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Abstract

The concept of interval-valued fuzzy soft β-covering approximation spaces (IFSβCASs) is introduced to
combine the theories of soft sets, rough sets and interval-valued fuzzy sets, and some fundamental propositions
concerning interval-valued fuzzy soft β-neighborhoods and soft β-neighborhoods of IFSβCASs are explored.
And then four kinds of interval-valued fuzzy soft β-coverings based fuzzy rough sets are researched. Finally, the
relationships of four kinds of interval-valued fuzzy soft β-coverings based fuzzy rough sets are investigated.

Keywords: Interval-valued fuzzy soft β-covering, Interval-valued fuzzy soft β-neighborhoods, Soft
β-neighborhood.

1. Introduction

The fuzzy set, as proposed by Zadeh [39], stands
as a renowned instrument for handling uncertainty
with diverse applications [8, 10, 17, 21, 22, 44]. Sub-
sequently, Gorzalczany [16] introduced the notion of
interval-valued fuzzy sets, where the membership de-
gree of set elements lies within the interval [0, 1].
Interval-valued fuzzy sets are adept at handling sce-
narios where precise probabilities of set membership
are elusive, offering instead an interval within which
such probabilities are constrained [16, 29].

Molodtsov [25] introduced soft sets as a solu-
tion to the challenge of uncertainty. Unlike tradi-
tional mathematical approaches to uncertainty, soft set
theory offers a unique advantage in parameter han-
dling. Soft set theory enjoys wide-ranging applications
across decision-making, rules mining, machine learn-
ing, artificial intelligence, image processing, and be-
yond [4, 36, 14, 1, 24].

Pawlak [28] initially proposed rough set theory
to address the challenges posed by vagueness and
granularity in information systems and data analy-
sis. Lower and upper approximations are central to
rough set theory, offering a mechanism to represent un-
certain knowledge based on existing information. At
its essence, rough set theory constitutes an approxi-
mation space defined by a specified universe and an
equivalence relation [38]. Rough set theory has risen

to prominence as a rapidly expanding academic disci-
pline spanning domains such as machine learning, deep
learning, data mining, decision-making, and beyond
[6, 20, 32, 9, 33, 18, 37, 41]. The amalgamation of
soft sets and rough sets frequently inspires the explo-
ration of theories related to soft covering-based rough
sets [2, 3, 11, 13, 43], attaining substantial relevance
in specific domains. However, in fuzzy environments,
rough set theory demonstrates inherent limitations, as
discussed in [42]. To overcome these challenges, Zhang
and Zhan [42] integrated fuzzy sets, soft sets, and rough
sets, expanding the notion of soft covering to fuzzy soft
β-covering, drawing insights from the works of Ma [23]
and Yang [34, 35].

To combine the theories of soft sets, rough sets
and interval-valued fuzzy sets, the concept of interval-
valued fuzzy soft β-covering approximation spaces
(IFSβCASs) is introduced and the propositions about
neighborhoods in IFSβCASs are researched. And then
four kinds of interval-valued fuzzy soft β-coverings
based fuzzy rough sets are researched. Finally, the re-
lationships of four kinds of interval-valued fuzzy soft
β-coverings based fuzzy rough sets are investigated.

The following sections of this manuscript are struc-
tured as follows: Section 2 offers the Preliminaries, Sec-
tion 3 introduces the notion of interval-valued fuzzy
soft β-covering approximation spaces (IFSβCASs) and
investigates the propositions regarding interval-valued
fuzzy soft β-neighborhoods and soft β-neighborhoods
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of IFSβCASs, Section 4 presents four kinds of interval-
valued fuzzy soft β-coverings based fuzzy rough sets
and studies their relationships.

2. Preliminaries

In this section we briefly review some foundations.
If two sets A and B are classical sets (set theory es-
tablished by Cantor [27]), A ⊓ B and A ⊔ B represent
the intersection and union of A and B, respectively.
Furthermore, A ⊏ B represents that A is a subset of
the classical set B. Let U be a universal set and E

be a set of parameters. Let IF (U) be the set of all
interval-valued fuzzy sets defined over U .

2.1. Fuzzy sets, soft sets, rough sets and approximation

spaces

Definition 2.1. [39] Let U be an initial universe set.
A fuzzy set F on U is a mapping F : U → [0, 1].

Definition 2.2. [25] Let U be an initial universe set
and E be a set of parameters. P (U) is denoted the
power set of U . A pair (F,A) is called a soft set
over U , where A ⊂ E and F is a mapping given by
F : A → P (U).

Definition 2.3. [28] Let U be an initial universe set
and R be an equivalence relation on U . A pair (U,R)
is called a Pawlak approximation space. Two rough
approximations R−(X) = {x ∈ U : [x]R ⊏ X} and
R+(X) = {x ∈ U : [x]R ⊓X 6= ∅} are called the lower
and upper approximation of X , respectively, where
X ⊏ U .

Definition 2.4. [23] Let U be an initial universe set
and F (U) be the set of all fuzzy subsets of U . For
β ∈ (0, 1], C = {C1, C2, · · · , Cm} is called a fuzzy β-
covering of U if

⋃m

i=1 C(x) > β for all x ∈ U , where
C ⊏ F (U). And (U, C) is called a fuzzy β-covering
approximation space.

If β = 1, then (U, C) is called a fuzzy covering ap-
proximation space.

2.2. Interval-valued fuzzy sets and interval-valued

fuzzy soft sets

Definition 2.5. [7, 31] Assuming that I1 = [I−1 , I+1 ]
and I2 = [I−2 , I+2 ] are two bounded closed interval
on the real number field, then I1 6 I2 if and only if
I+1 6 I+2 and I−1 6 I−2 .

Definition 2.6. [12, 29, 40] Assuming that I1 =
[I−1 , I+1 ] and I2 = [I−2 , I+2 ] are two bounded closed in-
terval on the real number field, then we call I1 and
I2 as two interval values. For any two interval values
I1 and I2, the following operations and product order
relation are valid:

(1) I1 ∧ I2 = [I−1 ∧ I−2 , I+1 ∧ I+2 ],
(2) I1 ∨ I2 = [I−1 ∨ I−2 , I+1 ∨ I+2 ],
(3) Ic1 = [1 − I+1 , 1 − I−1 ],
where x∧ y = min{x, y} and x∨ y = max{x, y} for

all x, y ∈ [0, 1].

Definition 2.7. [12, 16, 29] An interval-valued fuzzy
set F on an universe U is a mapping such that F : x →
I, where x ∈ U and I is a closed sub-intervals of [0, 1].

For any two interval-valued fuzzy sets F1 and F2

on U , the following basic operations are valid for all
x ∈ U :

(1) (F1 ∩ F2)(x) = F1(x) ∧ F2(x),
(2) (F1 ∪ F2)(x) = F1(x) ∨ F2(x),
(3) F c

1 (x) = [1 − F+
1 (x), 1 − F−

1 (x)],
(4) F1 ⊂ F2 ⇔ F1(x) 6 F2(x).

Definition 2.8. [15, 19, 30] Let U be an initial uni-
verse set and E be a set of parameters. A pair (F,E)
is an interval-valued fuzzy soft sets if F (e) ∈ IF (U) for
every e ∈ E.

For two interval-valued fuzzy soft sets (F,A) and
(G,B) over a common universe U , A ⊏ B ⊏ E. We
denote (F,A) ⊂ (G,B) if F (e) ⊂ G(e) for every e ∈ A.

