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The linear and nonlinear Hall effects in 2D systems are considered theoretically within the isotropic
k-cubed Rashba model. We show that the presence of an out-of-plane external magnetic field or
net magnetization is a necessary condition to induce a nonzero Berry curvature in the system,
whereas an in-plane magnetic field tunes the Berry curvature leading to the Berry curvature dipole.
Interestingly, in the linear response regime, the conductivity is dominated by the intrinsic component
(Berry curvature component), whereas the second-order correction to the Hall current (i.e., the
conductivity proportional to the external electric field) is dominated by the component independent
of the Berry curvature dipole.

I. INTRODUCTION

Spin-orbit interaction of Rashba type [1–3] is a con-
sequence of structural inversion asymmetry in a system
and originally has been studied in the context of semi-
conductor surfaces and heterostructures with asymmetric
confining potentials. In the current relevant literature,
the Rashba spin-orbit coupling means usually the spin-
orbital interaction arising in systems without the inver-
sion centre, that can be described as an effective internal
and odd-momentum-dependent Zeeman-like field acting
on the electron spin [4, 5]. Consequently, the spin-orbit
interaction leads the so-called spin-momentum locking
phenomenon, i.e., to a fixed orientation of quasiparticle
spin with respect to its momentum. This, in turn, is
responsible for fascinating electrical and optical effects,
that are currently a hallmark of spin-orbitronics [6–11].
In the context of electric transport, especially important
consequences of spin-momentum locking are the spin-to-
charge interconversion effects, such as current-induced
spin polarization (also known as Edelstein effect)[12–14]
and spin Hall effect [13, 15–20]. Recently, in the context
of spin-orbitronics, nonlinear transport effects, i.e., bilin-
ear magnetotransport [21–25], and nonlinear Hall effect
are of special attention.

The nonlinear Hall effect [26–30] (NLHE) is an in-
triguing member of the family of Hall effects, as it can
arise in time-reversal symmetric systems. The only con-
dition that is required is the absence of inversion symme-
try [26, 27]. Similarly to the anomalous Hall effect [31]
(AHE) one can define intrinsic and extrinsic microscopic
mechanisms responsible for NLHE [30, 32]. The intrinsic
contribution has a geometric nature, namely, the posi-
tive and negative Berry curvature hotspots are located
in slightly different regions of the Brillouin zone, lead-
ing to the dipole moment that is called Berry curvature
dipole (BCD) [26]. This intrinsic contribution, even orig-
inating in case of nonzero Berry curvature, is different
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from the intrinsic AHE, where the conductivity is ro-
bust to scattering and is dissipationless. This is because
the intrinsic component of NLHE is nonzero only when
the Fermi level crosses the energy bands (i.e., the BCD
disappears in the energy gap), and consequently, the ef-
fects of disorder are unavoidable. The BCD has been re-
ported in topological crystalline insulators (e.g., the (001)
surface of SnTe, Pb1−xSnxTe, Pb1−xSnxSe) [26, 32],
Weyl semimetals [33], and transition-metal dichalco-
genides [28, 32, 34–36]. In turn, the extrinsic contri-
bution to NLHE is related to spin-dependent scattering
processes, also well-known from the theory of AHE, i.e.,
to the skew-scattering and side jump [28, 29, 32, 36].

In this work, we develop the concept of externally con-
trolled nonlinear Hall effect. We show, that the Berry
curvature and Berry curvature dipole can emerge as a
consequence of external force, such as external magnetic
field, which additionally controls the properties of BCD
and nonlinear system response. Such external control of
nonlinear (unidirectional) electronic transport provides
an additional degree of freedom in the design of new spin-
tronics devices. Accordingly, we demonstrate the Berry
curvature dipole engineering by external magnetic field
and present a detailed study of the linear and nonlin-
ear Hall response in two-dimensional electron gas with
isotropic cubic form of Rashba spin-orbit interaction.
The Berry curvature in such a system appears as a con-
sequence of nonzero out-of-plane external magnetic field
or magnetization. In turn, the Berry curvature dipole
emerges (and simultaneously can be controlled) due to
an in-plane magnetic field. In consequence, the Hall con-
ductivity contains linear and nonlinear components. The
linear system response contains the contributions due to
anomalous and planar Hall effects, whereas the nonlinear
Hall response is determined by BCD.

