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Abstract 
We propose that the liquidity of an asset includes two components: liquidity jump and liquidity 
diffusion.  We show that liquidity diffusion has a higher correlation with crypto wash trading than 
liquidity jump and demonstrate that treatment on wash trading significantly reduces the level of 
liquidity diffusion, but only marginally reduces that of liquidity jump.  We confirm that the 
autoregressive models are highly effective in modeling the liquidity-adjusted return with and 
without treatment on wash trading.  We argue that treatment on wash trading is unnecessary in 
modeling established crypto assets that trade in unregulated but mainstream exchanges. 
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Liquidity Jump, Liquidity Diffusion, and Treatment on Wash Trading of Crypto Assets 

1. Introduction 

Liquidity risk is a crucial factor in asset trading.  When an asset lacks liquidity, it can lead to 

wider bid-ask spreads, increased transaction costs, and potential price volatility.  On the other 

hand, extreme liquidity leads to price jumps, causing the asset’s return and volatility to lose its 

autoregressive properties and therefore be hard to model in terms of predictability.  For example, 

Deng and Zhou (2024) show that the traditional ARMA-GARCH/EGARCH models are no longer 

effective in modeling assets with extreme liquidity.  Furthermore, they demonstrate, both 

theoretically and with empirical evidence, that if the return and volatility of assets with extreme 

liquidity are adjusted with proper liquidity measures, their well-behaved autoregressive properties 

can be restored, and can be modeled effectively again by the AMRA-GARCH/EGARCH models.  

They use crypto assets to represent assets with extreme liquidity, of which trading is unregulated 

and subject to manipulative activities known as “wash trading” (Cong et al., 2023). 

In order to combat the effect of wash trading, in their attempt to model the liquidity of crypto 

assets, Deng and Zhou (2024) deploy a treatment.  In the process of aggregating the tick-level data 

(collected from Binance) to calculate the minute-level (intraday) trading amount (𝐴!), they divide 

𝐴! into four quantiles (Q1-Q4) of equal quantity and reduce the quantity of Q3 (50 percentile) by 

a factor of 50%, and the quantity of Q4 (75 percentile) by a factor of 75%.  From the minute-level 

data they further calculate daily amount, which is on average about 40% of the untreated “raw” 

daily amount across the selected assets, or about 60% of the raw daily amount is regarded as being 

from wash trades.  Since Cong et al. (2023) estimate that wash trades count for 46.47% of the total 

amount in Binance, the treatment of Deng and Zhou (2024) is actually more stringent.   
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This paper is inspired by Deng and Zhou (2024) and Cong et al. (2023).  Cong et al. (2023) find 

that wash trading of a crypto asset is proportional to the asset’s price over the immediate horizon 

(in the same week).  This may create “short-term price jumps,” suggesting that treatment on wash 

trading that reduces price jumps should improve the asset’s responsiveness to the autoregressive 

models.  However, Deng and Zhou (2024) find the liquidity-adjusted ARMA-GARCH/EGARCH 

constructs are equally effective in modeling crypto assets, either with or without such treatment.  

The apparent contradiction prompts us to propose the following two hypotheses: 1) that treatment 

on wash trading in Deng and Zhou (2024) only affects the volatility of jumps (the “short-term” in 

“short-term price jumps”), but not the magnitude of jumps (the “price jumps” in “short-term price 

jumps”) that actually dominate the asset’s responsiveness to the autoregressive models; and 2) that 

liquidity-adjustment in Deng and Zhou (2024) adequately reduces the magnitude of price jumps 

with and without the treatment on wash trading, and therefore is equally effective under either 

condition in restoring the asset’s responsiveness to the autoregressive models.   

The above hypotheses are the direct reasons for us to investigate whether liquidity itself is 

comprised of lower-level components that react to treatment on wash trading differently.  In this 

paper, we divide the liquidity of an asset into two distinctive yet complementary components: 

liquidity jump and liquidity diffusion.  We propose an innovative liquidity jump-diffusion model 

derived from the liquidity-adjusted return and volatility measures of Deng and Zhou (2024).  The 

liquidity jump is defined as the ratio of regular return and liquidity-adjusted return that measures 

the magnitude of aggregated price jumps in a given day, while the liquidity diffusion is defined as 

the ratio of  regular volatility and liquidity-adjusted volatility that reflects the intraday volatility of 

the aggregated daily jumps.  We further provide empirical evidence to support Hypothesis 1 by 

demonstrating that treatment on wash trading significantly reduces the level of liquidity diffusion, 



 

 

 

3 

but only reduces the level of liquidity jump to a certain degree that is inadequate to restore the 

asset’s responsiveness to the autoregressive models. 

Following Deng and Zhou (2024), we apply the forecasted daily liquidity-adjusted return 

produced by the liquidity-adjusted ARMA-GARCH/EGARCH models as the inputs to the LAMV 

constructs for portfolio optimization.1   For comparison, we duplicate the procedure with the 

forecasted daily regular (non-liquidity-adjusted) return being fed into the TMV constructs.  We 

observe a clear advantage for the LAMV over the TMV in portfolio performance, either with or 

without treatment on wash trading.  Our empirical evidence supports Hypothesis 2 that liquidity-

adjustment significantly reduces the level of liquidity jump, enabling the autoregressive models 

with much improved predictability in modeling assets with extreme liquidity, regardless of 

treatment on wash trading.  Combining the empirical evidence that support both hypotheses, we 

establish that liquidity adjustment reduces the level of liquidity jump adequately in restoring the 

autoregressive properties to the (liquidity-adjusted) return and volatility of assets with extreme 

liquidity, while that treatment on wash trading is not necessary as it does not reduces the level of 

liquidity jump adequately to restore the effectiveness to the autoregressive models. 

The contribution of this paper is three-fold.  First, we develop two distinctive yet 

complementary asset-level liquidity measures: the liquidity jump that measures the magnitude of 

aggregated price jumps in a given day, and the liquidity diffusion is defined as the ratio of  regular 

volatility and liquidity-adjusted volatility that reflects the intraday volatility of the aggregated daily 

 
 
 
1 Following Deng and Zhou (2024), we use the standard Mean-Variance (MV) method to optimize portfolios with 
forecasted returns produced by the liquidity-adjusted ARMA-GARCH/EGARCH models and name these portfolios 
the “liquidity-adjusted Mean Variance (LAMV)” portfolios.  We also use the standard MV to optimize portfolios with 
forecasted returns produced by the traditional ARMA-GARCH/EGARCH models and name these portfolios the 
“traditional Mean Variance (TMV)” portfolios.  We use these terms throughout this paper. 
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jumps.  Second, we establish that treatment on wash greatly reduces the level of liquidity diffusion, 

but does not adequately reduce the level of liquidity jump, which actually dominates the asset’s 

responsiveness to the autoregressive models.  Third, we demonstrate that liquidity-adjustment 

adequately reduces the level of liquidity jump with and without the treatment on wash trading, and 

therefore is effective in restoring the asset’s responsiveness to the autoregressive models.  

Therefore, treatment on washing trading for established crypto assets is neither adequate nor 

necessary.  While we use crypto assets to exemplify the usefulness and utilities of our models, in 

general, they are effective on other assets with extreme liquidity. 

The rest of the paper proceeds as follows.  Section 2 reviews literature on components of asset 

liquidity.  Section 3 introduces the asset-level liquidity jump and liquidity diffusion based on the 

liquidity-adjusted return and volatility proposed by Deng and Zhou (2024).  Section 4 provides 

descriptive statistics and visualizations of the dataset and discusses the distributions of liquidity 

jump and diffusion.  Section 5 reviews the liquidity-adjusted ARMA-GARCH/EGARCH models 

in Deng and Zhou (2024).  Section 6 optimizes the portfolios of selected crypto assets with the 

MV specifications to provide empirical support to our hypotheses.  Section 7 concludes the paper. 

