ1θ

m−1, . . . , µk−i+1θ
m−1, 0, . . . , 0⟩ with

µk−i+1 ̸= 0. Thus sµ = sk−i+1µk−i+1θ
m−1 ̸= 0, so that |Bi−1∩ann(s)| =

0. For i ≤ j ≤ k − 1, use the definition of Vi to see that Vj ⊆ Vi =
ann(Vi) ⊆ ann(s). So Bj ⊆ ann(s) and |Bj ∩ ann(s)| = |Bj| = qk−j−1.

Because s ̸= 0, ann(s) is a vector subspace of S♯
k with dimFq ann(s) =

k−1. By dimension counting, dim(Vj∩ann(s)) equals k−j−1 or k−j.
The case dim(Vj ∩ ann(s)) = k − j occurs when Vj ⊆ ann(s). This is
the case i ≤ j ≤ k − 1 above. When j = i− 1, Vi−1 ∩ ann(s) = Vi, so
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that |Bi−1 ∩ ann(s)| = 0, as we saw above. Finally, let 0 ≤ j ≤ i − 2.
Then dim(Vj ∩ann(s)) = k− j−1 and dim(Vj+1∩ann(s)) = k− j−2.
This implies |(Vj −Vj+1)∩ ann(s)| = |Vj ∩ ann(s)| − |Vj+1 ∩ ann(s)| =
qk−j−2(q−1). Taking normalized representatives implies |Bj∩ann(s)| =
qk−j−2. □

8. Two families of linear codes with the same wwe

We continue to assume that R is a finite chain ring with maximal
ideal m = (θ) such that R/m ∼= Fq and θm = 0, for some integer m ≥
2. Let w be an integer-valued weight on R with maximal symmetry.
Denote the common value of w on orb(θi) by wi > 0, i = 0, 1, . . . ,m−1,
and wm = w(0) = 0.

To begin, we use w0, . . . , wm−1 to define several numerical quantities.
For i = 0, 1, . . . ,m− 1, define

(8.1) ai =
i∑

j=0

qjwm−j−1.

Also define, for k = 2, 3, . . . ,m,

(8.2) ∆k = kqk−1wm−1 −
k−1∑
i=0

qk−i−1ai.

Recall the cyclic R-module Zk = R/(θk) and the semisimple R-
module Sk = Z1 ⊕ · · · ⊕ Z1 (k summands) from Section 6. We will
constructR-linear codes with Zk and Sk as their underlying information
modules. The linear codes will be images of homomorphisms Λ : Zk →
Rn and Γ : Sk → Rn of left R-modules. As explained in Section 4, the
linear codes are determined by their multiplicity functions.

Definition 8.3. Define a left R-linear code Ck parametrized by Zk

by using the linear functionals given by right multiplication by each of
θm−k, . . . , θm−1, each repeated qk−1wm−1 times, and the zero functional,
repeated max{0,−∆k} times; cf., (8.2).

Equivalently, Ck has a generator matrix of size 1 × (kqk−1wm−1 +
max{0,−∆k}), with entries θm−k, . . . , θm−1, each repeated qk−1wm−1
times, plus entries of 0, repeated max{0,−∆k} times. Thus, 0 does
not appear if ∆ ≥ 0, and 0 appears −∆k times when ∆k < 0.

Proposition 8.4. The linear code Ck of Definition 8.3 has length
kqk−1wm−1 +max{0,−∆k}. Its weight function WΛ has values

WΛ(θ
i) = qk−1wm−1(wm−k+i + · · ·+ wm−1),
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for i = 0, 1, . . . , k − 1, and the w-weight enumerator of Ck is

wweCk
= 1 +

k−1∑
i=0

|orb(θi)|tWΛ(θ
i)

= 1 +
k−1∑
i=0

qk−i−1(q − 1)tq
k−1wm−1

∑k−1
j=i wm−k+j .

Proof. The formula for the length follows directly from Definition 8.3.
In calculating WΛ(θ

i), remember that wm = w(θm) = w(0) = 0.

WΛ(θ
i) =

m−1∑
j=m−k

qk−1wm−1w(θ
iθj)

= qk−1wm−1 (wi+m−k + · · ·+ wm−1) .

The functional in Z♯
k given by right multiplication by θm−k is injective,

so that Λ is also injective. Then wweCk
follows from (4.3). □

We now want to define linear codes Dk parametrized by Γ : Sk → Rn

such that wweCk
= wweDk

. The form of wweCk
was determined by

(4.3), in particular by the sizes of the orbits orb(θi) and the value of
WΛ on those orbits. In order to be able to match terms in the equation
wweCk

= wweDk
, we make use of the subsets S1, . . . ,Sk of Sk defined

following (7.3). Also recall the sets Bi defined in (7.5). We will design
Γ so that WΓ is constant on each Si, with value equal to the value of
WΛ on orb(θk−i).

Definition 8.5. Define a left R-linear code Dk parametrized by Γ :
Sk → Rn by using the linear functionals in ∪iBi, with each µ ∈ Bi

repeated ai times (cf., (8.1)), i = 0, 1, . . . , k−1, and the zero-functional
in Bk repeated max{∆k, 0} times (cf., (8.2)).

Equivalently, Dk has a generator matrix of size k× (
∑k−1

i=0 q
k−i−1ai+

max{∆k, 0}), with columns given by µ ∈ ∪iBi, with each µ ∈ Bi

repeated ai times, i = 0, 1, . . . , k, the zero-column in Bk repeated
max{∆k, 0} times. Thus, zero-columns do not appear if ∆ ≤ 0, and
the zero-column appears ∆k times when ∆k > 0.
We now express the values of WΓ in terms of a0, a1, . . . , ak−1.

Proposition 8.6. The weight function WΓ : Sk → Z is constant on
each Si, with WΓ(S0) = 0 and, for i = 1, . . . , k,

WΓ(Si) =

(
qk−iai−1 +

i−2∑
j=0

qk−j−2(q − 1)aj

)
wm−1.
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Proof. If i = 0, then S0 = {0}, so that WΓ(S0) = 0. Now let i =
1, . . . , k, and let s ∈ Si. Using Lemma 7.6, we see that

WΓ(s) =
k−1∑
j=0

aj
∑
µ∈Bj

w(sµ) =
i−1∑
j=0

aj
∑
µ∈Bj

w(sµ)

=

(
qk−iai−1 +

i−2∑
j=0

qk−j−2(q − 1)aj

)
wm−1.

This formula depends only on i, so WΓ is constant on each Si. □

In order that wweCk
= wweDk

, we needWΛ(orb(θ
k−i)) = WΓ(Si), for

i = 1, . . . , k. That is, canceling a common factor, we need

(8.7) qk−1(wm−i + · · ·+ wm−1) = qk−iai−1 +
i−2∑
j=0

qk−j−2(q − 1)aj,

for i = 1, . . . , k. The number of additive terms on each side of the
equation is i. Starting with i = 1 and working upwards, we solve a
triangular system recursively for a0, a1, . . . , ak−1.

Lemma 8.8. The solutions of (8.7) are

ai = wm−1 + qwm−2 + · · ·+ qiwm−i−1,

for i = 0, 1, . . . , k − 1. This formula matches (8.1).

Proof. Exercise, by induction. The terms simplify by telescoping. □

Theorem 8.9. For each k = 2, 3, . . . ,m, the codes Ck and Dk have
the same length and satisfy wweCk

= wweDk
.

Proof. The definition of ∆k in (8.2) guarantees that the codes have the
same length. The ai of (8.1) were defined so that Lemma 8.8 holds.
Thus WΛ(orb(θ

k−i)) = WΓ(Si), for i = 1, . . . , k. Because |orb(θk−i)| =
|Si|, the equality of the w-weight enumerators follows from (4.3). □

Remark 8.10. It is possible to generalize the constructions of Ck andDk

by allowing more general expressions for the multiplicities of the linear
functionals appearing in Ck. In Definition 8.3, θm−k, . . . , θm−1 could
be repeated qk−1wm−1bm−k, . . . , q

k−1wm−1bm−1 times, respectively. One
can then mimic (8.7) and Lemma 8.8 to solve for the multiplicities ai
used in defining Dk. One must be careful in choosing the b’s in order
that the a’s come out nonnegative. Sufficiently large b’s should work.
The factors of qk−1wm−1 are present so that the a’s are integers. The
present work does not need this level of generality.
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In later sections, we will use the formula below for ∆k, which is
expressed in terms of some numerical quantities defined next.

Definition 8.11. For i = 1, 2, . . . ,m, define ϵi = wi − wi−1. For
example, ϵ1 = w1 − w0, while ϵm = −wm−1 (as wm = 0). For i =
1, . . . ,m− 2, define ϵ′i = ϵi, and define ϵ′m−1 = (q − 1)wm−1 − qwm−2 =
qϵm−1 + ϵm.

Also define these polynomial expressions in q: p0 = 0, and

(8.12) pi = 1 + 2q + 3q2 + · · ·+ iqi−1, i = 1, 2, . . . .

Then for i = 1, 2, . . ., the pi are positive and satisfy the formulas

(8.13) pi − qpi−1 = 1 + q + q2 + · · ·+ qi−1.

Proposition 8.14. For k = 2, 3, . . . ,m,

∆k = pk−1ϵ
′
m−1 +

k−1∑
j=2

qjpk−jϵ
′
m−j.

Proof. Start with (8.2), and replace ai using (8.1):

∆k = kqk−1wm−1 −
k−1∑
i=0

qk−i−1
i∑

j=0

qjwm−1−j.

Interchange the order of summation and use (8.13):

∆k = kqk−1wm−1 −
k−1∑
j=0

k−1∑
i=j

qk−i+j−1wm−1−j

= kqk−1wm−1 −
k−1∑
j=0

qj(pk−j − qpk−j−1)wm−1−j

= kqk−1wm−1 −
k−1∑
j=0

qjpk−jwm−1−j +
k−1∑
j=0

qj+1pk−j−1wm−1−j.

Re-index the last summation with ℓ = j+1 (the ℓ = k term vanishes),
separate some initial terms, and combine the rest using Definition 8.11:

∆k = kqk−1wm−1 −
k−1∑
j=0

qjpk−jwm−1−j +
k∑

ℓ=1

qℓpk−ℓwm−ℓ

= kqk−1wm−1 − pkwm−1 + qpk−1ϵm−1 +
k−1∑
j=2

qjpk−jϵm−j.



26 J. A. WOOD

Simplify the coefficient of wm−1 and again use Definition 8.11:

∆k = pk−1ϵm + qpk−1ϵm−1 +
k−1∑
j=2

qjpk−jϵm−j

= pk−1ϵ
′
m−1 +

k−1∑
j=2

qjpk−jϵ
′
m−j. □

9. Analysis of dual codewords of low weight

Our ultimate objective is to prove that for some k = 2, 3, . . . ,m,
the codes Ck and Dk of Theorem 8.9 have dual codes with different
weight enumerators: wweC⊥

k
̸= wweD⊥

k
. We will try to do this in the

most direct way—by showing that C⊥k and D⊥k have different numbers
of codewords of the smallest possible weight. With that in mind, let’s
develop some notation.

Recall that we are assuming the chain ring R is equipped with an
integer-valued weight w of maximal symmetry. The common value on
orb(θi) is denoted wi > 0, and wm = w(0) = 0. Let ẘ = min{wi :

i = 0, 1, . . . ,m − 1}, so that ẘ > 0. Define I̊ = {i : wi = ẘ}, the set

of exponents of θ that achieve the minimum value of the weight; I̊ is
nonempty.

We now turn our attention to the linear codes Ck and Dk of Theo-
rem 8.9 and codewords of weight d < 2ẘ in their dual codes. All such
codewords must be singletons by Lemma 5.3. We will abuse notation
slightly by using the phrase ‘singleton θi’ to mean a singleton whose
nonzero entry is a unit multiple of θi.

Lemma 9.1. Suppose an integer d satisfies ẘ ≤ d < 2ẘ. Let Id = {i :
wi = d}. If 0 ∈ Id, then, for k = 2, 3, . . . ,m,

Ad(C
⊥
k )− Ad(D

⊥
k ) = −|orb(1)|∆k −

∑
i∈Id

0<i<k

(k − i)qk−1wm−1|orb(θi)|.

If 0 ̸∈ Id and Id is nonempty, then, for k = 2, 3, . . . ,m,

Ad(C
⊥
k )− Ad(D

⊥
k ) = −

∑
i∈Id
i<k

(k − i)qk−1wm−1|orb(θi)|.

Proof. Nonzero contributions to Ad(C
⊥
k ) − Ad(D

⊥
k ) are made by sin-

gletons of weight d in C⊥k or D⊥k . The nonzero entry of a singleton of
weight d must be a unit multiple of θi with i ∈ Id. In order for a sin-
gleton to belong to a dual code, its nonzero entry—located in position
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j, say—must annihilate column j of the generator matrix of the primal
code.

If 0 ∈ Id, a singleton 1 annihilates only zero-columns. (Remember
that the nonzero entry of a singleton 1 is a unit.) The number of zero-
columns is determined by ∆k: if ∆k > 0, then Dk has ∆k zero-columns;
if ∆k < 0, then Ck has −∆k zero-colums. The net contribution to
Ad(C

⊥
k )−Ad(D

⊥
k ) is−|orb(1)|∆k, the number of units times the number

of zero-columns.
If 0 < i ∈ Id, then a singleton θi annihilates all the columns of Dk.

Such singletons contribute −|orb(θi)| · length(Dk) to Ad(C
⊥
k )−Ad(D

⊥
k ).

On the other hand, when i ≥ k, a singleton θi annihilates all columns
of Ck. Such singletons contribute |orb(θi)| · length(Ck) to Ad(C

⊥
k ) −

Ad(D
⊥
k ). When i < k, a singleton θi annihilates all columns of Ck

except those with entries θm−k, . . . , θm−i−1. Such singletons contribute
|orb(θi)|(length(Ck)− (k− i)qk−1wm−1) to Ad(C

⊥
k )−Ad(D

⊥
k ). Because

Ck andDk have the same length, the total contribution by singleton θi’s
is 0 when i ≥ k and −(k − i)qk−1wm−1|orb(θi)| when i < k. Summing
over i ∈ Id completes the proof. □

Our main interest is dual codewords of weight ẘ. For k = 2, 3, . . . ,m,
define

(9.2) δk = Aẘ(C
⊥
k )− Aẘ(D

⊥
k ).

Our aim is to show, whenever possible, for a given weight w, that δk ̸= 0
for some k. We restate Lemma 9.1 for the case where d = ẘ.

Lemma 9.3. Fix k = 2, 3, . . . ,m. If 0 ∈ I̊, then

δk = −|orb(1)|∆k −
∑
i∈I̊

0<i<k

(k − i)qk−1wm−1|orb(θi)|.

If 0 ̸∈ I̊, then

δk = −
∑
i∈I̊
i<k

(k − i)qk−1wm−1|orb(θi)|.

We draw three corollaries, using notation from Definition 8.11.

Corollary 9.4. If 0 ̸∈ I̊, then δk < 0 for all k = 1 + min I̊ , . . . ,m.
Weights w on R with w0 > ẘ do not respect duality.

Corollary 9.5. Suppose I̊ = {0}. Then the following hold:

(1) If m ≥ 3 and j, 1 ≤ j ≤ m− 1, is the largest index with ϵ′j ̸= 0,
then δm−j+1 ̸= 0.

(2) If m = 2 and ϵ′1 = (q − 1)w1 − qw0 ̸= 0, then δ2 ̸= 0.
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(3) If m = 2, ϵ′1 = (q−1)w1−qw0 = 0, and q > 2, then Aw1(C
⊥
2 ) <

Aw1(D
⊥
2 ).

Weights w on R with w0 < wi for all i = 1, 2, . . . ,m− 1 do not respect
duality, except when m = 2, q = 2, and w1 = 2w0; cf., Theorem 6.5.

Proof. Suppose m ≥ 3. By the hypothesis on I̊, ϵ′1 = w1 − w0 > 0, so
there exists a maximal index j, 1 ≤ j ≤ m−1, with ϵ′j ̸= 0. Thus, ϵ′ℓ = 0

for ℓ = j+1, . . . ,m−1. From Proposition 8.14, ∆m−j+1 = qm−jϵ′j ̸= 0.
From Lemma 9.3 and the hypothesis, δm−j+1 = −|orb(1)|∆m−j+1 ̸= 0.

When m = 2, ϵ′1 = (q− 1)w1− qw0, not w1−w0. If ϵ
′
1 ̸= 0, the proof

proceeds as above: ∆2 ̸= 0, and δ2 ̸= 0.
When m = 2 and ϵ′1 = 0, then ∆2 = δ2 = 0. However, ϵ′1 = 0 means

that (q − 1)w1 = qw0, i.e., w1 = (q/(q − 1))w0 > w0. But note, for
integers q ≥ 2, that q/(q − 1) ≤ 2 with equality holding if and only if
q = 2. Assuming q > 2, we have ẘ = w0 < w1 < 2ẘ. By Lemma 9.1
applied to d = w1 and 0 ̸∈ Id, we see that Aw1(C

⊥
2 ) < Aw1(D

⊥
2 ).

When m = 2, q = 2, and w1 = 2w0, we are in the situation of
Theorem 6.5, where the MacWilliams identities hold. □

Corollary 9.6. Let R be a finite chain ring with m = 2. Then every
weight w on R having maximal symmetry does not respect duality, ex-
cept for multiples of the Hamming weight (any q) or the homogeneous
weight (q = 2 only).

Proof. Because m = 2, there are only w0 and w1. If w0 > w1, Corol-
lary 9.4 implies w does not respect duality. If w0 = w1, w is a multiple
of the Hamming weight, and the MacWilliams identities hold [25, The-
orem 8.3]. If w0 < w1, then Corollary 9.5 applies: w does not respect
duality, except for multiples of the homogeneous weight if q = 2. □

10. Weak monotonicity and final arguments

When {0} ⊊ I̊, the formula for δk in Lemma 9.3 is difficult to exploit
systematically; the combinatorics can be formidable. (But not always:
see Example 11.9.) In order to make progress, we will assume that the
weight w on the chain ring R is weakly monotone; i.e., we assume

(10.1) ẘ = w0 ≤ w1 ≤ · · · ≤ wm−2 ≤ wm−1.

This hypothesis implies that ϵi ≥ 0 for i = 1, 2, . . . ,m − 1 in Defini-
tion 8.11. However, ϵm = −wm−1 < 0. The weakly monotone hypoth-
esis allows us to state our main result.

Theorem 10.2. Let R be a finite chain ring with a weakly monotone
weight w. Then w does not respect duality, except when
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• w is a multiple of the Hamming weight, or
• m = 2, q = 2, and w1 = 2w0.

Theorem 10.2 will follow from Theorem 10.10, which we will prove
after we establish some technical lemmas.

Equalities are possible in (10.1). Given a weakly monotone weight
w, define j0 to be the largest index such that

(10.3) ẘ = w0 = · · · = wj0 < wj0+1.

