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The spin-S Kitaev model has recently been shown to definitely exhibit topological order with
spin liquid ground states for half-integer spin, but could be trivially gapped insulators for integer
spin. This interesting “even-odd” effect is largely due to the fermionic (bosonic) Z2 gauge charges
for half-integer (integer) spin. In this Letter, we theoretically show that a spin-S Yao-Lee model
(a spin-orbital model with SU(2) spin-rotation symmetry) possesses exact deconfined fermionic
Z2 gauge charges for any spin (both integer and half integer spin), which implies a topologically-
nontrivial quantum spin-orbital liquid (QSOL) ground state regardless of the value of the spin
quantum number. We further study the easy-axis limit of the spin-1 Yao-Lee model which can be
solved in a controlled perturbative way and show that it exhibits a gapless QSOL ground state,
which can even host a non-Abelian topological order by further considering time-reversal breaking
interactions to gap out the Dirac cones of the gapless QSOL.

Introduction.—Quantum spin liquids (QSL) [1–10] are
long-range entangled quantum phases beyond the Lan-
dau paradigm [11–13]. Their novel features, such as
fractionalized excitations, topological order, and emer-
gent gauge fields, make QSL not only intriguing [14, 15],
but also promising candidates for quantum computation
[16, 17]. QSL has attracted a great amount of theoreti-
cal and numerical studies on frustrated spin models (see,
e.g. Refs. [18–38]); nevertheless some results have been
controversial. It is remarkable that various exactly solv-
able models with QSL ground state have been proposed
[39–45], which were shown exactly to exhibit features of
topological order and spin fractionalization. In partic-
ular, the seminal spin- 1

2 exactly solvable Kitaev honey-
comb model, originally viewed as a toy model of only
theoretical interest, has been shown with increasing ex-
perimental evidences that its spin liquid phase can be
possibly realized in materials [46–49].

Besides spin degrees of freedom, localized electrons in
many Mott insulators also have orbital degrees of free-
dom (DOF). A natural route to realize topologically or-
dered ground states is to further consider orbital DOF
of electrons, since orbital DOF may potentially enhance
quantum fluctuations [50] and induce fractionalization
in spin and/or orbital sectors. Topological liquid states
with both spin and orbit DOF are often called QSOL.
Possible experimental platforms to realize QSOL include
Moiré systems [51–53]. Numerical evidences of QSOL
have been reported in studies on various SU(4) Heisen-
berg models and Kugel-Khomskii models [51–59]. More-
over, generalizations of the Kitaev spin-1/2 model to
Kugel-Khomskii type spin-orbital interactions have lead
to various exactly solvable models with QSOL ground
states [60–67]. In particular, the spin- 1

2 Yao-Lee model
[60] is an exactly solvable spin-orbital model with SU(2)
spin-rotation symmetry, which can exhibit non-Abelian
spinon excitations. Recently, there have been increasing
research interest on the Yao-Lee model and its various

extensions [68–83], which have revealed unexpected fer-
tile physics, such as fermionic magnon [60, 72, 76, 77],
fractionalized fermionic criticality [71, 78], order fraction-
alization [73], and pair-density-wave [69].

More recently higher-spin Kitaev models have at-
tracted numerous research interest [67, 84–98], partly
motivated by their possible experimental realizations
[99–104]. Although the higher-spin Kitaev models are
not exactly solvable so far, a novel “even-odd” result
somewhat reminiscent of the Haldane conjecture [105]
has been established unperturbatively: the ground state
must be topologically-nontrivial spin liquids for all half-
integer spin, but possibly trivial gapped insulators for
integer spin. This even-odd effect is rooted in differ-
ent natures of the exact Z2 gauge charges in the spin-S
Kitaev model, which are fermions and bosons for half-
integer and integer spin, respectively. It is then natu-
ral to ask whether there exist microscopic models with
QSL ground state for all value of spin-S? The integer-
spin cases of exactly-solvable QSL models are especially
intriguing, since so far no QSL has been obtained in an-
alytically controlled ways for integer-spin Kitaev models
(numerical results about their nature are still controver-
sial).