Our proposition of magnetic control of Berry curvature
and Berry curvature dipole is quite general and can be
applied to any kind of systems that, under zero external
fields, reveal only the lack of spatial inversion symme-
try. Thus we decided to consider here the effective model
describing 2D quasiparticles in the presence of isotropic
cubic form of Rashba SOC. This kind of Rashba spin-
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orbit coupling determines the spectra of p-states in p-
doped zincblende III-V semiconductor heterostructures
(heavy holes in 2DHG) [2, 37–40]. Interestingly, the same
kind of spin-orbital splitting, i.e., the same symmetry of
low-energy electronic states, associated with t2g orbitals,
is observed for 2D electron gas emerging at the surface
states of cubic perovskites, such as SrTiO3 (STO) and
STO-based interfaces, e.g., LaAlO3/SrTiO3 [40–43]. The
2D electron gas at surfaces and interfaces of cubic per-
ovskite oxides attracts a large interest, mainly because
of its high electron mobility and enhanced spin-orbit in-
teraction that leads to strong spin-to-charge interconver-
sion [44–46]. This makes oxide perovskites attractive ma-
terials for spintronics.

This work is organised as follows. In Sec. II. we intro-
duce an effective Hamiltonian describing 2D electron gas
with isotropic cubic Rashba SOC. In Sec. III. we present
semi-classical formulas describing linear and nonlinear
Hall conductivity. Next, in Sec. IV.A. we present Berry
curvature and BCD as a function of the in-plane mag-
netic field and parameters of the effective Hamiltonian.
Sec. IV.B. contains detailed discussion on the behaviour
of Hall conductivity in the in-plane magnetic field. Fi-
nally, Sec. V. contains the summary and final remarks.

II. 2D ELECTRON GAS WITH k-CUBED
RASHBA SOC

We consider effective low-energy Hamiltonian of 2D
light-electrons (2D heavy-holes) with isotropic cubic form
of Rashba SOC [38, 39, 41], that takes the following form:

H =
ℏ2k2

2m
σ̂0 + iα(k3−σ̂+ − k3+σ̂−) + ∆ · ŝ, (1)

where k2 = k2x + k2y, and m is the effective mass that
in the systems under consideration is described by the
following formula:

m = m0

(
γ1 + γ2 −

256γ22
3π2(3γ1 + 10γ2)

)−1

, (2)

with m0 denoting the electron rest mass, and γ1,2 stand-
ing for the Luttinger parameters. The second term of
Eq. (1) describes isotropic cubic Rashba SOC, where
k± ≡ (kx ± iky), σ̂± ≡ 1

2 (σ̂x ± iσ̂y) and σ̂0,x,y,z are the
identity and Pauli matrices. The Rashba parameter α
reads:

α =
512eFL4

zγ
2
2

9π6(3γ1 + 10γ2)(γ1 − 2γ2)
, (3)

where Lz and F are the quantum well width and field
strength, respectively. The last term in Hamiltonian (1)
is a Zeeman-like term that describes the coupling of elec-
tron spin, s, with magnetization and/or external mag-
netic field, that for keeping the generality is denoted here
as ∆ (note that ∆ is defined in the energy units). The

spin operators, ŝ = (ŝx, ŝy, ŝz), in this model are defined
as follows [39]:

ŝx = −s0kyσ̂0 + s1(k2−σ̂+ + k2+σ̂−), (4a)

ŝy = s0kxσ̂0 + is1(k2−σ̂+ − k2+σ̂−), (4b)

ŝz =
3

2
σ̂z, (4c)

and their forms are a consequence of two canonical
transformations that need to be performed on Luttinger
Hamiltonian to obtain the effective Hamiltonian (1). The
coefficients s0,1 are defined as:

s0 =
512eFL4

zγ2m0

9π6ℏ2(3γ1 + 10γ2)(γ1 − 2γ2)
(5)

and

s1 =

[
3

4π2
− 256γ22

3π4(3γ1 + 10γ2)2

]
L2
z. (6)