Similarly, define j1 to be the smallest index such that

(10.4) wj1−1 < wj1 = · · · = wm−1.

There are three situations to highlight, depending upon how many
nonzero values w takes.

• If w has only one nonzero value, then w0 = · · · = wm−1, so
that j0 = m− 1 and j1 = 0. The weight w is a multiple of the
Hamming weight.
• If w has exactly two nonzero values, then w0 = · · · = wj0 <
wj0+1 = · · · = wm−1, so that j1 = j0 + 1. The homogeneous
weight is an example of this, with j0 = m− 2, j1 = m− 1.
• If w has three or more values, define j2 so that

· · ·wj2−1 < wj2 = · · · = wj1−1 < wj1 = · · · = wm−1.

Said another way, j1 is the largest index less than m with ϵj1 >
0, and j2 is the second-largest index less than m with ϵj2 > 0.

The weight w has a least two nonzero values if and only if j1 > 0.
In that case, j0 < j1 ≤ m− 1, with

(10.5) ϵj1 > 0 and ϵj1+1 = · · · = ϵm−1 = 0.

If w has at least three values, then j0 < j2 < j1 ≤ m − 1 and, in
addition to (10.5), we have

(10.6) ϵj2 > 0 and ϵj2+1 = · · · = ϵj1−1 = 0.

The key to our analysis is a simplified expression for δk; cf., (8.12).

Lemma 10.7. Suppose {0, 1, . . . , j0} = I̊, with j0 ≥ 1. If k is an
integer, 2 ≤ k ≤ j0 + 1, then

δk = −qm(q − 1)
k−1∑
j=1

qj−1pk−jϵm−j.
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If k is an integer, j0 + 2 ≤ k ≤ m, then

δk = −((k − j0 − 1)qm+k−j0−2 − qm+k−j0−3 − · · · − qm−1)ϵm

−qm(q − 1)
k−1∑
j=1

qj−1pk−jϵm−j.

Proof. For any integer k, 2 ≤ k ≤ m, Lemma 9.3 and (6.3) imply

δk = −|orb(1)|∆k −
min{j0,k−1}∑

i=1

(k − i)qk−1wm−1|orb(θi)|

= −qm−1(q − 1)∆k −
min{j0,k−1}∑

i=1

(k − i)qm+k−i−2(q − 1)wm−1.

In the formula for ∆k given in Proposition 8.14, use ϵ′m−1 = qϵm−1 +
ϵm = qϵm−1 − wm−1. Because of telescoping sums, the wm−1-terms
cancel completely when 2 ≤ k ≤ j0+1 or cancel partially when j0+2 ≤
k ≤ m. The terms that remain are as stated. □

In the case of j0 + 2 ≤ k ≤ m, note that the ϵm-term is positive,
as −ϵm = wm−1 > 0 and the numerical sum is positive. The other
terms are nonpositive. The balance between the terms appears to be
problematic. When 2 ≤ k ≤ j0 + 1, δk ≤ 0.
We will also need information about how δk changes when k ≥ j0+2.

Lemma 10.8. If k ≥ j0 + 2 and k ≥ m− j1, then

δk+1 − δk = −qm+k−j0−2(q − 1)

×

{
(k − j0)ϵm + qj0+1

k∑
i=m−j1

(k − i+ 1)ϵm−i

}
.

Proof. Because k ≥ j0 + 2, the second formula in Lemma 10.7 applies
to both δ’s. All but the highest order terms cancel, leaving

δk+1 − δk = −(k − j0)qm+k−j0−2(q − 1)ϵm

− qm+k−1(q − 1)
k∑

i=1

(k − i+ 1)ϵm−i.

Because j1 ≥ m−k, (10.5) implies that terms vanish in the summation
for i = 1, 2, . . . ,m− j1 − 1. □
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Corollary 10.9. Suppose j0 + j1 = m− 1. If k ≥ j0 + 2, then

δk+1 − δk = −qm+k−j0−2(q − 1)(k − j0)
(
ϵm + qj0+1ϵj1

)
− qm+k−1(q − 1)

k∑
i=m−j1+1

(k − i+ 1)ϵm−i.

Proof. Note first that j0 + j1 = m − 1 implies j0 + 2 = m − j1 + 1.
Thus, if k ≥ j0 + 2, then k ≥ m− j1 is automatic. Apply Lemma 10.8
and notice that the term inside the summation with i = m − j1 is
(k −m+ j1 + 1)ϵj1 = (k − j0)ϵj1 . □

The next theorem gives a more detailed description of the claims in
Theorem 10.2.

Theorem 10.10. Let R be a finite chain ring with a weakly monotone
weight w. Let j0 and j1 be as defined in (10.3) and (10.4). Then the
following statements hold.

(1) If j0 = m− 1, then w is a multiple of the Hamming weight.
(2) If j0 = 0, then Corollary 9.5 applies.

In the following statements, assume 1 ≤ j0 < m− 1.

(3) If j0 + j1 ≥ m, then δk < 0 for m− j1 + 1 ≤ k ≤ j0 + 1.
(4) If j0 + j1 ≤ m− 2, then δk > 0 for j0 + 2 ≤ k ≤ m− j1.
(5) If j0 + j1 = m− 1 and wm−1 ̸= qj0+1ϵj1, then δj0+2 ̸= 0.
(6) Suppose j0 + j1 = m− 1 and wm−1 = qj0+1ϵj1. If w has at least

three nonzero values, then δk < 0 for k ≥ m− j2 + 1.
(7) Suppose j0 + j1 = m − 1, wm−1 = qj0+1ϵj1, and w has two

nonzero values. Then j1 = j0 + 1, m = 2j0 + 2 is even, and

Awm−1(C
⊥
k )− Awm−1(D

⊥
k ) < 0

for k > j1.

Remark 10.11. The length of the ‘run’ wj1 = · · · = wm−1 is m − j1.
The length of the ‘run’ w0 = · · · = wj0 is j0 + 1. Their difference is

(m− j1)− (j0 + 1) =


+, j0 + j1 ≤ m− 2,

0, j0 + j1 = m− 1,

−, j0 + j1 ≥ m.

Proof of Theorem 10.10. The first two claims were explained after (10.4).
If 1 ≤ j0 < m− 1 and j0 + j1 ≥ m, then any k satisfying m− j1 + 1 ≤
k ≤ j0 + 1 has δk < 0 by Lemma 10.7 and (10.5). Namely, the first
formula in Lemma 10.7 applies, and ϵj1 > 0 appears in the formula
because j1 ≥ m− k + 1.
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If 1 ≤ j0 < m− 1 and j0+ j1 ≤ m− 2, then any k satisfying j0+2 ≤
k ≤ m−j1 has δk > 0. Now the second formula in Lemma 10.7 applies,
and only the (positive) ϵm-term survives, because j1 < m− k + 1.

If 1 ≤ j0 < m − 1 and j0 + j1 = m − 1, then j0 + 2 = m − j1 + 1.
Setting k = j0+2, we see from the second formula of Lemma 10.7 that

δj0+2 =− (qm − qm−1)ϵm − qm(q − 1)qj0ϵj1

= −qm−1(q − 1)
(
ϵm + qj0+1ϵj1

)
.

As ϵm = −wm−1, we see that wm−1 ̸= qj0+1ϵj1 implies δj0+2 ̸= 0.
Next, suppose 1 ≤ j0 < m−1, j0+ j1 = m−1, and wm−1 = qj0+1ϵj1 .

We just saw that this implies δj0+2 = 0. Applying Corollary 10.9, first
with k = j0 + 2, and then recursively, we see, for any k ≥ j0 + 2, that
δk has the form:

δk = −
k−1∑

i=m−j1+1

c(k)iϵm−i,

where each c(k)i is a positive integer depending on k. Because each
ϵm−i ≥ 0, each δk ≤ 0, and δk < 0 if at least one ϵm−i > 0 in the
interval of summation. Remember (10.6). If k ≥ m − j2 + 1, then
m− j2+1 > m− j1+1 = j0+2, m− (k− 1) ≤ j2, and ϵj2 > 0 appears
in the expression for δk. Thus δk < 0.

Finally, suppose 1 ≤ j0 < m − 1, j0 + j1 = m − 1, wm−1 = qj0+1ϵj1 ,
and w has exactly two nonzero values. That means that j1 = j0+1, so
that m = 2j0 + 2. In addition, we must have ϵj1 = wm−1 − w0. Using
this in the equation wm−1 = qj0+1ϵj1 yields qj0+1w0 = (qj0+1 − 1)wm−1.

Because the coefficients in this last equation are relatively prime,
there exists a positive integer s such that w0 = (qj0+1−1)s and wm−1 =
qj0+1s. Calculate: 2w0 − wm−1 = (qj0+1 − 2)s > 0, because j0 ≥ 1 and
q ≥ 2. (But see Remark 10.12.) Thus ẘ = w0 < wm−1 < 2ẘ. Using
the second formula of Lemma 9.1, with d = wm−1 and 0 ̸∈ Id, we see
that Awm−1(C

⊥
k )− Awm−1(D

⊥
k ) < 0 for any k > j1 = min Id. □

Remark 10.12. In general, for positive integers q ≥ 2, qj0+1 − 2 ≥ 0,
with equality if and only if j0 = 0 and q = 2. Equality, again, points
to Theorem 6.5.

Example 10.13. When m = 3, the only situation not covered by
Corollaries 9.4, 9.5, or Theorem 10.2 is when w0 = w2 < w1. In
this case, ϵ′1 = w1 − w0 > 0 and ϵ′2 = (q − 1)w2 − qw1 < 0. Then
Proposition 8.14 and Lemma 9.3 imply that

δ2 = −|orb(1)|∆2 = −q2(q − 1)((q − 1)w2 − qw1) > 0.
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Thus, this w does not respect duality. We conclude that, for m = 3,
the only weights that respect duality are multiples of the Hamming
weight.

11. Symmetrized enumerators and examples

In this section there are details of the MacWilliams identities for
the symmetrized enumerator for the action of the full group U of units
on a finite chain ring R, followed by several examples. The details
supplement the general outline provided in Appendix A.

Suppose R is a finite chain ring with m = (θ), R/m ∼= Fq, and
θm = 0. As we have seen earlier, the group of units U acts on R on
the left, with orbits orb(1), orb(θ), . . . , orb(θm−1), orb(θm) = {0}. The
dual action of U on R♯ ∼= RR has the same orbit structure.
For an element r ∈ R, define ν(r) via r ∈ orb(θν(r)); i.e., ν(r) is

the exponent i of θ such that r = uθi for some unit u ∈ U . Define
f : R → C[Z0, . . . , Zm] by f(r) = Zν(r), r ∈ R. Then define F : Rn →
C[Z0, . . . , Zm] by

(11.1) F (x) =
n∏

ℓ=1

f(xℓ) =
n∏

ℓ=1

Zν(xℓ), x = (x1, x2, . . . , xn) ∈ Rn.

The symmetrized enumerator of an additive code C ⊆ Rn is the fol-
lowing element seC ∈ C[Z0, . . . , Zm]:

seC = seC(Z0, . . . , Zm) =
∑
x∈C

F (x) =
∑
x∈C

n∏
ℓ=1

Zν(xℓ).

Any finite chain ring R is a Frobenius ring, with a generating char-
acter χ. We will use the following properties of χ [25]:

(1) for any nonzero ideal I of R,
∑

r∈I χ(r) = 0;

(2) every π ∈ R̂ has the form π = χr for some unique r ∈ R;
(3) χr(0) = 1 for all r ∈ R.
We first calculate the sum of a character over the orbits orb(θi).

Lemma 11.2. Suppose i, j = 0, 1, . . . ,m and r ∈ orb(θj). Then

∑
s∈orb(θi)

χr(s) =


0, i+ j ≤ m− 2,

−qm−i−1, i+ j = m− 1,

qm−i−1(q − 1), i+ j ≥ m, i < m,

1, i+ j ≥ m, i = m.
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Proof. When i = m, θm = 0. Then
∑

s∈orb(θm) χ
r(s) = 1, as χr(0) = 1.

For i = 0, 1, . . . ,m− 1, orb(θi) = (θi)− (θi+1), so, for χ itself,∑
s∈orb(θi)

χ(s) =
∑
s∈(θi)

χ(s)−
∑

s∈(θi+1)

χ(s)

=

{
0, i = 0, 1, . . . ,m− 2,

−1, i = m− 1,
(11.3)

using property (1) of χ.
Now suppose r ∈ orb(θj), so that r = uθj, u ∈ U . Left multiplication

by r maps orb(θi) onto orb(θi+j), with each element in orb(θi+j) being
hit |orb(θi)|/|orb(θi+j)| times. (Because Uθi = θiU , units can be moved
across powers of θ; for any unit u, uθi = θiu′ for some unit u′.) This
implies that

∑
s∈orb(θi)

χr(s) =
∑

s∈orb(θi)

χ(rs) =
|orb(θi)|
|orb(θi+j)|

∑
t∈orb(θi+j)

χ(t).

Using (6.3) and (11.3), we get the stated result. □

Remark 11.4. The formulas in Lemma 11.2 depend only on the orbit
of r, not r itself. This is a general feature of character sums over the
blocks of a partition coming from a group action [8, Theorem 2.6].

Define the generalized Kravchuk matrix K by

Kij =
∑

s∈orb(θi)

χr(s), r ∈ orb(θj).

We calculate the Fourier transform of f and F as in (A.2).

Lemma 11.5. For any r ∈ R, the Fourier transform of f is

f̂(r) =
m∑
i=0

ZiKij, r ∈ orb(θj).

The Fourier transform of F is

F̂ (r1, r2, . . . , rn) =
n∏

ℓ=1

f̂(rℓ) =
n∏

ℓ=1

(
m∑
i=0

ZiKi,ν(rℓ)

)
.
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Proof. The identity F̂ (r1, r2, . . . , rn) =
∏n

ℓ=1 f̂(rℓ) is well-known, [25,

Proposition A.5], so it is enough to calculate f̂(r):

f̂(r) =
∑
s∈R

χ(rs)f(s) =
∑
s∈R

χr(s)Zν(s)

=
m∑
i=0

∑
s∈orb(θi)

χr(s)Zi =
m∑
i=0

Zi

∑
s∈orb(θi)

χr(s). □

We now have the MacWilliams identities for the symmetrized enu-
merator over a finite chain ring; cf., [25, Theorem 8.4], [8, Theorem 3.5].

Theorem 11.6. Suppose R is a finite chain ring and C ⊆ Rn is a left
R-linear code. Then, using C⊥ = R(C),

seC⊥(Z0, . . . , Zm) =
1

|C|
seC(Z0, . . . ,Zm)

∣∣∣∣
Zj=

∑m
i=0 ZiKij

.

Proof. Follow the outline in Appendix A, apply Lemma 11.5, and note
that R(C) = R(C) for left R-linear codes. □

A version of this theorem, valid for the partition determined by the
homogeneous weight, appears in [20, Theorem 2.1]

Example 11.7. Let R = Z/8Z. Then U = {1, 3, 5, 7}. The U -orbits
are orb(1) = U , orb(2) = {2, 6}, orb(4) = {4}, and orb(0) = {0}. The
generalized Kravchuk matrix is

K =


0 0 −4 4
0 −2 2 2
−1 1 1 1
1 1 1 1

 .
Letw be the homogeneous weight, so thatw0 = w1 = 1,w2 = 2, and

w3 = 0. The linear codes C3 and D3 of Theorem 8.9 have the following
codewords, with multiplicities listed above the horizontal line, telling
how many times the given entry is repeated.

8 8 8
0 0 0
1 2 4
2 4 0
3 6 4
4 0 0
5 2 4
6 4 0
7 6 4

2 2 2 2 4 4 8
0 0 0 0 0 0 0
4 4 4 4 0 0 0
0 0 4 4 4 4 0
4 4 0 0 4 4 0
0 4 0 4 0 4 4
4 0 4 0 0 4 4
0 4 4 0 4 0 4
4 0 0 4 4 0 4
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Then the symmetrized enumerators of the codes are:

seC3 = 4Z8
0Z

8
1Z

8
2 + 2Z8

1Z
8
2Z

8
3 + Z8

2Z
16
3 + Z24

3 ,

seD3 = 4Z16
2 Z

8
3 + 2Z12

2 Z
12
3 + Z8

2Z
16
3 + Z24

3 .

One can compute the symmetrized enumerators of the dual codes (via
Theorem 11.6 and SageMath [23], say), but the results have too many
terms to include here.

Specializing Zi ⇝ twi (and taking a Taylor expansion for the dual
codes) yields the homogeneous weight enumerators:

howeC3 = 1 + t16 + 2t24 + 4t32,

howeD3 = 1 + t16 + 2t24 + 4t32,

howeC⊥
3
= 1 + 16t+ 1848t2 + 60400t3 + · · · ,

howeD⊥
3
= 1 + 48t+ 1832t2 + 64656t3 + · · · .

The computed value δ3 = A1(C
⊥
3 )−A1(D

⊥
3 ) = −32 matches the value

given in the second formula of Lemma 10.7.

Example 11.8. Still use R = Z/8Z, but change the weight to w0 =
1, w1 = w2 = 2, w3 = 0. The multiplicities of both codes (call them C3′

and D3′) change accordingly:

8 8 8 6
0 0 0 0
1 2 4 0
2 4 0 0
3 6 4 0
4 0 0 0
5 2 4 0
6 4 0 0
7 6 4 0

2 2 2 2 6 6 10
0 0 0 0 0 0 0
4 4 4 4 0 0 0
0 0 4 4 4 4 0
4 4 0 0 4 4 0
0 4 0 4 0 4 4
4 0 4 0 0 4 4
0 4 4 0 4 0 4
4 0 0 4 4 0 4

Now the symmetrized enumerators are:

seC3′
= 4Z8

0Z
8
1Z

8
2Z

6
3 + 2Z8

1Z
8
2Z

14
3 + Z8

2Z
22
3 + Z30

3 ,

seD3′
= 4Z20

2 Z
10
3 + 2Z16

2 Z
14
3 + Z8

2Z
22
3 + Z30

3 .

The w-weight enumerators are

wweC3′
= 1 + t16 + 2t32 + 4t40,

wweD3′
= 1 + t16 + 2t32 + 4t40,

wweC⊥
3′
= 1 + 24t+ 1074t2 + 36584t3 + · · · ,

wweD⊥
3′
= 1 + 1354t2 + 34304t3 + · · · .



WEIGHTS WITH MAXIMAL SYMMETRY 37

For this w, I̊ = {0}. Lemma 9.3 implies that δ3′ = −4∆3′ = 24, which
matches the computed value.

