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Knitted fabrics are metamaterials with remarkable mechanical properties, such as extreme de-
formability and multiple history-dependent rest shapes. This letter shows that those properties
may stem from a continuous set of metastable states for a mechanically relaxed fabric, evidenced
through experiments, numerical simulations and analytical developments. Those states arise from
the frictional contact forces acting in the braid zone where the threads interlace and follow a line
in the configuration space accurately described by a 2D-elastica model. The friction coefficient sets
a terminal point along this line, and the continuous set of relaxed states is obtained by varying the
braid inclination while contact forces remain on the friction cone.

Assemblies of long, flexible, and intertwined fibers with
frictional contacts are materials involved in various phe-
nomena, including surgical or shoe knots [1, 2], nests and
self-assembled natural structures [3, 4], nonwoven fabrics
with a wealth of applications [5], or the degradation of
ancient manuscripts [6]. Despite being essential for most
applications, the mechanical response of fiber assem-
blies is intrinsically non-linear, dissipative, and history-
dependent, stemming from the fibers’ slenderness and
the frictional contacts. Providing quantitative mechan-
ical predictions for the assembly from the properties of
the fibers remains a theoretical and numerical challenge,
with recent advances made in simplified situations with
tight geometries [7–9]. One particular class of ordered
fiber assemblies, textiles, have tremendous industrial im-
portance in manufacturing [10] or geo-engineering [11].
They also recently gained a renewed interest as metama-
terials with extensive programmability [12, 13] for emerg-
ing soft robotics and smart textile applications [14, 15].
However, the prediction of basic properties, like the rest
shape of a knitted fabric given the length by stitch of its
constitutive yarn, is an old but still open question [16, 17]
even though a reproducible state can be achieved after
repeated multidirectional stretching [18]. One possible
way of progress may emerge from yarn-level simulation
of knitted fabrics for which the computer graphics com-
munity made enormous progress [19–21], but the dynam-
ics usually rely on viscous dissipative forces at the con-
tacts, ill-adapted to capture rest shapes arrested by dry
friction. Nonetheless, recent numerical advances allow
the combination of large fiber displacements with fric-
tional interactions [22–25] and open the way to explore
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the mechanics and stability of frictional fiber assemblies
quantitatively [26]. The complex geometry of the con-
tact zones between fibers makes exact theoretical model-
ing extremely complicated. In this letter, we show that a
simplified description of these zones can faithfully repro-
duce the mechanical equilibrium properties of a knitted
fabric. The postulate of a single form of equilibrium must
be abandoned. Even without applied stresses, the solid
friction between the threads stabilizes the materials in
very different forms depending on the system’s history.

In this study, we use a Jersey stitch knit, which is
both simple and widely used. It consists of a single
yarn forming interlocked loops as in fig. 1(a). Experi-
mentally, we make a knitted fabric of 70 × 70 stitches
from a polyamide (Nylon) thread (Madeira Monofil n°40,
E = 1.05 GPa, µ = 0.50) of diameter d = 0.155 mm.
The length of thread per stitch is ℓ = 9.7 mm. The cen-
tral N × N stitches (N = 50) are attached to a biaxial
tensile machine (fig. 1.b), where the spacing ∆x along the
courses and ∆y along the wales can be varied by stepper
motors. The forces per row fx := Fx/N and columns
fy := Fy/N are measured using strain gauge force sen-
sors. The network’s periodicity (ℓx, ℓy) is obtained from
images recorded with a camera. The network is also stud-
ied using numerical simulations based on Discrete Elas-
tic Rods (DER) coupled with dry frictional contacts [25].
Threads are decomposed into segments of circular cylin-
ders connected by springs, which account for the elastic
forces of traction, flexion, and torsion. A mesh com-
prises 3 rods as shown in fig 1.c. The endpoints of these
3 wires are constrained to the ±ℓx/2 or ±ℓy/2 planes.
Periodic boundary conditions in terms of positions and
forces are applied at the junctions between the strands:
for example, the strands 1 and 2 satisfy r2a−r1a = ℓyey,