The material parameters that characterise different
systems, have been collected for example in [47]. Here,
following [39] we chose the parameters γ1 = 7, γ2 = 1.9,
eF = 5 · 106 eV/m and Lz = 8.3 nm. As the necessary
condition to obtain a nonzero Berry curvature is to have
a nonzero z-component of ∆ (i.e., a nonzero macroscopic
magnetization oriented out of plane of 2DEG or out of
plane component of magnetic field), whereas to induce
and tune the Berry curvature dipole we need in addition
an in-plane component of magnetic field, we introduce
the following generalized notation: ∆ = (Bx, By,∆z).
Here Bx,y denote the external in-plane components of
magnetic field in the energy units, and ∆z = Bz or
∆z = Mz, where Bz and Mz denote the z-component of
external magnetic field and the out-of plane macroscopic
magnetization, respectively.

III. HALL CONDUCTIVITY

Within the semi-classical picture, the charge current
density driven by ac longitudinal electric field can be de-
scribed – in the constant relaxation time approximation
and up to the second order in the electric field – by the
following formula:

jα = Re{j0α + j1α exp(iωt) + j2α exp(i2ωt)}, (7)

where the first term describes the rectification effect,

j0α = −
e3EβE

∗
γ

2ℏ2
τ

1 + iωτ

∑
l

∫
d2k

(2π)2

(
ϵαγδΩl

δ∂
β
k

+τvlα∂
γ
k∂

β
k

)
f l0, (8)

the second term describes the linear response,

j1α = −e
2

ℏ
Eβ

∑
l

∫
d2k

(2π)2

(
εαβγΩl

γ +
τvlα

1 + iωτ
∂βk

)
f l0,

(9)
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FIG. 1. Berry curvature (a-d) and Berry curvature dipole (e), as well as derivative of the Berry curvature with respect to kx
plotted in k-space (f,h) for indicated values of ∆z and B. The other parameters are: γ1 = 7, γ2 = 1.9, eF = 5 · 106 eV/m,
Lz = 8.3 nm.

and the last term is the second harmonic response,

j2α = −e
3EβEγ

2ℏ2
τ

1 + iωτ

∑
l

∫
d2k

(2π)2

(
ϵαγδΩl

δ∂
β
k

+
τvlα

1 + i2ωτ
∂γk∂

β
k

)
f l0. (10)

In the above expressions l numerates the sub-bands, and
{α, β, γ, δ} = {x, y, z} and Ωl

α is the α-th component of
the Berry Curvature calculated for the l-th band

Ωl
γ = ∇k ×Λl(k) (11)

where Λl = i⟨ψl|∇k|ψl⟩ is the Berry connection.
Accordingly, in the dc limit, one can write:

jα = −e
2

ℏ
Eβ

∑
l

∫
d2k

(2π)2

(
εαβγΩl

γ + τvlα∂
β
k

+
eEγτ

ℏ

(
εαγδΩl

δ∂
β
k + τvlα∂

γ
k∂

β
k

))
f l0. (12)

Thus, the Hall conductivity can be written as follows:

σαβ = σI
αβ + σII

αβ + χI
αβγEγ + χII

αβγEγ . (13)

Here, σI,II
αβ are the components, that are well known from

the theory of AHE. Thus, the first term describes the
contributions from the electronic states at the Fermi level
(dissipative term), that in the simplest form [48] reads:

σI
αβ = −e

2

ℏ
τ
∑
l

∫
d2k

(2π)2
vlα∂

β
kf

l
0, (14)

whereas the second term describes the contribution from
the electronic states below the Fermi level, i.e., the Fermi

sea (non-dissipative) component. This term is fully in-
trinsic and determined by the Berry curvature:

σII
αβ = −e

2

ℏ
∑
l

∫
d2k

(2π)2
εαβγΩl

γf
l
0, (15)

