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Local Jordan-Wigner transformations on the torus
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We present a locality preserving unitary mapping from fermions to qubits on a 2D torus whilst
accounting for the mapping of topological sectors. Extending the work of Shukla et al. [I], an
explicit intertwiner is constructed in the form of a projected entangled pair operator. By encoding
the information about the charge sectors (and if applicable the twisted boundary conditions) in
ancillary qubit(s), the intertwiner becomes a unitary operator which exchanges boundary conditions

and charge sectors.

I. INTRODUCTION

Quantum wavefunctions are described on a projec-
tive space, and this allows a system of indistinguishable
particles to be described by anti-symmetric wavefunc-
tions, a.k.a. fermions. Although this anti-symmetry pro-
hibits the existence of a tensor product structure, the
no-signaling principle can be saved by invoking a super-
selection rule which dictates that all physical observables
are of even parity. By imposing a 1-dimensional ordering
to a collection of fermions, Jordan and Wigner [2] demon-
strated how to endow the fermions with a tensor prod-
uct structure. This was done by introducing a duality
mapping between the fermions and a system of spin 1/2
particles (i.e. qubits). However, this original mapping
only preserves locality for 1-D systems. The concept of
flux attachment [3H5] suggested the existence of higher-
dimensional analogues of this Jordan-Wigner transforma-
tion preserving locality in arbitrary dimensions and in the
thermodynamic limit; the first explicit constructions of
such a mapping in 2 spatial dimensions was obtained in
[6H]]. A system of fermions located on the vertices of a
square lattice was mapped to a system of qubits living
on the edges of that graph. The fact that this construc-
tion yields twice as many qubits as fermionic modes was
compensated by the fact that the new system exhibits
gauge conditions on every plaquette. This work was fol-
lowed by many other papers [9H23] that improved the
qubit-to-fermion ratio and/or the maximal diameter of
the Hamiltonian terms defined on the spin space. The
modern point of view is that the fermion to qubit map-
ping is a duality transformation obtained by gauging the
global Z5 parity symmetry of the fermions [24]; in such a
mapping, the fermion matter can then be disentangled by
a local fermionic quantum circuit [25]. However, many
questions remained open: it was not clear how to deal
with higher dimensional tori with periodic and twisted
boundary conditions, and how to modify the mappings
when dealing with odd charge sectors. In this paper,
we show how those problems can be solved by making
use of the formalism of graded tensor networks [26] 27]
and more specifically of projected entangled pair opera-
tors which explicitely encode the gauge transformations
1, 28].

This paper is organized as follows. We start by defining
the graded projected entangled pair operator (PEPO) for
the fermion to qubit mapping on arbitrary graphs. Sub-
sequently, we revisit the 1-D Jordan-Wigner transforma-
tion for a (anti-)periodic ring of fermions in the even and
odd charge sectors in terms of matrix product operators
(MPOs). Next, we show how this mapping can readily
be extended to the 2-dimensional torus, and pay special
attention to the intriguing interplay between charge sec-
tors and boundary conditions. Controlling the possible
boundary conditions turns out to be extremely relevant
for state of the art simulations of e.g. the Hubbard model
[29].

II. CONSTRUCTION

Given an arbitrary graph G = (V, E), we construct
our PEPO by placing fermionic Z5 graded (d+ 1)-degree
vertex tensors [26] at every d-degree vertex of G and a
graded GHZ tensor on every edge of G.

The GHZ tensor is defined as:
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where [ and r label the left and right virtual fermionic
legs of the tensor and s labels the physical spin leg. Every
tensor must be drawn with an arrow which dictates what
is left and right, but as we work on arbitrary graphs, no
spin structure is needed. Curved brackets will be used
to denote fermionic degrees of freedom as rounded ob-
jects are known to be recalcitrant, while the usual bra-
ket notation will be used for the qubit degrees of free-
dom. We can consider curved brackets to be defined in
terms of creation operators acting on the vacuum with
1) = cf]£2),]0) = |2) and hence:

ja)[b) = (=1)*[p)la),  Tr(ja)(b]) = (=1)".  (2)

Throughout this work we refer to the fermionic X and Z
operators which we define as:
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We study the symmetries given by applying products of
these operators to the GHZ tensors:

ZX
L e % = S (e XX,
7
Y S S

When writing symmetries in this graphical notation, we
require that the operators applied are ordered with the
same internal ordering of the legs which they apply to.
The vertex tensor is defined as:
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where ag labels the physical fermionic leg of the tensor
and a1, ..., aq label the virtual fermionic legs which will
be contracted with the GHZ tensor; the ordering is im-
portant and must be specified on every vertex. In this
work we always using the ordering of clockwise starting
at the physical fermionic leg. Any choice of orderings will
be valid, however, changing the internal ordering will lead
to different mappings. With this in mind we consider the
symmetries of the vertex tensors:
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The constructed PEPO (Figure [I) will map fermionic
operators acting on the vertices of G to spin opera-
tors acting on the edges of G. We represent this as
(s| (E||Vy)|V,) where (s| are the physical spins, (E| are
the virtual fermions on the GHZ tensors, |V,) are the
virtual fermions on the vertex tensors and |V},) are the
physical fermions. This mapping will be local in the sense
that fermionic hopping terms acting along edges of the
graph G will map to spin operators with a maximum
Pauli weight 2A — 1 (where A is the maximum degree of
G).

As all tensors involved in the PEPO have an even par-
ity, a tensor network diagram uniquely specifies the map-
ping, as long as arrows are put on all edges and an in-
ternal ordering of vertex tensors is chosen. Note that
defining a fermionic operator (e.g. 0 = a;{ai) requires
a linear ordering for the Hilbert space it acts upon (e.g.
j < 1). A change to this ordering (e.g. to ¢ < j) incurs
a global minus sign on the fermionic operator giving a
new definition of the same operator (O = —a;ai) acting
on a different Hilbert space. As our mapping is not af-
fected by the choice of linear ordering it incurs no sign

FIG. 1. An example PEPO constructed for an arbitary graph
with labels and arrows indicating the internal ordering of the
vertex tensors and GHZ tensors respectively.

change upon reordering (it will always map a;r-ai to O).

Therefore, whether O is mapped to +O or —O depends
on the linear ordering chosen for the fermionic Hilbert
space being mapped.

Using the symmetry properties of our tensors,
fermionic operators acting on the physical fermionic de-
grees of freedom (Op) are transformed to to fermionic
operators acting on the virtual fermionic legs of our ver-
tex tensors (O, ¢(yery). This is equivalent to acting with
the same operators on the virtual fermionic legs of our
edge tensors (Oyf(edq)), Which then transform them to
spin operators acting on the physical spin degrees of free-
dom (Os):

Opy (s (ElIV)[Vp) = (s| (E]|Ops[V2)[V2)
= <5| (E|va(ver)|Vv)|Vp)
= (s] E|va(edg)|vv)‘vp)
= (5| Os(E|[V)[Vp)
= (s[ (E[|Vo)[V3)Os.

The symmetries of our tensors reveal that the theory at
the side of the spins is a gauge theory, with a gauge con-
dition for every possible cycle in the graph. The number
of independent gauge conditions is given by the circuit
rank r of G (the number of independent cycles in G).
As r = |E| — |V| + 1, this mapping is an isomorphism
from the even fermionic sector to the +1 joint eigenspace
of the gauge conditions on the spin side. On a torus
two of these independent gauge conditions correspond
to non-contractible loops; these gauge conditions can be
lifted and interpreted as charge sectors, and those differ-
ent charge sectors will correspond to (twisted) boundary
conditions on the fermion side.

To admit a mapping of odd fermionic operators we
add a single odd tensor defect (fermionic X operator) to
a virtual leg of the PEPO. This can be achieved by acting
with a single CX gate

CX =3 Ja+e)(al (6)
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to an edge of our PEPO. This fermionic charge defect
can be placed anywhere, and its location can be under-
stood as a boundary condition for the dual spin theory: a



manifestation of the effect that dualities switch boundary
conditions with charge sectors.

A single fermionic creation/annihilation operator will
be mapped to a string of spins terminating at the odd
defect. If strings of two different operators converge at
any point before reaching the defect they will anticom-
mute. If two strings never converge but instead approach
the defect from opposite directions, then they will neces-
sarily anticommute on the closest spin to the defect:
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Hence, we produce the correct anti-commutation rela-
tions for the fermionic algebra.