2. Literature Review 

Deng and Zhou (2024) provide a thorough literature review on asset-level liquidity measures, 

liquidity costs, volatility of liquidity, and models of assets with extreme liquidity.  In this section, 

we briefly review the literature (or lack of) on modeling asset liquidity in the context of (explicitly) 

dividing liquidity into jump and diffusion and discuss the impact of each component on asset 

trading.  In addition, we review the literature that addresses wash trading of unregulated assets 

with extreme liquidity, i.e., crypto assets. 
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Through a careful search and to our best knowledge, we believe that this paper is the first 

attempt to explicitly decompose liquidity into two distinctive yet complementary components: 

liquidity jump and liquidity diffusion.  Some earlier work, such as those by Andersen et al. (2001), 

Amihud (2002), and Hou and Moskowitz (2008) show liquidity can vary across different market 

conditions and asset classes, which, in essence, discuss the cross-sectional variability of liquidity 

jump.  Gabaix et al. (2006) find evidence of clustering in jumps, that extreme liquidity is not purely 

random but driven by common factors or dynamics in the market, suggesting the temporal 

variability of liquidity jump.  Another stream of research, such as Datar, Naik, and Radcliffe 

(1998), Chordia and Subrahmanyam (2004), and Bekaert, Harvey and Lundblad (2007) show that 

the level of liquidity variability is generally associated with transaction costs, bid-ask spreads, and 

market depth, touching upon the liquidity diffusion in the context of market microstructure.  Roll 

(1984), Huberman and Halka (2001), and Aït-Sahalia, Mykland and Zhang (2005) share a broader 

view on a crucial role that liquidity plays towards market efficiency, pricing dynamics, and risk 

management in continuous-time processes, revealing both the temporal and cross-sectional nature 

of liquidity jump and liquidity diffusion.   

However, there are two major gaps in the abovementioned literature: 1) there is no explicit 

attempt to further divide liquidity into a jump and diffusion components, therefore the impact of 

liquidity on the trading assets with extreme liquidity (and vice versa) cannot be fine-tuned; and 2) 

all studies have an (implicit) assumption that the assets under investigation are strictly-regulated 

and well-behaved that do not exhibit frequent extreme liquidity and are not subject to wash trading.  

Both gaps render their models inadequate in dealing with the trading of crypto assets. 

Le Pennec, Fiedler and Ante (2021) analyze wash trading based on web traffic and wallet data 

and propose that wash trading counts for more than 90% volume-wise for most investigated crypto 
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exchanges.  Aloosh and Li (2024) provide evidence for the wash trading of Bitcoin across different 

crypto exchanges.  The most comprehensive study on crypto wash trading is Cong et al. (2023), 

which categorizes crypto exchanges into two groups: a regulated one and an unregulated one (two 

tiers) and demonstrate that wash trades average more than 70% of the reported volumes for the 

unregulated exchanges.  These studies establish that the potential impact of wash trading, in the 

context of asset liquidity, must be adequately analyzed and/or addressed.  

3. Liquidity Jump and Liquidity Diffusion 

In this subsection, we first briefly review the asset-level liquidity-adjusted return and volatility 

proposed by Deng and Zhou (2024).  Using the tick-level trading data from the most dominant 

crypto asset exchange, Binance, Deng and Zhou (2024) model the unobservable minute-level 

liquidity-adjusted volatility 𝜎"#
ℓ  and return 𝑟!ℓ at equilibrium for time-period T (a 24-hour/1440-

minute trading day) as follows: 
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𝑤ℎ𝑒𝑟𝑒:		
1. 𝑟!	𝑖𝑠	𝑡ℎ𝑒	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑟𝑒𝑡𝑢𝑟𝑛	𝑎𝑡	𝑚𝑖𝑛𝑢𝑡𝑒	𝑡, 𝑟!5	𝑖𝑠	𝑖𝑡𝑠	𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑖𝑛	𝑡ℎ𝑎𝑡	𝑑𝑎𝑦,	
2. |𝑟!|𝑖𝑠	𝑡ℎ𝑒	𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑟!, |𝑟!|====	𝑖𝑠	𝑖𝑡𝑠	𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑖𝑛	𝑡ℎ𝑎𝑡	𝑑𝑎𝑦,	
3. 𝑟!ℓ𝑖𝑠	𝑡ℎ𝑒	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦-𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑟𝑒𝑡𝑢𝑟𝑛	𝑎𝑡	𝑚𝑖𝑛𝑢𝑡𝑒	𝑡, 𝑟!ℓ5 	𝑖𝑠	𝑖𝑡𝑠	𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑖𝑛	𝑡ℎ𝑎𝑡	𝑑𝑎𝑦,		
4. 𝐴!	𝑖𝑠	𝑡ℎ𝑒	𝑑𝑜𝑙𝑙𝑎𝑟	(𝑈𝑆𝐷𝑇)	𝑎𝑚𝑜𝑢𝑛𝑡	𝑡𝑟𝑎𝑑𝑒𝑑	𝑎𝑡	𝑚𝑖𝑛𝑢𝑡𝑒	𝑡, 𝐴!===𝑖𝑠	𝑖𝑡𝑠	𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑖𝑛	𝑡ℎ𝑎𝑡	𝑑𝑎𝑦,		
5. 𝜂#	𝑖𝑠	𝑡ℎ𝑒	𝑑𝑎𝑖𝑙𝑦	𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	𝑜𝑛	𝑑𝑎𝑦	𝑇	𝑎𝑛𝑑	𝑖𝑠	𝑎	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑓𝑜𝑟	𝑑𝑎𝑦	𝑇,	
6. 𝛽!$	𝑖𝑠	𝑡ℎ𝑒	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑝𝑟𝑒𝑚𝑖𝑢𝑚	𝑓𝑎𝑐𝑡𝑜𝑟	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡,	
7. 𝑇 = 1440	𝑎𝑠	𝑡ℎ𝑒𝑟𝑒	𝑎𝑟𝑒	1440	𝑚𝑖𝑛𝑢𝑡𝑒𝑠	(24	ℎ𝑜𝑢𝑟𝑠)	𝑖𝑛	𝑎	𝑐𝑟𝑦𝑝𝑡𝑜	𝑎𝑠𝑠𝑒𝑡	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑑𝑎𝑦.	 	 	 	 	

The minute-level “liquidity premium Beta” 𝛽!ℓ is a unitless and normalized liquidity measure: 
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𝛽*ℓ ⊂ ;
> 1; ℎ𝑖𝑔ℎ	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦															
= 1; 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦
< 1; 𝑙𝑜𝑤	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦																	

	 	 	 	 	 	 	 	 	

The daily (day-level) regular and liquidity-adjusted returns for time-period T is obtained by 

aggregating the intraday (minute-level) returns are given as: 

𝑟"" = (1 + 𝑟*)" − 1 ≅ (1𝑠𝑡	𝑜𝑟𝑑𝑒𝑟)		∑ 𝑟*"
*+$ 	 	 	 	 	 	 	 	

𝑟""ℓ = K1 + 𝑟*ℓL
" − 1 ≅ (1𝑠𝑡	𝑜𝑟𝑑𝑒𝑟)		∑ 𝑟*ℓ"

*+$ 	 	 	 	 	 	 	 	

The realized and unobservable daily (intraday on minute-level) variance for time-period T is: 

𝜎!""
ℓ = 𝑇𝜎!"

ℓ 		 	 	 	 	 	 	 	 	 	 	

The “daily liquidity premium Beta,” 𝛽%//
ℓ , for time-period T is thus defined as follows: 

𝛽&((
ℓ = M𝑟"" 𝑟""ℓ⁄ M ⊂ ;

> 1; ℎ𝑖𝑔ℎ	𝑑𝑎𝑖𝑙𝑦	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒															
= 1; 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚	𝑑𝑎𝑖𝑙𝑦	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
< 1; 𝑙𝑜𝑤	𝑑𝑎𝑖𝑙𝑦	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒																	

	 	 	 	 (1)	

In this paper, we expand Deng and Zhou (2024) and introduce a “daily liquidity volatility Beta,” 

𝛽&//
ℓ , which reflects the volatility of liquidity for time-period T, defined as follows: 

𝛽0((
ℓ = M𝜎"" 𝜎""ℓ⁄ M ⊂ ;

> 1; ℎ𝑖𝑔ℎ	𝑑𝑎𝑖𝑙𝑦	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦														
= 1; 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚	𝑑𝑎𝑖𝑙𝑦	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
< 1; 𝑙𝑜𝑤	𝑑𝑎𝑖𝑙𝑦	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦	𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦																

	 	 	 	 (2)	

Together, 𝛽%//
ℓ  and 𝛽&//

ℓ  form the “daily liquidity Beta” pair, which enables us to further divide 

the asset-level liquidity into two distinctive yet complementary components: jump and diffusion.  