Example 11.9. For a final example, still use R = Z/8Z, but change
the weight to w0 = 1, w1 = 2, w2 = 1, w3 = 0, which lies outside the
scope of the main results given in previous sections; cf., Example 10.13.
The multiplicities of both codes (call them C3′′ and D3′′) change ac-
cordingly:

4 4 4 11
0 0 0 0
1 2 4 0
2 4 0 0
3 6 4 0
4 0 0 0
5 2 4 0
6 4 0 0
7 6 4 0

1 1 1 1 5 5 9
0 0 0 0 0 0 0
4 4 4 4 0 0 0
0 0 4 4 4 4 0
4 4 0 0 4 4 0
0 4 0 4 0 4 4
4 0 4 0 0 4 4
0 4 4 0 4 0 4
4 0 0 4 4 0 4

Now the symmetrized enumerators are:

seC3′′
= 4Z4

0Z
4
1Z

4
2Z

11
3 + 2Z4

1Z
4
2Z

15
3 + Z4

2Z
19
3 + Z23

3 ,

seD3′′
= 4Z16

2 Z
7
3 + 2Z12

2 Z
11
3 + Z4

2Z
19
3 + Z23

3 .

The w-weight enumerators are

wweC3′′
= 1 + t4 + 2t12 + 4t16,

wweD3′′
= 1 + t4 + 2t12 + 4t16,

wweC⊥
3′′

= 1 + 63t+ 2111t2 + 51635t3 + · · · ,

wweD⊥
3′′

= 1 + 23t+ 1195t2 + 38431t3 + · · · .

In this example 0 ∈ I̊, and Lemma 9.3 implies that δ3′′ = 44− 4 = 40,
which matches the computed value. The weight w does not satisfy the
hypotheses of Corollaries 9.4, 9.5 or Theorem 10.2; nonetheless, we see
that w does not respect duality. Example 10.13 uses k = 2 to reach
the same conclusion.

Part 3. Matrix Rings over Finite Fields

12. Matrix modules, their orbits, and a positive result

We begin our study of matrix rings by describing certain matrix
modules, the orbits of the group of units, the homogeneous weight,
and the MacWilliams identities for M2×2(F2).

Fix integers k,m with 2 ≤ k ≤ m. Let R =Mk×k(Fq) be the ring of
k× k matrices over a finite field Fq, and let M =Mk×m(Fq) be the left
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R-module of k×m matrices over Fq. Both R and M are vector spaces
over Fq. The scalar multiplication of R on M is the multiplication
of matrices. The group GL(k,Fq) of invertible k × k matrices is the
group of units U = U(R) of R; U acts on M on the left via matrix
multiplication. The size of GL(k,Fq) is:

(12.1) |GL(k,Fq)| = (qk − 1)(qk − q) · · · (qk − qk−1).

Our first objective is to understand the cyclic left R-submodules of M
and the U -orbits in M .

Given a k × m matrix x ∈ M , denote by rowsp(x) the row space
of x, i.e., the Fq-linear subspace of Fm

q spanned by the rows of x. A
left R-module is cyclic if it is generated by one element; i.e., it has the
form Rx for some element x in the module. Denote the orbit of x ∈M
under the action of U by orb(x) or [x]; denote the rank of a matrix x
by rkx.

Lemma 12.2. Let x ∈M =Mk×m(Fq). Then

• for y ∈M , y ∈ Rx if and only if rowsp(y) ⊆ rowsp(x);
• for y ∈M , Ry = Rx if and only if rowsp(y) = rowsp(x) if and
only if orb(y) = orb(x);
• if y ∈ orb(x), then rk y = rkx.

Proof. If y = rx, then the rows of y are linear combinations of the rows
of x. This implies rowsp(y) ⊆ rowsp(x). Conversely, if rowsp(y) ⊆
rowsp(x), then each row of y is a linear combination of the rows of x,

say yi =
∑k

j=1 rijxj, for some rij ∈ Fq, where the rows of x and y are

denoted with subscripts. Define r ∈ R by r = (rij); then y = rx.
For the second item, apply the first item twice, symmetrically in y

and x. When rowsp(y) = rowsp(x), both x and y row reduce to the
same row-reduced echelon form, which means they are in the same
U -orbit. □

Let PM be the partially ordered set (poset) of all cyclic left R-
submodules of M = Mk×m(Fq), and let Pk,m be the poset of all linear
subspaces of dimension at most k in Fm

q . Define ρ : PM → Pk,m by
ρ(Rx) = rowsp(x); ρ is well-defined by Lemma 12.2. Conversely, given
a linear subspace V ⊆ Fm

q , define

ψ(V ) = {x ∈M : rowsp(x) ⊆ V }.

Proposition 12.3. When dimV ≤ k, ψ(V ) is a cyclic left R-submodule
of M . The map ρ : PM → Pk,m is an isomorphism of posets, with in-
verse given by ψ.
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Proof. Suppose dimV ≤ k. Choose a basis of V , and define x ∈ M to
have the chosen basis of V as its first dimV rows, followed by rows of
zeros. Then rowsp(x) = V . By Lemma 12.2, ψ(V ) = Rx is a cyclic
module. The argument also shows that ρ is surjective. Lemma 12.2
implies that ρ is injective and preserves inclusion. □

Corollary 12.4. The orbits orb(x), x ∈ M , of the left action of
U = GL(k,Fq) on M = Mk×m(Fq) are in one-to-one correspondence
with the linear subspaces of dimension at most k contained in Fm

q . More
precisely, the orbits of matrices of rank j are in one-to-one correspon-
dence with linear subspaces of dimension j in Fm

q . The linear subspace
corresponding to orb(x) is rowsp(x).

There are similar results for linear functionals on M . A linear func-
tional on M is a homomorphism λ :M → R of left R-modules; inputs
will be written on the left, so that (rx)λ = r(xλ) for r ∈ R and x ∈M .
The collection of all linear functionals is denoted M ♯ = HomR(M,R);
M ♯ is a right R-module, with addition defined point-wise and λr de-
fined by x(λr) = (xλ)r, where λ ∈ M ♯, r ∈ R, x ∈ M . When
M = Mk×m(Fq), then M ♯ = Mm×k(Fq), with the evaluation xλ ∈ R,
x ∈M , λ ∈M ♯, being matrix multiplication.
The orbits orb(λ), λ ∈ M ♯, of the right action of U = GL(k,Fq)

on M ♯ = Mm×k(Fq) are in one-to-one correspondence with the linear
subspaces of dimension at most k contained in Fm

q . More precisely,
the orbits of linear functionals of rank j are in one-to-one correspon-
dence with linear subspaces of dimension j in Fm

q . The linear subspace
corresponding to orb(λ) is the column space colsp(λ).

Remark 12.5. Given a linear functional λ ∈ M ♯, i.e., λ : M → R, its
kernel consists of x ∈ M such that rowsp(x) ⊆ colsp(λ)⊥. Here, for a
linear subspace Y ⊆ Fm

q , denote by Y ⊥ its orthogonal with respect to

the standard dot product on Fm
q . Given λi ∈M ♯, i = 1, 2, . . . , n, define

Λ : M → Rn by xΛ = (xλ1, . . . , xλn) ∈ Rn. Then kerΛ consists of
x ∈M with rowsp(x) ⊆ ∩ colsp(λi)⊥ = (colsp(λ1) + · · ·+ colsp(λn))

⊥.
This latter uses the fact that (X+Y )⊥ = X⊥∩Y ⊥, for linear subspaces
X, Y ⊆ Fm

q . In particular, if colsp(λ1), . . . , colsp(λn) span Fm
q , then Λ

is injective.

We record the number of U -orbits and their sizes, depending on their
rank. The q-binomial coefficient [mj ]q for 1 ≤ j ≤ m is defined by[

m
j

]
q

=
(qm − 1)(qm−1 − 1) · · · (qm−j+1 − 1)

(qj − 1)(qj−1 − 1) · · · (q − 1)
.

For m ≥ 0, [m0 ]q = 1. If j < 0 or j > m, then [mj ]q = 0.
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Proposition 12.6. There is one orbit of rank 0, of size S0 = 1, in M .
For any integer j, 1 ≤ j ≤ k, all orbits of rank j matrices in M have
the same size. The number and size Sj of orbits of rank j matrices in
M are:

number size[
m
j

]
q

Sj =

j−1∏
i=0

(qk − qi)

The ratio Sj+1/Sj satisfies Sj+1/Sj = qk − qj, for 0 ≤ j ≤ k − 1.
The size of a cyclic submodule Rr depends only on rk r: |Rr| = qk rk r.

We note that the sizes Sj and |Rr| do not depend on m.

Proof. It is well-known (e.g., [22, Theorem 3.2.6]) that the q-binomial
coefficient [mj ]q counts the number of j-dimensional linear subspaces in
Fm
q , so the number of orbits follows from Corollary 12.4.
In addition to the left action of U = GL(k,Fq) on M = Mk×m(Fq),

there is also a right action of GL(m,Fq) on M via matrix multipli-
cation; both actions preserve rank. As matrix multiplication is as-
sociative, these two actions commute. Thus right multiplication by
P ∈ GL(m,Fq) maps the U -orbit orb(x), x ∈ M , to orb(xP ), and the
two orbits have the same size.

Suppose the integer j satisfies 1 ≤ j ≤ k. Choose x0 ∈M to have the
first j standard basis vectors (i.e., (1, 0, . . . , 0), etc.) as its first j rows,
with the remaining rows being all zeros. Pick any y ∈M with rk y = j.
Choose a basis of rowsp(y), and extend it to a basis of Fm

q . Use this
basis of Fm

q as the rows of a matrix P ∈ GL(m,Fq). Then the rows of
x0P consist of the chosen basis of rowsp(y), followed by k−j zero-rows.
Thus we have rowsp(x0P ) = rowsp(y), so that orb(y) = orb(x0P ), by
Lemma 12.2. We conclude that |orb(y)| = |orb(x0P )| = |orb(x0)|, so
that all orbits of rank j matrices have the same size.

As for the size Sj of an orbit of rank j matrices, it is enough to
calculate |orb(x0)| using |orb(x0)| = |U|/|stab(x0)|, where stab(x0) =
{u ∈ U : ux0 = x0} is the stabilizer subgroup of x0. Then u ∈ stab(x0)
has the form

u =

[
Ij B
0 D

]
,

with Ij the j × j identity matrix, B arbitrary, and D invertible. Then

|orb(x0)| = |GL(k,Fq)|/(qj(k−j)|GL(k − j,Fq)|),

which simplifies as claimed.
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The same argument using the right action of GL(m,Fq) implies that
the size of a cyclic submodule Rr ⊆ M depends only on rk r. In-
deed, suppose rk r1 = rk r2. By row and column operations, there are
units u1 ∈ GL(k,Fq) and u2 ∈ GL(m,Fq) such that r2 = u1r1u2. By
Lemma 12.2, Rr2 = Rr1u2. Right multiplication by u2 maps Rr1 iso-
morphically to Rr1u2. We conclude that |Rr2| = |Rr1u2| = |Rr1|. For
j = 1, 2, . . . , k, let r ∈M be the following matrix of rank j:

r =

[
Ij 0
0 0

]
.

Then Rr consists of all matrices in M whose last m − j columns are
zero. The cyclic submodule Rr has size |Rr| = qkj = qk rk r. □

We now turn our attention to the homogeneous weight on R =
Mk×k(Fq). Because of Proposition 12.3, the Möbius function for the
poset of principal left ideals of R equals the Möbius function for the
poset of linear subspaces of Fk

q , which, following [11, (2.7)], is

(12.7) µ(V1, V2) = (−1)cq(
c
2), V1 ⊆ V2 ⊆ Fk

q ,

where c = dimV2 − dimV1 is the codimension of V1 in V2.
Equation (2.8) yields the following formula for the homogeneous

weight w on R; this formula also appears in [14, Proposition 7]. We
write ρ = rk(r), r ∈ R:

(12.8) w(r) =

{
0, ρ = 0,

ζ
(
1− (−1)ρ

(qk−1)(qk−1−1)···(qk−ρ+1−1)

)
, ρ > 0.

Note that w(r) depends only on ρ, which is consistent with w being
constant on left U -orbits. Write wρ for the common value of w(r)
where rk r = ρ. By choosing ζ appropriately, namely

ζ = (qk − 1)(qk−1 − 1) · · · (q − 1)/q,

the homogeneous weight will have integer values.

Example 12.9. For M2×2(Fq), the homogeneous weight is

w0 w1 w2

general q 0 q2 − q q2 − q − 1
q = 2 0 2 1
q = 3 0 6 5

,

with average weight ζ = (q2 − 1)(q − 1)/q in general, so that ζ = 3/2
for q = 2, and ζ = 16/3 for q = 3.
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Example 12.10. For M3×3(Fq), the homogeneous weight is:

w0 w1 w2 w3

q 0 q5 − q4 − q3 + q2 q5 − q4 − q3 + q q5 − q4 − q3 + q + 1
q = 2 0 12 10 11
q = 3 0 144 138 139

,

with average weight ζ = (q3 − 1)(q2 − 1)(q − 1)/q in general, so that
ζ = 21/2 for q = 2, and ζ = 416/3 for q = 3.

Lemma 12.11. The homogeneous weight on Mk×k(Fq) satisfies

0 = w0 < w2 < w4 < · · · < ζ < · · · < w3 < w1.

Moreover, 2w2 −w1 > 0 for all k ≥ 2, q ≥ 2, except for k = q = 2,
where 2w2 −w1 = 0.

Proof. The denominator in (12.8) is an increasing function of ρ = rk(r).
This, together with the alternating sign of (−1)ρ, yields the inequalities
among the wρ. By moving ζ to the left side of (12.8), one sees that
wρ− ζ = −(−1)ρζ/((qk− 1) · · · (qk−ρ+1− 1)). This implies that wρ− ζ
is positive when ρ is odd and negative when ρ is even.
For k ≥ 2, one calculates that

2w2 −w1 = ζ
(qk − 2)(qk−1 − 1)− 2

(qk − 1)(qk−1 − 1)
.

Using k ≥ 2 and q ≥ 2, the numerator satisfies

(qk − 2)(qk−1 − 1)− 2 ≥ (q2 − 2)(q − 1)− 2 = q(q + 1)(q − 2).

This last expression is positive when q > 2 and vanishes when q = 2.
Even for q = 2, the earlier inequality is strict when k > 2. Thus,
2w2 −w1 > 0, except for k = q = 2, where 2w2 −w1 = 0. □

Using Lemma 5.3, we see that any nonzero vector v with w(v) < w1

must be a singleton. Any nonzero vector with w(v) = w1 must be a
singleton (or a doubleton, i.e., two nonzero entries, only forM2×2(F2)).

Theorem 12.12. The MacWilliams identities hold for the homoge-
neous weight over R =M2×2(F2). For a linear code C ⊆ Rn,

howeC⊥(X, Y ) =
1

|C|
howeC(X + 3Y,X − Y ).

Proof. As in the proof of Theorem 6.5, we provide details to be used
in the argument outlined in Appendix A.

From Example 12.9, we have that w0 = 0, w1 = 2, and w2 = 1. A
generating character for R is χ(r) = (−1)tr r, r ∈ R, where tr is the
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matrix trace. Define f : R → C[X, Y ] by f(r) = X2−w(r)Y w(r). The
value of f(r) depends only on rk r:

rk r 0 1 2
f(r) X2 Y 2 XY

.

A calculation shows the Fourier transform (A.2) depends only on rk r:

f̂(r) =


X2 + 9Y 2 + 6XY = (X + 3Y )2, rk r = 0,

X2 + Y 2 − 2XY = (X − Y )2, rk r = 1,

X2 − 3Y 2 + 2XY = (X + 3Y )(X − Y ), rk r = 2.

Note that f̂(r) has the form of f(r) with a linear substitution: X ←
X +3Y , Y ← X −Y . Applying these details, the rest of the argument
in Appendix A carries through. □

There is a Gray map fromM2×2(F2) equipped with the homogeneous
weight to F2

4 equipped with the Hamming weight (of F4) [2].

13. W -matrix

In this section we determine the W -matrix of (4.5) for a weight w
on R =Mk×k(Fq) that has maximal symmetry.

As usual, let R = Mk×k(Fq), and suppose w is a weight on R with
maximal symmetry. Suppose r ∈ R. By row and column reduction
there exist units u1, u2 ∈ U = GL(k,Fq) such that

u1ru2 =

[
Iρ 0
0 0

]
,

where ρ = rk r. Thus w(r) = w(u1ru2) = w(
[
Iρ 0
0 0

]
), which says that

the value of w(r) depends only on the rank of r. Write w0, w1, . . . , wk

for the value of w on matrices of rank 0, 1, . . . , k, respectively.

Remark 13.1. While w(0) = 0 is part of the definition of a weight, some
of the results of this section will be more natural to state if we allow
w0 to be viewed as an indeterminate. We will proceed with w0 as an
indeterminate, and later show, in Theorem 13.16 and Corollary 13.18,
how the general results are affected when we set w0 = 0.

The information module M will be M = Mk×m(Fq) with m ≥
k. Then HomR(M,R) = Mm×k(Fq), achieved by right multiplication
against M ; i.e., the evaluation pairing M × HomR(M,R) → R sends
x ∈M and λ ∈ HomR(M,R) to xλ ∈ R.
Because of maximal symmetry, the symmetry groups of w are Glt =

Grt = GL(k,Fq). The orbit space O = Glt\M is represented by row-
reduced echelon matrices of size k × m, and O♯ = HomR(M,R)/Grt
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is represented by column-reduced echelon matrices of size m× k. The
matrix transpose maps O ↔ O♯ bijectively. The sets O and O♯ are
partitioned by rank, and elements of O and O♯ correspond to linear
subspaces of Fm

q of dimension at most k, by Corollary 12.4. (Left
orbits in O are viewed in terms of row spaces; their transposes, right
orbits in O♯, are viewed in terms of column spaces.)

The rows of W are indexed by elements [x] ∈ O, ordered so that
ranks go from 0 to k. Similarly, the columns of W are indexed by
elements [λ] ∈ O♯, ordered to match O under the bijection O ↔ O♯.
The [x], [λ]-entry of W is simply w(xλ), i.e., the value of w at the
evaluation xλ ∈ R. The value w(xλ) is well-defined by the definition of
the symmetry groups. By maximal symmetry, the value w(xλ) depends
only on the rank rk(xλ). The matrix W is square of size Nk,m, the
number of linear subspaces of dimension at most k in Fm

q .
Suppose [x] ∈ O corresponds to the linear subspace X ⊆ Fm

q and

[λ] ∈ O♯ corresponds to Y . We seek to express rk(xλ), and hence
w(xλ), in terms of X and Y .
For a linear subspace X ⊆ Fm

q , denote by X⊥ its orthogonal with

respect to the standard dot product on Fm
q . Then dimX⊥ = m−dimX

and (X⊥)⊥ = X, for all linear subspaces X ⊆ Fm
q . Also, (X ∩ Y )⊥ =

X⊥ + Y ⊥, for linear subspaces X, Y ⊆ Fm
q .

Lemma 13.2. For linear subspaces X, Y ⊆ Fm
q representing [x] ∈ O

and [λ] ∈ O♯, respectively:

(1) dimX − dim(X ∩ Y ⊥) = dimY − dim(Y ∩X⊥), and
(2) rk(xλ) = dimX − dim(X ∩ Y ⊥) = dimY − dim(Y ∩X⊥).

