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The Sun’s magnetic dynamo cycle features a distinct pattern: a propagating region of

sunspot emergence appears around 30◦ latitude and vanishes near the equator every

11 years. Moreover, longitudinal flows called “torsional oscillations” closely shadow

sunspot migration, undoubtedly sharing a common cause2. Contrary to theories

suggesting deep origins for these phenomena, helioseismology pinpoints low-latitude

torsional oscillations to the Sun’s outer 5-10%, the “Near-Surface Shear Layer”3,4.

Within this zone, inwardly increasing differential rotation coupled with a poloidal

magnetic field strongly implicates the Magneto-Rotational Instability5,6 prominent in

accretion-disk theory and observed in laboratory experiments7. Together, these two

facts prompt the general question: Is it possible that the solar dynamo is a near-

surface instability? Here, we report strong affirmative evidence in stark contrast

to traditional paradigms8 focusing on the deeper tachocline. Simple analytic esti-

mates show that the near-surface magneto-rotational instability better explains the

spatiotemporal scales of the torsional oscillations and inferred subsurface magnetic

field amplitudes9. State-of-the-art numerical simulations corroborate these estimates

and, strikingly, reproduce hemispherical magnetic current helicity laws10. The dy-

namo resulting from a well-understood near-surface phenomenon improves prospects

for accurate predictions of full magnetic cycles and space weather, impacting Earth’s

electromagnetic infrastructure.

Key observations any model must regard include: the solar butterfly diagram, a decadal migration

pattern of sunspot emergence1,4 with strong latitude dependence; the torsional oscillations consti-

tuting local rotation variations corresponding with magnetic activity2–4; the poloidal field, an ≈ 1G

photospheric field with a 1/4-cycle phase lag relative to sunspots11, and ≈ 100G subsurface am-

plitudes9; the hemispherical helicity sign rule comprising an empirically observed negative current

helicity in the northern hemispheres and positive current helicity in the south10; the tachocline at

the base of the convection zone, the traditionally proposed seat of the solar dynamo; and the near-

∗Accepted in Nature
†gvasil@ed.ac.uk

2

gvasil@ed.ac.uk


surface-shear layer (NSSL) within the Sun’s outer 5-10% containing strong inwardly increasing

angular velocity fostering the Magneto-Rotational Instability (MRI).

Despite progress, prevailing theories have distinct limitations. Interface dynamos (proposed within

the tachocline8) preferentially generate high-latitude fields12, and would produce severe shear

disruptions13 which are not observed14. Mean-field dynamos offer qualitative insights but suffer

from the absence of first principles15, and are contradicted by observed meridional circulations16.

Global convection-zone models often misalign with critical solar observations, require conditions

diverging from solar reality17–19, and fail to provide a theoretical dynamical understanding.

Borrowing from well-established ideas in accretion-disk physics5,6, we propose an alternative hy-

pothesis that produces clear predictions and quantitatively matches key observations.

For electrically conducting plasma like the Sun, the local axisymmetric linear instability criterion

for the MRI is5,6:

2ΩS > ω2
A, (1)

where the local Alfvén frequency and shear are

ωA =
B0 kr√
4πρ0

and S = −r dΩ
dr
. (2)

The system control parameters are the background poloidal magnetic field strength (B0 in cgs

units), the atmospheric density (ρ0), the smallest non-trivial radial wavenumber that will fit in

the domain (kr ≈ π/Hr, where Hr is a relevant layer depth or density-scale height), bulk rotation

rate (Ω), and the differential rotation, or shear (S > 0 in the NSSL). An adiabatic density strat-

ification holds to a good approximation within the solar convection zone, eliminating buoyancy

modifications to the stability condition (1).

The MRI is essential for generating turbulent angular momentum transport in magnetized astro-

physical disks6. Previous work21 postulated the NSSL as the possible seat of the global dynamo

without invoking the MRI. Another kinematic-dynamo study22 dismissed the relevance of NSSL

for kinematic dynamos but did not allow for full magnetohydrodynamic (MHD) instabilities (such
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as the MRI). Modern breakthroughs in our understanding of large-scale MRI physics23,24 have not

been applied in a solar context, and local MRI studies of the Sun25 have only considered small

scales. To our knowledge, no work has yet considered the large-scale MRI dynamics relevant to

the observed features of the global dynamo. We, therefore, describe here a potential MRI-driven

solar dynamo cycle.

The start of the solar cycle is the period surrounding the sunspot minimum when there is no

significant toroidal field above the equator and a maximal poloidal field below the photosphere.