We regard 𝛽%//
ℓ  as the “liquidity jump,” which is a proxy of liquidity magnitude that indicates 

extreme liquidity when its value is much greater than (𝛽%//
ℓ ≫ 1).  We also regard 𝛽&//

ℓ  as the 
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“liquidity diffusion,” which reflects liquidity volatility that points to extreme liquidity volatility 

when its value is much greater than 1 (𝛽&//
ℓ ≫ 1).2 

4. Dataset, Descriptive Statistics, and Distribution Visualizations 

We follow Deng and Zhou (2024) to select 10 largest crypto assets by their market values with 

at least 4.5 years of historical data (April 27, 2019 to February 8, 2024 with 1,749 trading days) 

for 3.5-year back-tests (April 27, 2020 to February 8, 2024, 1,383 trading days) with a 1-year (365 

days) rolling window.  The selected crypto assets are ADA, BNB, BTC, ETC, ETH, LINK, LTC, 

MATIC, XMR and XRP.  We first collect tick-level trading data of these assets from the Binance 

API and aggregate the tick-level data to construct minute-level (intraday) amount.  We then 

construct minute-level (intraday) return and variance, both regular (𝑟!  and 𝜎"! ) and liquidity-

adjusted (𝑟!ℓand 𝜎"!
ℓ).  From the minute-level data we calculate their corresponding daily minute-

level returns and variances, both regular (𝑟## and 𝜎"##) and liquidity-adjusted (𝑟##ℓ  and 𝜎"##
ℓ ), as 

well as the daily liquidity premium Beta 𝛽%//
ℓ  and daily liquidity volatility Beta 𝛽&//

ℓ .  We conduct 

the procedure twice to create two sets of data, one with treatment on wash trading and one without, 

in order to study the impact of treatment on wash trading.3  We report the descriptive statistics of 

𝛽%//
ℓ  and 𝛽&//

ℓ  for all assets in Tables 1 to 2, with companion visualizations in Figures 1 to 6. 

4.1 Comparisons of 𝜷𝒓𝑻𝑻
𝓵  with and without Treatment on Wash Trading 

Panel A of Table 1 summarizes the descriptive statistics of the daily liquidity premium Beta 

𝛽%//
ℓ  for all the assets with treatment on wash trading, and Panel B of Table 1 provides similar 

 
 
 
2 Practically, liquidity magnitude is “extreme” when 𝛽&((

ℓ ≥ 4, and liquidity volatility is “extreme” when 𝛽0((
ℓ ≥ 2.5. 

3 We follow the method of removing wash trades by Deng and Zhou (2024). 
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statistics without treatment on wash trading.  Comparing the descriptive statistics from Panel A 

with those from Panel B, we observe that, the mean (between 1.19 for BTC and 1.57 for ADA) 

and median (ranging from 0.73 for BTC to 0.91 for BNB) of 𝛽%//
ℓ  with treatment are all reduced 

from mean (between 1.40 for BTC and 2.02 for ADA) and median (ranging from 0.90 for XMR 

to 1.06 for ADA) without treatment, respectively.  On the other hand, although the number of days 

with the maximum value of 𝛽%//
ℓ  (=10) is reduced to a range of 30 for BTC to 64 for ADA with 

treatment from a range of 44 for BTC) to 110 for XMR without treatment, its share in the overall 

𝛽%//
ℓ  load is reduced by a much smaller margin, to a range of 14.40% for BTC to 23.81% for XMR 

with treatment from a range of 16.85% for BTC to 31.81% for XMR without.  Thus, the treatment 

on wash trading removes some extreme liquidity and thus reduces the level of liquidity jump by a 

certain degree, but far from being adequate to alter the asset’s reaction to modeling. 

4.2 Comparisons of 𝜷𝝈𝑻𝑻
𝓵  with and without Treatment on Wash Trading 

Panels A and B of Table 2 summarize the descriptive statistics of the daily liquidity volatility 

Beta 𝛽&//
ℓ  for all the assets with and without treatment on wash trading, respectively.  The mean 

(between 0.66 for BTC and 0.87 for ETC and XMR) and median (ranging from 0.67 for BTC to 

0.88 for XMR) of 𝛽&//
ℓ  with treatment are all reduced from mean (between 0.87 for ETH and 1.49 

for XMR) and median (ranging from 0.82 for BTC to 1.18 for ETC) without treatment. It is 

interesting that the number of days with the maximum value of 𝛽&//
ℓ  (=10) is reduced to 0 for all 

assets with treatment from a range of 0 for BNB, BTC, ETC, ETH to 19 days for XMR without 

treatment.  What is more significant is that with treatment on wash trading, there is no day with 

extreme liquidity volatility (𝛽&//
ℓ ≫ 1) as the range of maximum 𝛽&//

ℓ  is between 0.85 for BTC 

and 2.07 for LINK, while without treatment, only BTC (𝑚𝑎𝑥 = 1.15) and ETH (𝑚𝑎𝑥 = 1.45) 
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have no day with extreme liquidity volatility.  It seems that treatment on wash trading completely 

removes trades that cause extreme liquidity volatility (which admittingly are not many to begin 

with), and therefore greatly reduces the level of liquidity diffusion. 

4.3 Visualizations of 𝜷𝒓𝑻𝑻
𝓵  and 𝜷𝝈𝑻𝑻

𝓵  with and without Treatment on Wash Trading 

Figures 1 and 2 provide the scatter plots of 𝛽%//
ℓ -𝛽&//

ℓ  for all the assets with and without 

treatment on wash trading respectively.  The most obvious observation is that a plot in Figure 1 

(with treatment) has a much narrower interval along the x-axis (𝛽&//
ℓ ) than its corresponding plot 

in Figure 2 (without treatment) with the noticeable exceptions of BTC and ETH, while both plots 

have the same interval along the y-axis (𝛽%//
ℓ ) with a maximum value of 10.  These visualizations 

illustrate that the treatment on wash trading indeed removes a number of jumps and all extreme 

liquidity volatility, resulting in a marginally lower level of liquidity jump and a significantly lower 

level of liquidity diffusion. 

Figures 3 and 4 provide additional visualizations for liquidity jump 𝛽%//
ℓ  with and without 

treatment on wash trading respectively.  In Figure 3 (with treatment),  a set of histograms (Figure 

3 Column 1) confirms that 𝛽%//
ℓ  has a thin yet very long right tail for all the assets.4  Also a set of 

scatter plots (𝑟##  vs. 𝑟##ℓ ) overlapping a straight line with coefficient of 1.0 (𝛽%//
ℓ  =1.0 or 

equilibrium value) (Figure 1 Column 2) confirms that there are more days with low liquidity (𝛽%//
ℓ  

< 1.0) than the days with high liquidity (𝛽%//
ℓ   > 1.0).  Furthermore, a set of 3D scatter plots in 

Figure 1 Column 3 illustrates the distribution of 𝑟## - 𝑟##ℓ -𝛽%//
ℓ , which provides additional 

 
 
 
4 There are spikes of 𝛽&((

ℓ  at 10, as again we cap them to avoid extremely large values. 
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information from the third dimension of liquidity (𝛽%//
ℓ ).  In summary, the liquidity jump 𝛽%//

ℓ  is 

highly asymmetric, positively skewed with a long right tail for all the assets.  The results are 

consistent with Deng and Zhou (2024).  In Figure 4 (without treatment), the histograms (Figure 4 

Column 1) show that the distribution of  𝛽%//
ℓ  is similar as that of its counterpart in Figure 3 (with 

treatment) for all assets, but with a “taller” bar on the far right (𝛽%//
ℓ = 10), indicating that the 

treatment removes a number of trades with extreme liquidity that are presumed to be wash trades. 