Proof. Consider (X ∩ Y ⊥)⊥ = X⊥ + Y , and compare dimensions:

m− dim(X ∩ Y ⊥) = dimX⊥ + dimY − dim(X⊥ ∩ Y )

= m− dimX + dimY − dim(X⊥ ∩ Y ).

We conclude that dimX − dim(X ∩ Y ⊥) = dimY − dim(X⊥ ∩ Y ).
Choose as a representative x a k×m matrix whose first dim(X∩Y ⊥)

rows form a basis for X ∩ Y ⊥, whose next dimX − dim(X ∩ Y ⊥) rows
complete to a basis ofX, and whose remaining rows are zeros. Choose a
representative λ by reversing the roles ofX and Y : its first dim(Y ∩X⊥)
columns form a basis for Y ∩X⊥, its next dimY −dim(Y ∩X⊥) columns
complete to a basis of Y , and its remaining columns are zeros. Then
xλ has the form

xλ =

 0 0 0
0 Z 0
0 0 0

 ,
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where Z is a square matrix of size (dimX − dim(X ∩ Y ⊥))× (dimY −
dim(X⊥ ∩ Y ). The matrix Z is nonsingular. If not, there exists a
nonzero vector v with vZ = 0. Then [0|v|0]x ∈ Y ⊥, which violates the
choice of basis of X ∩ Y ⊥ in the construction of x. The formula for
rk(xλ) now follows. □

The matrix W is symmetric when we use the bijection O ↔ O♯ to
align the indexing.

Because some of our later results depend upon inverting W , we need
to understand when the matrix W is invertible. We will be able to
transformW into a block diagonal format by making use of the Möbius
function of the poset Pk,m of linear subspaces of dimension at most k
in Fm

q . Versions of this block diagonal format can be found in [9, §4],
[28, Theorem 9.6], and [29, §6].
Recall that we index the rows and columns of W by linear subspaces

of dimension at most k in Fm
q , with ranks increasing from 0 to k.

Define a matrix P , with rows and columns indexed by linear sub-
spaces of dimension ≤ k in Fm

q , using the same ordering as for W . The
entry Pα,β is given by

(13.3) Pα,β =

{
µ(0, β) = (−1)dimβq(

dim β
2 ), if β ⊆ α,

0, if β ̸⊆ α.

Because we are ordering rows and columns so that ranks increase,
we see that P is lower triangular. Its diagonal entries are Pα,α =

(−1)dimαq(
dimα

2 ) ̸= 0. Thus P is invertible over Q.
For j = 0, 1, . . . , k, define an incidence matrix Ij over Q, square

of size [mj ]q, with rows and columns indexed by linear subspaces of
dimension j in Fm

q , using the dimension j portion of the ordering used
for W and P . The α, δ-entry of Ij is given by

(Ij)α,δ =

{
1, α ∩ δ⊥ = 0,

0, α ∩ δ⊥ ̸= 0.

The incidence matrices Ij are invertible by [29, Proposition 6.7].
Our main objective in this section is to prove the next theorem.

Theorem 13.4. For positive integers 2 ≤ k ≤ m and a weight w on
Mk×k(Fq) having maximal symmetry and w0 indeterminate, we have

PWP⊤ =


c0I0 0 · · · 0

0 c1I1 · · · 0
...

. . .
...

0 0 · · · ckIk

 ,
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where, for j = 0, 1, . . . , k,

(13.5) cj = (−1)jq(
j
2)

j∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

wℓ.

Before we prove Theorem 13.4, we prove some preliminary lemmas
and propositions that will be used in the proof. We begin by quoting
the well-known Cauchy Binomial Theorem, e.g., [22, Theorem 3.2.4].

Theorem 13.6 (Cauchy Binomial Theorem). For a positive integer k,

k−1∏
i=0

(1 + xqi) =
k∑

j=0

q(
j
2)
[
k
j

]
q

xj.

In particular, using x = −1, for k positive,

(13.7)
k∑

j=0

(−1)jq(
j
2)
[
k
j

]
q

= 0.

In a vector space, a frame is an ordered set of linearly independent
vectors; if there are b such vectors, we call the frame a b-frame.

Lemma 13.8. Let V be a vector space over Fq with dimV = v, and
let D be a linear subspace of V with dimD = d. Then

|{B ⊆ V : dimB = b, B ∩D = 0}| = qbd
[
v − d
b

]
q

.

Proof. We count the number of b-frames outside of D, and divide by
|GL(b,Fq)|, (12.1). Then, factoring out b factors of qd from

(qv − qd)(qv − qd+1) · · · (qv − qd+b−1)

(qb − 1)(qb − q) · · · (qb − qb−1)
yields the stated result. □

Lemma 13.9. Let V be a vector space over Fq with dimV = v, and let
D be a linear subspace of V with dimD = d. For any j = 1, 2, . . . , d,

|{B ⊆ V : dimB = b, dim(B ∩D) = j}| = q(b−j)(d−j)
[
d
j

]
q

[
v − d
b− j

]
q

.

Proof. The count equals the number of j-dimensional subspaces J ⊆ D
times the number of B’s of dimension b with B ∩D = J . The number
of j-dimensional subspaces of D is

[
d
j

]
q
. The set of b-dimensional sub-

spaces B ⊆ V with B∩D = J is in one-to-one correspondence with the
set of (b−j)-dimensional subspaces of V/J that intersect D/J trivially.
By Lemma 13.8, the number of such subspaces is q(b−j)(d−j)

[
v−d
b−j
]
q
. □
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Lemma 13.9 sharpens [29, Lemma 6.9]; the latter’s C1(b) is q
b(m−b).

Lemma 13.10. Let V be a vector space over Fq with dimV = v, and
let A and D be linear subspaces of V with dimA = a and dimD = d.
If dim(A ∩D) = i, then, for any j = 0, 1, . . . , i,

|{B ⊆ A : dimB = b, dim(B ∩D) = j}| = q(b−j)(i−j)
[
i
j

]
q

[
a− i
b− j

]
q

.

Proof. Note that B ∩D = B ∩ (A ∩D). Apply Lemmas 13.8 and 13.9
with ambient space A and subspace A ∩D. □

Lemma 13.11. Suppose α, δ ⊆ Fm
q are linear subspaces. Then dim(α∩

δ⊥) ≥ dimα− dim δ. If dimα > dim δ, then dim(α ∩ δ⊥) > 0.

Proof. Using α + δ⊥ ⊆ Fm
q , compare dimensions:

m ≥ dim(α + δ⊥) = dimα +m− dim δ − dim(α ∩ δ⊥),

from which the result follows. □

Proposition 13.12. If dim(α∩δ⊥) > 0, then (PW )α,δ = 0. If α∩δ⊥ =
0, then, writing a = dimα,

(PW )α,δ =
∑
β⊆α

µ(0, β)wdimβ =
a∑

r=0

(−1)rq(
r
2)
[
a
r

]
q

wr.

In particular, the matrix PW is block upper triangular.
Likewise, if dim(γ ∩ β⊥) > 0, then (WP⊤)β,γ = 0. If γ ∩ β⊥ = 0,

then, writing c = dim γ,

(WP⊤)β,γ =
∑
ϵ⊆γ

µ(0, ϵ)wdim ϵ =
c∑

s=0

(−1)sq(
s
2)
[
c
s

]
q

ws.

In particular, the matrix WP⊤ is block lower triangular.

Proof. From the definition of the matrix P and Lemma 13.2,

(PW )α,δ =
∑
β⊆α

µ(0, β)wdimβ−dim(β∩δ⊥).

In this formula, the subscript dim β − dim(β ∩ δ⊥) = dim δ − dim(δ ∩
β⊥) ≤ dim δ − dim(δ ∩ α⊥) = dimα − dim(α ∩ δ⊥), as β ⊆ α, so
that α⊥ ⊆ β⊥. Writing i = dim(α ∩ δ⊥), we see that the subscript
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dim β − dim(β ∩ δ⊥) ≤ a− i. Thus

(PW )α,δ =
a−i∑
r=0

∑
β⊆α

dimβ−dim(β∩δ⊥)=r

µ(0, β)wr

=
a−i∑
r=0

i∑
j=0

∑
β⊆α

dimβ=r+j
dim(β∩δ⊥)=j

µ(0, β)wr.

By Lemma 13.10 and (12.7), the coefficient Cr of wr is

Cr =
i∑

j=0

qr(i−j)
[
i
j

]
q

[
a− i
r

]
q

(−1)r+jq(
r+j
2 )

= (−1)rq(
r
2)qir

[
a− i
r

]
q

(
i∑

j=0

(−1)jq(
j
2)
[
i
j

]
q

)

=

{
(−1)rq(

r
2) [ ar ]q , i = 0,

0, i > 0.

To simplify, we used the identity
(
r+j
2

)
=
(
r
2

)
+ jr +

(
j
2

)
and (13.7).

If dim δ < dimα, Lemma 13.11 implies i = dim(α ∩ δ⊥) > 0. Using
dimension to create blocks, we see that PW is block upper triangular.

Essentially the same arguments yield the results about WP⊤. □

Recall that the matrix P is lower triangular, so that P⊤ is upper
triangular. Thus PWP⊤ will be both lower and upper block triangular,
hence block diagonal. The exact form of PWP⊤ is the next result.

Proposition 13.13. If dimα ̸= dim δ, then (PWP⊤)α,δ = 0. If
dimα = dim δ = a, then

(PWP⊤)α,δ =

{
(−1)aq(

a
2)
∑a

j=0(−1)jq(
j
2) [ aj ]q wj, α ∩ δ⊥ = 0,

0, α ∩ δ⊥ ̸= 0.

Proof. We first show that α∩ δ⊥ ̸= 0 implies (PWP⊤)α,δ = 0. Assume
α∩ δ⊥ ̸= 0. For any γ ⊆ δ, we have δ⊥ ⊆ γ⊥, so that α∩ δ⊥ ⊆ α∩ γ⊥.
Thus α ∩ γ⊥ ̸= 0 for all γ ⊆ δ.
Using the definition of P , we see that

(PWP⊤)α,δ =
∑
γ⊆δ

(PW )α,γµ(0, γ).(13.14)
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By Proposition 13.12, all the (PW )α,γ-terms in (13.14) vanish, so that
(PWP⊤)α,δ = 0, as claimed.

Essentially the same argument using

(PWP⊤)α,δ =
∑
β⊆α

µ(0, β)(WP⊤)β,δ

shows that δ ∩ α⊥ ̸= 0 implies (PWP⊤)α,δ = 0.
From Lemma 13.2 we have the equation dimα − dim δ = dim(α ∩

δ⊥)− dim(δ ∩ α⊥). If dimα ̸= dim δ, at least one of α ∩ δ⊥ or δ ∩ α⊥
is nonzero. Thus (PWP⊤)α,δ = 0.

At last, suppose dimα = dim δ. In this situation, note that α∩δ⊥ =
0 if and only if δ∩α⊥ = 0. As above, if α∩δ⊥ ̸= 0, then (PWP⊤)α,δ = 0.
If α∩ δ⊥ = 0, then the equality of dimensions yields Fm

q = α⊕ δ⊥. For
any γ ⊊ δ, we have δ⊥ ⊊ γ⊥, so that α∩γ⊥ ̸= 0. By Proposition 13.12,
(PW )α,γ = 0 for γ ⊊ δ. Thus, (13.14) implies that

(PWP⊤)α,δ = (PW )α,δµ(0, δ),

which gives the stated formula. □

Proof of Theorem 13.4. The nonzero entries in Proposition 13.13 de-
pend only on dimα and equal the cj in the statement of Theorem 13.4.
Whether α ∩ δ⊥ = 0 is marked by the incidence matrix Ij. □

Corollary 13.15. The matrix W is invertible over Q if and only if

cj = (−1)jq(
j
2)

j∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

wℓ ̸= 0,

for all j = 0, 1, . . . , k.

Proof. The matrices P , P⊤, and Ij are all invertible over Q. □

Recall from Remark 13.1 that we have been treating w0 as an indeter-
minate. When w0 is set equal to 0, the first row and first column of the
matrix W consist of 0’s. Then W cannot be invertible. Equivalently,
c0 = 0 in Corollary 13.15.
To get around this lack of invertibility, we make the following adjust-

ments, as in Remark 4.6. Define a matrix W0 with rows and columns
indexed by the nonzero elements of O and O♯, respectively, ordered
so that ranks go from 1 to k. The [x], [λ]-entry is again w(xλ), with
w(0) = 0 now. Similarly, define a matrix P0 with rows and columns
indexed by the nonzero elements of O and (α, β)-entry given by (13.3).
Then the counterparts of Theorem 13.4 and Corollary 13.15 are the
following.
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Theorem 13.16. For positive integers 2 ≤ k ≤ m and a weight w on
Mk×k(Fq) having maximal symmetry and w(0) = 0, we have

P0W0P
⊤
0 =


c1I1 0 · · · 0

0 c2I2 · · · 0
...

. . .
...

0 0 · · · ckIk

 ,
where, for j = 1, . . . , k,

(13.17) cj = (−1)jq(
j
2)

j∑
ℓ=1

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

wℓ.

Proof. The relationships between the matrices P and P0 and between
W and W0, when w0 = 0, are given below. The notations row(a) and
col(a) mean a row, resp., column, vector, all of whose entries are a.

P =

[
1 row(0)

col(1) P0

]
, W |w0=0 =

[
0 row(0)

col(0) W0

]
.

Then

(PWP⊤)|w0=0 =

[
0 row(0)

col(0) P0W0P
⊤
0

]
,

and the result follows from Theorem 13.4, with w0 = 0. □

Corollary 13.18. The matrix W0 is invertible over Q if and only if

cj = (−1)jq(
j
2)

j∑
ℓ=1

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

wℓ ̸= 0,

for all j = 1, . . . , k.

Remark 13.19. The extension property (EP) for w holds when the W0

map is injective (zero right null space) for all information modules. We
see that EP holds if and only if all cj ̸= 0 for j = 1, 2, . . . , k. See
[28, Theorem 9.5]. In particular, when W0 is invertible, then W0 :
F0(O♯,Q)→ F0(O,Q) is an isomorphism, Remark 4.6.

Remark 13.20. It is possible to generalize Propositions 13.12 and 13.13
to the context of an alphabet A = Mk×ℓ(Fq) and information module
M = Mk×m(Fq), with m ≥ ℓ ≥ k. This paper does not require such a
level of generality.
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14. Locally constant functions

In this section we examine a type of multiplicity function that will
feature prominently in the construction of linear codes in Section 16.

As in previous sections, R = Mk×k(Fq) and M = Mk×m(Fq), with
k ≤ m. The ring R is equipped with a weight w having maximal
symmetry and positive integer values. As in Remark 13.1, we will
treat w0 as an indeterminate. Recall that the orbit spaces O and O♯

are ordered by rank, from 0 to k. Write Oi and O♯
i for the collections

of orbits of rank equal to i. Recall that orbits are denoted by orb(x)
or [x]. Given sets B ⊆ A, we denote the indicator function of B by
1B : A→ Z, with

1B(x) =

{
1, x ∈ B,
0, x ̸∈ B.

The type of multiplicity function to be considered has the form 1O♯
i
or

a linear combination of such indicator functions.
Given a multiplicity function η : O♯ → N (or, more generally, η :

O♯ → Q), we refer to ω = Wη as the list of orbit weights of η. The list
ω is a function ω : O → Q. We say that η, resp., ω, is locally constant
if η =

∑k
j=0 aj1O♯

j
, resp., ω =

∑k
j=0 bj1Oj

, for rational constants aj, bj.

Said another way, η is locally constant if rkλ1 = rkλ2 implies η([λ1]) =

η([λ2]); i.e., η is constant on each O♯
j. Similar comments apply to ω.

Let ηj = 1O♯
j
, and ωj = Wηj. We show that ωj is locally constant.

Proposition 14.1. Let ηj = 1O♯
j
. Then ωj = Wηj is locally constant.

If i = rkx, then

ωj([x]) =

min{j,m−i}∑
d=0

q(m−i−d)(j−d)
[
m− i
d

]
q

[
i

j − d

]
q

wj−d.

In particular, when j = 1, i = rkx = 1, 2, . . . , k, and w0 = 0,

ω1([x]) = qm−i
[
i
1

]
q

w1 = (qm−i + qm−i+1 + · · ·+ qm−1)w1,

is an increasing function of i.

Proof. Because ωj = Wηj, we have

ωj([x]) =
∑

[λ]∈O♯

w(xλ)ηj([λ]) =
∑

[λ]∈O♯
j

w(xλ).

Using Lemma 13.2, represent orb(x) = [x] by a linear subspace X ⊆
Fm
q , dimX = i, and orb(λ) = [λ] by Y , dimY = j. Then w(xλ) =
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wi−dim(X∩Y ⊥) = wj−dim(Y ∩X⊥). Lemma 13.9 now implies

ωj([x]) =

min{j,m−i}∑
d=0

|{Y : dimY = j, dim(Y ∩X⊥) = d}|wj−d

=

min{j,m−i}∑
d=0

q(m−i−d)(j−d)
[
m− i
d

]
q

[
i

j − d

]
q

wj−d.

When j = 1, the formula simplifies as stated. □

Corollary 14.2. If η is locally constant, then so is ω = Wη.

15. W -matrix

There is an ‘averaged’ versionW of theW -matrix that will be useful
in our analysis of dual codewords in Section 18. We describe W in
this section. We continue to assume that the information module is
M =Mk×m(Fq) and that w0 is indeterminate.

Lemma 15.1. For i = 0, 1, . . . , k and [λ] ∈ O♯
j, the value of∑

[x]∈Oi

W[x],[λ] =
i∑

d=0

q(i−d)(m−j−d)
[
m− j
d

]
q

[
j

i− d

]
q

wi−d

depends only on i and j = rkλ.

Proof. The proof of Proposition 14.1 applies, interchanging the roles of
i = rkx and j = rkλ. □

Definition 15.2. Define W to be the integer (k + 1)× (k + 1) matrix

(15.3) W ij =
∑
[x]∈Oi

W[x],[λ], [λ] ∈ O♯
j,

for i, j = 0, 1, . . . , k. The definition is well-defined by Lemma 15.1.

Example 15.4. When k = 2 and m = 3, we see that

W =

 w0 w0 w0

(1 + q + q2)w0 (1 + q)w0 + q2w1 w0 + (q + q2)w1

(1 + q + q2)w0 w0 + (q + q2)w1 (1 + q)w1 + q2w2

 .
We next formalize the relationship between W and W , in order to

determine when W is invertible.
Recall that W is square of size Nk,m, the number of linear subspaces

of dimension at most k in Fm
q . Define B to be a (k+1)×Nk,m matrix.

For i = 0, 1, . . . , k, row i of B is the indicator function 1Oi
for the

collection of linear subspaces of dimension i in Fm
q . Similarly, define
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an Nk,m × (k + 1) matrix E. For j = 0, 1, . . . , k, column j of E is
(1/ [mj ]q)1O♯

j
. Notice that BE = Ik+1, and EB is block diagonal, with

the block indexed by rank j being 1/ [mj ]q times the square all-one

matrix of size [mj ]q.