α2a = α1a, r
′

2a = r
′

1a and r
′′

2a = r
′′

12. α is the torsion an-
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FIG. 1. (a) Photo of a Jersey stitch knit. (b) Experimental
set-up. The knitted fabric (light blue) is attached with metal-
lic staples (orange) that can freely slide over 4 cylindrical bars
linked to a biaxial tensile machine. (c) Geometry and numer-
ical model. A rectangular cell of size ℓx × ℓy is composed
of 3 threads (1), (2)&(3). Segments of cylinders composing
the threads are colored. Dots 1a, 1b,... are the endpoints of
the different threads, which are constrained to be on the cell
boundaries with periodic boundary conditions.

gle,
′
and

′′
are the 1st and 2nd derivatives with respect to

the curvilinear abscissa s. Conditions on the derivatives
ensure the continuity of the forces and moments.

The relaxed states are obtained as follows. Experimen-
tally, the knitted fabric is stretched to an initial state
(∆x0,∆y0), then ∆x and ∆y are varied to reduce f :=
(f2x + f2y )

1/2 until it becomes lower than fmin = 8 mN.
Numerically, the knitted fabric is stretched, the forces
are calculated. The stitch length is varied by δℓi = −λfi,
with i = x, y and λ a numerical constant, until the force
is smaller to a given threshold. Fig.2 shows the mesh
sizes obtained following this experimental and numerical
protocol. Firstly, the shape of the knitted fabric after
the relaxation of the applied forces varies strongly with
the initial state considered and is not uniquely defined.
Secondly, these states are located on a curve which acts
as an attractor in the space of (ℓx, ℓy) configurations.
This curve ends at a terminal point T := (ℓxT

, ℓyT
). A

knit verifying ℓy > ℓyT
or ℓx < ℓxT

is impossible without
external forces. Finally, the experimental and numeri-
cal data agreement is very satisfactory: assimilating a
polyamide thread to an elastic fiber whose cross-sectional
deformations are neglected is a reasonable hypothesis.
The differences can be understood by noting that plastic
deformations occur during knitting, meaning the stress-
free yarn is no longer ideally rectilinear.

To describe the set of relaxed states, we first consider
the elastic energy E(ℓx, ℓy) of a frictionless knitted fabric.
We obtain this quantity from DER simulation for each
cell size at mechanical equilibrium. The iso-energy curves

FIG. 2. Relaxed configurations of a knitted fabrics (ℓ/d = 62,
µ = 0.5). (open symbols): Experimental configurations dur-
ing relaxation, color-coded by the value of log(f/fmin). The
dotted lines are guidelines. (black diamonds): Relaxed, ex-
perimental configurations; (red squares): Configurations ob-
tained from DER simulations. There are no relaxed config-
urations above or to the left of the terminal points T , noted
Texp (resp. Tnum) for experimental (resp. numerical) data.
(black plain line): Possible configurations expected from a
2D-elastica model with no applied stress.

FIG. 3. (Color): Curves of constant elastic energy E for cells
made of frictionless threads (µ = 0, l/d = 62), color-coded
by the values of log(E − 0.01). (Dotted lines) Relaxation
of fabrics with frictional thread (µ = 0.5) between an ini-
tial configuration (open square) and a relaxed configuration
(filled square). Tnum is the terminal point. (Dashed curve):
Relaxation of a fabric, initially at Tnum, when µ is gradually
decreased.