In this work, we show that for the spin-S Yao-Lee
model the ground state is always nontrivial QSOL for any
value of spin-S. First, we construct the exact Z2 gauge
structure in the spin-S Yao-Lee model and show that the
deconfined gauge charges are always fermions, which es-
tablishes that its ground state must be a QSOL for all
spin-S. Secondly, we focus on the spin-1 Yao-Lee model
and solve its easy-axis limit perturbatively. The ground
state can be gapless QSOL or even has non-abelian topo-
logical order. We further show that the zero mode in a Z2
vortex has fractionalized spin quantum number Sz = 1

2 ,
which implies spin fractionalization in the ground state.
The physics in the spin-S Yao-Lee model can be richer
than the controlled analytical results of spin-S Kitaev
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models, which either report Abelian Z2 topological order
or trivially gapped ground states.

The model.—In this Letter, we mainly focus on the fol-
lowing spin-S Yao-Lee model on the honeycomb lattice:

Ĥ = −
∑

⟨ij⟩∈µ

Jµ[S⃗i · S⃗j ] ⊗ [τµ
i τ

µ
j ], (1)

where S⃗i are spin-S operators on site i, and the Pauli
matrices τµ

i represent the orbital degrees of freedom (the
case of two orbitals). The spin-spin interactions are
nearest-neighbour Heisenberg interactions with SU(2)
spin-rotational symmetry, and the orbital interactions
are Ising-like, similar to those in the Kitaev honeycomb
model, which features Ising couplings τµ

i τ
µ
j with coupling

constants Jµ in the µ = x, y, z types of bonds ⟨ij⟩, as
shown in Fig. 1.

For the case of spin-1/2, namely the spin operators
S⃗i = 1

2 σ⃗i, the Yao-Lee model in Eq. (1) is exactly solv-
able using Majorana partons [60]. Here we give a brief
review of the solution and physical properties of this min-
imal spin-1/2 Yao-Lee model:

ĤS= 1
2

= −
∑

⟨ij⟩∈µ

Jµ

4 [σ⃗i · σ⃗j ] ⊗
[
τµ

i τ
µ
j

]
. (2)

The Pauli operators σ⃗i = 2S⃗i and τ⃗i can be written in
terms of Majorana fermions: σ⃗i = id⃗id

0
i and τ⃗i = i⃗cic

0
i ,

where d0
i , d⃗i, c

0
i , c⃗i are Majorana fermions. The Hilbert

space is enlarged with the introduction of these Majorana
partons, and one has to impose two constraints on each
site to obtain the physical Hilbert space: dx

i d
y
i d

z
i d

0
i = 1

and cx
i c

y
i c

z
i c

0
i = 1. Further, we note that the Majorana

bilinears id0
i c

0
i on each site commute with the Hamilto-

nian, so we can simplify the parton construction by elimi-
nating two Majorana fermions d0

i , c
0
i using the projection

conditions to get: τ⃗i = − i
2 c⃗i × c⃗i and σ⃗i = − i

2 d⃗i × d⃗i.
Then, we are left with only one projection each site:
idx

i d
y
i d

z
i c

x
i c

y
i c

z
i = 1 [60].

With the Majorana formulation, the spin- 1
2 Yao-Lee

spin-orbital model in Eq. (2) becomes a quadratic Hamil-
tonian: Ĥf

S= 1
2

= −
∑

⟨ij⟩∈µ
Jµ

4 u⟨ij⟩[id⃗i · d⃗j ], where the
static Z2 gauge field u⟨ij⟩ = −icµ

i c
µ
j satisfies the zero

flux condition in the ground state sector. The phase di-
agram of this spin-1/2 Yao-Lee model is similar to that
of the spin-1/2 Kitaev honeycomb model. The ground
state has gapped Z2 topological order in the anisotropic
regime, and it is gapless QSOL with three Dirac cones
in the isotropic regime. We may further note that the
itinerant fermions in Ĥf

S= 1
2

only come from the partons
of spin, so the gapless QSOL has no spin order and the
spin-spin correlation decays in power-law.

The long-range entangled QSOL in the ground state
can be diagnosed even without solving the Hamiltonian.
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FIG. 1. (a) Operator Ŵ is the flux operator. The red line
represents the open string operator. (b) The support of three
movement operators Uµ

1 , Uµ
2 , Uµ

3 of the spin-S spin-orbital
model (1) on the lattice. At the ends of each open string
operator Uµ, there are two excitations which have fermionic
statistics and can be moved by Uµ.