Figures 5 and 6 provide additional visualizations for liquidity diffusion 𝛽&//
ℓ , with and without 

treatment on wash trading respectively.  With the treatment (Figure 5), 𝛽&//
ℓ  has a relatively 

symmetric and narrow distribution with no extreme values (Figure 5 Column 1).  Also a set of 

scatter plots (𝜎##  vs. 𝜎##ℓ ) overlapping a straight line with coefficient of 1.0 (𝛽&//
ℓ =1.0 or 

equilibrium value) (Figure 5 Column 2) confirms that an overwhelming majority of days has low 

liquidity volatility (𝛽&//
ℓ  < 1.0).  Furthermore, the 3D scatter plots in Figure 5 Column 3 provide 

distributions of 𝜎##-𝜎##ℓ -𝛽&//
ℓ  to visualize the additional information from the third dimension of 

liquidity (𝛽&//
ℓ ).  The histograms in Figure 6 Column 1 (without treatment) show that the 

distribution of 𝛽&//
ℓ  is different from that of its counterpart in Figure 5 (with treatment) with a 

significant longer right tail and a bar on the far right (𝛽&//
ℓ = 10), indicating that the treatment 

removes almost all the trades with extreme liquidity volatility potentially brought by wash trades, 

with the noticeable exceptions of BTC and ETH. 

4.4 Discussions on 𝜷𝒓𝑻𝑻
𝓵  and 𝜷𝝈𝑻𝑻

𝓵  as Indicators of Wash Trading 

It is worth mentioning that the two most popular crypto assets, by either market value or media 

popularity, BTC (Bitcoin) and ETH (Ethereum), do not have extreme liquidity volatility even 



 

 

 

12 

without treatment on wash trading (1.15 and 1.45, respectively).  This, combing with that BTC 

and ETH also have the lowest number of days with a maximum value of 𝛽%//
ℓ  (44 and 52 from 

Panel B of Table 1) without the treatment, indicates that BTC and ETH have fewer number of 

trades with relatively high volumes compared to other crypto assets that are unlikely wash trades.5    

From a technical standpoint, the above observations provide an alternative method of measuring 

the severity of wash trading, that the liquidity diffusion 𝛽&//
ℓ  has a higher correlation with wash 

trading than the liquidity jump 𝛽%//
ℓ .  A reasonable economic explanation is that, when trading 

large market-cap crypto assets in established exchanges such as Binance, manipulative traders do 

not conduct a small number of very large-volume trades, but engage in high-frequency, large 

number of small-volume and momentum trades, sometimes with drastically different price points, 

as their motivation is not necessarily the long-term upward price movement that they may have 

difficulty to maintain, but small and frequent short-term gains that are sustainable.  These trades 

in turn increase liquidity volatility, resulting in higher level of liquidity diffusion.  On the other 

hand, the vast majority of very large-volume trades that induce higher level of liquidity jump may 

actually reflect legitimate high demand compounded with unregulated trading.  Our results indicate 

that treatment on wash trading essentially removes all small-volume wash trades, but only some 

large-volume wash trades. 

The above results seem to suggest that the liquidity diffusion is a better indicator of wash trading 

than the liquidity jump, and a combination of high liquidity jump and high liquidity diffusion is 

 
 
 
5 Note that in the context of crypto trading a “high volume” is relative, that a relatively small volume for BTC may 
still be larger in absolute term than a relatively large volume for a crypto asset with a smaller market cap, however, 
the former may have a lower liquidity premium Beta 𝛽&((

ℓ  than the latter. 
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the most reliable indicator for wash trading.  A closer look of the scatter plots in Figure 2 (without 

treatment) reveals that that the number days with both high liquidity jump and high liquidity 

diffusion, presumably resulting from wash trades, is very scarce (between 0 and ~10) for all assets.  

Therefore, we argue that wash trading is actually very uncommon among high market-cap crypto 

assets (even beyond BTC and ETH) that trade in established exchanges, and certainly not to the 

degree suggested by Cong et al. (2023).  The reason may reside in that Cong et al. (2023) 

investigate a significant number of smaller exchanges that trade a substantial number of low-

market-cap crypto assets, and smaller exchanges that trade practically worthless crypto assets (“air 

coins”) are more prone to wash trading.  In our study, for the selected 10 crypto assets with high 

market-cap, long trading history, and traded in the top exchange, Binance, wash trading is 

insignificant.  In addition, treatment on wash trading might actually reduce portfolio performance 

if legitimate high-volume trades are removed (see Section 6).  For that matter, in general, it is 

unnecessary to provide treatment on wash trading, if the crypto assets under investigation are 

established and traded in mainstream exchanges, even if these exchanges are unregulated. 

In summary, the above statistics on 𝛽%//
ℓ  and 𝛽&//

ℓ  support our Hypothesis 1, that treatment on 

wash trading significantly reduces the volatility of jumps (measured by liquidity diffusion), but 

only marginally affects the magnitude of jumps (measured by liquidity jump).  Section 6 will 

provide additional empirical evidence that treatment on wash trading without liquidity-adjustment 

does not adequately improve the asset’s responsiveness to the autoregressive models. 

5. Liquidity-Adjusted ARMA-GARCH/EGARCH Models  
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In this subsection we briefly review liquidity-adjusted ARMA-GARCH/EGARCH construct 

for the modeling of univariate condition return by Deng and Zhou (2024).6  We apply the standard 

ARMA(p,q)-GARCH/EGARCH(1,1) model on both 𝑟!  and 𝑟!ℓ  (with and without treatment on 

wash trading) for each asset to estimate its conditional returns and variances for the in-sample 

observations (April 27, 2020 to February 8, 2024, 1,383 trading days) with a 365-day rolling 

window.7  The ARMA-GARCH/EGARCH constructs are given as follows:   

𝐴𝑅𝑀𝐴(𝑝, 𝑞):	𝑟* = 𝛿 +∑ 𝜙2𝑟*32
4
2+$ −∑ 𝜃5𝜖*35

6
5+$ + 𝜖*	 	 	 	 	 	 (3a)	

𝐺𝐴𝑅𝐶𝐻(1,1):	𝜎*! = 𝜔 + 𝒶𝜖*3$! +𝒷𝜎*3$! 		 	 	 	 	 	 	 (3b)	

𝐸𝐺𝐴𝑅𝐶𝐻(1,1):	𝑙𝑜𝑔 𝜎*! = 𝜔 +𝒷𝑔(𝑍*3$) + 𝒶 𝑙𝑜𝑔 𝜎*3$! 	 	 	 	 	 	 (3c)	

𝑤ℎ𝑒𝑟𝑒	𝑔(𝑍*) = 𝜃𝑍* + 𝜆K|𝑍*| − 𝛦(|𝑍*|)L;	𝑍*~𝑁(0,1)	

In the ARMA stage, they use the Akaike Information Criterion (AIC) to select the best-fit values 

of p and q (p, q ≤ 4) for each rolling window (Equation 3a).  In the GARCH/EGARCH stage, they 

adopt the (1,1) specification and use the AIC criteria to select between a GARCH (Equation 3b) 

specification and an EGARCH specification (Equation 3c) for each in-sample day t.  They then 

apply Equation 3a to produce the one-period (t+1) forecasted conditional mean return vector 

(𝜇̂!*+
,%-,) of the 10 assets for each rolling window for 𝑟!, and 𝑟!ℓ with and without treatment.8  We 

follow their modeling procedure in this paper. 

6. Empirical Tests on Liquidity-Adjusted Autoregressive Models  

 
 
 
6 From this point on, the subscript t refers to a point in time with a daily interval, i.e., day t. 
7 Deng and Zhou (2024) establish that 𝑟* and 𝑟*ℓ, with and without treatment on wash trading, are stationary series 
through Adam-Fuller tests and therefore can be modeled by the autoregressive models. 
8 For the rest of the paper, the “current timestamp” is end of day t, thus a variable with a t subscript is “realized” (either 
a direct observation or a calculated value from direct observations), while a variable with a t+1 subscript is a one-
period forecasted value.  We also use accent mark “𝑣̅” to represent a mean variable, accent mark “𝑣s” to represent a 
forecasted variable, and no accent mark “𝑣	” to represent a realized variable. 
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In this section we provide empirical evidence that the liquidity-adjusted autoregressive models 

of Section 5 offer better predictability on conditional return than their traditional counterparts, 

through comparing the performance of LVMV portfolios against that of the TMV ones. 

