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In recent years, neural quantum states have emerged as a powerful variational approach, achiev-
ing state-of-the-art accuracy when representing the ground-state wave function of a great variety
of quantum many-body systems, including spin lattices, interacting fermions or continuous-variable
systems. However, accurate neural representations of the ground state of interacting bosons on a
lattice have remained elusive. We introduce a neural backflow Jastrow Ansatz, in which occupation
factors are dressed with translationally equivariant many-body features generated by a deep neural
network. We show that this neural quantum state is able to faithfully represent the ground state
of the 2D Bose-Hubbard Hamiltonian across all values of the interaction strength. We scale our
simulations to lattices of dimension up to 20×20 while achieving the best variational energies re-
ported for this model. This enables us to investigate the scaling of the entanglement entropy across
the superfluid-to-Mott quantum phase transition, a quantity hard to extract with non-variational
approaches.

I. INTRODUCTION

Lattice bosonic systems are important in condensed
matter because of their unique properties. They are not
subject to the exclusion principle, which allows for the
appearance of smooth phases of matter in diluted set-
tings. These phases can often be described by classical
fields, which simplifies the understanding of many-body
phenomena, including the study of U(1) symmetry break-
ing, superfluidity, and boson condensation. However,
simulating these systems beyond mean-field approxima-
tions is a challenge. The quantum statistics of bosons re-
sult in an exponential growth of the Hilbert space dimen-
sion with system size and particle number, complicating
simulations. In driven systems, an infinite-dimensional
Hilbert space might be needed for a single bosonic mode,
limiting the feasibility of exact diagonalization.

Several methods have been proposed to efficiently
simulate interacting lattice bosons at zero tempera-
ture. Among earliest approaches, path-integral tech-
niques were proposed at finite temperature [1–4]. In
particular, quantum Monte Carlo simulations using the
worm algorithm provided remarkably accurate predic-
tions extrapolated to zero temperature [5, 6]. At zero
temperature, Green-function Monte Carlo particularly
stands out [7–9], while the reptation quantum Monte
Carlo algorithm [10] was extended to lattice systems [11].
However, these techniques do not give direct access to
the wave function and restrict the structure of operators
which may be efficiently evaluated in the chosen compu-
tational basis. Furthermore, they suffer from the sign
problem [12], even for bosonic systems in cases of geo-
metric frustration [13–15]. This is more generally the
case with non-stoquastic Hamiltonians, such as those of
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bosonic lattices subjected to artificial magnetic fluxes,
which have attracted consistent theoretical interest [16–
28] and are of current experimental relevance [29–37].

Variational methods are more flexible in this regard.
Variational Monte Carlo (VMC) using a modified Jas-
trow Ansatz [38–40] reproduced all of the features of the
quantum phase transition in all relevant spatial dimen-
sions, though only qualitatively. Tensor networks have
been used, in particular, to probe ground-state properties
of lattice bosons [41, 42]. However, this is restricted by
entanglement. The generic area-law entanglement scal-
ing of lattice bosons [43] and the growth of entangle-
ment upon real-time propagation restrict the efficiency
of matrix-product variational representations mainly to
the ground state of one-dimensional geometries, such as
open chains [44–48] or small-perimeter cylinders [41], and
short time evolutions. Moreover, this typically requires
to introduce truncations in the local occupation factors.

In recent years, neural quantum states [49] have
emerged as a powerful variational method, consistently
demonstrating remarkable accuracy in representing the
ground-state wave function of a wide range of nontriv-
ial Hamiltonians. In addition to spin problems, where
it stands as the state-of-the-art method for frustrated
lattices [50–52], properly tailored networks have demon-
strated their effectiveness in addressing problems in-
volving other kinds of degrees of freedom, including
bosonic [53], fermionic [54–56] and beyond [57, 58]. De-
spite these successes, highly accurate neural-network rep-
resentations of the ground state of lattice bosonic sys-
tems have remained elusive. Several works [59–62] have
recently contributed to these ongoing efforts, where the
most notable advances [63, 64] have been achieved by in-
corporating some of the physical structure of the system
in the variational Ansatz.

In this work, we introduce a new bosonic neural Ansatz
based on the concept of backflow [65], originally formu-
lated in continuous space [66–69] and later extended to
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lattices [70, 71]. Neural-network parametrizations of the
backflow transformation [72, 73] have driven the most re-
cent advances in fermionic neural quantum states [54–56].
We provide analytical support to motivate its structure
and benchmark it on the celebrated Bose-Hubbard model
in two dimensions. We assess its remarkable accuracy
and scale our simulations to lattices with up to 20×20
sites without local truncation, allowing us to perform a
finite-size scaling analysis around the critical point. We
further investigate the entanglement entropy of the sys-
tem across the phase transition, a matter of theoreti-
cal [41, 74, 75] and experimental [76] interest.

The paper is structured as follows: the Bose-Hubbard
physics is briefly described in Sec. II; in Sec. III, we in-
troduce the neural backflow-Jastrow architecture and for-
mally derive the structure of some of the correlations it
can capture; we then apply it to simulate the ground
state of the Bose-Hubbard Hamiltonian in Sec. IV, be-
fore finally concluding in Sec. V.

II. BOSE HUBBARD

In this work, we focus on the paradigmatic Bose-
Hubbard model, as given by the Hamiltonian

Ĥ = −J
∑

⟨i,j⟩
(â†i âj + â†j âi) +

U

2

∑

i

â†i â
†
i âiâi. (1)

Here, âi denotes the annihilation operator at site i of the
lattice under consideration, J is the rate of the hopping of
bosons between nearest-neighbor sites, and U quantifies
the strength of on-site repulsive interactions. This system
can be realized in a number of platforms, notably with
ultra-cold atoms loaded in an optical lattice [76–82], or
Josephson-junction arrays [83, 84]. In what follows, we
shall restrict ourselves to L×L two-dimensional lattices
at fixed number of particules N and unit density n̄ :=
N/L2 = 1.