Theorem 2.9. [5, 26] Let A,B and C be three
interval-valued fuzzy soft sets, the following statements
hold.

(1) A ∩B = B ∩ A, A ∪B = B ∪ A.
(2) (A∪B)∩C = (A∩C)∪ (B ∩C), (A∩B)∪C =

(A ∪ C) ∩ (B ∪ C).
(3) (A ∩ B) ∩ C = A ∩ (B ∩ C), (A ∪ B) ∪ C =

A ∪ (B ∪ C).
(4) (Ac)c = A.
(5) (A ∩B)c = Ac ∪Bc, (A ∪B)c = Ac ∩Bc.

3. Neighborhoods in IFSβCASs

3.1. Interval-valued fuzzy soft β-neighborhoods in

IFSβCASs

Let the interval-valued number β be an indicator to
survey other interval-valued fuzzy sets in the processes
of decision-making. IU (x) = [1, 1] and I∅(x) = [0, 0]
for all x ∈ U .
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Definition 3.1. Suppose U and E are the sets of
objects and parameters, respectively. Let A ⊏ E,
F : E → IF (U). If IU ⊂

⋃
e∈A

F (e), then we called

(F,A) an interval-valued fuzzy soft covering over U .

Here, (U, F,A) is called an interval-valued fuzzy soft
covering approximation space.

Definition 3.2. Let β be an interval-valued number,
F : E → IF (U). If β 6 (

⋃
e∈A

F (e))(x) for all x ∈ U ,

then (F,A) is called an interval-valued fuzzy soft β-
covering over U , the triple T = (U, F,A)β is called
an interval-valued fuzzy soft β-covering approximation
space.

Definition 3.3. Let β be an interval-valued number,
and U and E be the sets of objects and parameters,
respectively. Let e ∈ A ⊏ E, F : E → IF (U).

S̃N
β

x =
⋂
{F (e) ∈ F (A) : β 6 F (e)(x)} is called

an interval-valued fuzzy soft β-neighborhood of x in
(U, F,A)β .

Lemma 3.4. Let I∗ be an interval-valued number,
I and I1 be two families of interval-valued numbers,
|I| = Λ, |I1| = Γ, and I ⊏ I1, where Λ and Γ are two
random sets of indicators.

(1) I∗ 6 I for all I ∈ I if and only if I∗ 6
∧
{I :

I ∈ I}.
(2) If I∗ 6 Iα for an Iα ∈ I, then I∗ 6

∨
{I : I ∈ I}.

(3) If I ⊏ I1, then
∧
{I : I ∈ I1} 6

∧
{I : I ∈ I}.

Proof (1) I∗ 6 I for all I ∈ I, i.e., I−∗ 6 I− and
I+∗ 6 I+ for all I ∈ I.

I−∗ 6 inf{I− : I ∈ I} if and only if I−∗ 6 I− for all
I ∈ I. I+∗ 6 inf{I+ : I ∈ I} if and only if I+∗ 6 I+

for all I ∈ I. That is, I∗ 6
∧
{I : I ∈ I} if and only if

I∗ 6 I for all I ∈ I.
(2) I∗ 6 Iα for an Iα ∈ I, i.e., I−∗ 6 I−α and

I+∗ 6 I+α . Then, I−∗ 6 I−α 6 sup{I− : I ∈ I}
and I+∗ 6 I+α 6 sup{I+ : I ∈ I}, it means that
I∗ 6

∨
{I : I ∈ I}.

(3) I ⊏ I1, then inf{I− : I ∈ I1} 6 inf{I− : I ∈
I} and inf{I+ : I ∈ I1} 6 inf{I+ : I ∈ I}. It means
that

∧
{I : I ∈ I1} 6

∧
{I : I ∈ I}.�

Theorem 3.5. Let β be an interval-valued number,

β 6 S̃N
β

x(x) for all x ∈ U in (U, F,A)β .

Proof For each x ∈ U , S̃N
β

x =
⋂
{F (e) ∈ F (A) :

β 6 F (e)(x)}. By Lemma 3.4 (1), if β 6 F (e)(x)

for all e ∈ A∗ ⊏ A, then β 6 (
⋂

e∈A∗

F (e))(x), i.e.,

β 6 S̃N
β

x(x).�

Theorem 3.6. Let β be an interval-valued number. If

β 6 S̃N
β

x(y) and β 6 S̃N
β

y (z), then β 6 S̃N
β

x(z) for
all x, y, z ∈ U .

Proof For each e ∈ A ∈ (U, F,A)β , β 6 S̃N
β

x(y) =
(

⋂
β6F (e)(x)

F (e))(y). By the sufficiency of Lemma 3.4

(1), we can obtain that β 6 F (e)(y) for each F (e) ∈
{F (e) : β 6 F (e)(x)}. It means that if β 6 F (e)(x)
then β 6 F (e)(y) for each e ∈ A.

In the similar way above, β 6 S̃N
β

y (z) implies that
if β 6 F (e)(y) then β 6 F (e)(z) for each e ∈ A.

To sum up, β 6 S̃N
β

x(y) and β 6 S̃N
β

y (z) imply
that if β 6 F (e)(x) then β 6 F (e)(z) for each e ∈ A.
By the necessity of Lemma 3.4 (1), β 6 (

⋂
{F (e) : β 6

F (e)(x)})(z) = S̃N
β

x(z).�

Theorem 3.7. For two interval-valued numbers β1

and β2, if β1 6 β2, then S̃N
β1

x ⊂ S̃N
β2

x for all x ∈ U .

Proof Since β1 6 β2, if β2 6 F (e)(x) then β1(x) 6
F (e)(x) for e ∈ A ∈ (U, F,A)β , i.e., {F (e) : β2 6

F (e)(x), e ∈ A} ⊏ {F (e) : β1 6 F (e)(x), e ∈ A}.
By Lemma 3.4 (3), {F (e) : β2 6 F (e)(x), e ∈

A} ⊏ {F (e) : β1 6 F (e)(x), e ∈ A} implies S̃N
β1

x =⋂
{F (e) : β1 6 F (e)(x), e ∈ A} ⊂

⋂
{F (e) : β2 6

F (e)(x), e ∈ A} = S̃N
β2

x .�

Theorem 3.8. Let β be an interval-valued number,
x, y ∈ U .

(1) β 6 S̃N
β

x(y) if and only if S̃N
β

y ⊂ S̃N
β

x.

(2) β 6 S̃N
β

x(y) and β 6 S̃N
β

y (x) if and only if

S̃N
β

x = S̃N
β

y .

Proof (1) For e ∈ A ∈ (U, F,A)β , if β 6 S̃N
β

x(y) =
(

⋂
β6F (e)(x)

F (e))(y), by the sufficiency of Lemma 3.4

(1), β 6 F (e)(y) holds for each F (e) ∈ {F (e) : β 6

F (e)(x)}, then {F (e) : β 6 F (e)(x)} ⊏ {F (e) : β 6

F (e)(y)} is obtained.
By Lemma 3.4 (1), {F (e) : β 6 F (e)(x)} ⊏ {F (e) :

β 6 F (e)(y)} implies
⋂
{F (e) : β 6 F (e)(y)} ⊂

⋂
{F (e) : β 6 F (e)(x)}, i.e., S̃N

β

y ⊂ S̃N
β

x.
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On the other hand, by Theorem 3.5 (1), β 6

S̃N
β

y (y) holds. If S̃N
β

y ⊂ S̃N
β

x , then S̃N
β

y (y) 6

S̃N
β

x(y), then β 6 S̃N
β

y (y) 6 S̃N
β

x(y).