are shown fig.3. The traction zones (large ℓx or ℓy) are
separated from the compressive zones (small ℓx or ℓy) by
a valley that descends towards small ℓy and large ℓx: the
knitted fabric relaxes its bending energy by tending to
align its yarns parallel to ex. The milder slope in this
energy landscape acts as an attractor for knitted fabrics
of finite friction. A knitted fabric initially placed on one
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FIG. 4. (a) Contact forces p(s) acting in the braid zone (blue
rectangle) between two fibers. (b) Equilibrium of forces on the
thread (1). The points (1a) and (2a) are on the vertical line of
middle point O′, and t is the braid direction. (c) (Red line):
Projection of the vector r2−r1, joining the centerlines, on the
planes perpendicular to t. v is the coordinate along an axis of
direction −n := t× ez. The circle is of unit radius. Contact
occurs in two points α and β (blue dots) that makes angles φα

and φβ = −φα with the z = 0 plane. (d) Orientations of the
contact force at a contact point ξ. The plane Π containing t1
and t2 is normal to Nξ. Tξ is the direction of the tangential
contact force, which makes an angle Ψξ with t.

side or the other of this line relaxes towards it and stops
in its vicinity. Friction stops the deformation and allows
metastability. The following numerical experiment can
demonstrate this. We prepare a fabric with µ = 0.5 at
its terminal point Tnum. The friction coefficient is then
decreased of δµ = −0.05: the knitted fabric descends
along the valley and stabilizes in a new position. By
gradually reducing the friction, the line of milder slope
(dashed line of fig.3) is followed toward the bottom of the
valley. This line is the locus of terminal points obtained
for different µ.
Therefore, describing the set of metastable configura-

tions requires i)understanding the shape of the valley,
which a priori is independent of friction, and ii)knowing
how the friction µ controls the position of the terminal
point T on the line of milder slope.

Interactions between the yarns take place in the area
where they become entangled, creating both normal and
tangential forces to the threads. This zone, schematically
depicted in fig. 4.a, needs to be described. We introduce
the curvilinear abscissa s along the centerline of thread
(1), and p(s) as the linear density of contact force exerted
by (2) on (1). Because friction is present, p(s) is not
necessarily aligned to the normal vector n(s). We define

fc =

∫ sout

sin

p(s)ds (1)

the resultant of contact forces with sin the entrance of the

contact zone: p(sin) ̸= 0 and p(s) = 0 for s < sin, with
reciprocal definition for sout. For any relaxed state, we
must have fc · ey = 0. Indeed (see fig.4.b), in the relaxed
state, the total stress on each cell edge is 0, so the external
force on (1b) is f1b = 0. Since the force exerted by thread
(2) on thread (1) is fc, we have f1a = −fc. No applied
stress condition also implies f1a+f3a = 0. Symmetry with
respect to the y axis at point (2m) implies f1a·ey = f3a·ey,
which leads to fc · ey = 0. It has been checked that the
results of the simulations fulfilled all those requirements.

Let sc be the arbitrary abscissa at which fc is applied.
In the limit d/ℓ≪ 1, we consider the bidimensional prob-
lem of finding the value of fc := ∥fc∥ such that the 2D
elastic curve r(s) representing the strand (1) is at equilib-
rium. The curve must satisfy the applied external force fc
at s = sc and −fc at s = s1a = 0, and verifying dy/ds = 0

at s = s1b = ℓ/4 and
(
r(sc)+(d/2)n(sc)−r(0)

)
·ex = 0.

The last condition imposes contacts between the two
threads in O′. As shown on fig.4.c, the threads actu-
ally touch in two points but not in the middle point O′.
However, the distance between the centerlines in O′ is
typically 1.03 d ≃ d. The solution of this 2D-elastica
problem may be expressed with equations involving el-
liptic integrals. Since there is no explicit solutions, we
solved this problem numerically. For each arbitrary value
of sc we obtain fc, r(sc) and n(sc). Using symmetries of
the cell, we obtain:

Lx(sc) =
(
4
[
r(sc)− r(ℓ/4)

]
+ 2d n(sc)

)
· ex (2a)

Ly(sc) =
(
2
[
r(sc)− r(0)

]
+ d n(sc)

)
· ey (2b)

(Lx(sc),Lx(sc)) is the parametric curve in the plane
(ℓx, ℓy) shown on fig.2. This simple 2D approximation
adequately captures the set of metastable points obtained
from experiments and DER simulations.