This configuration is unstable to the axisymmetric MRI, which generates a dynamically active

toroidal field in the outer convection zone. The observed torsional oscillations are the longitudinal

flow perturbations arising from the MRI. The relative energetics are consistent with nonlinear

dynamo estimates (see Methods). As the cycle progresses, the toroidal field can undergo several

possible MHD instabilities contributing to poloidal-field regeneration, e.g., the helical MRI, non-

axis-symmetric MRI, the “clamshell” instability, and several more, including a surface Babcock-

Leighton process. We hypothesise that the axisymmetric subsurface field and torsional oscillations

constitute a nonlinear MRI travelling wave. The instability saturates via radial transport of

(globally conserved) mean magnetic flux (B0) and angular momentum (Ω, S), which neutralise the

instability criterion eq. (1) (see Methods).

Empirical timescales of the torsional oscillations imply an approximate growth rate, γ, for the MRI

and, hence, a relevant poloidal field strength. To a good approximation, S ≈ Ω ≈ 2π/month in

the NSSL (see figs. 1(a)-(c)). The early-phase torsional oscillations change on a timescale of 2–12

months, implying a growth rate of γ/Ω ≈ 0.01–0.1 (see Methods). A modest growth rate and the

regularity of the solar cycle over long intervals together suggest that the global dynamics operate

in a mildly nonlinear regime. Altogether, we predict roughly ωA ≈ S ≈ Ω.

The torsional oscillation pattern shows an early-phase mode-like structure with an approximately

4:1 horizontal aspect ratio occupying a depth of roughly r/R⊙ ≈ 5%, or kr ≈ 70R−1
⊙ ; see fig. 1(d).

Using eq. (2), the approximate background Alfvén speed vA ≈ 200–2000 cm/s ≈ 0.1–1.0R⊙/year.

Alfvén-speed estimates required for MRI dynamics are consistent with observed internal magnetic
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field strengths. Measurements suggest ≈ 100–200G internal poloidal field9, agreeing with the

above estimates using NSSL densities ρ0 ≈ 3·10−2 – 3·10−4 g/cm3. The same studies found roughly

similar (≈ 300–1000G) internal toroidal field strength confined within the NSSL. Given solar-

like input parameters, a detailed calculation finds the MRI should operate with latitudinal field

strengths up to ≈ 1000G (see Methods).

Background shear modification dominates the MRI saturation mechanism (see Methods), roughly

|Ω′|2 ≈ H2
r

R2
⊙

(2ΩS − ω2
A) (S

2 + ω2
A)

2

2Ω(S + 2Ω) (S2 + (2Ω)2 + 2ω2
A)
, (3)

where Ω′ represents the dynamic changes in differential rotation. For S ≈ Ω ≈ ωA, |Ω′| ≈ 7 nHz,

roughly consistent with the observed torsional oscillation amplitude; see fig. 1(d).

We compute a suite of growing global perturbations using Dedalus26 to model the initial phase of

the solar cycle with quasi-realistic solar input parameters (see Methods). Fig. 2 shows representa-

tive solutions.

We find two distinct cases: (i) a “fast branch” with direct growth rates, γ, comparable to a priori

estimates; and (ii) a “slow branch” with longer but relevant growth times and oscillation periods.

The eigenmodes are confined to the NSSL, reaching from the surface to r/R⊙ ≈ 0.90–0.95, where

the background shear becomes MRI stable.

For case (i), γ/Ω0 ≈ 6·10−2 (given Ω0 = 466 nHz) with corresponding e-folding time, te ≈ 60 days

and no discernible oscillation frequency. The pattern comprises roughly one wave period between

the equator and ≈ 20◦ latitude, similar to the rotation perturbations seen in the torsional oscilla-

tions.

For case (ii), γ/Ω0 ≈ 6 · 10−3 with te ≈ 600 days and oscillation frequency ω/Ω0 ≈ 7 · 10−3,

corresponding to a period P ≈ 5 years. The pattern comprises roughly one wave period between

the equator and ≈ 20◦–30◦ latitude.

In addition to cases (i) and (ii), we find 34 additional purely growing “fast-branch” modes, two

additional oscillatory modes and one intermediate exceptional mode (see Extended Data figs. 1–3).
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Using the full numerical MHD eigenstates, we compute a systematic estimate for the saturation

amplitude using quasi-linear theory (see Methods): |Ω′| ≈ 6 nHz for case (i) and |Ω′| ≈ 3 nHz for

the slow-branch case (ii); both comparable to the observed torsional oscillation amplitude and the

simple analytical estimates from eq. (3). The true saturated state would comprise an interacting

superposition of the full spectrum of modes.