(2) By the results of (1), β 6 S̃N
β

x(y) and β 6

S̃N
β

y (x) if and only if S̃N
β

y ⊂ S̃N
β

x and S̃N
β

x ⊂ S̃N
β

y ,

i.e., S̃N
β

y = S̃N
β

x.�

3.2. Soft β-neighborhoods in IFSβCASs

Definition 3.9. Let β be an interval-valued num-

ber, F : E → IF (U), A ⊏ E. SN
β

x = {y ∈ U :

β 6 S̃N
β

x(y)} is called the soft β-neighborhood of x in
(U, F,A)β .

Theorem 3.10. Let β be an interval-valued number,

x ∈ SN
β

x for all x ∈ U .

Proof By Theorem 3.5, β 6 S̃N
β

x(x), then x ∈

SN
β

x .�

Theorem 3.11. Let β be an interval-valued number,

y ∈ SN
β

x if and only if SN
β

y ⊏ SN
β

x for all x, y ∈ U .

Proof If y ∈ SN
β

x , i.e., β 6 S̃N
β

x(y), by Theorem

3.8 (1) we have S̃N
β

y ⊂ S̃N
β

x , then S̃N
β

y (z) 6 S̃N
β

x(z)
for each z ∈ U .

If β 6 S̃N
β

y (z), then β 6 S̃N
β

y (z) 6 S̃N
β

x(z). It

means that if z ∈ SN
β

y then z ∈ SN
β

x , i.e., SN
β

y ⊏

SN
β

x .
On the other hand, by the results of Theorem 3.10,

y ∈ SN
β

y . If SN
β

y ⊏ SN
β

x , then y ∈ SN
β

x .�

Theorem 3.12. Let β be an interval-valued number,

if y ∈ SN
β

x and z ∈ SN
β

y , then z ∈ SN
β

x for all
x, y, z ∈ U .

Proof y ∈ SN
β

x and z ∈ SN
β

y , i.e., β 6 S̃N
β

x(y)

and β 6 S̃N
β

y (z). By Theorem 3.6, if β 6 S̃N
β

x(y) and

β 6 S̃N
β

y (z), then β 6 S̃N
β

x(z), i.e., z ∈ SN
β

x .�

Theorem 3.13. Let β be an interval-valued number,
the following statements hold for all x, y ∈ U .

(1) S̃N
β

y ⊂ S̃N
β

x if and only if SN
β

y ⊏ SN
β

x .

(2) SN
β

x = SN
β

y if and only if S̃N
β

x = S̃N
β

y .

Proof (1) By Theorem 3.8 (1), S̃N
β

y ⊂ S̃N
β

x ⇔

β 6 S̃N
β

x(y). By Definition 3.9, β 6 S̃N
β

x(y) ⇔ y ∈

SN
β

x . By Theorem 3.11, y ∈ SN
β

x ⇔ SN
β

y ⊏ SN
β

x .

Then, S̃N
β

y ⊂ S̃N
β

x ⇔ SN
β

y ⊏ SN
β

x .

(2) By the results of (1), SN
β

y ⊏ SN
β

x and SN
β

x ⊏

SN
β

y if and only if S̃N
β

y ⊂ S̃N
β

x and S̃N
β

x ⊂ S̃N
β

y . It

means that SN
β

y = SN
β

x if and only if S̃N
β

x = S̃N
β

y .�

Theorem 3.14. Let β be an interval-valued number,
Λ is a random set of indicators, the following state-
ments hold for all x, y ∈ U .

(1) SN
β

x ⊔ SN
β

y ⊏ S̃N
β

x ∪ S̃N
β

y

β

.

(2) SN
β

x ⊓ SN
β

y = S̃N
β

x ∩ S̃N
β

y

β

.

(3) ⊔v∈ΛSN
aβ

xv
⊏

⋃
v∈Λ S̃N

aβ

xv

aβ

.

(4) ⊓v∈ΛSN
aβ

xv
=

⋂
v∈Λ S̃N

aβ

xv

aβ

.

Proof (1) For each z ∈ U , if z ∈ SN
β

x ⊔ SN
β

y ,

i.e., β 6 S̃N
β

x(z) or β 6 S̃N
β

y (z). By Lemma 3.4 (2),

β 6 (S̃N
β

x ∪ S̃N
β

y )(z), i.e., z ∈ S̃N
β

x ∪ S̃N
β

y

β

. Then,

SN
β

x ⊔ SN
β

y ⊏ S̃N
β

x ∪ S̃N
β

y

β

.

(2) By Lemma 3.4 (1), β 6 S̃N
β

x(z) and β 6

S̃N
β

y (z) if and only if β 6 (S̃N
β

x ∩ S̃N
β

y )(z). Then

S̃N
β

x ∩ S̃N
β

y

β

= SN
β

x ⊓ SN
β

y .

(3) For each z ∈ U , if z ∈ ⊔v∈ΛSN
β

xv
, then

there exists at least one v′ ∈ Λ such that z ∈

SN
β

x
v′

, i.e., β 6 (S̃N
β

x
v′

)(z). By Lemma 3.4 (2),

β 6 (
⋃

v∈Λ S̃N
β

xv
)(z), i.e., z ∈

⋃
v∈Λ S̃N

β

xv

β

. Then,

⊔v∈ΛSN
β

xv
⊏

⋃
v∈Λ S̃N

β

xv

β

.

(4) For each z ∈ U , z ∈ ⊓v∈ΛSN
β

xv
if and only if

z ∈ SN
β

xv
for all v ∈ Λ, i.e., β 6 (S̃N

β

xv
)(z) holds for

all v ∈ Λ.

By Lemma 3.4 (1), β 6 (
⋂

v∈Λ S̃N
β

xv
)(z) if and

only if β 6 (S̃N
β

xv
)(z) for all v ∈ Λ, i.e., ⊓v∈ΛSN

β

xv
=

⋂
v∈Λ S̃N

β

xv

β

.�

Example 3.15. Let β = [0.5, 0.6]. If S̃N
β

x(z) =

[0.3, 0.6] and S̃N
β

y (z) = [0.5, 0.55], then (S̃N
β

x ∪

S̃N
β

y )(z) = [0.3, 0.6] ∨ [0.5, 0.55] = [0.5, 0.6]. z 6∈ SN
β

x

4



and z 6∈ SN
β

y , however, z ∈ S̃N
β

x ∪ S̃N
β

y

β

. Hence, the
(1) and (3) of Theorem 3.14 cannot take the equal sign.

4. Four kinds of interval-valued fuzzy soft β-

coverings based fuzzy rough sets and their

relationships

4.1. The 1st kind of interval-valued fuzzy soft β-

coverings based fuzzy rough sets

Definition 4.1. Let β be an interval-valued number,
X ∈ IF (U), x, y ∈ U . Let





S̃A
β

−1(X)(x) =
∧

y∈U

{(S̃N
β

x)c(y) ∨X(y)},

S̃A
β

+1(X)(x) =
∨

y∈U

{S̃N
β

x(y) ∧X(y)}.

S̃A
β

−1(X) and S̃A
β

+1(X) are the lower approximation
and upper approximation of the interval-valued fuzzy
set X in (U, F,A)β , respectively.