All relaxed configurations (Lx(sc),Ly(sc)) are ob-
tained using the condition fc = fcex necessary to cancel
the applied stress on one cell. We now discuss to which
condition this constraint may be fulfilled. We consider
the details of the contact force distribution p(s). The
braid comprises two twisted fibers in a geometry simi-
lar to the one occurring in knots where the threads are
twisted of n turns. The cases n = 1 (31 knot) [27, 28],
n = 2 (51 knot) [28] and n≫ 1 [29] have been considered
previously. Threads in the braid are approximately a he-
lix contacting in a few points. It seems that our braid
with n = 1/2 has not been previously considered, but it
exhibits a very similar behavior. The threads have nearly
helical shape twisted around a common line of direction
t =

[
t1(s1) + t2(s2)

]
/∥t1(s1) + t2(s2)∥, where t1 and

t2 are the tangent vectors of centerlines of threads (1)
and (2). The figure 4.c represents the relative position
r2(s2) − r1(s1) of the threads, where r1(s1) and r2(s2)
are the projections of the centerlines on the plane per-
pendicular to t. The fibers are in contacts in two points
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FIG. 5. (a): µ cos(ψ)/
[
cos(φ) + µ sin(φ) sin(ψ)

]
vs tan θ.

Symbols are DER simulation results, and line is eq.(6). In-
sets are the threads centerlines for tan(θ) ≃ 0, and tan(θ) ≃
tan(θM ). The dashed rectangles are the meshes of sizes ℓx×ℓy.
(b): Evolution of ψ with tan(θ). The maximal inclination
tan(θM ) (dashed line) is obtained for ψ ≃ π. Data of (a) and
(b) are obtained for µ = 0.5. (c): Variation of tan(θM ) with
µ. Dotted line is eq.(7) with φ = 129 deg

α and β, and then:

fc =

∫
p(s)ds =

∑
ξ=α,β

[
f
(n)
ξ Nξ + f

(t)
ξ Tξ

]
(3)

with Nξ the normal vector to the contact point, Tξ the
orientation of the tangential contact forces (see fig.4(d)),

and f
(n)
ξ and f

(t)
ξ the normal and tangential forces. For

all equilibrium configurations, we found f
(n)
α = f

(n)
β :=

f (n) and (Nα+Nβ)·ez = 0. Noting φξ the angle between
Nξ and z = 0 (see fig.4.c), we have φα = −φβ := φ, with
φ ≃ 3π/4 for each relaxed configuration.

When the meshes are steadily deformed, the threads
in contact make the braid slide. The friction is then fully

mobilized, and f
(t)
ξ = µf

(n)
ξ . Since Nξ · ti(sξ) = 0 for the

two threads i = 1, 2, Nξ is perpendicular to the plane
containing t1(sξ) and t2(sξ). Tξ belongs to this plane,
and we may write:

Tξ = cos(ψξ) t+ sin(ψξ)
[
t×Nξ

]
(4)

where ψξ is the angle between Tξ and t (see fig.4.d).
Using eq.(3) and eq.(4), we may calculate fc. With φα =
−φβ , the equilibrium conditions fc ·ez = 0 leads to ψα =
−ψβ := ψ, and finally:

fc = 2f (n) ×
(
µ cos(ψ)t+

[
cos(φ) + µ sin(φ) sin(ψ)

]
n
)
(5)

The condition of mechanical equilibrium of a relaxed con-
figuration fc · ey = 0 may then be written as:

tan(θ) =
µ cos(ψ)

cos(φ) + µ sin(φ) sin(ψ)
(6)