Notably, the slow-branch current helicity, H ∝ b · ∇×b, follows the hemispherical sign rule10,

with H < 0 in the north and H > 0 in the south. The slow-branch modes appear rotation-

ally constrained, consistent with their low Rossby number27, perhaps providing a pathway for

understanding the helicity sign rule.

New helioseismic data analyses could test our predictions. The MRI would not operate if the

poloidal field is too strong, nor would it explain the torsional oscillations if it is too weak. We

predict correlations between the flow perturbations and magnetic fields, which time-resolved mea-

surements could test, constraining joint helioseismic inversions of flows and magnetic fields.

An MRI-driven dynamo may also explain the formation and cessation of occasional grand minima28

(e.g., Maunder). An “essentially nonlinear” MRI dynamo does not start from an infinitesimal seed

field upon each new cycle (see Methods). Rather, a moderate poloidal field exists at the solar

minimum, and the MRI processes it into a toroidal configuration. If the self-sustaining poloidal-to-

toroidal regeneration sometimes happens imperfectly, then subsequent solar cycles could partially

fizzle, leading to weak subsurface fields and few sunspots. Eventually, noise could push the system

back onto its normal cyclic behaviour, as in the El Nino Southern Oscillation29.

Finally, our simulations intentionally contain reduced physics to isolate the MRI as a critical

agent in the dynamo process, filtering out large-scale baroclinic effects, small-scale convection

and nonlinear dynamo feedback. Modelling strong turbulent processes is arduous: turbulence can

simultaneously act as dissipation, drive large-scale flows like the NSSL, produce mean electromotive

forces, and excite collective instabilities. While sufficiently strong turbulent dissipation could

eventually erase all large-scale dynamics, the mere presence of the solar torsional oscillations implies

much can persist within the roiling background.
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Figure 1: Measured internal solar rotation profiles. a, Heliosesimic differential rotation profile,
Ω(θ, r), using publicly available data from [T. P. Larson and J. Schou. Global-mode analy-
sis of full-disk data from the Michelson Doppler imager and the helioseismic and magnetic im-
ager. Solar Physics, 293(2), 2018]20. b, c The respective latitudinal and radial shear gradients
r sin(θ)∇Ω(θ, r); computed via a non-uniform 4th-order centered finite-difference scheme. The
latitudinal mean of tachocline shear is ≈200 nHz and peak amplitudes are below ≈350 nHz. Con-
versely, the near-surface shear averages ≈ 400-600 nHz (with rapid variation in depth) and peak
values over 1200 nHz. Bottom row: d, Helioseismic measurements of solar torsional oscillations.
The red shows positive residual rotation rates and blue shows negative residual rotation rates after
removing the 1996 annual mean of Ω(r, θ). Each slice shows the rotational perturbations 1, 2, 3
and 4 years after the approximate solar minimum. The notation “min+1Yr - min” means taking
the profile at 1 year past solar minimum and subtracting the profile at solar minimum. The colour
table saturates at 1 nHz, corresponding to about ≈ 400 cm/s surface flow amplitude. Further con-
tour lines show 1 nHz increments within the saturated regions. Diagram in d reprinted from figure
2 of [S. V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V. N. Strakhov, and M. J. Thompson.
Helioseismic measurement of solar torsional oscillations. Science, 296(5565):101–103, April 2002.]3

with permission from AAAS.
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Figure 2: Two meridional (r, θ) MRI eigenmode profiles. In both cases (i) & (ii) from left to
right: longitudinal angular velocity perturbation, Ω′(r, θ) = uϕ(r, θ)/(r sin(θ)); momentum-density
streamfunction (ϕ-directed component; see Methods), ψ(r, θ); longitudinal magnetic field, bϕ(r, θ);
magnetic scalar potential, aϕ(r, θ); current helicity correlation, H(r, θ). The timescales te, P rep-
resent the instability e-folding time and oscillation period, respectively. Top row: Case (i) shows
a typical directly growing “fast-branch” mode with no oscillation and growth rates γ ≈ 0.06Ω0.
The bottom row: Case (ii) shows a typical large-scale “slow-branch” mode with a roughly five-year
period. In each case, we fix the overall amplitude to 1 nHz for the rotational perturbations, with
all other quantities taking their corresponding relative values.
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Methods