Due to the equivalence of 2D fermionic encodings
shown by [22] it is possible to reconstruct any existing
2D fermion-to-qubit mapping through a particular choice
of G, internal orderings, single qubit gates and majorana
repairing. Further the inclusion of the X defect allows
for the representation of tree-based mappings such as the
Bravyi-Kitaev Fast Mapping [6]. We will expand on this
equivalence in future work.

III. 1D CONSTRUCTION

On a 1D cycle graph, our construction turns out to
be equivalent to the Jordan-Wigner mapping composed
with the Kramers-Wannier duality. We will use this as
an example to illustrate our formalism.

The 1D PEPO is an MPO formed of interleaved GHZ
tensors and 3-degree vertex tensors. The mappings of
fermionic Z and X X operations can be inferred from the
invariance of the MPO under the following operations:
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In this particular example (with o boundary condition),
a fermionic Z; operator is mapped to a Z;_1,2Z;11/2
term on the spin side, and a fermionic Xi,lfi)zi+1 to
Zi—3/2Xi_1/2(XZ)i41/2- Different choices of boundary
condition will map different topological sectors. These
sectors are characterised by the charge sector under the
global symmetries of each side, and the twists required
for translational symmetries. The charge sector mapped
by a boundary condition is determined by the sign pro-
duced when the MPO absorbs the given symmetry. As
in the example below, it is important to account for the
signs due to moving any unpaired fermionic operators at
the boundaries next to each other and into the correct
order to be absorbed by the vertex symmetries without
additional signs.
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The twist produced by a boundary condition under a
translation is calculated by shifting over each physical leg
above and below the MPO, and considering the necessary
operators produced on the physical legs by moving the
boundary condition to the new boundary. For example,
translating the Z boundary condition produces a Z twist
on a fermionic physical leg:
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Table [[] illustrates how the topological sectors of the 1D
cyclical graph are determined and mapped by different
boundary conditions. By treating these boundary con-
ditions as additional quantum degrees of freedom, we
are able to recover a completely unitary transformation
from fermions to spins. If we did not consider bound-
ary conditions we would only have an isometry between
the periodic even fermionic space and the periodic —1
spin eigenspace of [, X;, rather than mapping the entire
fermionic Hilbert space to the entire spin Hilbert space.

Fermions Spins Dual Spins |Unified
[1, Z: Twist|BC 1|]], X; Twist|BC 2|[], Z; Twist| BC
+1 I I | -1 1 Z | +1 Z Z
+1 Z | Z |+ I I | +1 I Z
-1 I | X|+1 X |Xx| -1 1| 2X
-1 Z |ZX| -1 X |zx| -1 2z | zX

TABLE I. Mapping of topological sectors of fermions to spins
on the chain dependent on the choice of boundary condi-
tion (BC 1) for the duality MPO. These sectors can then
be mapped again to the dual spins by the application of a
Kramers-Wannier MPO with a suitable choice of boundary
condition (BC 2). The composed mapping from fermions to
dual spins is equivalent to the canonical Jordan-Wigner map-
ping with one single boundary condition (Unified BC).

We may compose our MPO with the Kramers-Wannier
MPO in order to recover the canonical Jordan-Wigner
transformation. The composition will necessarily evalu-
ate to zero if the charge sectors are not matched. How-
ever, mismatched twists will give a non-zero MPO, there-
fore, it is necessary to chose the unique KW boundary
condition which matches the twist and charge sector as
seen in Table[] We can then combine these two boundary
conditions as follows:
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Hence, the Z and ZX boundary conditions map both the
periodic and anti-periodic boundary conditions for the
even and odd sectors respectively. The I and X bound-
ary conditions evaluate to 0 (as they correspond to mis-
matched charge sectors between the combined MPOs), so
we can simply add them to their non-zero counterparts
(Z and ZX) to obtain rank 1 boundary conditions [0)(0|
and [1)(0]. By summing these two MPOs we produce a
unified MPO with boundary (|0) + [1))(0| giving a uni-
tary mapping from fermions to spins. This clarifies the
mystery of why one and the same JW-mapping can deal
with all four topological sectors - which is very unusual
and unexpected for a duality transformation.