Lemma 15.5. We have: W = BWE.

Proof. Left multiplication by B givens the sums of Lemma 15.1. Right
multiplication by E averages those (equal!) sums over [λ] ∈ O♯

j. □

Recall the P -matrix of (13.3).

Lemma 15.6. We have: BPEB = BP and EBP⊤E = P⊤E.

Proof. The matrix BP has rows that are locally constant, and EB
acts as the identity when it right multiplies matrices with rows that
are locally constant. Similarly, P⊤E has columns that are locally con-
stant, and EB acts as the identity when it left multiplies matrices with
columns that are locally constant. □

Our next result is the counterpart of Theorem 13.4. Set Q1 = BPE
and Q2 = BP⊤E. One verifies that Q1 is lower triangular and Q2 is
upper triangular. Their i, j-entries are

(15.7) (Q1)i,j = (−1)jq(
j
2)
[
m− j
i− j

]
q

, (Q2)i,j = (−1)iq(
i
2)
[
j
i

]
q

.

In particular, the diagonal entries of both are (−1)jq(
j
2), j = 0, 1, . . . , k,

so that both Q1 and Q2 are invertible.

Theorem 15.8. We have Q1WQ2 = BPWP⊤E and

Q1WQ2 =



c0 0 . . . 0 . . . 0
0 qm−1c1 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . qj(m−j)cj . . . 0
...

...
...

. . .
...

0 0 . . . 0 . . . qk(m−k)ck


,

where c0, c1, . . . , ck are in (13.5).

Proof. The first equation follows from Lemma 15.6. The second equa-
tion follows from Proposition 13.13. The factor qj(m−j) arises from
counting the number of α of dimension j in Fm

q that satisfy α∩ δ⊥ = 0
for a fixed δ of dimension j. That count uses Lemma 13.8. □

Corollary 15.9. The matrix W is invertible if and only if W is in-
vertible.
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When w0 = 0 one can define a k × k matrix W 0 using (15.3), but
only for i, j = 1, 2, . . . , k. By defining smaller versions of B,E,Q1, Q2,
one can prove the following results using a proof similar to that of
Theorem 13.16.

Theorem 15.10. Suppose w0 = 0. Then Q0,1W 0Q0,2 = B0P0W0P
⊤
0 E0

and

Q0,1W 0Q0,2 =


qm−1c1 . . . 0 . . . 0

...
. . .

...
...

0 . . . qj(m−j)cj . . . 0
...

...
. . .

...
0 . . . 0 . . . qk(m−k)ck

 ,

where c1, . . . , ck are in (13.5), but with w0 = 0.

Corollary 15.11. When w0 = 0, the matrix W0 is invertible if and
only if W 0 is invertible.

16. Constructions

In this section we construct two linear codes C and D over R =
Mk×k(Fq) with wweC = wweD, assuming that w has maximal sym-
metry, that w0 = 0, and that the associated W0 matrix is invert-
ible, Corollary 13.18. Both linear codes will have information module
M =Mk×m(Fq), with m > k.

Here is a sketch of the main idea behind the construction. Suppose
C is the image of Λ : M → Rn. Recall that the maximal symmetry
hypothesis means that WΛ is constant on any left U -orbit in the infor-
mation moduleM . Suppose Λ has the property that N chosen orbits of
rank s have the same value v1 of WΛ. Pick one orbit of rank s+1, and
denote by v2 its value of WΛ. Now try to swap values on those orbits:
try to find a linear code D, the image of Γ :M → Rn, so that WΓ has
value v2 on the N chosen orbits of rank s, value v1 on the chosen orbit
of rank s+ 1, and WΓ = WΛ on all other orbits. If N times the size of
a rank s orbit equals the size of a rank s+1 orbit, then wweC = wweD,
provided such a D exists and provided that C and D have the same
length; cf., Remark 3.10. If the codes have different lengths, we append
enough zero-functionals to the shorter code so that the lengths become
equal. Because w0 = 0, the additional zero-functionals have no effect
on the weights.

We first need a few facts about q-binomial coefficients.
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Lemma 16.1. For integers 0 ≤ s ≤ m,[
m
s

]
q

=

[
m

m− s

]
q

;

[
m

s+ 1

]
q

=
qm−s − 1

qs+1 − 1

[
m
s

]
q

;[
m
s

]
q

≤
[
m

s+ 1

]
q

, 0 ≤ s < m/2;[
m
s

]
q

= qm−s
[
m− 1
s− 1

]
q

+

[
m− 1
s

]
q

, 0 ≤ s < m;[
m
s

]
q

=

[
m− 1
s− 1

]
q

+ qs
[
m− 1
s

]
q

, 0 ≤ s < m;

Proof. Most of the identities are in [22, Chapter 3] or its exercises. The
inequality follows from the preceding identity, because the multiplying
fraction is at least 1 for s < m/2. □

Lemma 16.2. Suppose integers k,m, s satisfy 0 < s < k < m. Then

qk ≤
[
m
s

]
q

−
[
m− 1
s

]
q

.

Proof. The result is true for s = 1: [m1 ]q − [m−11 ]q = qm−1 ≥ qk. Now
suppose s ≥ 2, so that 2 ≤ s ≤ m− 2. By symmetry and monotonicity
in Lemma 16.1, we see that

[
m−1
s−1
]
q
≥ [m−11 ]q = qm−2 + qm−3 + · · · +

q + 1 ≥ qm−2. Use Lemma 16.1 again to see that[
m
s

]
q

−
[
m− 1
s

]
q

= qm−s
[
m− 1
s− 1

]
q

≥ q2qm−2 = qm > qk. □

For the constructions, assume k ≥ 2, m > k, and set w0 = 0. We
assume a weight w on R has maximal symmetry, and we assume the
associated W0-matrix is invertible. There will be a construction for
each value of s = 1, 2, . . . , k− 1. The integer s determines the ranks of
the orbits that will be swapped.

Fix an integer s with 1 ≤ s < k < m, and choose an orbit orb(λ0) ∈
O♯ with rkλ0 = 1. As in Corollary 12.4, this orbit corresponds to the
linear subspace L0 = colsp(λ0) ⊆ Fm

q , with dimL0 = 1. As dimL⊥0 =
m − 1, there are [m−1s ]q linear subspaces of dimension s contained in

L⊥0 , leaving [ms ]q − [m−1s ]q linear subspaces of dimension s in Fm
q that

are not contained in L⊥0 . By Lemma 16.2, there are at least qk−qs < qk

linear subspaces of dimension s in Fm
q that are not contained in L⊥0 .

Similarly, using m − s ≥ 2, there are
[
m−1
s+1

]
q
≥ 1 linear subspaces of

dimension s+ 1 contained in L⊥0 .
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Choose distinct s-dimensional linear subspaces X1, X2, . . . , Xqk−qs of
Fm
q that are not contained in L⊥0 . Also choose one (s+ 1)-dimensional

linear subspace Y ⊆ L⊥0 . By Corollary 12.4, these linear subspaces
correspond to distinct orbits [x1] = orb(x1), . . . , [xqk−qs ] = orb(xqk−qs)
and [y] = orb(y) in O, with rkxi = s and rk y = s+1. Then |orb(y)| =∑qk−qs

i=1 |orb(xi)|, by Proposition 12.6.
We now consider several indicator functions on O♯ and find the

weights they determine at the orbits [x1], . . . , [xqk−qs ] and [y].
Let 1[λ0] : O♯ → Z be the indicator function of [λ0] = orb(λ0) ∈ O♯:

1[λ0]([λ]) =

{
1, [λ] = [λ0],

0, [λ] ̸= [λ0].

From Lemma 13.2, the weights of 1[λ0] at the orbits [xi], 1 ≤ i ≤ qk−qs,
and [y] are (W01[λ0])([x]) = w(xλ0) = wdimX−dim(X∩L⊥

0 ):

(W01[λ0])([x]) =

{
w1, [x] = [xi],

0, [x] = [y].

The exact values of W01[λ0] at other inputs will not be relevant. What
is crucial is that the value at [y] is 0 and that the values at the [xi] are
equal and positive.

Recall that O♯
1 = {orb(λ) ∈ O♯ : rkλ = 1}; let 1O♯

1
be its indicator

function. The orbit weights ω1 = W01O♯
1
are found in Proposition 14.1.

The indicator function 1O♯
+
of the set of all nonzero orbits O♯

+ is locally

constant, so W01O♯
+
is also locally constant, Corollary 14.2. Set α1 =

(W01O♯
+
)(orb(x)), when rkx = 1, and α2 = (W01O♯

+
)(orb(x)) when

rkx = 2. Both α1, α2 are positive integers.
Define a function ς(s) ∈ F0(O,Z) by

ς(s)(orb(x)) =


−1, orb(x) = orb(xi),

1, orb(x) = orb(y),

0, otherwise.

Because we are assumingW0 is invertible, Remark 13.19 says thatW0 :
F0(O♯,Q) → F0(O,Q) is an isomorphism. Thus W−1

0 ς(s) ∈ F0(O♯,Q)
exists, but it has rational values of both signs. To clear denominators,
choose a positive integer c sufficiently large so that σ(s) = cw1W

−1
0 ς(s)

has integer values. Then σ(s)(orb(0)) = 0, as σ(s) ∈ F0(O♯,Z), and
W0σ

(s) = cw1ς
(s), so that (W0σ

(s))(orb(x)) equals 0 or ±cw1.
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We collect the values of W0η at the [xi] and [y], for various η.

(16.3)

η (W0η)([xi]) (W0η)([y])
1[λ0] w1 0
1O♯

+
α1 α2

1O♯
1

(qm−s + · · ·+ qm−1)w1 (qm−s−1 + · · ·+ qm−1)w1

σ(s) −cw1 cw1

For later use, write Bm,s = qm−s−1 + · · ·+ qm−1; Bm,s > 0.
Some of the values of σ(s) will be negative. Choose a positive integer a

sufficiently large so that all the values of aw11O♯
+
+σ(s) are nonnegative.

Choose an integer b ≥ 1 large enough that a(α1 − α2) < bqm−s−1. (If
α1 < α2, then b = 1 suffices.) Set

∆ =
∑

orb(λ)∈O♯
+

σ(s)(orb(λ)),(16.4)

ε = aw11O♯
+
+ b1O♯

1
+ (c+ a(α2 − α1) + bqm−s−1)1[λ0].

Define two multiplicity functions ηC , ηD ∈ F (O♯,Q) by setting

ηC = ε+max(∆, 0)1[0],

ηD = ε+ σ(s) −min(∆, 0)1[0].(16.5)

Theorem 16.6. Let R = Mk×k(Fq), k ≥ 2, and M = Mk×m(Fq),
k < m. Let w be a weight on R with maximal symmetry, positive
integer values, and w(0) = 0. Assume the associated W0-matrix is
invertible.

Then, for any integer s, 1 ≤ s < k, the multiplicity functions ηC and
ηD of (16.5) have nonnegative integer values, i.e., ηC , ηD ∈ F (O♯,N),
and they define left R-linear codes C and D, respectively. The two
codes have the same length. Their weights at the orbits orb(xi), i =
1, 2, . . . , qk − qs, and orb(y) are

η (Wη)(orb(xi)) (Wη)(orb(y))
ηC (c+ aα2 + bBm,s)w1 (aα2 + bBm,s)w1

ηD (aα2 + bBm,s)w1 (c+ aα2 + bBm,s)w1

.

At all other orbits, their weights agree. In particular, wweC = wweD.

Proof. All of a, w1, b, c, α1, α2,max(∆, 0), and −min(∆, 0) are nonneg-
ative integers. The integer b ≥ 1 was chosen so that a(α2 − α1) +
bqm−s−1 > 0, so the values of ηC are nonnegative integers. The posi-
tive integer a was chosen so that aw11O♯

+
+σ(s) has nonnegative values,

which implies that the values of ηD are nonnegative integers.
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Both ηC and ηD contain the term b1O♯
1
. Because the linear subspace

spanned by {colsp(λ) : λ ∈ O♯
1} is all of Fm

q , Remark 12.5 implies that
ΛC and ΛD are both injective. The value of ∆ was chosen to satisfy
∆ = efflng(D) − efflng(C). If ∆ > 0, then D is longer, and we add
∆ zero-functionals to C; if ∆ < 0, then C is longer, and we add −∆
zero-functionals to D. Thus the codes have the same length.

The weights (Wη)(orb(xi)) and (Wη)(orb(y)) follow from (16.3) and
(16.5). BecauseWηD−WηC = Wσ(s) = cw1ς

(s), the form of ς(s) implies
that the weights for C and D are equal at all other orbits. As noted

earlier, |orb(y)| =
∑qk−qs

i=1 |orb(xi)|, by Proposition 12.6. We conclude
that wweC = wweD. □

Remark 16.7. Here is a summary of the motivations for various parts
of the construction. The integer c was chosen to clear denominators
so that σ(s) would have integer values. However, σ(s) has both positive
and negative values, because W has nonnegative entries and Wσ(s) =
cw1ς

(s) has mixed signs. So, a was chosen so that aw11O♯
+
+σ(s) has non-

negative integer values. The function 1O♯
+
(resp., 1O♯

1
) is used because

its weights are the same at all the [xi]’s. The integer b ≥ 1 was chosen
so that (W0(aw11O♯

+
+ b1O♯

1
))(orb(xi)) < (W0(aw11O♯

+
+ b1O♯

1
))(orb(y))

and also to guarantee that ΛC and ΛD are injective. Then the coeffi-
cient of 1[λ0] was chosen so that the weights interchange when σ(s) is
added to ηC . The function 1[λ0] is used because it changes the weights
at the [xi]’s in the same way but not the weight at [y].

17. Degeneracies

The constructions of Theorem 16.6 made use of the invertibility of
the matrix W0. In this section, we describe a construction in the situ-
ation where W0 is not invertible. We continue to assume information
module M = Mk×m(Fq) and weight w with maximal symmetry, posi-
tive integer values, and w0 = 0.

Corollary 13.18 says that W0 is singular when at least one

cj = (−1)jq(
j
2)

j∑
s=1

(−1)sq(
s
2)
[
j
s

]
q

ws,

j = 1, 2, . . . , k, vanishes. By hypothesis on w, w1 > 0, so that c1 ̸= 0.

Lemma 17.1. Suppose cj = 0 for some j = 2, 3, . . . , k. Then any row
of the matrix P0 indexed by a linear subspace γ ⊆ Fm

q with dim γ = j
belongs to kerW0.
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Proof. The second part of Proposition 13.12 shows that, if dim γ = j,
then (WP⊤)β,γ = 0. This holds for any β and any γ with dim γ = j.
This means the columns of P⊤ indexed by γ with dim γ = j belong
to kerW . Those columns are the same as the rows of P indexed by γ
with dim γ = j. Because w0 = 0, the same analysis applies with W0

and P0. □

Suppose cj = 0 for some j = 2, 3, . . . , k. Pick a row vγ of P0 indexed
by a linear subspace γ ⊆ Fm

q with dim γ = j. Define two multiplicity

functions η± ∈ F0(O♯,N) based on the positive, resp., negative, parts
of vγ:

η+ = (vγ + |vγ|)/2 + 1O♯
1
,

η− = −(vγ − |vγ|)/2 + 1O♯
1
,

where |vγ| means the vector obtained from vγ by taking the absolute
value of each entry. The terms 1O♯

1
are included so that the associated

homomorphisms Λη± are injective; see Remark 12.5. Note that η+ −
η− = vγ, so that W0η+ = W0η−. Modify η+ by setting η+([0]) = 1; set
η−([0]) = 0.

Proposition 17.2. Let C± be the linear codes determined by η±. Then
C+ and C− have the same length, and wweC+ = wweC−.

Proof. In (13.3), there are [ jr ]q nonzero terms in rank r positions of the
row vγ. Then the difference in lengths of C+ and C− is

length(C+)− length(C−) =

j∑
r=0

r even

q(
r
2)
[
j
r

]
q

−
j∑

r=0
r odd

q(
r
2)
[
j
r

]
q

=

j∑
r=0

(−1)rq(
r
2)
[
j
r

]
q

= 0,

by (13.7). Zero-functionals don’t change the value of Wη+. We then
have Wη+ = Wη−, so that the w-weight enumerators are equal. □

This same construction was used (with the Hamming weight) in [27,
p. 703] and [28, p. 145].

Remark 17.3. The swapping idea in Theorem 16.6 does not always
work in the degenerate case because ς(s) is not always in imW0. See
Remark 18.13 for more details.
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18. Analysis of singleton dual codewords

In this section we analyze dual codewords that are singleton vectors.
We will then apply this analysis to the codes constructed using (16.5).
The key result, Theorem 18.12, shows how the contributions of single-
tons of rank i to Asing

wi
(D⊥) − Asing

wi
(C⊥) depend on the parameter s

used in (16.5).
Given a left R-linear code C ⊆ Rn, recall the right dual code R(C)

from (2.1). We will often denote R(C) by C⊥.
When an R-linear code C is given by a multiplicity function η, a

singleton vector v belongs to C⊥ when the nonzero entry r of v right-
annihilates the coordinate functional λ in that position: λr = 0. Re-
member that λ ∈ HomR(M,R) =Mm×k(Fq) and r ∈ R =Mk×k(Fq).
Given a functional λ with rkλ = j, we will determine how many

elements r ∈ R with rk r = i satisfy λr = 0. For λ ∈ HomR(M,R),
define

ann(i, λ) = {r ∈ R : rk r = i and λr = 0}.

Recall that the sizes Sj of U -orbits were given in Proposition 12.6.

Lemma 18.1. Suppose λ ∈ HomR(M,R). Then the size of ann(i, λ)
depends only on rkλ. If rkλ = j, then

|ann(i, λ)| =

{
Si

[
k−j
i

]
q
, i ≤ k − j,

0, i > k − j.

Proof. View Mm×k(Fq) and Mk×k(Fq) as spaces of Fq-linear transfor-
mations Fm

q → Fk
q and Fk

q → Fk
q , respectively, with inputs written on

the left. Then λr = 0 means that imλ ⊆ ker r. Given that rkλ = j
and rk r = i, we see that a necessary condition for λr = 0 is that
j = dim imλ ≤ dimker r = k − i.

Given imλ ⊆ Fk
q , the number of linear subspaces K (candidates for

ker r) satisfying imλ ⊆ K ⊆ Fk
q and dimK = k − i equals the number

of linear subspaces of dimension k − i − j in Fk
q/ imλ, a vector space

of dimension k − j. That number is
[

k−j
k−i−j

]
q
=
[
k−j
i

]
q
. For a given

K, there is a U -orbit’s worth of matrices r with ker r = K, and hence
rk r = i. The size of that orbit is Si. □

We will abuse notation and write |ann(i, j)| for the common value
|ann(i, λ)| when rkλ = j.
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Example 18.2. Let k = 2. We display the values of |ann(i, j)| in a
matrix with row index i and column index j, i, j = 0, 1, 2: 1 1 1

(q2 − 1)(q + 1) q2 − 1 0
(q2 − 1)(q2 − q) 0 0

 .
Suppose a left R-linear code C is given by a multiplicity function

η : O♯ → N. For j = 0, 1, . . . , k, define

ηj =
∑

[λ]∈O♯
j

η([λ]).