In this equation, θ = arccos(t · ey) is the angle between
the braid and y-axis. Fig.5.a shows the variations in
the right and left members of eq.(6) for a fixed coeffi-
cient of friction µ = 0.5. The values of θ, ψ, and φ
are measured at the various stopping points in fig.3, and
the relationship eq.(6) is checked. The different θ values
correspond to different aspect ratios of the meshes. For
examples, insets of fig.5 shows configuration elongated
in x for θ ≃ 0 and a configuration close to the terminal
point T for θ ≃ 40 deg.
Given the expression of eq.(6), at a given friction coeffi-

cient, and φ being roughly constant for all configurations,
the only way to vary θ is to vary ψ, as can be seen clearly
in fig.5.b. The tangential forces at the two contact points
α and β rotate on either side of the braid axis t. The
effect of those rotations is to vary the amplitude of the
total friction force along the t axis, even if individual
friction forces always evolve at the Coulomb threshold.
Another consequence of eq.(6) is that tan(θ) has a maxi-
mum value. With φ ≃ 3π/4 constant, tan(θ) is maximal
for a rotation ψ = π − arcsin(µ) ≃ π for µ ≪ 1 (note
that cos(φ) and cos(ψ) are negative), as shown in fig.5.b.
This maximal value of θ is obtained when the frictional
forces are roughly aligned with the common tangent of
the centerline. Approximating ψ = π in eq.(6), we finally
obtain for small µ:

tan θ ≤ tan(θM ) :=
µ

| cos(φ)|
(7)

where θM is the maximal value of θ. This relation may
be checked by measuring tan(θM ) for different values of
µ. Fig.5.c shows that tan(θM ) indeed follows eq.(7) with
a constant φ = 129 deg. For a given µ, the maximal
value of ℓy and minimal value of ℓx (corresponding to
the terminal point T of fig.2 and fig.3) is attained for
θ = θM . When µ is varied, the line of terminal points
(dashed line of fig.3) is traveled. On this line, θ = θM (µ),
and ψ ≃ π, whatever is µ: the friction forces are aligned
and opposite to the relative displacements of the threads.

Our study rationalizes the relaxed states of a periodic
yarn assembly. The relaxed state is not unique, but forms
a continuous subset of the space of possible periodic con-
figurations (ℓx, ℓy) of a knitted fabrics. A terminal point
(named T) bounds this subset. Those findings have many
implications. Applying successive stretching cycles along
y, the stitch size will converge to the terminal point T .
The configuration corresponding to T would be the repro-
ducible shape of a relaxed knitted fabric, even if metasta-
bility make other relaxed shapes possible. The existence
of a continuum of relaxed states has important conse-
quences for the macroscopic mechanical properties. The
restoring forces are, therefore, weak over a wide range
of the configuration space. Knitted fabrics are soft ob-
jects for deformations that remain in this zone but are
relatively rigid when we move away from it. Finally,
variations in aspect ratios mean that the area per stitch
ℓx × ℓy can be varied at zero external force. A flat knit-
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ted fabric can thus be stretched to cover a surface with
non-zero Gaussian curvature without any external forces
being applied. This study can also serve as a ground ba-
sis for exploring further the mechanics of knitted fabrics
or, more generally, of periodic structures made of threads
with out-of-plane deformations or three-dimensional [30].
The numerical and theoretical models can be adapted to
different knitting topology [13], but also for fibers closer
to applications by modifying the elastic properties of the
rod or smaller aspect ratio l/d. The methods introduced
here are not limited to relaxed states but can also be
adapted to explore the role of friction in the force vs.

strain responses of textiles, including hysteresis [12] and
slip-induced fluctuations [31].
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[4] Gautier Verhille, Sébastien Moulinet, Nicolas Vanden-
berghe, Mokhtar Adda-Bedia, and Patrice Le Gal. Struc-
ture and mechanics of aegagropilae fiber network. Proc.
Natl. Acad. Sci. U.S.A., 114(18):4607–4612, 2017.

[5] Wilhelm Albrecht, Hilmar Fuchs, and Walter Kittel-
mann. Nonwoven fabrics: raw materials, manufacture,
applications, characteristics, testing processes. John Wi-
ley & Sons, 2006.

[6] Caroline Vibert, Anne-Laurence Dupont, Justin Dirren-
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