We consider open string operators, as shown in Fig. 1:

Uµ = σµ
i τ

y
i τ

x
j τ

x
k τ

z
l τ

z
mτ

y
nσ

µ
n

= idµ
i

[
û⟨ij⟩û⟨jk⟩û⟨kl⟩û⟨lm⟩û⟨mn⟩

]
dµ

n.
(3)

The end points of Uµ are deconfined fermionic Z2 gauge
charges dµ

i ; since Uµ commutes with the Hamiltonian
Eq. (2) except the two end points, the energy cost of
separating two gauge charges approaches to a finite con-
stant as their distance goes to infinity. The existence of
deconfined fermionic gauge charges in a purely bosonic
lattice model can only come from the fractionalization of
QSOL. Consequently, we can demonstrate the existence
of a QSOL by only referring to the exact Z2 gauge struc-
ture without solving the Hamiltonian. In the following,
we shall show that deconfined fermionic Z2 gauge charges
exist in the spin-S Yao-Lee model in Eq. (1) for any spin-
S. This in turn means the ground state of model (1) is
always a nontrivial QSOL regardless of the spin-S, in-
cluding integer spins.

Deconfined fermions in the higher spin Yao-Lee
model.—We now construct the exact Z2 gauge structures
of the spin-S Yao-Lee model in Eq. (1) through a parton
construction, and show that the gauge charges are de-
confined fermions for all spin-S. The parton construction
here is different from those in the spin- 1

2 Yao-Lee model
and the spin-S Kitaev model [97].

We first decompose the spin-S operator S⃗i into 2S spin-
1
2 Pauli matrices: S⃗i = 1

2
∑2S

a=1 σ⃗a,i, together with the
projection to leave only the spin-S physical Hilbert space:
( 1

2
∑2S

a=1 σ⃗a,i)2 = S(S+ 1). All the Pauli matrices τ⃗i and
σ⃗a,i can now be written into Majorana partons:

τ⃗i = − i

2 c⃗i × c⃗i, σ⃗1,i = − i

2 d⃗1,i × d⃗1,i,

σ⃗a,i = id⃗a,id
0
a,i, a = 2, 3, · · · , 2S,

(4)

where we have eliminated the c0
i and d0

1,i Majorana
fermions in the parton construction of τ⃗i and σ⃗1,i, simi-
lar to the spin- 1

2 model (2). We adopt this construction
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since the Z2 gauge charges only consist the di Majorana
fermions coming from the fractionalization of spin opera-
tors S⃗i, as we will immediately show below. This implies
the spin degrees of freedom can also fractionlize in the
QSOL, which is qualitatively different from the pure or-
bital Kitaev model and has richer physics.

Using this Majorana representation above, the spin-S
Yao-Lee spin-orbital model Ĥ can be written as:

Ĥf = −1
4

∑
⟨ij⟩∈µ

Jµû⟨ij⟩

2S∑
a,b=2

iD⃗a,i · D⃗b,j , (5)

where D⃗a,i = d⃗1,i + d⃗a,id
x
1,id

y
1,id

z
1,id

0
a,i is the composite

field with a = 2, · · · , 2S. The Z2 gauge field û⟨ij⟩ =
−icµ

i c
µ
j are conserved quantities:

[
û⟨ij⟩, Ĥ

f
]

= 0 and[
û⟨ij⟩, û⟨i′j′⟩

]
= 0. And it can be directly verified that

Ĥf is invariant under the local Z2 gauge transformation:
dµ

α,i → Λid
µ
α,i, α = 1, 2...2S and û⟨ij⟩ → Λiû⟨ij⟩Λj , where

Λi = ±1. As a result, û⟨ij⟩ are static Z2 gauge fields with
conserved flux on each plaquette. The flux operator can
be written in physical operators: Wp = τy

1 τ
z
2 τ

x
3 τ

y
4 τ

z
5 τ

x
6 ,

as is illustrated in Fig. 1(a).
Now we consider open string operator, e.g. on the

string shown in Fig. 1(a):