Then ηj counts the number of coordinate functionals having rank j.

Set η = ⟨η0, η1, . . . , ηk⟩ ∈ Nk+1. We call the ηj ‘rank-sums’.

Proposition 18.3. Suppose a left R-linear code C is given by a mul-
tiplicity function η. Then the contribution of singletons of rank i to
Asing

wi
(C⊥) is

k−i∑
j=0

|ann(i, j)|ηj.

In particular, the contribution of singletons of rank k to Asing
wk

(C⊥) is
|GL(k,Fq)|η0.

Proof. There are a total of ηj coordinate functionals of rank j. For
each one, apply Lemma 18.1. □

The larger i is, the fewer terms there are in the summation.

Corollary 18.4. For a linear code C given by multiplicity function η,

Asing
d (C⊥) =

∑
i:wi=d

k−i∑
j=0

|ann(i, j)|ηj.

Having seen the importance of the rank-sums ηj, we next see how

they behave with respect to the W -matrix. Given a function ω : O →
Q, define

ωi =
∑
[x]∈Oi

ω([x]), i = 0, 1, . . . , k.

Set ω = ⟨ω0, ω1, . . . , ωk⟩.

Proposition 18.5. Suppose η : O♯ → Q. If ω = Wη, then ω = Wη.

Proof. Sum the rows indexed by rank i elements of O in ω = Wη,
change the order of summation, and use Lemma 15.1 and (15.3). □
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Because our ultimate objective is to find linear codes C and D of the
same length with wweC = wweD and wweC⊥ ̸= wweD⊥ , we now apply
Proposition 18.3 and Corollary 18.4 to two linear codes C and D of the
same length. Write δη = ηD − ηC and δAsing

d = Asing
d (D⊥)−Asing

d (C⊥).
The net contribution of rank i singletons to δAsing

wi
then simplifies to

(18.6)
k−i∑
j=0

|ann(i, j)|δηj,

and δAsing
d =

∑
i:wi=d

∑k−i
j=0|ann(i, j)|δηj.

Remark 18.7. The last two formulas will be the main tools for showing
that two dual codes have different w-weight enumerators. But the
fomulas cut both ways. If all the δηj vanish, then singletons cannot
detect differences between wweC and wweD. See Example 21.5.

Now consider specifically the linear codes C and D constructed by
(16.5). In this case, we see that

δη = σ(s) −∆1[0],

ηD − ηC = ⟨−∆, σ̄(s)
1 , . . . , σ̄

(s)
k ⟩,

ωD − ωC = Wσ̄(s) = ⟨0, . . . , 0,−cw1(q
k − qs), cw1, 0, . . . , 0⟩,

where the nonzero entries of ωD − ωC are in positions s and s+ 1.
Recall from Theorem 16.6 that C and D have the same length. This

is reflected in the fact that the sum of the entries of ηD − ηC is −∆+∑
j σ̄

(s)
j = 0, from (16.4). This allows us to re-write the net contribution

(18.6) of rank i singletons to δAsing
wi

as
∑k

j=1 (|ann(i, j)| − |ann(i, 0)|) σ̄
(s)
j .

To write this equation in matrix form, define a k × k matrix Ann by

Anni,j = |ann(i, j)| − |ann(i, 0)| i, j = 1, 2, . . . , k.

In summary, the net contributions of singletons of rank i to δAsing
wi

are
given by the entries of

(18.8) Ann σ̄(s).

Lemma 18.9. The matrix Ann is invertible over Q.

Proof. Define a (k + 1)× (k + 1) matrix A by

Ai,j = |ann(i, j)|, i, j = 0, 1, 2, . . . , k.

Then A is upper ‘anti-triangular’ by Lemma 18.1, i.e., Ai,j = 0 when

i+ j > k. Then detA = ±
∏k

i=0 Si is nonzero. Thus A is invertible.
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Subtract the zeroth column of A from every other column. The
resulting matrix is still invertible and has the form[

1 row(0)

col(∗) Ann

]
,

where col(∗) is a column of nonzero entries. Thus Ann is invertible. □

The matrices W 0 and Ann are both k × k, so they both define Q-
linear transformations Qk → Qk. We next explore how these linear
transformations behave with respect to certain filtrations of Qk.

Define a k × k matrix T over Q:

Ti,j = (−1)iq(
i
2)
[
j
i

]
q
, i, j = 1, 2, . . . , k.

By standard conventions,
[
j
i

]
q
= 0 when i > j. This implies that T is

upper-triangular and invertible. (By (15.7), T is just Q0,2.)

Lemma 18.10. The matrices W 0T and AnnT are lower triangular.

The proof of Lemma 18.10 will utilize the next lemma.

Lemma 18.11. For integers 0 ≤ i < j ≤ k,

j∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

[
k − ℓ
i

]
q

= 0.

Proof. We first prove the edge cases i = 0 or j = k, and then prove the
remaining cases by induction on k.

Suppose i = 0. Then the term [ k−ℓ0 ]
q
= 1 for all ℓ = 0, . . . j. The

sum reduces to (13.7), which vanishes, as j > 0.
Suppose j = k. We observe that[

k
ℓ

]
q

[
k − ℓ
i

]
q

=

[
k
i

]
q

[
k − i
ℓ

]
q

,

and that
[
k−ℓ
i

]
q
= 0 for ℓ > k − i. Then

k∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
k
ℓ

]
q

[
k − ℓ
i

]
q

=
k−i∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
k
i

]
q

[
k − i
ℓ

]
q

=

[
k
i

]
q

k−i∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
k − i
ℓ

]
q

= 0,

by (13.7), as k − i > 0.
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We prove the remaining cases, 0 < i < j < k, by induction on k.
The first case is when k = 3, with i = 1 < j = 2. By direct calculation,

2∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
2
ℓ

]
q

[
3− ℓ
1

]
q

= (q2 + q + 1)− (q + 1)2 + q = 0.

For the induction step, suppose 0 < i < j < k+1. Apply an identity
from Lemma 16.1, so that

j∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

[
k + 1− ℓ

i

]
q

=

j∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

[
k − ℓ
i− 1

]
q

+ qi
j∑

ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

[
k − ℓ
i

]
q

= 0,

because both sums on the right side vanish by the induction hypothesis
or the edge cases. □

Proof of Lemma 18.10. We need to show that the i, j-entry of each
product vanishes when i < j. ForW 0T , the result is the w0 = 0 analog
of Proposition 13.12, as T is Q0,2. For AnnT ,

(AnnT )i,j =

j∑
ℓ=1

Si

([
k − ℓ
i

]
q

−
[
k
i

]
q

)
(−1)ℓq(

ℓ
2)
[
j
ℓ

]
q

.

Note that the sum does not change if we include ℓ = 0. Applying the
distributive law and (13.7), as j > 0, we see from Lemma 18.11 that

(AnnT )i,j = Si

j∑
ℓ=0

(−1)ℓq(
ℓ
2)
[
j
ℓ

]
q

[
k − ℓ
i

]
q

= 0. □

We now define two filtrations of Qk. Let e1 = (1, 0, . . . , 0), . . . , ek =
(0, . . . , 0, 1) be the standard basis vectors of Qk. For i = 1, 2, . . . , k,
define linear subspaces of Qk:

Vi = span{ei, ei+1, . . . , ek},
Ti = span{columns i, i+ 1, . . . , k of the matrix T}.

Then dimVi = dim Ti = k − i+ 1, and

Qk = V1 ⊃ V2 ⊃ · · · ⊃ Vk ⊃ {0},
Qk = T1 ⊃ T2 ⊃ · · · ⊃ Tk ⊃ {0}.

Lemma 18.10 shows that the matrices Ann and W 0 (when invertible)
map the T -filtration isomorphically to the V-filtration.
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Theorem 18.12. Let C and D be the linear codes constructed using
(16.5) and ς(s) for some s, 1 ≤ s < k, with W 0 invertible. Then the
contribution by rank i singletons to δAsing

wi
= Asing

wi
(D⊥) − Asing

wi
(C⊥) is

zero if i < s. The contribution of rank s singletons to δAsing
ws

is nonzero.

Proof. The vector ς̄(s) belongs to Vs − Vs+1. Then σ̄(s) = W
−1
0 ς̄(s) ∈

Ts − Ts+1. This, in turn, implies that Ann σ̄(s) ∈ Vs − Vs+1. By (18.8),
singletons of rank i, i < s, make zero contribution to δAsing

wi
, while the

singletons of rank s make a nonzero contribution to δAsing
ws

. □

We point out that Theorem 18.12 makes no claims about the contri-
bution of singletons of rank k to δAsing

wk
.

Remark 18.13. If W0 is degenerate because cj = 0, then W 0 is also
degenerate, and W 0 maps Tj into Vj+1, and Ti, i < j, will map to a
proper linear subspace of Vi. If j is the largest index such that cj = 0,
then σ̄(s) will be in the image of W 0 provided j < s. Recalling that
s < k and that c1 ̸= 0, we see that σ̄(s) ∈ imW 0 when 2 ≤ j < s < k.
For example, when k = 3, no such s can exist.

19. Main results

We are now in a position to prove that a large number of weights
with maximal symmetry, including the homogeneous weight, do not
respect duality.

As usual in this part of the paper, let R = Mk×k(Fq) with k ≥ 2.
Suppose w is a weight on R that has maximal symmetry, positive
integer values, and w(0) = 0. The value w(r), r ∈ R, depends only on
the rank rk r of r. Write wi for the common value w(r) when rk r = i.

We will say that a weight w is nondegenerate if the expressions ci
of (13.5) are nonzero for all i = 1, 2, . . . , k. (Note that c0 = 0 because
w(0) = 0, and c1 = w1 > 0.) If at least one of c2, . . . , ck vanishes, we
say that w is degenerate.

Let ẘ = min{w1, w2, . . . , wk}; ẘ is a positive integer. Write I̊ = {i :
wi = ẘ} for set of indices i where wi achieves the minimum positive
value ẘ. In general, for an integer d ≥ ẘ, set Id = {i : wi = d};
depending on d, Id may be empty. Of course, I̊ = Iẘ is nonempty.

Theorem 19.1. Assume w is a nondegenerate weight on R =Mk×k(Fq),
with maximal symmetry, positive integer values, and w(0) = 0. Suppose
there is an integer d such that ẘ ≤ d < 2ẘ, Id is nonempty, and k ̸∈ Id.
Then w does not respect duality: there exist linear codes C and D over
R of the same length such that wweC = wweD and Ad(C

⊥) ̸= Ad(D
⊥).

In particular, if k ̸∈ I̊, then w does not respect duality.
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Proof. Suppose d satisfies the stated hypotheses, and let s = max Id;
then s < k. Construct linear codes C and D over R using (16.5) using
s = max Id. Because s < k, Theorem 16.6 implies that the codes have
the same length and that wweC = wweD.

As for the dual codes, Corollary 5.4 says that Ad(D
⊥) − Ad(C

⊥) =

Asing
d (D⊥) − Asing

d (C⊥) = δAsing
d . The only singletons that can con-

tribute to δAsing
d are those of rank i with i ∈ Id, Corollary 18.4. The-

orem 18.12 says that singletons of rank i < s make zero contributions
to δAsing

d , while singletons of rank s make a nonzero contribution to

δAsing
d . We conclude that Ad(D

⊥)− Ad(C
⊥) = δAsing

d ̸= 0. □

Remark 19.2. If k ∈ Id, the arguments given above are not conclusive.
In Theorem 18.12 there is always the possibility that the contributions
of singletons of rank k could cancel the contributions of singletons of
lower rank i ∈ Id. Even if Id = {k}, it is possible that singletons of
rank k make zero contributions. This happens for the homogeneous
weight, for example; see Corollary 4.10 and Proposition 18.3.

Corollary 19.3. Suppose a nondegenerate w satisfies ẘ < wi < 2ẘ
for some i, 1 ≤ i ≤ k. Then w does not respect duality.

Proof. By the definition of ẘ, there is some index j so that wj = ẘ.
As wj < wi, we have i ̸= j. The index k can equal at most one of i or
j. Apply Theorem 19.1 to the other one. □

We can, at long last, prove that the homogeneous weight onMk×k(Fq)
does not respect duality, provided k > 2 or q > 2. The homogeneous
weight on any finite Frobenius ring has the Extension Property [10,
Theorem 2.5]. Since the matrix ring Mk×k(Fq) is Frobenius, it follows
that W0 and W 0 are invertible for the homogeneous weight and any in-
formation module M , Remark 13.19. This says that the homogeneous
weight is nondegenerate.

Theorem 19.4. Let R = Mk×k(Fq), k ≥ 2, with the homogeneous
weight w. Then w respects duality if and only if k = 2 and q = 2.

Proof. The ‘if’ portion is Theorem 12.12. For the ‘only if’ portion,
Lemma 12.11 says w2 = ẘ is the smallest nonzero value of w, while
w1 is the largest value, with w2 < w1 ≤ 2w2. There is equality
w1 = 2w2 if and only if k = 2 and q = 2. For all other values of k and
q, there is strict inequality: w2 < w1 < 2w2. Now apply Theorem 19.1
with d = w1. □

The last result of this section determines, for k = 2, all the weights
with maximal symmetry (nondegenerate or not) that respect duality.
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The list is a short one: the Hamming weight (any q) and the homoge-
neous weight (only when q = 2).

Theorem 19.5. Let w be a weight on R = M2×2(Fq) having maximal
symmetry, positive integer values, and w(0) = 0. Assume w is neither
a multiple of the Hamming weight (w1 = w2) nor, when q = 2, a
multiple of the homogeneous weight (w1 = 2w2 when q = 2). Then w
does not respect duality.

Proof. Using m = k + 1 = 3 and s = 1 (the only possible value of s),
Example 15.4 gives the W 0-matrix:

W 0 =

[
q2w1 (q2 + q)w1

(q2 + q)w1 (q + 1)w1 + q2w2

]
.

Then detW 0 = q3w1(−(q + 1)w1 + qw2). As w1 > 0 by hypothesis,
detW 0 vanishes only when −(q + 1)w1 + qw2 = 0.

First consider the nondegenerate case, where −(q + 1)w1 + qw2 ̸= 0.
Use the construction of (16.5) with m = 3 and s = 1 to produce linear
codes C andD with wweC = wweD. The net counts of singleton vectors
in the dual codes depends only on σ̄. A calculation shows that

W 0⟨(q + 1)w1 + (q2 − q)w2,−q2w1⟩
= (q(−(q + 1)w1 + qw2))⟨−(q2 − q), 1⟩
= (q(−(q + 1)w1 + qw2))ς̄

(1).

Thus, up to scaling, we take σ̄(1) = ⟨(q + 1)w1 + (q2 − q)w2,−q2w1⟩.
Using Example 18.2, we see that the matrix Ann is

Ann =

[
−q(q2 − 1) −(q2 − 1)(q + 1)

−(q2 − 1)(q2 − q) −(q2 − 1)(q2 − q)

]
.

By (18.8), the net contributions to δAsing
wj

= Asing
wj

(D⊥)− Asing
wj

(C⊥) by

rank j singletons are given by the entries of Ann σ̄:

(19.6) Ann σ̄ = q(q − 1)(q2 − 1)

[
(q + 1)w1 − qw2

(q2 − q − 1)w1 − (q2 − q)w2

]
.

The contribution for j = 1 is nonzero because w is nondegenerate. The
contribution for j = 2 is nonzero, provided w is not a multiple of the
homogeneous weight; see Example 12.9.

Because k = 2, there are just a few (nondegenerate) cases:

• If w1 < w2, then δAw1 = δAsing
w1
̸= 0, by (19.6).

• If w2 < w1 and w is not homogeneous, then δAw2 = δAsing
w2
̸= 0,

by (19.6).
• If w is homogeneous, apply Theorem 19.4 (except when q = 2).
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• If w1 = w2, w is a multiple of the Hamming weight.

Now suppose w is degenerate, so that qw2 = (q + 1)w1. Because q
and q + 1 are relatively prime, there exists a positive integer τ such
that w1 = qτ and w2 = (q + 1)τ . Then w1 < w2 < 2w1, as q ≥ 2. The
degenerate matrix W 0 becomes

W degen =

[
q2w1 q(q + 1)w1

q(q + 1)w1 (q + 1)2w1

]
.

A basis for kerW degen is ⟨−(q + 1), q⟩.
Use the linear codes C± of Proposition 17.2. They have the same

length and w-weight enumerators. Their net rank-sums ηi(C+)−ηi(C−)
are 1,−(q+1), q, respectively. Then the contributions of singletons are:

Ann

[
−(q + 1)

q

]
=

[
0

(q2 − 1)(q2 − q)

]
.

Because w1 < w2 < 2w1, Corollary 5.4 applies to w2. Then Aw2(C
⊥
+)−

Aw2(C
⊥
−) = Asing

w2
(C⊥+)− Asing

w2
(C⊥−) = (q2 − 1)(q2 − q) > 0. □

In Section 22, the case of R =M3×3(F2) is discussed in detail.

20. Rank partition enumerators

Section 3 described various enumerators including the complete enu-
merator and symmetrized enumerators. In this section we focus on a
particular enumerator, the rank partition enumerator, over the matrix
ring Mk×k(Fq). The rank partition enumerator is a partition enumera-
tor associated to rank, and it is coarser than the symmetrized enumer-
ator associated to the group action of GL(k,Fq) acting on Mk×k(Fq).

On R =Mk×k(Fq), define the rank partition RK = {Ri}ki=0, with

Ri = {s ∈ R : rk s = i}.
As in Section 3, define counting functions ni : R

n → N, i = 0, 1, . . . , k,
by ni(x) = |{j : xj ∈ Ri}|, for x = (x1, x2, . . . , xn) ∈ Rn. For a linear
code C ⊆ Rn, define the rank partition enumerator rpeC associated
to C to be the homogeneous polynomial of degree n in the variables
Z0, Z1, . . . , Zk given by

rpeC(Z) =
∑
x∈C

n∏
j=1

Zrkxj
=
∑
x∈C

k∏
i=0

Z
ni(x)
i .

If w is a weight on R with maximal symmetry and positive integer
values, then the value of w(r), r ∈ R, depends only on the rank rk r
of r. Write wi for w(r) when rk r = i, and denote by wmax the largest



WEIGHTS WITH MAXIMAL SYMMETRY 69

value of w. Then the specialization of variables Zi ⇝ Xwmax−wiY wi

allows one to write wweC in terms of rpeC :

(20.1) wweC(X, Y ) = rpeC(Z)|Zi⇝Xwmax−wiY wi .