The third and fourth terms of Eq. (13) describe nonlin-
ear Hall response. The third term is fully semi-classical,
with electric susceptibility heaving the form:

χI
αβγ = − e2

ℏ
eτ2

ℏ
∑
l

∫
d2k

(2π)2
vlα∂

γ
k∂

β
kf

l
0, (16)

whereas the fourth term has quantum origin and the cor-
responding electric susceptibility takes the form:

χII
αβγ = − e2

ℏ
eτ

ℏ
∑
l

∫
d2k

(2π)2
εαγδΩl

δ∂
β
kf

l
0

= −e
2

ℏ
eτ

ℏ
∑
l

εαγδD
l
γδ, (17)

where Dγδ is the Berry curvature dipole which in 2D sys-
tems (for which Berry curvature has only ẑ-component)
reads:

Dl
αβ

2D
= Dl

α =

∫
d2k

(2π)2
f l0 ∂

α
kΩl

z. (18)
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IV. RESULTS

A. Berry Curvature and Berry Curvature Dipole

The eigenvalues, El=±, of Hamiltonian (1) take the
form:

E± =
k2ℏ2

2m
+ s0 (Bykx −Bxky) ± ξ(k)

2
, (19)

and the corresponding eigenfunctions are:

Ψl=± =

(
±iΦ(k)

1

)
. (20)

In the above expressions we introduced the parameters:

ξ(k) =
[
9∆2

z + 4k4
(
B2s21 + k2α2 − 2α(Bykx −Bxky)s1

)]1/2
and Φ(k) = ±3∆z+ξ(k)

2k2
+(αk++i(Bx−By)s1)

. Accordingly, the Berry

curvature corresponding to the subbands E± has the fol-
lowing form:

Ω±
z = ∓ 6∆zk

2

(ξ(k))
3

[
4B2s21 + 12α(Bxky −Bykx)s1 + 9α2k2

]
,

(21)
where B2 = B2

x + B2
y denotes the amplitude of the in-

plane component of external magnetic field. In addition,
one usually defines (Bx/B,By/B) = (cosψ, sinψ), where
ψ determines the orientation of vector B with respect to
the x̂-axis.

Both eigenvalues and Berry curvature are presented
in Figs. 1(a)-(d). Fig. 1(a) shows the cross sections of
energy bands E± (solid lines) and Berry curvatures cor-
responding to these eigenvalues. The Berry curvatures
have also been plotted in the case, when the coefficient
s1 is taken into account in the definition of spin oper-
ators (dotted lines). Figures 1(b)-(d) present selected
constant-energy contours and density plots for Berry cur-
vature, Ω+

z , for a fixed value of ∆z and for different am-
plitudes of the in-plane magnetic field, B. One can see
that the nonzero in-plane magnetic field, B, leads to a
Fermi contours anisotropy in the k-space by shifting the
energy subbands (e.g., in the kx direction when the in-
plane magnetic field is oriented along the y direction).
For higher energies, where the spin-orbit coupling also
plays an important role, the B-field leads to a degeneracy
of the subbands. Obviously, the Berry curvature reveals
the highest signal in the crossing points. Moreover, the
positions of positive and negative Berry curvature hot
spots are also more pronounced at higher energies, and
their position in the k-space is controlled by the in-plane
orientation of the magnetic field (as indicated in Fig.1(f)-
(h)). Figure 1(e) presents the Berry curvature dipole cal-
culated for E+ and E− energy branches, respectively, as
well as their superposition. Importantly, depending on
which component, D+

y or D−
y , dominates the sum can

change the sign by changing the chemical potential.
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FIG. 2. Four components of the Hall conductivity: σI
xy (a),

σII
xy (b), χI

xyyEy (c), and χII
xyyEy (d) plotted as a function

of chemical potential µ and for the indicated orientations of
magnetic field (i.e., for the specific values of the angle ψ). For
all components, the contributions from each of the subbands
are presented. Here ∆z = 0.4 meV, B = 1.8 meV, eEy =
1 eV/m, Γ = 5 · 10−5 eV, the other parameters are the same
as in Fig. 1.