If S̃A
β

−1(X) 6= S̃A
β

+1(X), then X is called the
1st type of interval-valued fuzzy soft β-covering based
interval-valued fuzzy rough sets; otherwise X is called
interval-valued fuzzy definable.

Theorem 4.2. Let β be an interval-valued number,
X,Y ∈ IF (U), x, y ∈ U , the following statements hold.

(1) S̃A
β

−1(IU ) = IU , S̃A
β

+1(I∅) = I∅.

(2) S̃A
β

−1(Xc) = (S̃A
β

+1(X))c, S̃A
β

+1(Xc) =

(S̃A
β

−1(X))c.

(3) S̃A
β

−1(X ∩ Y ) = S̃A
β

−1(X) ∩ S̃A
β

−1(Y ),

S̃A
β

+1(X ∪ Y ) = S̃A
β

+1(X) ∪ S̃A
β

+1(Y ).

(4) If X ⊂ Y , then S̃A
β

−1(X) ⊂ S̃A
β

−1(Y ),

S̃A
β

+1(X) ⊂ S̃A
β

+1(Y ).

(5) S̃A
β

−1(X) ∪ S̃A
β

−1(Y ) ⊂ S̃A
β

−1(X ∪ Y ),

S̃A
β

+1(X ∩ Y ) ⊂ S̃A
β

+1(X) ∩ S̃A
β

+1(Y ).

(6) If (S̃N
β

x)c(x) 6 X(x) 6 S̃N
β

x(x) for all x ∈ U ,

then S̃A
β

−1(X) ⊂ X ⊂ S̃A
β

+1(X).

(7) If (S̃N
β

x)c(x) 6 X(x) 6 S̃N
β

x(x) for all

x ∈ U , then S̃A
β

−1(S̃A
β

−1(X)) ⊂ S̃A
β

−1(X) ⊂ X ⊂

S̃A
β

+1(X) ⊂ S̃A
β

+1(S̃A
β

+1(X)).

(8) If X ⊂ Y , S̃A
β

−1(X)∪S̃A
β

−1(Y ) = S̃A
β

−1(X∪Y ),

S̃A
β

+1(X ∩ Y ) = S̃A
β

+1(X) ∩ S̃A
β

+1(Y ).

Proof (1) For all x, y ∈ U , since IU (y) = [1, 1],

then S̃A
β

−1(IU )(x) =
∧

y∈U

{(S̃N
β

x)c(y) ∨ IU (y)} =

∧
y∈U

{[1, 1]} = [1, 1] = IU (x), i.e., S̃A
β

−1(IU ) = IU .

For all x, y ∈ U , since I∅(y) = [0, 0], then

S̃A
β

+1(I∅)(x) =
∨

y∈U

{S̃N
β

x(y) ∧ I∅(y)} =
∨

y∈U

{[0, 0]} =

[0, 0] = I∅(x), i.e., S̃A
β

+1(I∅) = I∅.

(2) We prove the case of |U | = 2 at first. Suppose
U = {y1, y2}.

By the results of Theorem 2.9 (4) and (5),

S̃A
β

−1(Xc)(y1) =
∧

yi∈U

{(S̃N
β

y1
)c(yi) ∨ Xc(yi)} =

[(S̃N
β

y1
)c(y1) ∨ Xc(y1)] ∧ [(S̃N

β

y1
)c(y2) ∨ Xc(y2)] =

[S̃N
β

y1
(y1) ∧ X(y1)]c ∧ [S̃N

β

y1
(y2) ∧ X(y2)]c =

{[S̃N
β

y1
(y1) ∧ X(y1)] ∨ [S̃N

β

y1
(y2) ∧ X(y2)]}c =

(S̃A
β

+1(X))c(y1).

S̃A
β

−1(Xc)(y2) = (S̃A
β

+1(X))c(y2) can be proved as
above.

To sum up, S̃A
β

−1(Xc) = (S̃A
β

+1(X))c hold for the
case of |U | = 2. Other cases of |U | < ∞ can be proved
by using the mathematical induction.

S̃A
β

+1(Xc)(y1) =
∨

yi∈U

{S̃N
β

y1
(yi) ∧ Xc(yi)} =

[S̃N
β

y1
(y1) ∧ Xc(y1)] ∨ [S̃N

β

y1
(y2) ∧ Xc(y2)] =

{[(S̃N
β

y1
)c(y1) ∨ X(y1)] ∧ [(S̃N

β

y1
)c(y2) ∨ X(y2)]}c =

(S̃A
β

−1(X))c(y1).

S̃A
β

+1(Xc)(y2) = (S̃A
β

−1(X))c(y2) can be proved as
above.

To sum up, S̃A
β

+1(Xc) = (S̃A
β

−1(X))c hold for the
case of |U | = 2. Other cases of |U | < ∞ can be proved
by using the mathematical induction.

(3) For each x ∈ U , by Theorem 2.9 (2),

S̃A
β

−1(X ∩ Y )(x) =
∧

y∈U

{(S̃N
β

x)c(y) ∨ (X ∩ Y )(y)} =

∧
y∈U

{[(S̃N
β

x)c(y) ∨ X(y)] ∧ [(S̃N
β

x)c(y) ∨ Y (y)]} =

{
∧

y∈U

{(S̃N
β

x)c(y) ∨ X(y)}} ∧ {
∧

y∈U

{(S̃N
β

x)c(y) ∨

Y (y)}} = S̃A
β

−1(X)(x) ∧ S̃A
β

−1(Y )(x). Then,

S̃A
β

−1(X ∩ Y ) = S̃A
β

−1(X) ∩ S̃A
β

−1(Y ).

For each x ∈ U , by Theorem 2.9 (2), S̃A
β

+1(X ∪
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Y )(x) =
∨

y∈U

{S̃N
β

x(y)∧ (X ∪Y )(y)} =
∨

y∈U

{[S̃N
β

x(y)∧

X(y)]∨ [S̃N
β

x(y) ∧ Y (y)]} = {
∨

y∈U

{S̃N
β

x(y) ∧X(y)}}∨

{
⋃

y∈U

{S̃N
β

x(y)∧ Y (y)}} = S̃A
β

+1(X)(x)∨ S̃A
β

+1(Y )(x).

Then, S̃A
β

+1(X ∪ Y ) = S̃A
β

+1(X) ∪ S̃A
β

+1(Y ).

(4) Since X ⊂ Y , thus (S̃N
β

x)c ∪X ⊂ (S̃N
β

x)c ∪ Y ,

then (S̃N
β

x)c(y) ∨ X(y) 6 (S̃N
β

x)c(y) ∨ Y (y) for all

x, y ∈ U , it implies that S̃A
β

−1(X)(x) 6 S̃A
β

−1(Y )(x)

for all x ∈ U , i.e., S̃A
β

−1(X) ⊂ S̃A
β

−1(Y ).

Since X ⊂ Y , thus S̃N
β

x ∩ X ⊂ S̃N
β

x ∩ Y , then

S̃N
β

x(y) ∧ X(y) 6 S̃N
β

x(y) ∧ Y (y) for all x, y ∈ U , it

implies that S̃A
β

+1(X)(x) 6 S̃A
β

+1(Y )(x) for all x ∈ U ,

i.e., S̃A
β

+1(X) ⊂ S̃A
β

+1(Y ).

(5) X ⊂ X∪Y and Y ⊂ X∪Y . By the results of (4),

S̃A
β

−1(X) ⊂ S̃A
β

−1(X ∪Y ) and S̃A
β

−1(Y ) ⊂ S̃A
β

−1(X ∪

Y ). Then S̃A
β

−1(X) ∪ S̃A
β

−1(Y ) ⊂ S̃A
β

−1(X ∪ Y ).