Numerical calculations

We solve for the eigenstates of the linearised anelastic MHD equations30,31 in spherical polar

coordinates, (r, θ, ϕ) = (radius, colatitude, longitude). Using R⊙ = 6.96 · 1010 cm for the solar

radius, we simulate radii between r0 ≤ r ≤ r1 where r0/R⊙ = 0.89 and r1/R⊙ = 0.99. We place

the top of the domain at 99% because several complicated processes quickly increase in importance

between this region and the photosphere (e.g., partial ionisation, radiative transport, and much

stronger convection effects). We use the anelastic MHD equations in an adiabatic background to

capture the effects of density stratification on the background Alfvén velocities (density varies by

roughly a factor of 100 across the NSSL, causing a roughly factor of 10 change in Alfvén speed)

and asymmetries in velocity structures introduced by the density stratification via ∇·(ρu). A

key aspect of the anelastic approximation is that all entropy perturbations must be small, which
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is reasonable in the NSSL below 0.99R⊙. We do not use the fully compressible equations, as

these linear instability modes do not have acoustic components. Future MRI studies incorporating

buoyancy effects (e.g., the deep MRI branches at high latitudes) should employ a fully compressible

(but low Mach number) model32.

Input background parameters: We include density stratification using a low-order polynomial ap-

proximation to the Model-S profile33. In g/cm3 units, with z = (r − r0)/(r1 − r0),

ρ0 = α0 − α1 z + α2 z
2 − α3 z

3 + α4 z
4 (4)

α0 = 0.031256 (5)

α1 = 0.053193 (6)

α2 = 0.033703 (7)

α3 = 0.023766 (8)

α4 = 0.012326, (9)

which fits the Model-S data to better than 1% within the computational domain. The density at

z = 1 is ρ0 = 0.000326 versus 0.031256 at z = 0.

The density profile is close to an adiabatic polytrope with r−2 gravity and 5/3 adiabatic index.

An adiabatic background implies that buoyancy perturbations diffuse independently of the MHD

and decouple from the system.

We use a low-degree polynomial fit to the observed NSSL differential rotation profile. For µ =

cos(θ),

u0 = Ω(r, θ) r sin(θ) eϕ (10)

Ω(r, θ) = Ω0 Z(z)Θ(µ), (11)
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where Ω0 = 466 nHz ≈ 2.92·10−6 s−1 and

Z(z) = 1 + 0.02 z− 0.01 z2 − 0.03 z3 (12)

Θ(µ) = 1− 0.145µ2 − 0.148µ4. (13)

We use the angular fit from Howe 34 . The radial approximation results from fitting the equatorial

profile from Larson and Schou 20 shown in fig. 1(a). Below 60◦ latitude, the low-degree approxima-

tion agrees with the full empirical profile to within 1.25%. The high-latitude differential rotation

profile is less constrained because of observational uncertainties.

We define the background magnetic field in terms of a vector potential,

B0 = ∇×A0 (14)

A0 =
B(r)
2

r sin(θ) eϕ, (15)

where

B(r) = B0

(
(r/r1)

−3 − (r/r1)
2
)
, (16)

and B0 = 90G. The r−3 term represents a global dipole. The r2 term represents a field with a

similar structure but containing electric current,

J0 =
∇×B0

4π
=

5B0

4π r21
r sin(θ) eϕ. (17)

The background field is in MHD force balance,

J0 ×B0 = ∇(A0 · J0). (18)

The MHD force balance generates magnetic pressure, which inevitably produces entropy, s′, and
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enthalpy, h′, perturbations via,

∇(A0 · J0)

ρ0
+ T0∇s′ = ∇h′, (19)

where

s′ =
1

Γ3 − 1

A0 · J0

T0 ρ0
, h′ =

Γ3

Γ3 − 1

A0 · J0

ρ0
, (20)

and Γ3 is the 3rd adiabatic index. However, the MRI is a weak-field instability, implying magnetic

buoyancy/baroclinicity effects are subdominant. For the work presented here, we neglect the

contributions of magnetism to entropy (magnetic buoyancy) and consider adiabatic motions; we

expect this to be valid for MRI in the NSSL, but studies of MRI in the deep convection zone at

high latitudes would need to incorporate these neglected effects.

We choose our particular magnetic field configuration rather than a pure dipole because the radial

component er ·B0 = B(r) cos(θ) vanishes at r = r1. The poloidal field strength in the photosphere

is ≈ 1G but measurements suggest sub-surface field strengths ≈ 50–150G9. The near-surface

field should exhibit a strong horizontal (as opposed to radial) character. Magnetic pumping36

via surface granulation within the outer 1% of the solar envelope could account for filtering the

outward radial field, with sunspot cores being prominent exceptions.

We also test pure dipoles and fields with an ≈ 5% dipole contribution, yielding similar results.