6.1 Benchmark Portfolios 

We construct the benchmark portfolios following Deng and Zhou (2024): 

1. Portfolio 1: An equal-weight portfolio with each asset assigned an equal weight of 10%. 

2. Portfolio 2: A market (equilibrium) portfolio with each asset assigned a weight proportional 

to its market weight (in amount). 

3. Portfolio 3: A liquidity-weight portfolio with treatment on wash trading, with each asset 

assigned a weight proportional to its daily liquidity jump 4~𝛽%7
ℓ 6 , for the short-term 

investors that take advantage of low transaction costs. 

4. Portfolio 4: It is the same as Portfolio 3 but without treatment on wash trading. 

5. Portfolio 5: An inverse-liquidity-weight portfolio with treatment on wash trading, with each 

asset assigned a weight that is inversely proportional to its daily liquidity jump 4~1 𝛽%7
ℓ⁄ 6, 

for the long-term investors that seek a liquidity premium.   

6. Portfolio 6: It is the same as Portfolio 5 but without treatment on wash trading.   

All the benchmark portfolios do not include the risk-free asset USDT (zero weight).  

6.2 Standard MV Portfolios 

Following Deng and Zhou (2024), we then construct three MV portfolios: traditional (TMV), 

liquidity adjusted and with treatment on wash trading (LAMV), and liquidity-adjusted without 

treatment on wash trading (LAMV).  The standard daily-optimized MV in a time-series construct 

can be analytically expressed as the following quadratic programming problem with constraints: 

𝑚𝑎𝑥
8!

*𝜇̅*𝑊* −
9!
!
𝑊*

:𝛴x*𝑊*+ ;𝐻	𝑖𝑠	𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒	 	 	 	 	 	 	 (4)	
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subject	to:	

� 𝑤*2
;

2
= 1; 	𝑖 = 𝑈𝑆𝐷𝑇, 𝐴𝐷𝐴, 𝐵𝑁𝐵, 𝐵𝑇𝐶, 𝐸𝑇𝐶, 𝐸𝑇𝐻, 𝐿𝐼𝑁𝐾, 𝐿𝑇𝐶,𝑀𝐴𝑇𝐼𝐶, 𝑋𝑀𝑅, 𝑋𝑅𝑃; 	𝑁 = 11	

𝑤*2 ≥ 0; 	long-only	

𝑤*<=>" ≤ 1	

𝑤*2 ≤ 0.300	(3	 × 	𝑒𝑞𝑢𝑎𝑙	𝑤𝑒𝑖𝑔ℎ𝑡); 	𝑖 ≠ 𝑈𝑆𝐷𝑇	
where:	

𝜆* =
&!,-!
. 3&!

#/

0!
0
,-!

= &!,-!
. 3&!

123(

0!
0
,-!

= &!,-!
.

0!
0
,-!
	 	 	 	 	 	

𝑟𝑡𝑚𝑘𝑡
𝑃 	𝑖𝑠	𝑡ℎ𝑒	𝑟𝑒𝑡𝑢𝑟𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑎𝑟𝑘𝑒𝑡	𝑜𝑟	𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚	𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜	𝑜𝑛	𝑑𝑎𝑦	𝑡, 𝜎𝑡

2
𝑚𝑘𝑡	𝑖𝑠	𝑖𝑡𝑠	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑟𝑜𝑙𝑙𝑖𝑛𝑔	𝑤𝑖𝑛𝑑𝑜𝑤;		

𝑟𝑡
𝑟𝑓𝑎𝑛𝑑	𝑟𝑡

𝑈𝑆𝐷𝑇𝑎𝑟𝑒	𝑡ℎ𝑒	𝑟𝑒𝑡𝑢𝑟𝑛𝑠	𝑜𝑓	𝑎	𝑟𝑖𝑠𝑘-𝑓𝑟𝑒𝑒	𝑎𝑠𝑠𝑒𝑡	𝑎𝑛𝑑	𝑈𝑆𝐷𝑇, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.		𝑈𝑆𝐷𝑇	𝑖𝑠	𝑟𝑒𝑔𝑎𝑟𝑑𝑒𝑑	𝑎𝑠	risk-free	𝑤𝑖𝑡ℎ	0	𝑟𝑒𝑡𝑢𝑟𝑛	

In the standard MV construct of Equation 4, 𝜇̅! is the mean (row) return vector of the ten-

asset portfolio over a 365-day rolling window ending on day t, and 𝛴:! is the covariance matrix 

of daily returns of the constituent assets in that rolling window.  Both 𝜇̅! and 𝛴:! are realized and 

derived from available information up to day t.  In addition, 𝑊! is the portfolio (column) weight 

vector to be optimized for day t.  The daily MV portfolios are: 

7. Portfolio 7: A TMV portfolio; 𝜇̅! is the mean vector of 𝑟!’s over the rolling window ending 

on day t, or 𝜇̅%7;  𝛴:! is the covariance matrix of 𝑟!’s for the rolling window, or 𝛴:%7. 

8. Portfolio 8: A LAMV portfolio with treatment on wash trading when constructing 𝑟!ℓ’s; 𝜇̅! 

is the mean vector of 𝑟!ℓ ’s over the rolling window ending on day t, or 𝜇̅%7ℓ ; 𝛴:!  is the 

covariance matrix of 𝑟!ℓ’s for the rolling window, or 𝛴:%7ℓ. 

9. Portfolio 9: It is the same as Portfolio 8 but without treatment on wash trading. 

6.3 ARMA-GARCH/EGARCH-enhanced MV Portfolios 

We follow Deng and Zhou (2024) to construct three additional ARMA-GARCH/EGARCH-

enhanced MV portfolios with forecasted daily return vector.  We rewrite Equation 4 by retaining 

𝛴:!  and replacing 𝜇̅!  with the ARMA-GARCH/EGARCH forecasted return vector, 𝜇̂!*+
,%-, .  The 

portfolios are constructed as: 
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𝑚𝑎𝑥
8!

*𝜇̂*?$
@&A@𝑊* −

9!
!
𝑊*

:𝛴x*𝑊*+	 	 	 	 	 	 	 	 	 (5)	

All the constraints for Equation 5 are the same as those for Equation 4.  The proposed ARMA-

GARCH/EGARCH-enhanced MV portfolios are: 

10. Portfolio 10: An ARMA-GARCH/EGARCH-enhanced TMV portfolio; 𝜇̂!*+
,%-, is the return 

vector of ARMA-GARCH/EGARCH forecasted 𝑟!  values for day t+1,  𝜇̂%7BC
,%-, ; 𝛴:!  is the 

covariance matrix of 𝑟!’s for the rolling window, or 𝛴:%7. 

11. Portfolio 11: An ARMA-GARCH/EGARCH-enhanced LAMV portfolio with treatment on 

wash trades; 𝜇̂!*+
,%-, is the return vector of ARMA-GARCH/EGARCH forecasted 𝑟!ℓ values 

for day t+1, 𝜇̂
%7BC
ℓ
,%-,; 𝛴:! is the covariance matrix of 𝑟!ℓ’s for the rolling window, or 𝛴:%7ℓ. 

12. Portfolio 12: It is the same as Portfolio 11 but without treatment on wash trades. 

6.4 Portfolio Descriptive Statistics and Discussions 

We use the annualized Sharpe Ratio (𝑆𝑅.) to compare the performance of the portfolios: 

𝑆𝑅@ =
&4.3&4

#/

04.
= &4.3&4123(

04.
= &4.

04.
         (6)	

Where:	
1. 𝑟01,	𝜎01	are	the	annualized	realized	regular	daily	portfolio	return	and	standard	deviation.	
2. 𝑟0

23	and	𝑟0456#	are	the	annualized	realized	daily	returns	for	the	risk-free	asset	and	USDT,	respectively.	

Table 3 captures the maximum daily portfolio return (Panel A), the maximum daily portfolio 

volatility (Panel B), and the Sharpe Ratios of 12 portfolios.  The benchmark portfolios (Portfolios 

1 to 6) are on the top.  The six MV portfolios (Portfolios 7 to 12) are arranged in such: the TMV 

portfolios with incremental forecast enhancement are listed on the left (Portfolios 7, 10), while 

their corresponding LAMV portfolios with treatment on wash trading are shown in the middle 

(Portfolios 8, 11), and without treatment on wash trading on the right (Portfolios 9, 12).  That way, 

it is easy to observe the progress in portfolio return and volatility after applying each enhancement 

vertically within the TMV and LAMV portfolios, and at the same time conveniently to compare 
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the difference in maximum portfolio return and portfolio volatility, and Sharpe Ratio between the 

TMV and LAMV portfolios after applying forecast-enhanced methodology horizontally. 