Uµ = eiπSµ
i τy

i τ
x
j τ

x
k τ

z
l τ

z
mτ

y
ne

iπSµ
n

∝ Γµ
i (ûy

⟨ij⟩û
z
⟨jk⟩û

y
⟨kl⟩û

x
⟨lm⟩û

y
⟨mn⟩)Γ

µ
n,

(6)

where the ’∝’ in the second line of the equation above
only means there can be a path and spin-S dependent
U(1) phase in the parton representation. And Γµ

i =
dµ

1,iΠ2S
a=2(idµ

a,id
0
a,i) are the fermionic Z2 gauge charges at

the ends of the open string. The fermionic gauge charges
Γµ are always deconfined regardless of the value of spin-
S, since Uµ commutes with Ĥ except at the two ends of
the string such that the energy cost is O(1) when two
Γµ are separated to infinity. As a result, we immediately
arrive at the conclusion that the spin-S Yao-Lee model Ĥ
in Eq.(1) always has the nontrivial QSOL ground state
for all spin-S !

The fermionic nature of the gauge charges can also be
verified in a more fundamental and parton-representation
independent way. We can check the statistics of the ex-
citations at the ends of the string using only physical
operators, following the approach in [106, 107]. As is
illustrated in Fig. 1(b), we suppose there are two exci-
tations located at the sites i and j in the initial state,
and we then apply two independent movement sequences
Uµ

1 U
µ
2 U

µ
3 and Uµ

3 U
µ
2 U

µ
1 to it, respectively. The two final

states only differ by an exchange of the two excitations,
so their wave functions will only differ by a statistical
phase ϕ of the excitations. This is reflected in the alge-
braic relation of the two movement sequence operators:
Uµ

1 U
µ
2 U

µ
3 = eiϕUµ

3 U
µ
2 U

µ
1 . Here eiϕ = −1 for all values of

spin-S, which means the excitations at the end points of
Uµ obey fermionic statistics.

Having identified the nontrivial QSOL ground state
of the spin-S model in Eq. (1), we continue to analyze
its physical properties by finding certain limits in which
the model is perturbatively solvable. In the following, we
shall focus on the easy-axis limit of this model for the case
of spin-1. This is the simplest case when the model is not
exactly solvable, but it is also very intriguing since the
spin-1 Kitaev model does not exhibit spin liquid ground
state within analytically controlled solvable limit.

Easy-axis spin-1 Yao-Lee model.—We consider the
model in Eq. (1) with spin-1 and Jµ = J in the spin
easy-axis anisotropy limit :

ĤS=1 = −J
∑

⟨ij⟩∈µ

[Sz
i S

z
j + a(Sx

i S
x
j + Sy

i S
y
j )] ⊗ [τµ

i τ
µ
j ], (7)

where 0 < a ≪ 1 such that the spin coupling in the z-
direction is much larger than those in the x- and y- di-
rections. Here we focus on the case with spatial isotropic
couplings Jµ = J , where it is possible to obtain a QSOL
different from the familiar Abelian Z2 topological order,
such as gapless QSOL or even non-Abelian topological or-
der if time-reversal symmetry is broken. Meanwhile, the
spatial isotropic coupling limit is the only known regime
where the spin-1 Kitaev model may have a spin-liquid
ground state, but its nature is still under debate [89, 108].
It is then desired to have an analytically controlled study
of the spin-1 model in Eq. (7).

We first derive a low-energy effective Hamiltonian of
the model ĤS=1 = Ĥ0 + aV̂ through a degenerate per-
turbation up to the order a2. Here the unperturbed part
Ĥ0 = −J

∑
⟨ij⟩∈µ S

z
i S

z
j ⊗ τµ

i τ
µ
j is exactly solvable, since

all Sz
i s are conserved and we denote the Hamiltonian Ĥ0

with a fixed {Sz
i } configuration as Ĥ0({Sz

i }). After writ-
ing the orbital Pauli matrices τ⃗i into Majorana fermions:
τ⃗i = i⃗cic

0
i , Ĥ0 becomes a quadratic fermion Hamiltonian:

Ĥf
0 = −J

∑
⟨ij⟩∈µ u⟨ij⟩ic

0
i c

0
j , where u⟨ij⟩ = −icµ

i c
µ
i S

z
i S

z
j

are static Z2 gauge fields. Due to the Z2 gauge symme-
try, an immediate conclusion is that the energy of the
ground states of all Ĥ0({Sz

i ̸= 0}) are equal, since these
states can be connected to each other through Z2 gauge
transformations in the Majorana representation. We de-
note the set of these states as G and it can be proved
that the ground state subspace of Ĥ0 is G. The detailed
proof is shown in the Supplementary Material. Physi-
cally, this means that all the ground states to the zeroth
order have one Dirac cone and the inclusion of any site
with Sz

i = 0 will effectively generate a lattice vacancy on
that site which increases the energy.

In the ground state sector G of Ĥ0, Sz
i can only take

two values ±1, which is like an effectively spin- 1
2 de-

grees of freedom. We denote this effective spin- 1
2 as

P̂Sz
i P̂ = σz

i , where P̂ is the projection to the low-energy
ground state sector G. A nontrivial effective Hamilto-
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nian can lift the degeneracy of G at the second order of
a. As the energy gaps of low-lying intermediate states
are approximately the same (∝ |J |), we can write down
the effective Hamiltonian as:

Ĥeff = P̂ Ĥ0P̂ − Jeff
∑
⟨ij⟩

(
σx

i σ
x
j + σy

i σ
y
j − σz

i σ
z
j

)
, (8)

where Jeff ∝ a2|J | and we leave the details of the deriva-
tion to the Supplementary Material. For this effective
spin- 1

2 spin-orbital model above, we can use the same
Majorana representation as the spin- 1

2 Yao-Lee model in
Eq. (2):

Ĥf
eff = −J

∑
⟨ij⟩

ûij

(
idz

i d
z
j

)
+2Jeff

∑
⟨ij⟩

[
−idz

i d
z
j (f†

i fj +H.c.) + 2(n̂i − 1
2)(n̂j − 1

2)
]
,(9)

where fi = 1
2 (dx

i − idy
i ) or − i

2 (dx
i − idy

i ) if the site i

resides on the A or B sublattice, and n̂i = f†
i fi. û⟨ij⟩ =

−icµ
i c

µ
j are static Z2 gauge fields. Since the flux gap is

proportional to |J |, so we can safely take û⟨ij⟩ = 1.
Although Ĥf

eff in Eq. (9) is not directly exactly solv-
able, we can reliably obtain its ground state properties
through a mean-field approximation due to the small pa-
rameter a. The ground state of Ĥ0 has a Dirac cone
with a vanishing density of states, and since Jeff ≪ |J |,
we do not expect this weak four-fermion interaction will
induce an symmetry-breaking instability and gap out
the Dirac cone. So we propose that the ground state
wave function of Ĥf

eff in Eq. (9) can be approximated
as: |ψG⟩ = |d⟩ ⊗ |f⟩, where |d⟩ and |f⟩ are the dz-
fermion and f -fermion part, respectively. |d⟩ is ap-
proximately the ground state of the tight-binding model
Ĥ0,d = −J

∑
⟨ij⟩ id

z
i d

z
j , and |f⟩ is the ground state of:

Ĥf = 2Jeff
∑
⟨ij⟩

[
− λ(f†

i fj +H.c.) + 2(n̂i − 1
2)(n̂j − 1

2)
]
, (10)

where λ = ⟨idz
i d

z
j ⟩d is the expectation value of nearest-

neighbour Majorana hopping in the state |d⟩. It is inter-
esting that ĤMF is just the spinless fermion t-V model on
the honeycomb lattice (with t = 2λJeff and V = 4Jeff).
Numerically-exact quantum Monte Carlo studies of the
honeycomb spinless t-V model have reported a phase
transition from Dirac semimetal to charge-density-wave
(CDW) order with a critical V/t: (V/t)c ≈ 1.35 [109–
111]. As the effective ratio V

t in Eq. (10) is V
t = 2

λ > 2,
which means the f -fermion is in the CDW phase, which,
after translating back to the physical degrees of freedom
equivalently, implies that the spin exhibits a Neel order
with opposite spin moments on different sublattices of
the honeycomb lattice. As a result, the easy-axis spin-1
Yao-Lee model in Eq.(7) has the gapless QSOL ground

state with a Dirac cone accompanying with the Neel or-
der in the z-direction.