B. Hall conductivity

Now, without loss of generality, we assume that the ex-
ternal electric field is oriented in the y-direction. Accord-
ingly, the Hall response is described by the off-diagonal
conductivity σxy = σI

xy + σII
xy + χI

xyyEy + χII
xyyEy. The

first two terms describe the linear, with respect to Ey,
system response, i.e., σl

xy = σI
xy + σII

xy, whereas the
last two terms describe the nonlinear (second-order) re-
sponse, i.e., σnl

xy = (χI
xyy + χII

xyy)Ey. All these compo-
nents are presented in Fig. 2 (where the contributions
from each of the subbands are also plotted) and in Fig. 3,
where all conductivity components are presented as a
function of the angle, ψ, and chemical potential, µ, for
two amplitudes of the in-plane magnetic field, i.e., for
B = 0.2 meV and B = 1.8 meV. These two values of B
represent two regimes: B < ∆z, and B > ∆z, respec-
tively.

When B < ∆z, the intrinsic component, induced by
the Berry curvature, dominates the linear system re-
sponse. The component σII

xy does not depend on the
orientation of in-plane magnetic field (described by the
angle ψ, defined as the angle between x̂-direction and B-
vector), whereas the component σI

xy is a periodic func-
tion of ψ, with the oscillation period equal to π. In turn,
the nonlinear conductivity, σnl

xy reveals ψ-dependent os-
cillations, with the oscillation period of 2π. The oscil-
lation period 2π is a signature of nonlinear with respect
to the external electric field system response. Opposite
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FIG. 3. Linear and nonlinear Hall conductivity as a function of angle, ψ, defining the orientation of in-plane magnetic field
(a),(b),(e)(f) and as a function of the chemical potential, µ, (c),(d),(g),(h). The parameters are the same as in Fig. 1 and Fig. 2
unless otherwise indicated on the plots.

to σl
xy, the topological term originating from the Berry

curvature dipole is smaller than the nonlinear contribu-
tion originating from the states at the Fermi level. Both
χI
xyy and χII

xyy are non-monotonous functions of chemi-
cal potential. In Fig. 3(d), the nonlinear conductivity,
σnl
xy, and its two components are plotted s a function of

µ for ψ = 3π/4. From this plot, one can see that χI
xyy at

first decreases with increasing value of µ, reaches mini-
mum around 9 meV and then increases, crosses 0, takes
maximum around µ = 20 meV, and next it decreases.
In turn, χII

xyy is originally positive and takes maximum
around µ = 9 meV, then it decreases, crosses zero and
takes minimum at µ = 20meV vanishes with further in-
crease in µ. As a result, σnl

xy is a negative function having
a local minimum around µ = 9 meV and a local maxi-
mum around µ = 20 meV.

When B > ∆z, the two components contributing to
σl
xy, i.e., σI

xy and σII
xy, are of the same order. Accordingly,

σl
xy reveals well defined oscillations with a π-periodicity.

The component σnl
xy has periodicity of 2π. In addition,

χI
xyy has a local maximum at ψ = π/2 and a local min-

imum at ψ = 3π/2, which indicates the presence of not
only B linear but also B cubed terms. This means that
when B is strong enough, not only the bilinear term,
BxEy, but also B3

xEy term should be taken into account
to describe properly σnl

xy. For ψ = 3π/4 the nonlinear

contribution σnl
xy is again a negative function, having a

local minimum around µ = 9 meV and a local maximum
around µ = 20 meV. We note, that we have presented
here numerical data only for the chemical potentials up
to 40 meV, as the effective Hamiltonian given by Eq. (1)
is valid only for small particle density (small wave num-
bers) [38, 39].

The symmetric part of the off-diagonal conductivity,
∆Sσxy = [σxy(Ey = E) + σxy(Ey = −E)] /2 = σl

xy at
lower in-plane magnetic field is determined by the topo-
logical component. The behaviour of σII

xy for isotropic
cubic Rashba model has been discussed in detail, for ex-
ample, in Ref. [49]). In turn, when the amplitude of the
in-plane magnetic field increases, the component σI

xy be-
comes more visible and starts to dominate.