Furthermore, we test that the poloidal field is stable to current-driven instabilities. Our chosen

confined field also has the advantage that eθ · B0 is constant to within 8% over r0 < r < r1.

However, a pure dipole varies by ≈ 37% across the domain. The RMS field amplitude is |B|RMS ≈

2B0 = 180G, about 25% larger than the maximum reported inferred dipole equivalent9. However,

projecting our field onto a dipole template gives an ≈ 70G equivalent at the r = r1 equator.

Overall, the subsurface field is the least constrained input to our calculations, the details of which

surely change over multiple cycles.

Model equations: Respectively, the linearised anelastic momentum, mass-continuity, and magnetic
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induction equations are:

ρ0 (∂tu+ ω0 × u+ ω × u0 +∇ϖ) =

ν ∇· (ρ0σ) + j ×B0 + J0 × b, (21)

∇· (ρ0u) = 0, (22)

∂tb− η∇2b = ∇× (u0 × b+ u×B0) , (23)

where the traceless strain rate

σ = ∇u+ (∇u)⊤ − 2

3
∇· u I. (24)

To find eigenstates, ∂t → γ + i ω, where γ is the real-valued grown rate, and ω is a real-valued

oscillation frequency. The induction equation (23) automatically produces MRI solutions satisfying

∇·b = 0.

Given the velocity perturbation, u, the vorticity ω = ∇×u. Given the magnetic field (Gauss in

cgs units), the current density perturbations j = ∇×b/4π. At linear order, the Bernoulli function

ϖ = u0 · u+ h′, where h′ represent enthaply perturbations27.

The velocity perturbations are impenetrable (ur = 0) and stress-free (σrθ = σrϕ = 0) at both

boundaries. For the magnetic field, we enforce perfect conducting conditions at the inner boundary

(br = ∂rbθ = ∂rbϕ = 0). At the outer boundary, we test three different choices in common usage,

as different magnetic boundary conditions have different implications for magnetic helicity fluxes

through the domain, and these can affect global dynamo outcomes35. Two choices with zero

helicity flux are perfectly conducting and vacuum conditions, and we find only modest differences

in the results. We also test a “vertical field” or “open” boundary (i.e., ∂rbr = bθ = bϕ = 0) which,

though non-physical, explicitly allows a helicity flux. These open systems also had essentially the

same results as the other two for growth rates and properties of eigenfunctions. We conduct most

of our experiments using perfectly conducting boundary conditions, which we prefer on the same

physical grounds as the background field.
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We set constant and kinematic viscous and magnetic diffusivity parameters ν = η = 10−6 in units

where Ω0 = R⊙ = 1. The magnetic Prandtl number ν/η = Pm = 1 assumes equal transport of

vectors by the turbulent diffusivities. A more detailed analysis of the shear Reynolds numbers

yields Re = Rm = U0 L0/ν ≈ 1500 where U0 ≈ 5000 cm/s is the maximum shear velocity jump

across the NSSL and L0 ≈ 0.06R⊙ is the distance between min/max shear velocity (see “NSSL

energetics and turbulence parameterisation” below).

We a posteriori compute the following scalar-potential decompositions,

u = uϕ eϕ +
1

ρ0
∇× (ρ0 ψ eϕ). (25)

b = bϕ eϕ +∇×(aϕ eϕ), (26)

where both the magnetic scalar potential, aϕ, and the streamfunction, ψ, vanish at both boundaries.

We, furthermore, compute the current helicity correlation relative to global RMS values,

H =
b · j

|b|RMS |j|RMS

. (27)

There is no initial helicity in the background poloidal magnetic field,

B0 = ∇×(A0(r, θ) eϕ) =⇒ B0 · (∇×B0) = 0.

Linear dynamical perturbations, b(r, θ), will locally align with the background field and current.

However, because the eigenmodes are wave-like, these contributions vanish exactly when averaged

over hemispheres.

⟨ b · (∇×B0) ⟩ = ⟨B0 · (∇×b) ⟩ = 0.

The only possible hemispheric contributions arise when considering quadratic mode interactions,

⟨ b · (∇×b) ⟩ ̸= 0.

16



This order is the first where we could expect a non-trivial signal.

Finally, we also solve the system using multiple different mathematically equivalent equation for-

mulations (e.g., using a magnetic vector potential b = ∇×a, or dividing the momentum equations

by ρ0). In all cases, we find excellent agreement in the converged solutions. We prefer this formu-

lation because of satisfactory numerical conditioning as parameters become more extreme.