Physically, the spin order in the easy-axis limit is due
to the fact that the spin quantum fluctuation is largely
suppressed for small a. One way to enhance the spin fluc-
tuation is to add a tiny ferromagnetic Ising coupling of
the same order as Jeff to the model in Eq. (7): Ĥ ′

S=1 =
ĤS=1+ĤFM, where ĤFM = −Jz

∑
⟨ij⟩ S

z
i S

z
j with Jz > 0.

Now the density repulsion in the corresponding ĤMF is
suppressed to V ′ = 4Jeff−2Jz, when V ′

2λJeff
is smaller than

the critical ratio ( V
t )c ≈ 1.35, the spin order disappears

and the ground state will have three Dirac cones. Specif-
ically, when we take Jz = 2Jeff in Ĥ ′

S=1 , the density
repulsion V ′ of the f -fermions in the Marjoana represen-
tation is zero up to a2, so the ground state must lie in the
gapless QSOL phase with three Dirac cones. Then, the
spin-spin correlation ⟨Sz

i S
z
j ⟩ ∼ |ri − rj |−4 now has power

law decay as |ri − rj | → ∞ [60], which implies spin also
fractionalizes in the QSOL ground state. In below, we
give a more direct manifestation of spin fractionalization
by showing that the Z2 vortex forms a projective repre-
sentation of U(1)z spin rotation symmetry if these Dirac
cones are gapped.

Non-Abelian topological order.—Having identified the
gapless QSOL ground state of the easy-axis spin-1 Yao-
Lee model, we further show that non-Abelian topologi-
cal order can also be realized if time-reversal symmetry
(TRS) is spontaneously or explicitly broken in this model.

First, the TRS can be spontaneously broken if we con-
sider the model Ĥ ′

S=1 on the decorated honeycomb lat-
tice (also known as the star lattice) [43], with each site
in the honeycomb lattice replaced with three sites of a
triangle. For simplicity, we set all the inter-sublattice
and intra-sublattice couplings to be the same J = 1. Its
low energy state sector and the effective Hamiltonian are
similar to those on the honeycomb lattice, but now the
leading order Ĥ0 gaps dz fermions with nonzero Chern
number ν = ±1. As a result, the weak four-fermion inter-
action in Eq. (9) which couples dz with f fermions must
be irrelevant, and |ψG⟩ = |dz⟩ ⊗ |f⟩ is still a good ap-
proximation of the ground state before projection. |f⟩ is
the ground state of the quadratic mean field Hamiltonian∑

⟨ij⟩⟨idz
i d

z
j ⟩d

(
if†

i fj +H.c.
)

with fi = 1
2 (dx

i − idy
i ) on

all sites [112], which is also gapped with nonzero Chern
number, and the ground state now has non-Abelian Ising
topological order. More interestingly, the Z2 vortex has
a zero mode which hosts a projective representation of
U(1)z spin rotation symmetry with quantum number
Sz = 1

2 . The reason is similar to that in the spin- 1
2

Yao-Lee model [60]. Since the f -fermions have a nonzero
Chern number ν = ±1, the Sz spin Hall conductance
is quantized as σs

xy = ν ℏ
2π . As a result, if we insert a

Z2 π-flux (or −π-flux equivalently) in a plaquette, an
Sz = ±π × σs

xy = ±ν ℏ
2 will accumulate around the Z2

vortex. This implies the existence of a zero mode with a
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fractionalized quantum number Sz = 1
2 , and the sign of

the accumulated spin Sz = ±ℏ
2 corresponds to whether

the zero mode is occupied or not. Remarkably, the ex-
istence of fractionalized Sz = 1

2 in this spin-1 model is
a direct evidence of spin fractionalization in the ground
state.