X ∩ Y ⊂ X and X ∩ Y ⊂ Y . By the results of

(4), S̃A
β

+1(X ∩ Y ) ⊂ S̃A
β

+1(X) and S̃A
β

+1(X ∩ Y ) ⊂

S̃A
β

+1(Y ). Then S̃A
β

+1(X∩Y ) ⊂ S̃A
β

+1(X)∩S̃A
β

+1(Y ).

(6) Since (S̃N
β

x)c(x) 6 X(x) for all x ∈ U , then

(S̃N
β

x)c(x) ∨ X(x) 6 X(x) ∨ X(x) = X(x), then

S̃A
β

−1(X)(x) =
∧

y∈U

{(S̃N
β

x)c(y)∨X(y)} 6 (S̃N
β

x)c(x)∨

X(x) 6 X(x), i.e., S̃A
β

−1(X) ⊂ X .

Since X(x) 6 S̃N
β

x(x) for all x ∈ U , then X(x) =

X(x)∧X(x) 6 X(x)∧ (S̃N
β

x)(x), then X(x) 6 X(x)∧

S̃N
β

x(x) 6
∨

y∈U

{S̃N
β

x(y) ∧ X(y)} = S̃A
β

+1(X)(x), i.e.,

X ⊂ S̃A
β

+1(X).

Hence, S̃A
β

−1(X) ⊂ X ⊂ S̃A
β

+1(X).

(7) (S̃N
β

x)c(x) 6 X(x) 6 S̃N
β

x(x) for all x ∈ U , by

the results of (6), we have S̃A
β

−1(X) ⊂ X ⊂ S̃A
β

+1(X).

By the results of (4), we have S̃A
β

−1(S̃A
β

−1(X)) ⊂

S̃A
β

−1(X) ⊂ X ⊂ S̃A
β

+1(X) ⊂ S̃A
β

+1(S̃A
β

+1(X)).

(8) If X ⊂ Y , then X ∪ Y ⊂ Y ∪ Y = Y .

By the results of (4), S̃A
β

−1(X ∪ Y ) ⊂ S̃A
β

−1(Y ) ⊂

S̃A
β

−1(X) ∪ S̃A
β

−1(Y ).

By the results of (5), S̃A
β

−1(X) ∪ S̃A
β

−1(Y ) ⊂

S̃A
β

−1(X ∪ Y ).

Then, S̃A
β

−1(X) ∪ S̃A
β

−1(Y ) = S̃A
β

−1(X ∪ Y ).

If X ⊂ Y , then X = X ∩ X ⊂ X ∩ Y . By the re-

sults of (4), S̃A
β

+1(X) ⊂ S̃A
β

+1(X ∩Y ). Then, we have

S̃A
β

+1(X) ∩ S̃A
β

+1(Y ) ⊂ S̃A
β

+1(X) ⊂ S̃A
β

+1(X ∩ Y ).

By the results of (5), S̃A
β

+1(X ∩ Y ) ⊂ S̃A
β

+1(X) ∩

S̃A
β

+1(Y ).

Hence, S̃A
β

+1(X ∩ Y ) = S̃A
β

+1(X) ∩ S̃A
β

+1(Y ).�

Definition 4.3. Let β be an interval-valued number

and X ⊏ U be an object set, x, y ∈ U . SA
β

−1(X) =

{x ∈ U : SN
β

x ⊏ X} and SA
β

+1(X) = {x ∈ U :

SN
β

x ⊓ X 6= ∅} are the lower approximation and up-
per approximation of the object set X in (U, F,A)β ,
respectively.

If SA
β

−1(X) 6= SA
β

+1(X), then X is called the 1st
type of soft β-covering based rough sets. Otherwise, X
is called definable.

Theorem 4.4. Let β be an interval-valued number
and X,Y ⊏ U , the the following statements hold.

(1) SA
β

−1(∅) = ∅, SA
β

−1(U) = U .

(2) SA
β

+1(∅) = ∅, SA
β

+1(U) = U .

(3) If X ⊏ Y , then SA
β

−1(X) ⊏ SA
β

−1(Y ) and

SA
β

+1(X) ⊏ SA
β

+1(Y )

(4) SA
β

−1(X) ⊔ SA
β

−1(Y ) ⊏ SA
β

−1(X ⊔ Y ),

SA
β

+1(X ⊓ Y ) ⊏ SA
β

+1(X) ⊓ SA
β

+1(Y ).

(5) SA
β

−1(X) ⊓ SA
β

−1(Y ) = SA
β

−1(X ⊓ Y ),

SA
β

+1(X ⊔ Y ) = SA
β

+1(X) ⊔ SA
β

+1(Y ).

(6) SA
β

−1(Xc) = (SA
β

+1(X))c, SA
β

+1(Xc) =

(SA
β

−1(X))c.

(7) SA
β

−1(X) ⊏ X ⊏ SA
β

+1(X).

Proof (1) and (2) are obvious.

(3) If x ∈ SA
β

−1(X), then SN
β

x ⊏ X ⊏ Y , i.e.,

x ∈ SA
β

−1(Y ). Then SA
β

−1(X) ⊏ SA
β

−1(Y ).

If x ∈ SA
β

+1(X), then ∅ 6= SN
β

x ⊓ X ⊏ SN
β

x ⊓ Y ,

i.e., x ∈ SA
β

+1(Y ). Then SA
β

+1(X) ⊏ SA
β

+1(Y ).

(4) Since X ⊏ X ⊔ Y and Y ⊏ X ⊔ Y , by the re-

sults of (3), SA
β

−1(X) ⊏ SA
β

−1(X⊔Y ) and SA
β

−1(Y ) ⊏
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SA
β

−1(X⊔Y ). Then SA
β

−1(X)⊔SA
β

−1(Y ) ⊏ SA
β

−1(X⊔
Y ).

Since X ⊓ Y ⊏ X and X ⊓ Y ⊏ Y , by the results

of (3), SA
β

+1(X ⊓Y ) ⊏ SA
β

+1(X) and SA
β

+1(X ⊓Y ) ⊏

SA
β

+1(Y ). Then SA
β

+1(X⊓Y ) ⊏ SA
β

+1(X)⊓SA
β

+1(Y ).

(5) If x ∈ SA
β

−1(X) ⊓ SA
β

−1(Y ), i.e., x ∈ SA
β

−1(X)

and x ∈ SA
β

−1(Y ), then SN
β

x ⊏ X and SN
β

x ⊏ Y . It

means that SN
β

x ⊏ X ⊓ Y , i.e., x ∈ SA
β

−1(X ⊓ Y ).

Then SA
β

−1(X) ⊓ SA
β

−1(Y ) ⊏ SA
β

−1(X ⊓ Y ).

On the other hand, X ⊓ Y ⊏ X and X ⊓ Y ⊏ Y ,

by the results of (3), SA
β

−1(X ⊓ Y ) ⊏ SA
β

−1(X) ⊓

SA
β

−1(Y ).

Hence, SA
β

−1(X ⊓ Y ) = SA
β

−1(X) ⊓ SA
β

−1(Y ).