As an example of some of the results of [8], we will show that the
rank partition enumerator satisfies the MacWilliams identities. Then
(20.1) will allow us to calculate wweC⊥ for many examples. This will
be one way to illustrate the main results of Section 19 (and to prove
additional results).

In order to show that the MacWilliams identities hold for the rank
partition enumerator, we refer to the argument outlined in Appendix A
and provide details on the relevant Fourier transforms.

It is well-known ([25, Example 4.4]) that R = Mk×k(Fq) is a Frobe-
nius ring with a generating character χ. To describe the standard
generating character χ, we first recall the standard generating char-
acter θq of Fq: θq(a) = ζTrq→p(a), a ∈ Fq, where q = pe, p prime,
ζ = exp(2πi/p) ∈ C×, and Trq→p is the absolute trace from Fq → Fp.
Then define χ(s) = θq(tr s), s ∈ R, where tr is the matrix trace. Be-
cause the matrix trace over Fq satisfies tr(rs) = tr(sr), we see that
χ(rs) = χ(sr) for all r, s ∈ R. As is the case for all generating char-
acters, χ has the property that kerχ contains no nonzero left or right
ideal of R, [25, Lemma 4.1].

Lemma 20.2. Each partition block Ri of RK is invariant under left
or right multiplication by units. If rk r1 = rk r2, then

∑
s∈Ri

χ(sr1) =∑
s∈Ri

χ(sr2) for all i.

Proof. The rank of a matrix is invariant under multiplication by units.
If rk r1 = rk r2, then, using row and column operations, there are units
u1, u2 such that r2 = u1r1u2. Thus,∑

s∈Ri

χ(sr2) =
∑
s∈Ri

χ(su1r1u2) =
∑
s∈Ri

χ(u2su1r1) =
∑
s∈Ri

χ(sr1),

using the property χ(rs) = χ(sr) and the bi-invariance of Ri. □

Define the Kravchuk matrix K of size (k + 1)× (k + 1) for the rank
partition RK by

Ki,j =
∑
s∈Ri

χ(sr), i, j = 0, 1, . . . , k,

where r ∈ R has rk r = j. This sum is well-defined by Lemma 20.2.
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In order to develop an explicit formula for Ki,j, we first remark that
Ri, being invariant under left multiplication by units, equals the dis-
joint union of the left U -orbits it contains. We already know the num-
ber and sizes of the U -orbits in R, Proposition 12.6. So, we turn our
attention to sums of the form

∑
t∈orb(s) χ(tr), for r ∈ R.

Let PR be the poset of all principal left ideals of R under set contain-
ment; all the left ideals of R are principal. (This is the type of poset
used in Proposition 12.3, with M = R and m = k.) Fix an element
r ∈ R, and define two functions fr, gr : PR → C by

fr(Rs) =
∑
t∈Rs

χ(tr), gr(Rs) =
∑

t∈orb(s)

χ(tr).

The definition of gr is well-defined by Lemma 12.2. We collect some
facts about fr and gr in the next lemma. For r ∈ R, its left annihilator
is annlt(r) = {s ∈ R : sr = 0}; the left annihilator is a left ideal of R.

Lemma 20.3. For any r, s ∈ R, we have

fr(Rs) =
∑

Rt⊆Rs

gr(Rt).

The values of fr are

fr(Rs) =

{
|Rs|, if Rs ⊆ annlt(r),

0, otherwise.

Proof. The first equality reflects the fact that the left ideal Rs is invari-
ant under left multiplication by units, and hence Rs equals the disjoint
union of the left U -orbits it contains.

As in (2.2), denote R(Rs) = {r ∈ R : χ(tr) = 1, for all t ∈ Rs}. We
claim that r ∈ R(Rs) if and only if Rs ⊆ annlt(r). The ‘if’ direction is
clear: if Rs ⊆ annlt(r), then tr = 0, and hence χ(tr) = 1, for all t ∈ Rs.
Conversely, suppose r ∈ R(Rs). Then Rsr ⊆ kerχ. We conclude
that Rsr = 0, because any left ideal in kerχ must be zero. Thus
Rs ⊆ annlt(r). The second formula now follows from Lemma A.1. □

Proposition 20.4. Let µ be the Möbius function of the poset PR. Then

gr(Rs) =
∑

Rt⊆Rs

µ(Rt,Rs)fr(Rt), Rs ∈ PR.

Simplifying, we have

gr(Rs) =

rk s−rk(sr)∑
j=0

(−1)rk s−jq(
rk s−j

2 )qkj
[
rk s− rk(sr)

j

]
q

.
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Proof. The first equation comes from Möbius inversion, [22, Theo-
rem 5.5.5], because of the first equation in Lemma 20.3.

By Proposition 12.3, the poset PR is isomorphic to the poset Pk,k

of linear subspaces of Fk
q . This allows us to translate the equation

for gr(Rs) into geometric language. Let r ∈ R correspond to a linear
subspace Y ⊆ Fk

q , with dimY = rk r. Then |Rr| = qk dimY = qk rk r,
by Proposition 12.6. Similarly, let s, t ∈ R correspond to X,T , with
dimX = rk s and dimT = rk t. The Möbius function of Pk,k is in
(12.7). The condition Rs ⊆ annlt(r) becomes X ⊆ Y ⊥.

Using Lemma 20.3, the formula for gr(Rs) simplifies:

gr(Rs) =
∑

Rt⊆Rs∩annlt(r)

µ(Rt,Rs)|Rt|

=
∑

T⊆X∩Y ⊥

(−1)dimX−dimT q(
dimX−dimT

2 )qk dimT

=

dim(X∩Y ⊥)∑
j=0

(−1)rk s−jq(
rk s−j

2 )qkj
[
dim(X ∩ Y ⊥)

j

]
q

.

Finally, Lemma 13.2 implies dim(X ∩ Y ⊥) = rk s− rk(sr). □

To simplify notation slightly, define

(20.5) B(i, ℓ) =
ℓ∑

j=0

(−1)i−jq(
i−j
2 )qkj

[
ℓ
j

]
q

,

for i = 0, 1, . . . , k and 0 ≤ ℓ ≤ i. Then
∑

t∈orb(s) χ(tr) = gr(Rs) =

B(rk s, rk s − rk(sr)). In addition, suppose there are linear subspaces
C ⊆ A ⊆ Fk

q with dimA = a and dimC = c. Then define I(a, b, c, d) =
|{B ⊆ A : dimB = b, and dim(B ∩ C) = d}|. By Lemma 13.10 (with
D = A ∩ C),

I(a, b, c, d) = q(b−d)(c−d)
[
c
d

]
q

[
a− c
b− d

]
q

.

Proposition 20.6. The Kravchuk matrix K has entries

Ki,j =
i∑

ℓ=0

I(k, i, k − j, ℓ)B(i, ℓ),

for i, j = 0, 1, . . . , k.

Proof. As mentioned earlier, if j = rk r, the sum in Ki,j =
∑

s∈Ri
χ(sr)

can be split up into sums over the left U -orbits contained in Ri. The
individual sums over orbits depend upon rk s and rk(sr), so we need



72 J. A. WOOD

to count the number of orbits orb(s) with rk s = i for various values of
rk(sr).

In terms of linear subspaces, we need to count the number of linear
subspaces X of Fk

q with dimX = i and dim(X ∩ Y ⊥) = ℓ. Because

dimY ⊥ = k − rk r = k − j, this count is I(k, i, k − j, ℓ). □

Example 20.7. For k = 2, the Kravchuk matrix is:

K =

 1 1 1
(q2 − 1)(q + 1) q2 − q − 1 −q − 1
(q2 − q)(q2 − 1) −q2 + q q

 .
Suppose C ⊆ Rn is an additive code. The annihilators L(C) and

R(C) were defined in (2.2). The MacWilliams identities for the rank
partition enumerator are next.

Theorem 20.8. Let R = Mk×k(Fq) with Kravchuk matrix K. If C is
an additive code in Rn, then

rpeL(C)(Zi) =
1

|C|
rpeC(Zj)|Zj=

∑
i Ki,jZi

,

rpeR(C)(Zi) =
1

|C|
rpeC(Zj)|Zj=

∑
i Ki,jZi

.

The formulas are reversible in C and L(C), resp., C and R(C).
If C ⊆ Rn is a left, resp., right, R-linear code, then R(C) = R(C),

resp., L(C) = L(C).

Proof. We add details to the outline provided in Appendix A. Let V =
C[Z0, Z1, . . . , Zk], and define f : R → V by f(s) = Zrk s, s ∈ R. We
calculate the Fourier transform of f , as in (A.2). Write j = rk r.

f̂(r) =
∑
s∈R

χ(rs)Zrk s =
∑
s∈R

χ(sr)Zrk s

=
k∑

i=0

∑
s∈Ri

χ(sr)Zi =
k∑

i=0

Ki,jZi.

Note that f̂(r) depends only on rk r, so that f̂(r) equals f(r) after

applying the linear substitution Zj ←
∑k

i=0Ki,jZi.
To reverse roles, use Lemma 2.3 and apply the formulas to the pair

L(C) and R(L(C)) = C and the pair R(C) and L(R(C)) = C. For
the case of linear codes, see Remark 2.4. □
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21. Examples

In this section we calculate a number of examples overR =M2×2(F2).
Set m = 3, so that the information module is M =M2×3(F2). The or-
bit spaces O1 and O2 have representatives in reduced row-echelon form
and are ordered as follows:

O1 = [[ 1 0 1
0 0 0 ] , [

0 1 0
0 0 0 ] , [

0 0 1
0 0 0 ] , [

1 1 1
0 0 0 ] , [

0 1 1
0 0 0 ] , [

1 0 0
0 0 0 ] , [

1 1 0
0 0 0 ]] ,

O2 = [[ 1 0 0
0 1 0 ] , [

1 0 1
0 1 0 ] , [

1 0 0
0 0 1 ] , [

1 1 0
0 0 1 ] , [

1 0 0
0 1 1 ] , [

0 1 0
0 0 1 ] , [

1 0 1
0 1 1 ]] .(21.1)

The rank 1 orbits have size 3, and the rank 2 orbits have size 6, as in
Proposition 12.6. The representatives of O♯

1 and O
♯
2 are the transposes

of the representatives of O1 and O2, using the same orderings, with
rank 1 coming before rank 2. The W0-matrix has size 14 × 14, while
W 0 is 2× 2:

W0 =



0 0 w1 0 w1 w1 w1 w1 0 w1 w1 w1 w1 w1
0 w1 0 w1 w1 0 w1 w1 w1 0 w1 w1 w1 w1
w1 0 w1 w1 w1 0 0 0 w1 w1 w1 w1 w1 w1
0 w1 w1 w1 0 w1 0 w1 w1 w1 w1 w1 w1 0
w1 w1 w1 0 0 0 w1 w1 w1 w1 w1 0 w1 w1
w1 0 0 w1 0 w1 w1 w1 w1 w1 w1 w1 0 w1
w1 w1 0 0 w1 w1 0 w1 w1 w1 0 w1 w1 w1
w1 w1 0 w1 w1 w1 w1 w2 w2 w1 w1 w2 w1 w2
0 w1 w1 w1 w1 w1 w1 w2 w1 w1 w2 w2 w2 w1
w1 0 w1 w1 w1 w1 w1 w1 w1 w2 w2 w2 w1 w2
w1 w1 w1 w1 w1 w1 0 w1 w2 w2 w1 w2 w2 w1
w1 w1 w1 w1 0 w1 w1 w2 w2 w2 w2 w1 w1 w1
w1 w1 w1 w1 w1 0 w1 w1 w2 w1 w2 w1 w2 w2
w1 w1 w1 0 w1 w1 w1 w2 w1 w2 w1 w1 w2 w2


,

W 0 =

[
4w1 6w1

6w1 3w1 + 4w2

]
.

Akin to Figure 1 on page 10, the rank partition enumerator of a
linear code specializes to the w-weight enumerator of the code under
the specialization Z0 ⇝ 1, Z1 ⇝ tw1 and Z2 ⇝ tw2 . Using the Kravchuk
matrix K from Example 20.7, with q = 2:

K =

 1 1 1
9 1 −3
6 −2 2

 ,
the MacWilliams identities for the rank partition enumerator yield the
rank partition enumerator for the dual code, Theorem 20.8. Using
the same specialization, the w-weight enumerator of the dual code is
obtained.

In all of the examples that follow, multiplicity functions η and lists ω
of orbit weights are written in terms of the ordering ofO given in (21.1),
with ranks separated by vertical lines. All calculations were performed
in SageMath [23]. Rank partition enumerators of dual codes are not
listed because they would use too much space. Only the lowest order
terms in the w-weight enumerators of dual codes are displayed.
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It is differences such as Aj(D
⊥) − Aj(C

⊥) that ultimately matter,
so we will write δη = η(D) − η(C). By (18.6) and Example 18.2
with q = 2, the net contributions of rank i singletons to δAsing

wi
=

Asing
wi

(D⊥)− Asing
wi

(C⊥) appear as the entries in the vector

(21.2)

1 1 1
9 3 0
6 0 0

 δη.
Example 21.3. Set w1 = 2 and w2 = 3. Then ẘ = 2, and ẘ ≤
wi < 2ẘ for i = 1, 2. This is a degenerate case, as detW0 = 0. Use
the codes in Proposition 17.2, with an extra rank 1 functional so that
the associated homomorphisms Λ are injective; see Remark 12.5. The
multiplicity functions and lists of orbit weights are:

η+ = ⟨1|1, 0, 0, 0, 0, 0, 0|2, 0, 0, 0, 0, 0, 0⟩,
ω+ = ⟨0|4, 4, 2, 4, 6, 6, 6|8, 6, 6, 6, 8, 6, 8⟩,
η− = ⟨0|1, 1, 0, 0, 0, 1, 1|0, 0, 0, 0, 0, 0, 0⟩,
ω− = ⟨0|4, 4, 2, 4, 6, 6, 6|8, 6, 6, 6, 8, 6, 8⟩.

The equation ω+ = ω− is a feature of the construction in Proposi-
tion 17.2. Both codes have length 4, and δη = ⟨−1, 3,−2⟩. Then

(21.2) implies that δA2 = δAsing
2 = 0, while δA3 = δAsing

3 = −6. The
enumerators are

seC+ = Z4
0 + 3Z3

0Z1 + 9Z2
0Z

2
1 + 27Z0Z

3
1 + 6Z2

0Z
2
2 + 18Z0Z1Z

2
2 ,

seC− = Z4
0 + 3Z3

0Z1 + 9Z2
0Z

2
1 + 33Z0Z

3
1 + 18Z4

1 ;

wweC+ = 1 + 3t2 + 9t4 + 33t6 + 18t8,

wweC− = 1 + 3t2 + 9t4 + 33t6 + 18t8;

wweC⊥
+
= 1 + 12t2 + 6t3 + 36t4 + · · · ,

wweC⊥
−
= 1 + 12t2 + 54t4 + · · · .

Example 21.4. Set w1 = 1 and w2 = 2, so the weight of a matrix
equals its rank. Then ẘ = 1, but w2 = 2ẘ, so Corollary 5.4 applies
only to w1 = 1. Use the codes given by (16.5), with ς and σ given here:

ς = ⟨0,−1,−1, 0, 0, 0, 0|0, 0, 0, 0, 0, 0, 1⟩,
σ = ⟨−1,−1,−1,−1,−3, 1,−1|0, 0, 0, 0, 0, 2, 2⟩.

The scaling is such that W0σ = 2ς, so that c = 2. One calculates that
α1 = 10w1 = 10 and α2 = 9w1 + 4w2 = 17. It suffices to take a = 3
and b = 0. Then ∆ = −3. The multiplicity functions and lists of orbit
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weights are

ηC2 = ⟨0|3, 3, 3, 26, 3, 3, 3|3, 3, 3, 3, 3, 3, 3⟩,
ηD2 = ⟨3|2, 2, 2, 25, 0, 4, 2|3, 3, 3, 3, 3, 5, 5⟩;
ωC2 = ⟨0|30, 53, 53, 53, 30, 53, 30|74, 74, 74, 74, 74, 74, 51⟩,
ωD2 = ⟨0|30, 51, 51, 53, 30, 53, 30|74, 74, 74, 74, 74, 74, 53⟩.

Both codes have length 65, and δη = ⟨3,−7, 4⟩. Then, using (21.2),

δA1 = δAsing
1 = 6 and δAsing

2 = 18. The enumerators are

seC2 = Z65
0 + 9Z35

0 Z
30
1 + 12Z12

0 Z
53
1 + 6Z26

0 Z
27
1 Z

12
2 + 36Z3

0Z
50
1 Z

12
2 ,

seD2 = Z65
0 + 9Z35

0 Z
30
1 + 6Z14

0 Z
51
1 + 6Z12

0 Z
53
1 + 6Z3

0Z
50
1 Z

12
2

+ 24Z5
0Z

46
1 Z

14
2 + 6Z28

0 Z
21
1 Z

16
2 + 6Z7

0Z
42
1 Z

16
2 ;

wweC2 = 1 + 9 t30 + 6 t51 + 12 t53 + 36 t74,

wweD2 = 1 + 9 t30 + 6 t51 + 12 t53 + 36 t74;

wweC⊥
2
= 1 + 132 t+ 15762 t2 + 1674894 t3 + · · · ,

wweD⊥
2
= 1 + 138 t+ 16176 t2 + 1695210 t3 + · · · .

Even though δAsing
2 = 18, δA2 = 414; there are dual codewords of

weight 2 coming from vectors with two nonzero entries, both of rank 1,
that account for the difference. This illustrates the importance of the
strict inequality ẘ ≤ d < 2ẘ in Corollary 5.4.

Example 21.5. Set w1 = 4 and w2 = 5. Then ẘ = 4 and ẘ ≤ wi <
2ẘ, i = 1, 2, so Corollary 5.4 applies to both w1 and w2.

In this example, the codes given by (16.5) will be used; call then C3

and D3. In addition, two other codes C4, D4 will be given. They are
designed so that their lists of orbit weights have just three different
values. One of the values applies to all the rank 2 orbits. The other
two values apply to three, resp., four, rank 1 orbits. For the code C4,
the three rank 1 orbits are linearly independent, while for D4 they are
linearly dependent.

For C3 and D3, ς and σ are given here:

ς = ⟨0,−1,−1, 0, 0, 0, 0|0, 0, 0, 0, 0, 0, 1⟩,
σ = ⟨2, 2, 2,−1, 3, 1, 2|0, 0, 0, 0, 0,−4,−4⟩.

The scaling is such that W0σ = 8ς, so that c = 2. One calculates that
α1 = 10w1 = 40 and α2 = 9w1 + 4w2 = 56. It suffices to take a = 1
and b = 0. Then ∆ = 3. The multiplicity functions and lists of orbit
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weights are

ηC3 = ⟨3|4, 4, 4, 22, 4, 4, 4|4, 4, 4, 4, 4, 4, 4⟩,
ηD3 = ⟨0|6, 6, 6, 21, 7, 5, 6|4, 4, 4, 4, 4, 0, 0⟩;
ωC3 = ⟨0|160, 232, 232, 232, 160, 232, 160

|296, 296, 296, 296, 296, 296, 224⟩,
ωD3 = ⟨0|160, 224, 224, 232, 160, 232, 160

|296, 296, 296, 296, 296, 296, 232⟩.