Secondly, the TRS can also be explicitly broken on the
honeycomb lattice by adding a three-site term to Ĥ ′

S=1
with Jz = 2Jeff:

Hh = h
∑

⟨ij⟩∈α
⟨jk⟩∈β

ϵαβγ
[
τα

i τ
γ
j τ

β
k

]
⊗ (Sx

i S
x
k + Sy

i S
y
k)2, (11)

where h ≪ |J | and the three neighbouring sites i, j, k are
illustrated in Fig.(1) . A nontrivial effective Hamiltonian
in the ground state sector already exists in the first order
perturbation of h:

∆Hh,eff = h

2
∑

⟨ij⟩∈α
⟨jk⟩∈β

ϵαβγ
(
τα

i τ
γ
j τ

β
k

)
(σx

i σ
x
k + σy

i σ
y
k − σz

i σ
z
k)

= h

2
∑

⟨ij⟩,⟨jk⟩

ûij ûjk

[
2i(f†

i fk − f†
kfi) − idz

i d
z
k

]
,(12)

which gaps all the Majorana fermions with nonzero
Chern number and preserves the U(1)z spin rotation
symmetry at the same time. The ground state has
the Ising nonabelian topological order and fractionalized
quantum number Sz = 1

2 in the Z2 vortex. What’s more,
we anticipate the accumulated fractionalized charge Sz =
± 1

2 around the Z2 vortex will persist in the gapless phase
as we adiabatically turn off the perturbation h, which is
also an evidence of spin fractionalization in the gapless
QSOL phase.

Concluding remarks.—In this work, we have shown
that there exists a spin-orbital model with QSOL ground
state for all spin-S by constructing the exact Z2 gauge
structure in the spin-S Yao-Lee model. Further, in the
minimal integer spin S = 1 case, we analytically show the
ground state can be gapless QSOL or has non-Abelian
Ising topological order in the easy-axis limit depending
on whether TRS is broken or not. Spin fractionaliza-
tion is reflected from the accumulated Sz = ± 1

2 around
a Z2 vortex. Our analytical results have revealed richer
physics than the controlled solvable anisotropic spin-1 Ki-
taev model. A generalization of our analysis of the spin-1
Yao-Lee model to higher spin-S would be straightforward.
In the future, it would be interesting to go beyond the
analytically tractable easy-axis limit and numerically in-
vestigate the SU(2) symmetric spin-S Yao-Lee model in
Eq.(1).
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SUPPLEMENTARY MATERIAL

A. Proof of the ground state subspace

In this section, we prove the low energy ground state sector G of Ĥ0 in the maintext is given by all the ground state
of Ĥ0 with nonzero Sz. We complete the proof through proof by contradiction.

We suppose |ψ({Sz})⟩ is a ground state of Ĥ0 with at least one Sz
i = 0, and we prove that its energy must be strictly

higher than the real ground state. Actually we only need to consider the states with a single zero Sz
i . Indeed, if there

exist at least two zero Sz: Sz
i = Sz

j = 0 and j ̸= i in a state |ψ′⟩, then we can add a term ∆Hj = ηj

∑
k∈⟨jk⟩ S

z
k ⊗τµ

j τ
µ
k

to Ĥ0({Sz}′), where ηj = ±1 is a Z2 variable to make the expectation value ⟨ψ′|∆Hj |ψ′⟩ ≤ 0 and {Sz}′ is the Sz

configuration of |ψ′⟩ . Now the ground state energy of the Hamiltonian Ĥ0({Sz}′) + ∆Hj cannot be higher than the
energy of |ψ′⟩, but the new ground state has one less zero Sz. We can continue this process until there is only one
zero Sz

i left, and we only need to prove the energy of the final state |ψ({Sz})⟩ is strictly higher than the real ground
state of Ĥ0. Meanwhile, an immediate corollary is that the ground states of any Ĥ0({Sz ̸= 0}) must belong to the
real ground states sector of Ĥ0, since we can just continue the addition of ∆H until no zero Sz is left.