If x ∈ SA
β

+1(X ⊔ Y ), i.e., SN
β

x ⊓ (X ⊔Y ) 6= ∅, then

there is y ∈ U such that y ∈ SN
β

x and y ∈ X ⊔ Y , it
means that at least one of y ∈ X and y ∈ Y holds,

then we can obtain that at least one of SN
β

x ⊓X 6= ∅

and SN
β

x⊓Y 6= ∅ holds, i.e., x ∈ SA
β

+1(X)⊔SA
β

+1(Y ).

Then SA
β

+1(X ⊔ Y ) ⊏ SA
β

+1(X) ⊔ SA
β

+1(Y ).

On the other hand, X ⊏ X ⊔Y and Y ⊏ X ⊔Y , by

the results of (3), SA
β

+1(X)⊔SA
β

+1(Y ) ⊏ SA
β

+1(X⊔Y ).

Hence, SA
β

+1(X) ⊔ SA
β

+1(Y ) = SA
β

+1(X ⊔ Y ).

(6) If x ∈ SA
β

−1(Xc), i.e., SN
β

x ⊏ Xc, then SN
β

x ⊓

X = ∅, i.e., x 6∈ SA
β

+1(X), thus x ∈ (SA
β

+1(X))c.

Then SA
β

−1(Xc) ⊏ (SA
β

+1(X))c.

On the other hand, x ∈ (SA
β

+1(X))c, i.e., x 6∈

SA
β

+1(X), thus SN
β

x ⊓X = ∅. Then SN
β

x ⊏ Xc, i.e.,

x ∈ SA
β

−1(Xc). Then (SA
β

+1(X))c ⊏ SA
β

−1(Xc).

Hence, SA
β

−1(Xc) = (SA
β

+1(X))c.

If x ∈ SA
β

+1(Xc), i.e., SN
β

x ⊓ Xc 6= ∅, then

SN
β

x 6⊏ X , i.e., x 6∈ SA
β

−1(X) and x ∈ (SA
β

−1(X))c.

Then SA
β

+1(Xc) ⊏ (SA
β

−1(X))c.

On the other hand, if x ∈ (SA
β

−1(X))c, i.e., x 6∈

SA
β

−1(X) and SN
β

x 6⊏ X . Thus SN
β

x ⊓ Xc 6= ∅, i.e.,

x ∈ SA
β

+1(Xc). Then (SA
β

−1(X))c ⊏ SA
β

+1(Xc).

Hence, SA
β

+1(Xc) = (SA
β

−1(X))c.

(7) By Theorem 3.10, x ∈ SN
β

x for all x ∈ U .

For a random y 6∈ X (y ∈ Xc), since y ∈ SN
β

y , then

SN
β

y 6⊏ X , i.e., y 6∈ SA
β

−1(X) (y ∈ (SA
β

−1(X))c), then

Xc ⊏ (SA
β

−1(X))c, i.e., SA
β

−1(X) ⊏ X .

For all x ∈ X , since x ∈ SN
β

x , then ∅ 6= {x} ⊏

SN
β

x ⊓X , i.e., x ∈ SA
β

+1(X). Then X ⊏ SA
β

+1(X).

To sum up, SA
β

−1(X) ⊏ X ⊏ SA
β

+1(X).�

Theorem 4.5. Let β be an interval-valued number,
X ⊏ U , A ⊏ E, B ⊏ E. In T1 = (U, F,A)β and

T2 = (U, F,B)β , if SN
1β

x = SN
2β

x for all x ∈ U , then

SA
1β

−1(X) = SA
2β

−1(X) and SA
1β

+1(X) = SA
2β

+1(X).

Proof (1) Since SN
1β

x = SN
2β

x for all x ∈ U ,

then SN
1β

x ⊏ X if and only if SN
2β

x ⊏ X , then

SA
1β

−1(X) = SA
2β

−1(X).

SN
1β

x ⊓ X 6= ∅ if and only if SN
2β

x ⊓X 6= ∅, then

SA
1β

+1(X) = SA
2β

+1(X).�

4.2. The 2nd kind of interval-valued fuzzy soft β-

coverings based fuzzy rough sets

Definition 4.6. Let β be an interval-valued number,
and U and E be the sets of objects and parameters,

respectively. S̃M
β

x is called the interval-valued fuzzy
soft complementary β-neighborhood of x in (U, F,A)β ,

where S̃M
β

x(y) = S̃N
β

y (x).

Definition 4.7. Let β be an interval-valued number,

X ∈ IF (U), x, y ∈ U . S̃A
β

−2(X) and S̃A
β

+2(X) are
obtained by





S̃A
β

−2(X)(x) =
∧

y∈U

{(S̃M
β

x)c(y) ∨X(y)},

S̃A
β

+2(X)(x) =
∨

y∈U

{S̃M
β

x(y) ∧X(y)}.

If S̃A
β

−2(X) 6= S̃A
β

+2(X), then X is called the
2nd type of interval-valued fuzzy soft β-covering based
interval-valued fuzzy rough sets; otherwise X is called
interval-valued fuzzy definable.

Theorem 4.8. Let β be an interval-valued number,
X,Y ∈ IF (U), x, y ∈ U , the following statements hold.

(1) S̃A
β

−2(IU ) = IU , S̃A
β

+2(I∅) = I∅.

(2) S̃A
β

−2(Xc) = (S̃A
β

+2(X))c, S̃A
β

+2(Xc) =

(S̃A
β

−2(X))c.

(3) S̃A
β

−2(X ∩ Y ) = S̃A
β

−2(X) ∩ S̃A
β

−2(Y ),

S̃A
β

+2(X ∪ Y ) = S̃A
β

+2(X) ∪ S̃A
β

+2(Y ).

(4) If X ⊂ Y , then S̃A
β

−2(X) ⊂ S̃A
β

−2(Y ),

S̃A
β

+2(X) ⊂ S̃A
β

+2(Y ).
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(5) S̃A
β

−2(X) ∪ S̃A
β

−2(Y ) ⊂ S̃A
β

−2(X ∪ Y ),

S̃A
β

+2(X ∩ Y ) ⊂ S̃A
β

+2(X) ∩ S̃A
β

+2(Y ).

(6) If (S̃M
β

x)c(x) 6 X(x) 6 S̃M
β

x(x) for all x ∈ U ,

then S̃A
β

−2(X) ⊂ X ⊂ S̃A
β

+2(X).

(7) If (S̃M
β

x)c(x) 6 X(x) 6 S̃M
β

x(x) for all

x ∈ U , then S̃A
β

−2(S̃A
β

−2(X)) ⊂ S̃A
β

−2(X) ⊂ X ⊂

S̃A
β

+2(X) ⊂ S̃A
β

+2(S̃A
β

+2(X)).

(8) If X ⊂ Y , S̃A
β

−2(X)∪S̃A
β

−2(Y ) = S̃A
β

−2(X∪Y ),

S̃A
β

+2(X ∩ Y ) = S̃A
β

+2(X) ∩ S̃A
β

+2(Y ).
Proof It can be proved similarly to Theorem 4.2 by

using S̃M
β

x and (S̃M
β

x)c to instead of S̃N
β

x and (S̃N
β

x)c

in Theorem 4.2, respectively.�

Definition 4.9. Let β be an interval-valued number

and X ⊏ U be an object set, x, y ∈ U . SA
β

−2(X) =

{x ∈ U : SM
β

x ⊏ X} and SA
β

+2(X) = {x ∈ U :

SM
β

x ⊓ X 6= ∅} are the lower approximation and up-
per approximation of the object set X in (U, F,A)β ,
respectively.