Computational considerations: The Dedalus code26 employs general tensor calculus in spherical-

polar coordinates using spin-weighted spherical harmonics in (θ, ϕ)37,38. For the finite radial shell,

the code uses a weighted generalised Chebyshev series with sparse representations for differenti-

ation, radial geometric factors and non-constant coefficients (e.g., ρ0(r)). Since the background

magnetic field and the differential rotation are axisymmetric and they only contain a few low-order

separable terms in latitude and radius, these two-dimensional non-constant coefficients have a low-

order representation in a joint expansion of spin-vector harmonics and Chebyshev polynomials.

The result is a two-dimensional generalised non-Hermetian eigenvalue problem Ax = λB x, where

x represents the full system spectral-space state vector. The matrices, A and B, are spectral-

coefficient representations of the relevant linear differential and multiplication operators. Cases (i)

& (ii) use 384 latitudinal and 64 radial modes (equivalently spatial points). The matrices A and

B remain sparse, with respective fill factors of about 8·10−4 and 4·10−5.

The eigenvalues and eigenmodes presented here are converged to better than 1% relative absolute

error (comparing 256 versus 384 latitudinal modes). We also use two simple heuristics for rejecting

poorly converged solutions. First, because λ0 is complex-valued, the resulting iterated solutions do

not automatically respect Hermitian-conjugate symmetry, which we often find violated for spurious

solutions. Second, the overall physical system is reflection symmetric about the equator, implying

the solutions fall into symmetric and anti-symmetric classes. Preserving the desired parity is a

useful diagnostic tool for rejecting solutions with mixtures of the two parities, which we check

individually for each field quantity. The precise parameters and detailed implementation scripts

are available at https://github.com/geoffvasil/nssl_mri.
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Analytic/semi-analytic estimates

Local equatorial calculation: Our preliminary estimates of the maximum poloidal field strength in-

volves solving a simplified equatorial model of the full perturbation equations, setting the diffusion

parameters ν, η → 0. Using a Lagrangian displacement vector, ξ, in Eulerian coordinates

u = ∂tξ + u0 · ∇ξ − ξ · ∇u0 (28)

b = ∇× (ξ ×B0) . (29)

In local cylindrical coordinates near the equator (r, ϕ, z), we assume all perturbations are axis-

symmetric and depend harmonically ∼ ei(kzz−ωt). The cylindrical assumption simplifies the ana-

lytical calculations while allowing a transference of relevant quantities from the more comprehensive

spherical model. That is, we assume a purely poloidal background field with the same radial form

as the full spherical computations, B0 = Bz(r)ez. We use the same radial density and angular ro-

tation profiles, ignoring latitudinal dependence. The radial displacement, ξr, determines all other

dynamical quantities,

ξϕ = − 2iωΩ

ω2 − k2zv
2
A

ξr, (30)

ξz =
i

kz r ρ0

d(rρ0ξr)

dr
(31)

ϖ = v2A
B′

z

Bz

ξr +
ω2

k2z r ρ0

d(rρ0ξr)

dr
, (32)

where vA(r) = Bz(r)/
√

4πρ0(r). The radial momentum equation gives a 2nd-order two-point

boundary-value problem for ξr(r). The resulting real-valued differential equation depends on ω2;

the instability transitions directly from oscillations to exponential growth when ω = 0. We elimi-

nate terms containing ξ′r(r) with the Liouville transformation Ψ(r) =
√
rBz(r)ξr(r). The system

for the critical magnetic field reduces to a Schrödinger-type equation,

−Ψ′′(r) + k2z Ψ(r) + V (r)Ψ(r) = 0, (33)
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with boundary conditions

Ψ(r = r0) = Ψ(r = r1) = 0 (34)

and potential,

V =
r

v2A

dΩ2

dr
+
rρ0
Bz

d

dr

(
1

rρ0

dBz

dr

)
+

3

4r2
. (35)

Upper-bound: The maximum background field strength occurs in the limit kz → 0. With fixed

functional forms for Ω(r), ρ0(r), we suppose

Bz(r) = B1
1 + 4(r/r1)

5

5(r/r1)3
, (36)

with B1 = Bz(r1) setting and overall amplitude and 1/B2
1 serving as a generalised eigenvalue

parameter. We solve the resulting system with Dedalus using both Chebyshev and Legendre series

for 64, 128, and 256 spectral modes, all yielding the same result, B1 = 1070G. The results are

also insensitive to detailed changes in the background profile’s functional form.