We note that using our formalism the boundary con-
ditions are sensitive to their placement in the MPO. For
example, in 1D the Y boundary condition to the right
of a 3-degree vertex tensor is similar to a X boundary

condition to the left of a 3-degree vertex tensor. For con-
sistency we always refer to the boundary condition as
acting to the left of the 3-degree vertex tensor.

IV. 2D CONSTRUCTION

For any planar graph G on an orientable manifold,
there will be a natural choice for the orientations of the
vertex tensors. In this section we exemplify our mapping
using the square lattice. In the bulk, our PEPO is similar
to the one constructed in [I] and consists out of two sim-
ple tensors, a GHZ tensor and a 5-degree vertex tensor,
arranged on the edges and vertices of a square lattice.
On every plaquette, the symmetries impose that the spin
system has to satisfy a gauge condition:

The number of vertices is exactly equal to the number
of edges minus the number of plaquettes, this is the
complete set of gauge conditions, if it were not for the
fact that two of them are not independent. Of course,
the two missing gauge conditions are the ones winding
around the torus. On a periodic torus we thus have two
non-contractible independent gauge conditions. These
are given by loops of spin operators along the horizontal
(X, magenta) and vertical (X, green) directions:

From the point of view of the fermion side, changing the
charge sector on the spin side is equivalent to adding
twisted boundary conditions. These boundary conditions
are strings of fermionic Z operators lying along the vir-
tual legs of the PEPO in the horizontal (Zj) and verti-
cal (Zy) directions respectively. Table [T} illustrates how
these boundary conditions are mapped on a torus. It is
quite marvellous to see how the four boundary conditions
and two charge sectors are mapped to two boundary con-
ditions and four charge sectors. Boundary conditions are
sensitive to their position in the tensor network, so for



Fermions Spins
[1,Z; H. Twist V. Twist| BC |Xy Xy H./V. Twist
+1 I I I |-1 -1 I
+1 I Zpy Zy |-1 +1 I
+1 Zpy I Zv  |+1 -1 I
+1 o Zpy | ZvZu |41 41 I
—1 I I X |41 41 Z,Xn/ZnX,
—1 I Zoy | ZuX |41 -1 Z,Xn/ZnX,
—1 Zyy I ZvX | =1 41 Z,Xn/ZnX,
—1 o Zpy | ZuZvX| -1 =1 ZyXn/ZnXo

TABLE II. Table illustrating how different boundary condi-
tions of the PEPO on the torus map different charge sectors
and produce different twists. The va and sz twists are
vertical and horizontal loops of Z operators on the physical
fermions. The Z, X, /Z, X, twist (with subscript v/h indicat-
ing whether the operator is applied on a vertical or horizontal
leg) constitutes a single unit cell of Xy or Xy depending on
whether the twist was taken in the horizontal or vertical di-
rection respectively.

simplicity we will only place the X defect on horizon-
tal virtual legs to the right of the GHZ tensor. There is
a freedom of choice for which non-contractible loops to
choose as Xy and Xy. We have chosen them such that
they intersect with the X defect if present, so the table
matches the results for the 1D case. However, it would
be equally valid to choose them to avoid the X defect
which would make the spin charge sectors symmetrical
for the even and odd fermionic sectors.

Below is an example of a PEPO with a Zy bound-
ary condition and an X defect, which will map between
the odd fermionic algebra and the (—1,+1) eigenspace of
(XH; Xv)l

V. CONCLUSION

We have shown how boundary conditions on a torus
relate to various topological charge sectors. By treating
those boundary degrees of freedom as extra quantum de-
grees of freedom, this allows us to construct a unitary
operator (as opposed to an isometry) implementing the
duality transform, demonstrating that the higher dimen-
sional JW transformation completely preserves the spec-
trum of this bigger theory. This is completely in line with

the results in [30H32] for all possible dualities defined in
terms of categorical symmetries.

Further, we have demonstrated a tensor network ap-
proach to constructing arbitrary fermion to qubit encod-
ings. The resulting spin system is a gauge theory with
a very particular type of gauge constraints. We conjec-
ture that such gauge theories in two dimensions can only
be “ungauged” with graded tensor network intertwiners.
This highlights the difference between the 1- and the 2-D
case, as fermions seem to be indispenable in the latter.
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