Now if ⟨ψ({Sz})|
∑

j∈⟨ij⟩ S
z
j ⊗τµ

i τ
µ
j |ψ({Sz})⟩ ≠ 0, then we can find a nonzero ηi and the ground state of Ĥ({Sz})+

∆Hi has strictly lower energy and then the proof is complete. So the only corner case left is ⟨ψ({Sz})|
∑

j∈⟨ij⟩ S
z
j ⊗

τµ
i τ

µ
j |ψ({Sz})⟩ = 0, and we can prove that this contradicts the assumption that |ψ({Sz})⟩ is the ground state of

Ĥ0. We write |ψ({Sz})⟩ in the Majorana representation: |ψ({Sz})⟩ = ΠiD̂i|{u⟨ij⟩}⟩ ⊗ |c0⟩, where D̂i = 1+cx
i cy

i
cz

i c0
i

2
is the projection on site i. If ⟨ψ({Sz})|

∑
j∈⟨ij⟩ S

z
j ⊗ τµ

i τ
µ
j |ψ({Sz})⟩ = 0, then |ψ({Sz})⟩ is also the ground state of

Ĥ ′
0 = Ĥ0({Sz}) +

∑
j∈⟨ij⟩ S

z
j ⊗ τµ

i τ
µ
j . The Sz configuration of Ĥ ′

0 has no zero since Sz
i = 1, so in the Majorana

representation of Ĥ ′
0, we can just take the Z2 gauge field configuration to make the remaining itinerant fermion

Hamiltonian preserve all the lattice symmetries, which has only one ground state |c0⟩ with one Dirac cone. As a
result, ⟨ψ({Sz})|

∑
j∈⟨ij⟩ S

z
j ⊗τµ

i τ
µ
j |ψ({Sz})⟩ is just the expectation value of the summation of three nearest neighbour

hoppings:
∑

j∈⟨ij⟩ S
z
j u⟨ij⟩⟨c0|ic0

i c
0
j |c0⟩, which must be nonzero since ⟨c0|ic0

i c
0
j |c0⟩ are the same on all bonds, and Sz

j u⟨ij⟩
are three Z2 variables whose summation cannot be zero.

B. Derivation of the effective Hamiltonian through degenerate perturbation

In this section, we derive the effective Hamiltonian of Eq. (8) in the main text through a degenerate perturbation
to the second order of a. Since we have identified the zeroth order ground state sector G in the previous section,
which are the ground states of the unperturbed Hamiltonian Ĥ0 = −J

∑
⟨ij⟩∈µ S

z
i S

z
j ⊗ τµ

i τ
µ
j with all the Sz nonzero.

So the spin degrees of freedom on each site is an effective spin- 1
2 , and we denote this spin- 1

2 as: P̂Sz
i P̂ = σz

i , where
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P̂ is the projection to the low-energy ground state sector G. A nontrivial effective Hamiltonian exists at the second
order perturbation:

Ĥeff = P̂ Ĥ0P̂ + P̂ V

(
1

E0 − Ĥ0
Q̂V

)
P̂ , (13)

where E0 are the ground state energy of Ĥ0; Q̂ = 1 − P̂ is the projection to the excited states, and V =
−aJ

∑
⟨ij⟩∈µ(Sx

i S
x
j + Sy

i S
y
j ) ⊗ [τµ

i τ
µ
j ] is the perturbation with 0 < a ≪ 1. We assume the energy gap between G

and all the low-lying intermediate states are approximately the same ∆|J |, where ∆ is an O(1) dimensionless postive
number, then we can write down a simple form of Ĥeff :

P̂ V

(
1

E0 − Ĥ0
QV

)
P̂ = −a2|J |

∆ P̂

∑
⟨ij⟩

(Sx
i S

x
j + Sy

i S
y
j )2

 P̂
= −a2|J |

∆
∑
⟨ij⟩

P̂
[
(Sx

i S
x
j )2 + (Sy

i S
y
j )2 + Sx

i S
y
i ⊗ Sx

j S
y
j + Sy

i S
x
i ⊗ Sy

j S
x
j

]
P̂

= −a2|J |
4∆

∑
⟨ij⟩

[
(σx

i + 1)(σx
j + 1) + (σx

i − 1)(σx
j − 1) + (σy

i + iσz
i )(σy

j + iσz
j ) + (σy

i − iσz
i )(σy

j − iσz
j )

]
= −a2|J |

2∆
∑
⟨ij⟩

σx
i σ

x
j + σy

i σ
y
j − σz

i σ
z
j + const.,

(14)
where is exactly the Eq. (8) in the main text with Jeff = a2|J|

2∆ .
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