From Panel A of Table 3, the maximum daily return of the standard TMV Portfolio 7 at 

134.94% is much higher than that of the standard LAMV Portfolios 8 and 9 with and without the 

treatment on wash trading at 36.82% and 35.18%, respectively.  This indicates that the asset-level 

liquidity adjustment greatly reduces the portfolio-level jumps (which is beyond the scope of this 

paper and will be addressed in a subsequent study), while treatment on wash trading has no impact 

on portfolio-level jumps, which is consistent with our earlier argument that the treatment on wash 

trading does not reduce the asset-level liquidity jump 𝛽%7
ℓ  in a significant way. 

The maximum daily return of the TMV Portfolio 10 with forecast enhancement drops to a lower 

level at 72.96%.  For the LAMV portfolios, the maximum daily return of the forecast-enhanced 

portfolios (Portfolios 11 and 12) has no discontinuity from the standard portfolios (Portfolios  8 

and 9) at 38.51% and 42.83% with and without the treatment.  For the TMV portfolios, the result 

indicates that the ARMA-GARCH/EGARCH models try to “smoothen” the asset-level jumps with 

“extra effort,” and when such jumps are too severe (extreme liquidity) the correction seems not 

adequate, rendering the autoregressive models less effective.  However, for the LAMV portfolios, 

jumps are essentially removed and the (liquidity-adjusted) return can be modeled by autoregressive 

models effectively again, and treatment on wash trading has limited incremental effect on jump 

reduction.  This evidence provides another direct empirical support to Deng and Zhou (2024) and 

actually relaxes their requirement of treatment on wash trading. 

Panel B of Table 3 captures the maximum daily portfolio volatility for all the 12 portfolios.  

The maximum portfolio volatility exhibits the same pattern of the changes across the incrementally 
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enhanced TMV and LAMV portfolios (vertically), and similar values between the TMV and 

LAMV portfolios with the same incremental enhancement (horizontally).  Panel C of Table 3 

summarizes the performance of all 12 portfolios in terms of Sharpe Ratio (SR).  The LAMV 

portfolios demonstrate a clear incremental improvement with forecast enhancement, while the 

TMV portfolios exhibit a performance deterioration.  The standard TMV Portfolio 7 has a SR of 

1.35, which drops drastically to 0.75 for the forecast enhanced TMV Portfolio 9.  This result again 

supports Deng and Zhou (2024) that without reduction of jumps, the forecast of ARMA-

GARCH/EGARCH on 𝑟!*+ is actually less accurate than just averaging 𝑟!’s in a rolling window.  

On the other hand, the LAMV portfolios demonstrates that forecast enhancement improves their 

performance.  With treatment on wash trading, the SR of the standard LAMV Portfolio 8 from 

0.96 is greatly improved to 1.45 for the forecast enhanced LAMV Portfolio 11.  Without treatment, 

the SR is also greatly improved from 1.41 of the standard LAMV Portfolio 9 to 1.81 for the forecast 

enhanced LAMV Portfolio 12.  These results again indicate that the ARMA-GARCH/EGARCH 

model is highly effective in modeling the liquidity-adjusted return, with or without the treatment 

on wash trading, and provide another direct empirical support to Deng and Zhou (2024) in relaxing 

their requirement of treatment on wash trading. 

We notice that the standard LAMV portfolio with treatment on wash trading (Portfolio 8) has 

a lower SR (0.96) than that from the standard TMV Portfolio 7 (SR=1.35) and the standard LAMV 

Portfolio 9 without treatment on wash trading (SR=1.41).  This seems to suggest that treatment on 

wash trading may have removed legitimate high-volume trades that are not initiated by 

manipulative traders with malicious intent, and therefore negatively impacted portfolio 

performance.  As such, it may be better not to treat wash trading without having the ability to 

actually identify the real wash trades. 
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7. Conclusions 

In this paper, we propose that the liquidity of an asset can be divided into two distinctive yet 

complementary components: liquidity jump and liquidity diffusion.  The liquidity jump is defined 

as the ratio of regular return and liquidity-adjusted return that measures the magnitude of 

aggregated price jumps in a given day, while the liquidity diffusion is the ratio between regular 

volatility and liquidity-adjusted volatility that reflects the intraday volatility of the aggregated daily 

jumps.  The liquidity-adjusted return and volatility are developed in Deng and Zhou (2024). 

We investigate the effect of treatment on wash trading (Deng and Zhou, 2024) in the effort of 

combating the wash trades embedded in crypto trading (Cong et al., 2023).  We find that the 

liquidity diffusion has a higher correlation with wash trading than the liquidity jump, and that a 

combination of high liquidity jump and high liquidity diffusion is the most reliable indicator for 

wash trading.  An explanation is that for crypto assets with high market-cap and long trading 

history that trade in established exchanges, the manipulative traders do not conduct a small number 

of very large-volume trades as it is unlikely for them to maintain the long-term upward price 

movement, rather, they engage in high-frequency, large number of relatively small-volume 

momentum trades that award them with small, frequent, and sustainable short-term gains.  These 

trades in turn increase liquidity volatility, resulting in higher level of liquidity diffusion.  The 

distribution of the liquidity jump and liquidity diffusion indicates that wash trading is very 

uncommon among high market-cap crypto assets that trade in established exchanges.  On the other 

hand, the majority of very large-volume trades that induce higher level of liquidity jump may 

reflect legitimate high demand with unregulated trading.  We demonstrate that the treatment of 

washing trading significantly reduces the liquidity diffusion, but only reduces the liquidity jump 

to a level that is inadequate to restore the asset’s responsiveness to the autoregressive models.   
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We use the forecasted daily liquidity-adjusted return from the ARMA-GARCH/EGARCH 

models (Deng and Zhou, 2024) as inputs to the LAMV constructs for portfolio optimization.  For 

comparison, we duplicate the procedure with the forecasted daily regular (non-liquidity-adjusted) 

return being used as inputs to the TMV constructs.  We find that the ARMA-GARCH/EGARCH 

models are highly effective in modeling the liquidity-adjusted return as we observe a clear 

advantage for the LAMV over the TMV in portfolio optimization, with and without treatment on 

wash trading.  We also notice that the standard LAMV portfolio with treatment on wash trading 

actually has an inferior performance to that without the treatment, suggesting that the treatment 

may have removed a greater number of legitimate high-volume trades than actual wash trades, as 

there are only a negligible number of them to begin with.  Therefore, in general, it is unnecessary 

to treat wash trading in modeling established crypto assets that trade in mainstream exchanges, 

even if these exchanges are unregulated. 

In summary, by studying the behavior of the proposed liquidity jump and liquidity diffusion, 

we establish that the liquidity adjustment proposed by Deng and Zhou (2024) reduces the level of 

liquidity jump adequately in restoring the autoregressive properties to the (liquidity-adjusted) 

return and volatility of assets with extreme liquidity, while treatment on wash trading is not needed, 

as although it reduces the level of liquidity diffusion, it does not reduce the level of liquidity jump 

to adequately restore the effectiveness of the autoregressive models.  To some extent, treatment on 

wash trading may actually deteriorate the effectiveness of modeling as it removes legitimate high-

volume trades.  Our models provide a viable and robust alternative for modeling asset-level 

liquidity and its components of liquidity jump and liquidity diffusion, and can be utilized to model 

other asset classes with high liquidity risk.   
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Table 1 - Descriptive Statistics of Individual Asset 𝜷𝒓𝑻𝑻
𝓵  

This table reports descriptive statistics of liquidity jump (𝛽&((
ℓ ) for each crypto asset over the entire sample period. 

The maximum value of 𝛽&((
ℓ  is capped at 10.  All ten crypto assets and the portfolio are measured with their trading 

pairs with Tether or USDT, a “stable coin” pegged to the US dollar, which is regarded as the “risk-free” asset in 
portfolios with a 0% interest rate in terms of their market values. 