Both codes have length 77, and δη = ⟨−3, 11,−8⟩. Then, using

(21.2), δA4 = δAsing
4 = 6 and δA5 = δAsing

5 = −18. The enumerators
are

seC3 = Z77
0 + 9Z37

0 Z
40
1 + 12Z19

0 Z
58
1 + 6Z25

0 Z
36
1 Z

16
2 + 36Z7

0Z
54
1 Z

16
2 ,

seD3 = Z77
0 + 9Z37

0 Z
40
1 + 6Z21

0 Z
56
1 + 6Z19

0 Z
58
1 + 6Z21

0 Z
48
1 Z

8
2

+ 6Z5
0Z

64
1 Z

8
2 + 24Z6

0Z
59
1 Z

12
2 + 6Z7

0Z
54
1 Z

16
2 ;

wweC3 = 1 + 9 t160 + 6 t224 + 12 t232 + 36 t296,

wweD3 = 1 + 9 t160 + 6 t224 + 12 t232 + 36 t296;

wweC⊥
3
= 1 + 165 t4 + 18 t5 + 21186 t8 + · · · ,

wweD⊥
3
= 1 + 171 t4 + 21918 t8 + · · · .

The codes C4, D4 have multiplicity functions and lists of orbit weights:

ηC4 = ⟨0|2, 3, 3, 1, 2, 3, 2|2, 6, 2, 6, 6, 2, 6⟩,
ηD4 = ⟨0|2, 2, 4, 2, 2, 2, 2|6, 6, 2, 2, 6, 2, 6⟩;
ωC4 = ⟨0|136, 144, 144, 136, 136, 144, 136

|192, 192, 192, 192, 192, 192, 192⟩,
ωD4 = ⟨0|136, 144, 136, 136, 136, 144, 144

|192, 192, 192, 192, 192, 192, 192⟩.
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Both codes have length 46, and δη = ⟨0, 0, 0⟩. Then, using (21.2),

δA4 = δAsing
4 = 0 and δA5 = δAsing

5 = 0. The enumerators are

seC4 = Z46
0 + 12Z12

0 Z
34
1 + 9Z10

0 Z
36
1 + 6Z0Z

33
1 Z

12
2

+ 18Z2
0Z

28
1 Z

16
2 + 18Z3

0Z
23
1 Z

20
2 ,

seD4 = Z46
0 + 12Z12

0 Z
34
1 + 9Z10

0 Z
36
1 + 36Z2

0Z
28
1 Z

16
2 + 6Z4

0Z
18
1 Z

24
2 ;

wweC4 = 1 + 12 t136 + 9 t144 + 42 t192,

wweD4 = 1 + 12 t136 + 9 t144 + 42 t192;

wweC⊥
4
= 1 + 48 t4 + 4059 t8 + 1440 t9 + 522 t10 + 290160 t12 + · · · ,

wweD⊥
4
= 1 + 48 t4 + 4059 t8 + 1440 t9 + 522 t10 + 290112 t12 + · · · .

The calculation shows that δA12 ̸= 0, but this would be difficult to
detect theoretically.

Example 21.6. Set w1 = 3 and w2 = 7. Then ẘ = 3, but w2 > 2ẘ,
so Corollary 5.4 applies only to w1 = 3. Use the codes given by (16.5),
with ς and σ given here:

ς = ⟨0,−1,−1, 0, 0, 0, 0|0, 0, 0, 0, 0, 0, 1⟩,
σ = ⟨−3,−3,−3,−5,−11, 5,−3|0, 0, 0, 0, 0, 6, 6⟩.

The scaling is such that W0σ = 30ς, so that c = 10. One calculates
that α1 = 10w1 = 30 and α2 = 9w1 + 4w2 = 55. It suffices to take
a = 4 and b = 0. Then ∆ = −11. The multiplicity functions and lists
of orbit weights are

ηC5 = ⟨0|12, 12, 12, 122, 12, 12, 12|12, 12, 12, 12, 12, 12, 12⟩,
ηD5 = ⟨11|9, 9, 9, 117, 1, 17, 9|12, 12, 12, 12, 12, 18, 18⟩;
ωC5 = ⟨0|360, 690, 690, 690, 360, 690, 360

|990, 990, 990, 990, 990, 990, 660⟩,
ωD5 = ⟨0|360, 660, 660, 690, 360, 690, 360

|990, 990, 990, 990, 990, 990, 690⟩.



78 J. A. WOOD

Both codes have length 278, and δη = ⟨11,−23, 12⟩. Then, using

(21.2), δA3 = δAsing
3 = 30 and δAsing

7 = 66. The enumerators are

seC5 = Z278
0 + 9Z158

0 Z120
1 + 12Z48

0 Z
230
1 + 6Z122

0 Z108
1 Z48

2

+ 36Z12
0 Z

218
1 Z48

2 ,

seD5 = Z278
0 + 9Z158

0 Z120
1 + 6Z58

0 Z
220
1 + 6Z48

0 Z
230
1 + 6Z12

0 Z
218
1 Z48

2

+ 24Z20
0 Z

204
1 Z54

2 + 6Z128
0 Z90

1 Z
60
2 + 6Z28

0 Z
190
1 Z60

2 ;

wweC5 = 1 + 9 t360 + 6 t660 + 12 t690 + 36 t990,

wweD5 = 1 + 9 t360 + 6 t660 + 12 t690 + 36 t990;

wweC⊥
5
= 1 + 582 t3 + 316947 t6 + 152382900 t9 + · · · ,

wweD⊥
5
= 1 + 612 t3 + 326649 t6 + 66 t7 + 154592448 t9 + · · · .

Even though w2 = 7 > 2ẘ = 6, we still have δA7 = δAsing
7 . The reason

is that w2 is not an integer multiple of w1: a vector can have weight 7
only if it is a singleton with nonzero entry of rank 2. See Remark 5.5.

22. The case of M3×3(Fq)

In this section we show that most weights of maximal symmetry on
M3×3(Fq) do not respect duality. There is one situation that remains
unsettled.

Theorem 22.1. Let R = M3×3(Fq), and suppose w in a weight on R
with maximal symmetry, positive integer values, and w(0) = 0. If w is
nondegenerate and not a multiple of the Hamming weight, then w does
not respect duality. If w is degenerate because −(q + 1)w1 + qw2 = 0,
then w does not respect duality.

The situation where w is degenerate because −(q2+q+1)w1+q(q
2+

q + 1)w2 − q3w3 = 0 is unsettled.

Proof. In order to display the matrices W 0 and Ann in a way that fits
on the page, we name certain polynomials in q:

f+ = q + 1, f− = q − 1, f2 = q2 + q + 1.

The W 0-matrix is

W 0 =

 q3w1 q2f+w1 qf2w1

q2f2w1 qf 2
+w1 + q4w2 f2w1 + q2f2w2

qf2w1 f+w1 + q2f+w2 f2w2 + q3w3

 .
Consistent with Theorem 15.10, the determinant of W 0 factors as

detW 0 = −q6w1(−f+w1 + qw2)(−f2w1 + qf2w2 − q3w3).
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The annihilator matrix Ann is

Ann =

 −q2f−f2 −qf+f−f2 −f−f 2
2

−q2f 2
+f

2
−f2 −qf+f 2

−f
2
2 −qf+f 2

−f
2
2

−q3f+f 3
−f2 −q3f+f 3

−f2 −q3f+f 3
−f2

 .
Suppose w is nondegenerate, i.e., W 0 is invertible. We first collect

the results of some calculations of (18.8) made using SageMath. The

leading terms of Ann σ̄(s), where σ̄(s) = W
−1
0 ς̄(s), for the swaps ς̄(1) =

⟨−q3 + q, 1, 0⟩ and ς̄(2) = ⟨0,−q3 + q2, 1⟩ are:

Ann σ̄(1) =

〈
q5 − q3 − q2 + 1

w1

, ∗, α1

β1

〉
,(22.2)

Ann σ̄(2) =

〈
0,
q7 − q6 − q5 + q3 + q2 − q

f+w1 − qw2

,
α2

β2

〉
.(22.3)

Note that the denominators are nonzero because W 0 is invertible.
The term at rank 3 of Ann σ̄(1) has numerator:

α1 = f+f
3
−f2(q

6 + q5 − q4 − 2q3 + q + 1)w2
1

− qf+f 3
−f2(q

6 + 2q5 − 3q3 − 2q2 + 1)w1w2 + q3f 2
+f

4
−f

2
2w

2
2

+ q3f+f
3
−f2(q

4 − 2q2 − q + 1)w1w3 − q5f 2
+f

4
−f2w2w3,

and nonzero denominator

β1 = w1(−f+w1 + qw2)(−f2w1 + qf2w2 − q3w3).

The term at rank 3 of Ann σ̄(2) has numerator:

α2 = qf+f
3
−f2(q

3 − q2 − q − 1)w1

− q2f+f 3
−f2(q

3 − q − 1)w2 + q4f+f
4
−f2w3

and nonzero denominator

β2 = (−f+w1 + qw2)(−f2w1 + qf2w2 − q3w3).

Using SageMath, one can solve for those nonzero weights with α1 =
α2 = 0, namely (up to uniform scale factors):

w1 = 1, w2 =
q3 − q − 1

q3 − q
, w3 =

q5 − q4 − q3 + q + 1

q5 − q4 − q3 + q2
;

w1 = 1, w2 =
q + 1

q
, w3 =

q2 + q + 1

q2
.

In the first case, one confirms that w is nondegenerate and that w2 <
w3 < w1. In the second case, one notes that w is degenerate (both
−f+w1 + qw2 and −f2w1 + qf2w2 − q3w3 vanish in the factorization of
detW 0) and that w1 < w2 < w3.
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One can also solve for those nonzero weights where the sum of the
entries of Ann σ̄(2) vanishes:

(22.4) w1 = (q + 1)w2 − qw3,

or where w1 = w3 and α2 = 0:

(22.5) w2 = (q4 − q2 − q − 1)w1/(q
4 − q2 − q) < w1 = w3.

Now apply the results of the calculations, still assuming that w is
nondegenerate.

• If w1 < min{w2, w3}, then δAw1 = δAsing
w1
̸= 0, using (22.2).

• If w2 < min{w1, w3}, then δAw2 = δAsing
w2
̸= 0, using (22.3).

• If w3 < min{w1, w2}, then δAw3 = δAsing
w3
̸= 0. At least one of

α1, α2 is nonzero (because w3 < w2), so use the corresponding
(22.2) or (22.3).

• If ẘ = w1 = w2 < w3, then δAẘ = δAsing
ẘ ̸= 0, using (22.3).

• If ẘ = w1 = w3 < w2, then δAẘ = δAsing
ẘ ̸= 0, using (22.3).

Here, α2 ̸= 0 by (22.5).

• If ẘ = w2 = w3 < w1, then δAẘ = δAsing
ẘ ̸= 0, using (22.3). The

sum of the rank 2 and rank 3 contributions does not vanish. If
it did, (22.4) and w2 = w3 would imply w1 = w2 = w3. This
contradicts the hypothesis that w2 = w3 < w1.
• If w1 = w2 = w3, then w is a multiple of the Hamming weight.

If w is degenerate with −(q + 1)w1 + qw2 = 0, then w1 < w2 < 2w1.
The construction of Proposition 17.2, with j = 2, has δη = ⟨1,−(q +
1), q, 0⟩. Then, dropping the initial term of δη, we have

Ann δη = q3f+f
2
−f2⟨0, 1, f−⟩.

• If w1 < w3, then δAw2 = δAsing
w2
̸= 0, using Corollary 5.4. This

still works if w2 = w3 because 1 + f− = q ̸= 0.
• If w3 ≤ w1, then δAw3 = δAsing

w3
̸= 0. □

In the situation where w is degenerate with −(q2+ q+1)w1+ q(q
2+

q + 1)w2 − q3w3 = 0, the construction of Proposition 17.2, with j = 3,
has δη = ⟨1,−(q2 + q+1), q(q2 + q+1),−q3⟩. After dropping the rank
0 term, we have

Ann δη = q3f+f
3
−f2⟨0, 0, 1⟩.

If ẘ ≤ w3 < 2ẘ, then δAw3 = δAsing
w3
̸= 0, and w does not respect

duality.
From the degeneracy equation we have (q2+q+1)(qw2−w1) = q3w3.

Because q3 and q2 + q + 1 are relatively prime, there exists a positive
integer a such that qw2 − w1 = q3a and w3 = (q2 + q + 1)a. Similarly,
w1 = q(w2− q2a), so there exists a positive integer b such that w1 = qb
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and w2− q2a = b. In all, w1 = qb, w2 = q2a+ b, and w3 = (q2+ q+1)a,
for some positive integers a, b.

Because of Proposition 3.14, only the ratio ρ = a/b ∈ Q, ρ > 0,
matters. One can show that ẘ = w3 when 0 < ρ ≤ q/(q2 + q + 1) and
that ẘ = w1 < w3 < 2w1 when q/(q2 + q + 1) < ρ < 2q/(q2 + q + 1).
Thus, for 0 < ρ < 2q/(q2 + q + 1), w does not respect duality. For
ρ ≥ 2q/(q2 + q+1), singletons alone are not enough to decide whether
w respects duality.
For example, when the weight w over F2 has w1 = 2, w2 = 5, and

w3 = 7 (so ρ = 1 > 4/7), calculations like those in Example 21.5 show
that δA6 ̸= 0. The dual codewords involved have three nonzero entries
of rank 1. The combinatorics of dual codewords of this type can be
very complicated (see [1, §3] for the situation over finite fields), and we
will not pursue the matter further.

Appendix A. Fourier transform

This appendix will be a brief review without proof of the use of the
Fourier transform and the Poisson summation formula in proving the
MacWilliams identities for additive codes over a finite Frobenius ring.
The main ideas go back to Gleason (see [3]) and can be generalized to
additive codes over a finite abelian group. Details can be found [28].

In this appendix, R is a finite Frobenius ring with generating char-
acter χ. The annihilators L(C) and R(C) were defined in (2.2).

Lemma A.1. Suppose C ⊆ Rn is an additive code. If y ∈ Rn, then∑
x∈C

χ(x · y) =

{
|C|, if y ∈ R(C),

0, otherwise,∑
x∈C

χ(y · x) =

{
|C|, if y ∈ L(C),

0, otherwise.

Let V be a vector space over the complex numbers C. If f : Rn → V

is any function, define its Fourier transform f̂ : Rn → V by

(A.2) f̂(x) =
∑
y∈Rn

χ(x · y)f(y), x ∈ Rn.

There is an inversion formula:

f(x) =
1

|Rn|
∑
y∈Rn

χ(−y · x)f̂(y), x ∈ Rn.

This version of the Fourier transform differs from that in [28] in that
the isomorphism x 7→ xχ has been incorporated into the definition.
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Suppose, in addition, that V is an algebra over C. If fi : R → V
for i = 1, 2, . . . , n, and F : Rn → V is given by F (r1, r2, . . . , rn) =∏n

i=1 fi(ri), then F̂ (x1, x2, . . . , xn) =
∏n

i=1 f̂i(xi).

Theorem A.3 (Poisson summation formula). Suppose R is Frobenius
and C ⊆ Rn is an additive code. If f : Rn → V , then∑

y∈R(C)

f(y) =
1

|C|
∑
x∈C

f̂(x).

Remark A.4. There is another version of the Fourier transform, with

f̂(x) =
∑

y∈Rn χ(y · x)f(y), that incorporates the isomorphism x 7→ χx

instead. Then the Poisson summation formula has the form∑
y∈L(C)

f(y) =
1

|C|
∑
x∈C

f̂(x).

If χ has the property that χ(rs) = χ(sr), r, s ∈ R, then the two
versions of the Fourier transform agree and both forms of the Poisson
summation formula are valid. This situation occurs over Mk×k(Fq).

In order to prove the MacWilliams identities over a finite Frobenius
ring R for a partition enumerator pe or a w-weight enumerator wwe
as described in Section 3, here is the standard argument. There are
generalizations of this argument in [8]. For a partition enumerator
whose partition P = {Pi}mi=1 of R hasm blocks, set V = C[Z1, . . . , Zm],
with one variable for each block. Define [r] = i when r ∈ Pi. For a
w-weight enumerator, whose weight w has positive integer values with
maximum value wmax, set V = C[X, Y ]. Define f : R→ V by

f(a) =

{
Z[a], for pe,

Xwmax−w(a)Y w(a), for wwe.

On Rn, define F : Rn → V by F (x1, x2, . . . , xn) =
∏n

i=1 f(xi). For an
additive code C ⊆ Rn, note that∑

x∈C

F (x) =

{
peC(Z1, . . . , Zm), for pe,

wweC(X, Y ), for wwe.

The next steps depend on the specific ring, partition, and weight w:

• calculate the Fourier transform of f : R→ V ;

• find F̂ by the product formula above;

• recognize the form of F̂ as an enumerator (if possible);
• apply the Poisson summation formula.
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Some care must be taken to show that the form of F̂ is that of an
enumerator. Care must also be taken to check if one can reverse the
roles of the code and its annihilator. See [8] for details.
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(P. Solé, ed.), Ser. Coding Theory Cryptol., vol. 6, World Sci. Publ., Hacken-
sack, NJ, 2009, pp. 124–190. MR 2850303

[29] , Isometry groups of additive codes over finite fields, J. Algebra Appl.
17 (2018), no. 10, 39 pages, paper 1850198. MR 3866771

[30] , Homogeneous weight enumerators over integer residue rings and fail-
ures of the MacWilliams identities, Rev. Un. Mat. Argentina 64 (2023), no. 2,
333–353.

[31] B. Yildiz and S. Karadeniz, Linear codes over Z4 + uZ4: MacWilliams iden-
tities, projections, and formally self-dual codes, Finite Fields Appl. 27 (2014),
24–40. MR 3168981

Western Michigan University
Email address: jay.wood@wmich.edu


	1. Introduction
	Part 1. Generalities
	2. Preliminaries
	3. MacWilliams identities
	4. Linear codes via multiplicity functions
	5. Singletons in dual codes

	Part 2. Finite Chain Rings
	6. Definitions and a positive result
	7. Modules over a chain ring
	8. Two families of linear codes with the same wwe
	9. Analysis of dual codewords of low weight
	10. Weak monotonicity and final arguments
	11. Symmetrized enumerators and examples

	Part 3. Matrix Rings over Finite Fields
	12. Matrix modules, their orbits, and a positive result
	13. W-matrix
	14. Locally constant functions
	15. Wbar-matrix
	16. Constructions
	17. Degeneracies
	18. Analysis of singleton dual codewords
	19. Main results
	20. Rank partition enumerators
	21. Examples
	22. The case of 3-by-3 matrices
	Appendix A. Fourier transform
	References