Importantly the antisymmetric part of the Hall con-
ductivity ∆Aσxy = [σxy(Ey = E) − σxy(Ey = −E)] /2 =
σnl
xy can be strongly modified not only by the orientation

and amplitude of the in-plane magnetic field, but also by
the change of chemical potential due to doping or gat-
ing. We have shown that the term related to the Berry
curvature dipole is not sufficient to properly describe the
behaviour of nonlinear system response, as the suscepti-
bilities χI

xyy and χII
xyy can have opposite signs. Moreover,

for larger in-plane magnetic fields, χI
xyy deviates from lin-

ear in B functional dependence.

V. DISCUSSION AND SUMMARY

In this paper we have analysed theoretically the lin-
ear and nonlinear Hall effects in 2D systems within the
isotropic k-cubed Rashba model. The analytical results
are supported by numerical ones. We showed that an out-
of-plane external magnetic field or magnetization lead to
a nonzero Berry curvature in the system. We have also
shown, that the Berry curvature can be tuned by in-plane
magnetic field, and this may lead to the Berry curvature
dipole.

We have also calculated the linear and nonlinear Hall
response, and have shown that in the linear response
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regime, the conductivity is dominated by the component
due to Berry curvature. In turn, the second-order correc-
tion to the Hall conductivity is dominated by the states
at the Fermi level.
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B. Diény, P. Pirro, and B. Hillebrands, Review on spin-
tronics: Principles and device applications, J. Magn.
Magn. Mater. 509, 166711 (2020).

[9] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier,
J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong,
A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor,
R. J. Cava, and M. Z. Hasan, A tunable topological insu-
lator in the spin helical Dirac transport regime, Nature
460, 1101 (2009).

[10] B. A. Bernevig and O. Vafek, Piezo-magnetoelectric ef-
fects in p-doped semiconductors, Phys. Rev. B 72, 033203
(2005).

[11] A. Chernyshov, M. Overby, X. Liu, J. K. Furdyna,
Y. Lyanda-Geller, and L. P. Rokhinson, Evidence for re-
versible control of magnetization in a ferromagnetic ma-
terial by means of spin–orbit magnetic field, Nat. Phys.
5, 656 (2009).

[12] Y. K. Kato, R. C. Myers, A. C. Gossard, and
D. D. Awschalom, Current-Induced Spin Polarization in
Strained Semiconductors, Phys. Rev. Lett. 93, 176601
(2004).

[13] V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C.
Gossard, and D. D. Awschalom, Spatial imaging of the
spin Hall effect and current-induced polarization in two-
dimensional electron gases, Nat. Phys. 1, 31 (2005).

[14] C. H. Li, O. M. J. van ’t Erve, J. T. Robinson, Y. Liu,
L. Li, and B. T. Jonker, Electrical detection of charge-
current-induced spin polarization due to spin-momentum
locking in Bi2Se3, Nat. Nanotechnol. 9, 218 (2014),
24561354.

[15] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back,
and T. Jungwirth, Spin hall effects, Rev. Mod. Phys. 87,
1213 (2015).

[16] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D.
Awschalom, Observation of the Spin Hall Effect in Semi-
conductors, Science 306, 1910 (2004).

[17] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jung-
wirth, Experimental Observation of the Spin-Hall Effect
in a Two-Dimensional Spin-Orbit Coupled Semiconduc-
tor System, Phys. Rev. Lett. 94, 047204 (2005).

[18] S. O. Valenzuela and M. Tinkham, Direct electronic mea-
surement of the spin Hall effect, Nature 442, 176 (2006).

[19] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Con-
version of spin current into charge current at room tem-
perature: Inverse spin-Hall effect, Appl. Phys. Lett. 88,
182509 (2006).

[20] J. Wunderlich, B.-G. Park, A. C. Irvine, L. P. Zârbo,
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