Panel A (wash trades removed) liquidity jump (𝛽2!!
ℓ ) 

ticker ADA BNB BTC ETC ETH LINK LTC MATIC XMR XRP 

count 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 

mean 1.57 1.55 1.19 1.53 1.36 1.38 1.51 1.41 1.47 1.34 

std 2.16 2.09 1.68 2.08 1.88 1.87 2.00 1.96 2.12 1.96 

min 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

25% 0.51 0.54 0.48 0.47 0.56 0.49 0.51 0.48 0.35 0.47 

50% (median) 0.84 0.91 0.73 0.84 0.81 0.83 0.87 0.83 0.78 0.75 

75% 1.48 1.47 1.15 1.53 1.27 1.36 1.53 1.37 1.43 1.23 

max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

highest days (= max) 64 62 30 55 52 38 53 47 61 51 

% of total days 3.66% 3.54% 1.72% 3.14% 2.97% 2.17% 3.03% 2.69% 3.49% 2.92% 

weight in beta 23.25% 22.83% 14.40% 20.55% 21.92% 15.73% 20.09% 19.13% 23.81% 21.76% 

highest days (>= mean) 401 416 408 437 386 425 443 421 429 385 

% of total days 22.93% 23.79% 23.33% 24.99% 22.07% 24.30% 25.33% 24.07% 24.53% 22.01% 

highest days (>= 1) 730 764 534 724 620 677 745 674 658 591 

% of total days 41.74% 43.68% 30.53% 41.40% 35.45% 38.71% 42.60% 38.54% 37.62% 33.79% 

lowest days (<= 0.10) 63 80 75 69 61 89 60 96 128 62 

% of total days 3.60% 4.57% 4.29% 3.95% 3.49% 5.09% 3.43% 5.49% 7.32% 3.54% 

                      

Panel B (wash trades retained) liquidity jump (𝛽2!!
ℓ ) 

ticker ADA BNB BTC ETC ETH LINK LTC MATIC XMR XRP 

count 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 

mean 2.02 1.78 1.49 1.99 1.60 1.97 1.99 1.88 1.98 1.59 

std 2.51 2.30 1.95 2.49 2.00 2.50 2.53 2.46 2.66 2.14 

min 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

25% 0.58 0.52 0.56 0.52 0.59 0.56 0.49 0.48 0.41 0.48 

50% (median) 1.06 1.00 0.91 1.03 0.98 1.00 1.01 1.00 0.90 0.85 

75% 2.15 1.85 1.43 2.22 1.64 2.05 2.16 1.92 2.11 1.61 

max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

highest days (= max) 91 77 44 90 52 92 78 89 110 53 

% of total days 5.20% 4.40% 2.52% 5.15% 2.97% 5.26% 4.46% 5.09% 6.29% 3.03% 

weight in beta 25.78% 24.77% 16.85% 25.90% 18.61% 26.67% 22.42% 27.12% 31.81% 19.10% 

highest days (>= mean) 463 459 412 472 451 458 479 448 453 443 

% of total days 26.47% 26.24% 23.56% 26.99% 25.79% 26.19% 27.39% 25.61% 25.90% 25.33% 

highest days (>= 1) 921 874 772 906 854 876 880 870 817 731 

% of total days 52.66% 49.97% 44.14% 51.80% 48.83% 50.09% 50.31% 49.74% 46.71% 41.80% 

lowest days (<= 0.10) 67 89 58 65 62 72 79 108 112 73 

% of total days 3.83% 5.09% 3.32% 3.72% 3.54% 4.12% 4.52% 6.17% 6.40% 4.17% 



 

 

 

24 

Table 2 - Descriptive Statistics of Individual Asset 𝜷𝝈𝑻𝑻
𝓵  

This table reports descriptive statistics of liquidity diffusion (𝛽0((
ℓ ) for each crypto asset over the entire sample period. 

The maximum value of 𝛽0((
ℓ  is capped at 10.  All ten crypto assets and the portfolio are measured with their trading 

pairs with Tether or USDT, a “stable coin” pegged to the US dollar, which is regarded as the “risk-free” asset in 
portfolios with a 0% interest rate in terms of their market values. 

Panel A (wash trades removed) liquidity diffusion (𝛽7!!
ℓ ) 

ticker ADA BNB BTC ETC ETH LINK LTC MATIC XMR XRP 

count 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 

mean 0.82 0.73 0.66 0.87 0.70 0.81 0.81 0.80 0.87 0.72 

std 0.12 0.07 0.05 0.12 0.04 0.11 0.11 0.11 0.10 0.07 

min 0.39 0.09 0.36 0.40 0.43 0.46 0.46 0.42 0.43 0.38 

25% 0.72 0.68 0.64 0.78 0.68 0.72 0.73 0.72 0.82 0.67 

50% (median) 0.79 0.72 0.67 0.86 0.70 0.78 0.78 0.76 0.88 0.70 

75% 0.90 0.77 0.69 0.94 0.73 0.88 0.86 0.87 0.93 0.75 

max 1.30 1.06 0.85 1.53 0.92 2.07 1.48 1.38 1.55 1.60 

highest days (= max) 0 0 0 0 0 0 0 0 0 0 

% of total days 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

weight in beta 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

highest days (>= mean) 756 776 991 807 877 739 688 713 948 695 

% of total days 43.22% 44.37% 56.66% 46.14% 50.14% 42.25% 39.34% 40.77% 54.20% 39.74% 

highest days (>= 1) 162 4 0 209 0 91 126 77 125 6 

% of total days 9.26% 0.23% 0.00% 11.95% 0.00% 5.20% 7.20% 4.40% 7.15% 0.34% 

lowest days (<= 0.10) 0 1 0 0 0 0 0 0 0 0 

% of total days 0.00% 0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

                      

Panel B (wash trades retained) liquidity diffusion (𝛽7!!
ℓ ) 

ticker ADA BNB BTC ETC ETH LINK LTC MATIC XMR XRP 

count 1749 1749 1749 1749 1749 1749 1749 1749 1749 1749 

mean 1.33 0.90 0.82 1.40 0.87 1.38 1.11 1.14 1.49 0.92 

std 1.29 0.15 0.07 0.67 0.08 1.01 0.68 0.85 1.34 0.33 

min 0.55 0.58 0.43 0.55 0.52 0.56 0.65 0.48 0.60 0.57 

25% 0.87 0.81 0.78 0.98 0.82 0.88 0.88 0.86 0.98 0.82 

50% (median) 0.98 0.86 0.82 1.18 0.86 1.01 0.96 0.93 1.12 0.87 

75% 1.27 0.93 0.86 1.59 0.91 1.41 1.11 1.11 1.39 0.96 

max 10.00 2.53 1.15 8.89 1.45 10.00 10.00 10.00 10.00 10.00 

highest days (= max) 18 0 0 0 0 3 2 7 19 1 

% of total days 1.03% 0.00% 0.00% 0.00% 0.00% 0.17% 0.11% 0.40% 1.09% 0.06% 

weight in beta 7.74% 0.00% 0.00% 0.00% 0.00% 1.24% 1.03% 3.52% 7.29% 0.62% 

highest days (>= mean) 362 597 840 589 759 451 452 397 353 564 

% of total days 20.70% 34.13% 48.03% 33.68% 43.40% 25.79% 25.84% 22.70% 20.18% 32.25% 

highest days (>= 1) 821 261 18 1248 108 888 692 645 1262 320 

% of total days 46.94% 14.92% 1.03% 71.36% 6.17% 50.77% 39.57% 36.88% 72.16% 18.30% 

lowest days (<= 0.10) 0 0 0 0 0 0 0 0 0 0 

% of total days 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Table 3 - Portfolio Performance: Max Return (𝒓𝒕*𝟏𝑷 ) and Volatility (𝝈𝒕*𝟏𝑷 ) and Sharpe Ratio 
This table compares the maximum portfolio return (𝑟*?$D ), maximum portfolio volatility (𝜎*?$D )  and Sharpe Ratio for 
all 12 portfolios, with and without treatment on wash trading. 