If SA
β

−2(X) 6= SA
β

+2(X), then X is called the 2nd
type of soft β-covering based rough sets. Otherwise, X
is called definable.

4.3. The 3rd kind of interval-valued fuzzy soft β-

coverings based fuzzy rough sets

Definition 4.10. Let β be an interval-valued number,

X ∈ IF (U), x, y ∈ U . S̃A
β

−3(X) and S̃A
β

+3(X) are
obtained by




S̃A
β

−3(X)(x) =
∧

y∈U

{(S̃N
β

x)c(y) ∨ (S̃M
β

x)c(y) ∨X(y)},

S̃A
β

+3(X)(x) =
∨

y∈U

{S̃N
β

x(y) ∧ S̃M
β

x(y) ∧X(y)}.

Theorem 4.11. Let β be an interval-valued number,
X,Y ∈ IF (U), x, y ∈ U , the following statements hold.

(1) S̃A
β

−3(IU ) = IU , S̃A
β

+3(I∅) = I∅.

(2) S̃A
β

−3(Xc) = (S̃A
β

+3(X))c, S̃A
β

+3(Xc) =

(S̃A
β

−3(X))c.

(3) S̃A
β

−3(X ∩ Y ) = S̃A
β

−3(X) ∩ S̃A
β

−3(Y ),

S̃A
β

+3(X ∪ Y ) = S̃A
β

+3(X) ∪ S̃A
β

+3(Y ).

(4) If X ⊂ Y , then S̃A
β

−3(X) ⊂ S̃A
β

−3(Y ),

S̃A
β

+3(X) ⊂ S̃A
β

+3(Y ).

(5) S̃A
β

−3(X) ∪ S̃A
β

−3(Y ) ⊂ S̃A
β

−3(X ∪ Y ),

S̃A
β

+3(X ∩ Y ) ⊂ S̃A
β

+3(X) ∩ S̃A
β

+3(Y ).

(6) If (S̃N
β

x∩S̃M
β

x)c(x) 6 X(x) 6 (S̃N
β

x∩S̃M
β

x)(x)

for all x ∈ U , then S̃A
β

−3(X) ⊂ X ⊂ S̃A
β

+3(X).

(7) If (S̃N
β

x∩S̃M
β

x)c(x) 6 X(x) 6 (S̃N
β

x∩S̃M
β

x)(x)

for all x ∈ U , then S̃A
β

−3(S̃A
β

−3(X)) ⊂ S̃A
β

−3(X) ⊂

X ⊂ S̃A
β

+3(X) ⊂ S̃A
β

+3(S̃A
β

+3(X)).

(8) If X ⊂ Y , S̃A
β

−3(X)∪S̃A
β

−3(Y ) = S̃A
β

−3(X∪Y ),

S̃A
β

+3(X ∩ Y ) = S̃A
β

+3(X) ∩ S̃A
β

+3(Y ).
Proof It can be proved similarly to Theorem 4.2

by using S̃N
β

x ∩ S̃M
β

x and (S̃N
β

x ∩ S̃M
β

x)c to instead

of S̃N
β

x and (S̃N
β

x)c in Theorem 4.2, respectively.�

Definition 4.12. Let β be an interval-valued number

and X ⊏ U be an object set, x, y ∈ U . SA
β

−3(X) =

{x ∈ U : SN
β

x ⊏ X or SM
β

x ⊏ X} and SA
β

+3(X) =

{x ∈ U : SN
β

x ⊓ X 6= ∅ and SM
β

x ⊓ X 6= ∅} are the
lower approximation and upper approximation of the
object set X in (U, F,A)β , respectively.

If SA
β

−3(X) 6= SA
β

+3(X), then X is called the 3rd
type of soft β-covering based rough sets. Otherwise, X
is called definable.

4.4. The 4th kind of interval-valued fuzzy soft β-

coverings based fuzzy rough sets

Definition 4.13. Let β be an interval-valued number,

X ∈ IF (U), x, y ∈ U . S̃A
β

−4(X) and S̃A
β

+4(X) are
obtained by




S̃A
β

−4(X)(x) =
∧

y∈U

{(S̃N
β

x)c(y) ∧ (S̃M
β

x)c(y) ∨X(y)},

S̃A
β

+4(X)(x) =
∨

y∈U

{S̃N
β

x(y) ∨ S̃M
β

x(y) ∧X(y)}.

Theorem 4.14. Let β be an interval-valued number,
X,Y ∈ IF (U), x, y ∈ U , the following statements hold.

(1) S̃A
β

−4(IU ) = IU , S̃A
β

+4(I∅) = I∅.

(2) S̃A
β

−4(Xc) = (S̃A
β

+4(X))c, S̃A
β

+4(Xc) =

(S̃A
β

−4(X))c.

(3) S̃A
β

−4(X ∩ Y ) = S̃A
β

−4(X) ∩ S̃A
β

−4(Y ),

S̃A
β

+4(X ∪ Y ) = S̃A
β

+4(X) ∪ S̃A
β

+4(Y ).

(4) If X ⊂ Y , then S̃A
β

−4(X) ⊂ S̃A
β

−4(Y ),

S̃A
β

+4(X) ⊂ S̃A
β

+4(Y ).
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(5) S̃A
β

−4(X) ∪ S̃A
β

−4(Y ) ⊂ S̃A
β

−4(X ∪ Y ),

S̃A
β

+4(X ∩ Y ) ⊂ S̃A
β

+4(X) ∩ S̃A
β

+4(Y ).

(6) If (S̃N
β

x∪S̃M
β

x)c(x) 6 X(x) 6 (S̃N
β

x∪S̃M
β

x)(x)

for all x ∈ U , then S̃A
β

−4(X) ⊂ X ⊂ S̃A
β

+4(X).

(7) If (S̃N
β

x∪S̃M
β

x)c(x) 6 X(x) 6 (S̃N
β

x∪S̃M
β

x)(x)

for all x ∈ U , then S̃A
β

−4(S̃A
β

−4(X)) ⊂ S̃A
β

−4(X) ⊂

X ⊂ S̃A
β

+4(X) ⊂ S̃A
β

+4(S̃A
β

+4(X)).

(8) If X ⊂ Y , S̃A
β

−4(X)∪S̃A
β

−4(Y ) = S̃A
β

−4(X∪Y ),

S̃A
β

+4(X ∩ Y ) = S̃A
β

+4(X) ∩ S̃A
β

+4(Y ).
Proof It can be proved similarly to Theorem 4.2

by using S̃N
β

x ∪ S̃M
β

x and (S̃N
β

x ∪ S̃M
β

x)c to instead

of S̃N
β

x and (S̃N
β

x)c in Theorem 4.2, respectively.�

Definition 4.15. Let β be an interval-valued number

and X ⊏ U be an object set, x, y ∈ U . SA
β

−4(X) =

{x ∈ U : SN
β

x ⊏ X and SM
β

x ⊏ X} and SA
β

+4(X) =

{x ∈ U : SN
β

x ⊓X 6= ∅ or SM
β

x ⊓X 6= ∅} are the lower
approximation and upper approximation of the object
set X in (U, F,A)β , respectively.

If SA
β

−4(X) 6= SA
β

+4(X), then X is called the 4th
type of soft β-covering based rough sets. Otherwise, X
is called definable.

4.5. The relationships of four kinds of interval-valued

fuzzy soft β-coverings based fuzzy rough sets

Theorem 4.16. Let β be an interval-valued num-
ber, X ∈ IF (U), the following statements hold in
(U, F,A)β .