Growth rate: We use a simplified formula for the MRI exponential growth, ∼ eγt, in a regime not

extremely far above onset23. That is,

γ2 ≈ α2ω2
A (2ΩS − ω2

A (1 + α2))

ω2
A + 4Ω2

, (37)

where α = 2H/L ≈ 0.2–0.3 is the mode aspect ratio with latitudinal wavelength, L ≈ 20◦–30◦R⊙,

and NSSL depth H ≈ 0.05R⊙. The main text defines all other parameters. In the NSSL S ≈ Ω.

Therefore γ/Ω ≈ 0.1 when α ≈ 0.3, ωA/Ω ≈ 1, and γ/Ω ≈ 0.01 when α ≈ 0.2, ωA/Ω ≈ 0.1.

Saturation amplitude: We use non-dissipative quasi-linear theory23 to estimate the amplitude of

the overall saturation. In a finite-thickness domain, the MRI saturates by transporting mean

magnetic flux and angular momentum radially. Both quantities are (approximately) globally con-

served; however, the instability shifts magnetic flux inward and angular momentum outward, so
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the potential from eq. (35) is positive everywhere in the domain.

Given the cylindrical radius, r, the local angular momentum and magnetic flux density

L = ρ0 r uϕ, M = ρ0 r aϕ. (38)

The respective local flux transport

∂tL+∇·(Lu) = ∇·(r bϕb), (39)

∂tM +∇·(Mu) = 0. (40)

For quadratic-order feedback,

∂t(ρ0r
2δuϕ) = ∂r(r

2(bϕbr − ρ0uϕur)) + ∂z(r
2(bϕbz − ρ0uϕuz)), (41)

∂t(ρ0r
2δaϕ) = −∂r(r2ρ0aϕur))− ∂z(r

2ρ0aϕuz)). (42)

For linear meridional perturbations,

ur = −∂zψ, uz =
∂r(rρ0 ψ)

rρ0
, (43)

br = −∂zaϕ, bz =
∂r(r aϕ)

r
. (44)

For the angular components,

∂tuϕ = ∂z

(
(2Ω− S)ψ +

Bz

4πρ0
bϕ

)
, (45)

∂taϕ = ∂z(Bzψ), (46)

∂tbϕ = ∂z (Bz uϕ + S aϕ) . (47)

Using the linear balances, we time integrate to obtain the latitudinal-mean rotational and magnetic
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feedback,

δΩ =
1

r3ρ0
∂r

(
r2ρ0 L

)
, (48)

δA =
1

r2ρ0
∂r

(
r2ρ0Φ

)
. (49)

where angle brackets represent z averages and

L =
2Bz⟨aϕuϕ⟩ − (2Ω− S) ⟨a2ϕ⟩

2B2
z

, (50)

Φ =
⟨a2ϕ⟩
2Bz

. (51)

The dynamic shear and magnetic corrections,

δS = −r ∂rδΩ, δBz =
1

r
∂r(rδA). (52)

We derive an overall amplitude estimate by considering the functional

F =

∫
(V |Ψ|2 + |∇Ψ|2) dr, (53)

which results from integrating eq. (33) with respect to Ψ∗(r). The saturation condition is

δF = −F . (54)

The left-hand side includes all linear-order perturbations in the potential, δV , and wavefunction,

δΨ, where

δV =
2r

v2A

d(ΩδΩ)

dr
− 2

δBz

Bz

r

v2A

dΩ2

dr
+
rρ0
Bz

d

dr

(
1

rρ0

dδBz

dr

)
− δBz

Bz

rρ0
Bz

d

dr

(
1

rρ0

dBz

dr

)
, (55)

δΨ =
δBz

Bz

Ψ. (56)
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All reference and perturbation quantities derive from the full sphere numerical eigenmode cal-

culation. We translate to cylindrical coordinates by approximating z-averages with latitudinal-θ

averages. The spherical eigenmodes localise near the equator, and the NSSL thickness is only

≈ 5% of the solar radius, justifying the cylindrical approximation in the amplitude estimate.

Empirically, the first δV term dominates the overall feedback calculation, owing to the shear

corrections ∝ dδΩ/dr ∼ 1/H2
r . Isolating the shear effect produces the simple phenomenological

formula in eq. (3).