Panel A Portfolio Return 

Portfolio Number 1 2 3 4 5 6 

Portfolio Description equ mkt blq - 
w/treatment 

blq - w/o 
treatment 

blq_inv - 
w/treatment 

blq_inv - 
w/o 

treatment 

max daily return 77.78% 85.77% 144.18% 68.51% 46.29% 70.45% 

Portfolio Number 7 8 9 

Portfolio Description MV_rr MV_rrlq - w/ treatment MV_rrlq - w/o treatment 
max daily return 134.94% 36.82% 35.18% 

Portfolio Number 10 11 12 

Portfolio Description MV_arga_rr MV_arga_rrlq - w/ treatment MV_arga_rrlq - w/o 
treatment 

max daily return 72.96% 38.51% 42.83% 

              

Panel B Portfolio Volatility 

Portfolio Number 1 2 3 4 5 6 

Portfolio Description equ mkt blq - 
w/treatment 

blq - w/o 
treatment 

blq_inv - 
w/treatment 

blq_inv - 
w/o 

treatment 

max daily volatility 31.83% 31.15% 34.54% 34.48% 30.11% 29.89% 

Portfolio Number 7 8 9 

Portfolio Description MV_rr MV_rrlq - w/ treatment MV_rrlq - w/o treatment 
max daily volatility 41.09% 40.16% 40.73% 

Portfolio Number 10 11 12 

Portfolio Description MV_arga_rr MV_arga_rrlq - w/ treatment MV_arga_rrlq - w/o 
treatment 

max daily volatility 51.81% 51.80% 38.79% 

              

Panel C Portfolio Sharpe Ratio 

Portfolio Number 1 2 3 4 5 6 

Portfolio Description equ mkt blq - 
w/treatment 

blq - w/o 
treatment 

blq_inv - 
w/treatment 

blq_inv - 
w/o 

treatment 

annualized Sharpe Ratio (Rf=0%) 1.44 1.24 1.38 1.13 0.96 1.09 

Portfolio Number 7 8 9 

Portfolio Description MV_rr MV_rrlq - w/ treatment MV_rrlq - w/o treatment 
annualized Sharpe Ratio (Rf=0%) 1.35 0.96 1.41 

Portfolio Number 10 11 12 

Portfolio Description MV_arga_rr MV_arga_rrlq - w/ treatment MV_arga_rrlq - w/o 
treatment 

annualized Sharpe Ratio (Rf=0%) 0.75 1.45 1.81 
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Figure 1 – Distribution of 𝜷𝒓𝑻𝑻
𝓵 -𝜷𝝈𝑻𝑻

𝓵  with Treatment on Wash Trading 

This figure provides the scatter plots of liquidity jump (𝛽&((
ℓ ) vs. liquidity diffusion (𝛽0((

ℓ ) with treatment on wash 
trading for each individual asset over the entire sample period.  The max values of 𝛽&((

ℓ  and 𝛽0((
ℓ  are capped at 10.  
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Figure 2 – Distribution of 𝜷𝒓𝑻𝑻
𝓵 -𝜷𝝈𝑻𝑻

𝓵  without Treatment on Wash Trading 

This figure provides the scatter plots of liquidity jump (𝛽&((
ℓ ) and liquidity diffusion (𝛽0((

ℓ ) without treatment on wash 
trading for each individual asset over the entire sample period.  The max values of 𝛽&((

ℓ  and 𝛽0((
ℓ  are capped at 10.  
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Figure 3 – Distribution of 𝜷𝒓𝑻𝑻
𝓵  with Treatment on Wash Trading 

This figure provides the distribution of liquidity jump (𝛽&((
ℓ ) for each individual asset over the entire sample period.  

The maximum value of 𝛽&((
ℓ  is capped at 10.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝑟"" 

vs. 𝑟""ℓ ) overlapping a straight line with coefficient of 1.0 (𝛽&((
ℓ  =1.0 or equilibrium value), and Column 3 the 3D 

scatter plots of (𝑟""-𝑟""ℓ -𝛽&((
ℓ ) with its 2D projection (𝑟""-𝑟""ℓ ). 
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Figure 3 – Distribution of 𝜷𝒓𝑻𝑻
𝓵  with Treatment on Wash Trading – Con’d 

This figure provides the distribution of liquidity jump (𝛽&((
ℓ ) for each individual asset over the entire sample period.  

The maximum value of 𝛽&((
ℓ  is capped at 10.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝑟"" 

vs. 𝑟""ℓ ) overlapping a straight line with coefficient of 1.0 (𝛽&((
ℓ  =1.0 or equilibrium value), and Column 3 the 3D 

distribution of return-volatility-liquidity (𝑟""-𝑟""ℓ -𝛽&((
ℓ ) with its 2D projection (𝑟""-𝑟""ℓ ). 
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Figure 4 – Distribution of 𝜷𝒓𝑻𝑻
𝓵  without Treatment on Wash Trading  

This figure provides the distribution of liquidity jump (𝛽&((
ℓ ) for each individual asset over the entire sample period.  

The maximum value of 𝛽&((
ℓ  is capped at 10.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝑟"" 

vs. 𝑟""ℓ ) overlapping a straight line with coefficient of 1.0 (𝛽&((
ℓ  =1.0 or equilibrium value), and Column 3 the 3D 

scatter plots of (𝑟""-𝑟""ℓ -𝛽&((
ℓ ) with its 2D projection (𝑟""-𝑟""ℓ ). 
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Figure 4 – Distribution of 𝜷𝒓𝑻𝑻
𝓵  without Treatment on Wash Trading – Con’d 

This figure provides the distribution of liquidity jump (𝛽&((
ℓ ) for each individual asset over the entire sample period.  

The maximum value of 𝛽&((
ℓ  is capped at 10.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝑟"" 

vs. 𝑟""ℓ ) overlapping a straight line with coefficient of 1.0 (𝛽&((
ℓ  =1.0 or equilibrium value), and Column 3 the 3D 

distribution of return-volatility-liquidity (𝑟""-𝑟""ℓ -𝛽&((
ℓ ) with its 2D projection (𝑟""-𝑟""ℓ ). 
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Figure 5 – Distribution of 𝜷𝝈𝑻𝑻
𝓵  with Treatment on Wash Trading 

This figure provides the distribution of liquidity diffusion (𝛽0((
ℓ ) for each individual asset over the entire sample 

period.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝜎"" vs. 𝜎""ℓ ) overlapping a straight line 
with coefficient of 1.0, and Column 3 the 3D scatter plots of 𝜎""-𝜎""ℓ -𝛽0((

ℓ ) with its 2D projection (𝜎""-𝜎""ℓ ). 

  

 

 

 

   



 

 

 

33 

Figure 5 – Distribution of 𝜷𝝈𝑻𝑻
𝓵  with Treatment on Wash Trading – Con’d 

This figure provides the distribution of liquidity diffusion (𝛽0((
ℓ ) for each individual asset, over the entire sample 

period.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝜎"" vs. 𝜎""ℓ ) overlapping a straight line 
with coefficient of 1.0, and Column 3 the 3D scatter plots of (𝜎""-𝜎""ℓ -𝛽0((

ℓ ) with its 2D projection (𝜎""-𝜎""ℓ ). 
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Figure 6 – Distribution of 𝜷𝝈𝑻𝑻
𝓵  without Treatment on Wash Trading 

This figure provides the distribution of liquidity diffusion (𝛽0((
ℓ ) for each individual asset over the entire sample 

period.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝜎"" vs. 𝜎""ℓ ) overlapping a straight line 
with coefficient of 1.0, and Column 3 the 3D scatter plots of 𝜎""-𝜎""ℓ -𝛽0((

ℓ ) with its 2D projection (𝜎""-𝜎""ℓ ). 
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Figure 6 – Distribution of 𝜷𝝈𝑻𝑻
𝓵  without Treatment on Wash Trading– Con’d 

This figure provides the distribution of liquidity diffusion (𝛽0((
ℓ ) for each individual asset, over the entire sample 

period.  Column 1 presents the histograms, Column 2 the scatter plots of  (𝜎"" vs. 𝜎""ℓ ) overlapping a straight line 
with coefficient of 1.0, and Column 3 the 3D scatter plots of (𝜎""-𝜎""ℓ -𝛽0((

ℓ ) with its 2D projection (𝜎""-𝜎""ℓ ). 

 
 