(1) S̃A
β

−3(X) = S̃A
β

−1(X) ∪ S̃A
β

−2(X).

(2) S̃A
β

+3(X) = S̃A
β

+1(X) ∩ S̃A
β

+2(X).

(3) S̃A
β

−4(X) = S̃A
β

−1(X) ∩ S̃A
β

−2(X).

(4) S̃A
β

+4(X) = S̃A
β

+1(X) ∪ S̃A
β

+2(X).

(5) S̃A
β

−4(X) ⊂ S̃A
β

−1(X) ⊂ S̃A
β

−3(X).

(6) S̃A
β

−4(X) ⊂ S̃A
β

−2(X) ⊂ S̃A
β

−3(X).

(7) S̃A
β

+3(X) ⊂ S̃A
β

+1(X) ⊂ S̃A
β

+4(X).

(8) S̃A
β

+3(X) ⊂ S̃A
β

+2(X) ⊂ S̃A
β

+4(X).

Proof (1) For all x, y ∈ U , S̃A
β

−1(X)(x) ∨

S̃A
β

−2(X)(x) = (
∧

y∈U

{(S̃N
β

x)c(y) ∨ X(y)}) ∨

(
∧

y∈U

{(S̃M
β

x)c(y) ∨X(y)}) =
∧

y∈U

{(S̃N
β

x)c(y) ∨X(y) ∨

(S̃M
β

x)c(y) ∨ X(y)} =
∧

y∈U

{(S̃N
β

x)c(y) ∨ (S̃M
β

x)c(y) ∨

X(y)} = S̃A
β

−3(X)(x).

(2) For all x, y ∈ U , S̃A
β

+1(X)(x) ∧ S̃A
β

+2(X)(x) =

(
∨

y∈U

{S̃N
β

x(y) ∧ X(y)}) ∧ (
∨

y∈U

{S̃M
β

x(y) ∧ X(y)}) =

∨
y∈U

{S̃N
β

x(y)∧S̃M
β

x(y)∧X(y)∧X(y)} = S̃A
β

+3(X)(x).

(3) For all x, y ∈ U , S̃A
β

−1(X)(x) ∧ S̃A
β

−2(X)(x) =

(
∧

y∈U

{(S̃N
β

x)c(y)∨X(y)})∧(
∧

y∈U

{(S̃M
β

x)c(y)∨X(y)}) =

∧
y∈U

{[(S̃M
β

x)c(y) ∨ X(y)] ∧ [(S̃N
β

x)c(y) ∨ X(y)]} =

∧
y∈U

{[(S̃M
β

x)c(y)∧ (S̃N
β

x)c(y)]∨X(y)} = S̃A
β

−4(X)(x).

(4) For all x, y ∈ U , S̃A
β

+1(X)(x) ∨ S̃A
β

+2(X)(x) =

(
∨

y∈U

{S̃N
β

x(y) ∧ X(y)}) ∨ (
∨

y∈U

{S̃M
β

x(y) ∧ X(y)}) =

∨
y∈U

{[S̃N
β

x(y) ∨ S̃M
β

x(y)] ∧X(y)} = S̃A
β

+4(X)(x).

(5) For all y ∈ U , (S̃N
β

x)c(y)∧(S̃M
β

x)c(y)∨X(y) 6

(S̃N
β

x)c(y) ∨X(y) 6 (S̃N
β

x)c(y) ∨ (S̃M
β

x)c(y) ∨X(y).

(6) For all y ∈ U , (S̃N
β

x)c(y)∧(S̃M
β

x)c(y)∨X(y) 6

(S̃M
β

x)c(y) ∨X(y) 6 (S̃N
β

x)c(y) ∨ (S̃M
β

x)c(y) ∨X(y).

(7) For all y ∈ U , S̃N
β

x(y) ∧ S̃M
β

x(y) ∧ X(y) 6

S̃N
β

x(y) ∧X(y) 6 S̃N
β

x(y) ∨ S̃M
β

x(y) ∧X(y).

(8) For all y ∈ U , S̃N
β

x(y) ∧ S̃M
β

x(y) ∧ X(y) 6

S̃M
β

x(y) ∧X(y) 6 S̃N
β

x(y) ∨ S̃M
β

x(y) ∧X(y).�

Theorem 4.17. Let β be an interval-valued num-
ber, X ∈ IF (U), the following statements hold in
(U, F,A)β .

(1) SA
β

−3(X) = SA
β

−1(X) ⊔ SA
β

−2(X).

(2) SA
β

+3(X) = SA
β

+1(X) ⊓ SA
β

+2(X).

(3) SA
β

−4(X) = SA
β

−1(X) ⊓ SA
β

−2(X).

(4) SA
β

+4(X) = SA
β

+1(X) ⊔ SA
β

+2(X).

(5) SA
β

−4(X) ⊏ SA
β

−1(X) ⊏ SA
β

−3(X).

(6) SA
β

−4(X) ⊏ SA
β

−2(X) ⊏ SA
β

−3(X).

(7) SA
β

+3(X) ⊏ SA
β

+1(X) ⊏ SA
β

+4(X).

(8) SA
β

+3(X) ⊏ SA
β

+2(X) ⊏ SA
β

+4(X).

Proof It is clear from Definition 4.3, 4.9, 4.12 and
4.15.�
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Theorem 4.18. Let β be an interval-valued number,

X ∈ IF (U), if (S̃N
β

x)c(x) 6 X(x) 6 S̃N
β

x(x) for all

x ∈ U , then S̃A
β

−4(X) ⊂ S̃A
β

−2(X) ⊂ S̃A
β

−3(X) ⊂

X ⊂ S̃A
β

+3(X) ⊂ S̃A
β

+1(X) ⊂ S̃A
β

+4(X).

Proof For all x, y ∈ U , S̃M
β

x(y) = S̃N
β

y (x), then

S̃M
β

x(x) = S̃N
β

x(x) and (S̃M
β

x)c(x) = (S̃N
β

x)c(x).

For all x ∈ U , (S̃N
β

x)c(x) 6 X(x), then

(S̃N
β

x)c(x)∨(S̃M
β

x)c(x)∨X(x) = (S̃N
β

x)c(x)∨X(x) 6

X(x). Then, S̃A
β

−3(X)(x) =
∧

y∈U

{(S̃N
β

x)c(y) ∨

(S̃M
β

x)c(y)∨X(y)} 6 (S̃N
β

x)c(x)∨(S̃M
β

x)c(x)∨X(x) 6

X(x) for all x ∈ U , i.e., S̃A
β

−3(X) ⊂ X .

For all x ∈ U , X(x) 6 S̃N
β

x(x), then X(x) 6

S̃N
β

x(x) ∧ X(x) = S̃N
β

x(x) ∧ S̃M
β

x(x) ∧ X(x). Then,

S̃A
β

+3(X)(x) =
∨

y∈U

{S̃N
β

x(y) ∧ S̃M
β

x(y) ∧ X(y)} >

S̃N
β

x(x) ∧ S̃M
β

x(x) ∧X(x) > X(x) for all x ∈ U , i.e.,

S̃A
β

+3(X) ⊃ X .
To combine the results of Theorem 4.16 (6) and

(7), S̃A
β

−4(X) ⊂ S̃A
β

−2(X) ⊂ S̃A
β

−3(X) ⊂ X ⊂

S̃A
β

+3(X) ⊂ S̃A
β

+1(X) ⊂ S̃A
β

+4(X) holds.�
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