NSSL energetics and turbulence parameterisation

We estimate that the order-of-magnitude energetics of the NSSL are consistent with the amplitudes

of torsional oscillations. The torsional oscillations comprise |Ω′| ≈ 1 nHz rotational perturbation,

relative to the Ω0 ≈ 466 nHz equatorial frame rotation rate. However, the NSSL contains ∆Ω ≈

11 nHz mean rotational shear estimated from the functional form in eqs. (10)-(13). In terms of

velocities, the shear in the NSSL has a peak contrast of roughly U0 ≈ 5 · 103 cm/s across a length

scale L0 ≈ 0.06R⊙. The relative amplitudes of the torsional oscillations to the NSSL background,

|Ω′|/∆Ω, are thus about 10%. Meanwhile, the radial and latitudinal global differential rotation

have amplitudes of order ≈ 100 nHz. The relative energies are approximately the squares of these,

implying that the ∆KE of the torsional oscillations is ∼ 0.01% to the differential rotation and

∼ 1% to the NSSL. These rough estimates show that the NSSL and the differential rotation can

provide ample energy reservoirs for driving an MRI dynamo, and the amplitude of the torsional

oscillations is consistent with nonlinear responses seen in classical convection zone dynamos17.

Vigorous hydrodynamic convective turbulence likely establishes the differential rotation of the

NSSL. The large reservoir of shear in the solar interior plays the analogue role of gravity and

Keplarian shear in accretion disks. The details of solar convection are not well understood nor

well-constrained by observations. There are indications, however, that the maintenance of the

NSSL is separate from the solar cycle since neither the global differential rotation nor the NSSL

shows substantial changes during the solar cycle other than in the torsional oscillations.
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Strong dynamical turbulence in the Sun’s outer layers is an uncertainty of our MRI dynamo

framework, but scale separation gives hope for progress. From our linear instability calculations,

the solar MRI operates relatively close to onset and happens predominantly on large scales. If the

fast turbulence of the Sun’s outer layers acts mainly as an enhanced dissipation, then the solar MRI

should survive relatively unaffected. Treating scale-separated dynamics in this fashion has good

precedent: large-scale baroclinic instability in the Earth’s atmosphere gracefully ploughs through

the vigorous moist tropospheric convection (e.g., thunderstorms). Scale-separated dynamics are

particularly relevant because the MRI represents a type of essentially nonlinear dynamo, which

cyclically reconfigures an existing magnetic field with kinetic energy as a catalyst. From prior

work, it is clear that the deep solar convection zone can produce global-scale fields, but those

generally have properties very different from the observed fields17. Essentially nonlinear MHD

dynamos have analogues in pipe turbulence. Like those systems, the self-sustaining process leads

to an attractor where the dynamo settles into a cyclic state independent of its beginnings.

A full nonlinear treatment of turbulence in the NSSL-MRI setting awaits future work. Here, we

adopt a simplified turbulence model via enhanced dissipation. To model the effects of turbu-

lence, we assume that the viscous and magnetic diffusivities are enhanced such that the turbulent

magnetic Prandtl number Pm = 1 (with no principle of turbulence suggesting otherwise). The

momentum and magnetic Reynolds numbers are Re = Rm ≈ 1.5·103. These values are vastly more

dissipative than the microphysical properties of solar plasma (Re ∼ 1012), and the microphysical

Pm ≪ 1, implying that Rm ≪ Re. The studies conducted here find relative independence in the

MRI on the choices of Re within a modest range. In contrast, other instabilities (e.g., convection)

depend strongly on Re. We compute sample simulations down to Re ≈ 50 with qualitatively

similar results, though they match the observed patterns less well and require somewhat stronger

background fields. Our adopted value of Re ≈ 1500 strikes a good balance for an extremely

under-constrained process. Our turbulent parameterisations also produce falsifiable predictions:

our proposed MRI dynamo mechanism would face severe challenges if future helioseismic studies

of the Sun suggest that the turbulent dissipation is much larger than expected (e.g. if the effective

Re ≪ 1). But it is difficult to imagine how any nonlinear dynamics would happen in this scenario.
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Extended Data
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Figure 3: Full diagram of complex-valued eigen-spectrum. The time dependence sends ∂t → γ+iω,
with each real/imaginary component measured in terms of Ω0 = 466 nHz. The modes along the
vertical axis appear to lie on a continuum, accumulating at a lower value. The isolate modes appear
to be point spectra. The red circle represents the case (i) “fast branch” from the main text. The
purple circle (with its complex conjugate) represent the case (ii) presented “slow branch”.
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Figure 4: The complete collection of “fast branch” modes. The growth rates correspond to the ver-
tical axis of Extended Data fig. 1. Each case contains no discernible oscillations. For completeness,
we show (boxed in grey) the te = 60 day fast-branch case (i) presented in the main text fig. 2(a)
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Figure 5: The complete collection of “slow branch” modes. The growth rates correspond to the
isolated spectrum in Extended Data fig. 1. The upper-left image shows the point spectra along the
vertical axis. The three other images show the isolated oscillatory modes, including the slow-branch
case (ii) mode (boxed in grey) presented in the main text fig. 2(b).
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