This system displays a second-order phase transition
resulting from the competition between the kinetic en-
ergy and the potential energy. At infinite interaction
strength and integer density, the wavefunction is a prod-
uct of Fock states: the so-called Mott phase. As the
ratio J/U increases, the U(1) symmetry spontaneously
breaks, and the ground state becomes extensively degen-
erate. The bosonic population spontaneously conden-
sates into the k = 0 mode, as revealed by a finite value
of the condensate fraction:

ρ0 := ⟨n̂(k = 0)⟩/N, (2)

which here plays the role of order parameter. In 2D, this
phase transition is known to belong to the 3D XY-model
universality class [1, 4, 6, 85, 86]. The critical value of the
control parameter, Jc/U = 0.05974(3) [Uc/J = 16.74(1)],
was first precisely determined by a high-order strong cou-
pling expansion [87, 88] and later refined by means of

i j

lnψθ(n) =
∑
ij ñiWij ñj

CNN(D)

CNN(D−1)

CNN(D−2)

Figure 1. Schematic representation of the neural backflow-
Jastrow architecture of Eq. (18). The backflow transforma-
tion dresses the bare local quantum numbers entering the
Jastrow term with equivariant many-body features. These
features bear a dependence on the configuration of all sites
within the network’s receptive field. The latter is represented
by the shaded region for an exemplary deep convolutional
neural network with square filters of width dF = 3.

QMC calculations extrapolated to vanishing tempera-
ture [6].

III. VARIATIONAL MODEL

The simplest many-body variational Ansatz capable
of qualitatively describing the singular depletion of the
condensate while also reproducing the proper behavior
of the spatial correlations is the two-body Jastrow wave-
function [89, 90]

|ψJ⟩ = e
∑

ij n̂iWij n̂j |ψ0⟩ , (3)

where |ψ0⟩ = N−1/2(
∑
i â

†
i )
N |0⟩ is the wavefunction of

the ideal condensate. This can be equivalently written
as

lnψJ(n) =
∑

ij

niWijnj + lnψ0(n), (4)

where ψ(n) ≡ ⟨n|ψ⟩.
In Refs. [38–40], authors showed that the variational

accuracy could be greatly enhanced without losing the
physical structure and intuition of the two-body Jastrow
Ansatz. This is done by adding the following many-body
Gutzwiller projector:

|ψMBJ⟩ = egMB(Π̂h+Π̂d) |ψJ⟩ , (5)

where the projectors Π̂h =
∑
i ĥi
⊗

j∈N(i)(1̂ − d̂)j and

Π̂d =
∑
i d̂i
⊗

j∈N(i)(1̂ − ĥ)j , with ĥ = |0⟩⟨0| and d̂ =

|2⟩⟨2|, measure the amount of isolated holons and dou-
blons, respectively. This many-body term serves as a
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Figure 2. V-score as a function of the depth D of the neural
backflow transformation for lattices of size (a) 16×16 and (b)
20×20 at unit filling n̄ = 1. The gray shaded region indicates
the critical value of the control parameter found by QMC [6].

penalty for localized density inhomogeneities, spatially
binding holon-doublon pairs, and thereby favoring the
onset of a homogeneous Mott insulating phase.

This variational Ansatz, although simple, is able to
qualitatively capture the physics of the transition, in-
cluding the behavior of the correlations and the struc-
ture factor [38–40]. However, the quantitative agreement
is not excellent, with the ground state variational energy
affected by a relative error of the order of 10% and the
transition point shifted by 25% to around Uc/J ∼ 21.

In what follows, we introduce a flexible generalization
of the above construction based on the concept of neural
backflow transformation [73].

A. Many-body Jastrow

The most straightforward improvement over the
Ansatz of Eq. (5) is to lift the Jastrow term to a M -
body term. Let us show that the hierarchy of correlations
that can be accounted for by a deep convolutional neural
network (CNN) encompasses that of such a many-body
Jastrow term.

Let us consider a network of depth D built upon
the following single-channel convolutional layer with skip
connections:

h(n)

i (n) = ni + h̃(n)

i (n), (6)

h̃(n)

i (n) = f
(∑

jw
(n)

rij
h(n−1)

j (n) + b(n)
)
, (7)

with Wr = wr = 0 for any r such that |r| > dF , where
dF corresponds to the dimension of the convolutional fil-
ter. Upon assuming for simplicity that the activation
function f belongs to C2 and possesses a non-vanishing
second-order derivative, one has the following recursion

relation [91]:

∑

i

h(n)

i (n) = . . .+
1

2

∑

i0i1

ni0W
(n)

i0i1
h(n−1)

i1
(n)

= . . .+

D∑

n=1

1

2n

∑

i0···in
ni0W

(n)

i0i1
ni1W

(n−1)

i1i2
. . .W (1)

in−1in
nin ,

(8)

that is a linear combination of n-body Jastrow terms
with n ≤ D+1, with symmetric two-body translationally
equivariant Jastrow weights given by

W (n)

ij ≡W (n)

ji ∝
∑

k

w(n)

rki
w(n)

rkj
. (9)

Trivially, the two-body Jastrow weights can be made in-
dependent for each n-body term at the cost of at most
M channels in the CNN.

An analogous result is obtained, replacing skip connec-
tions by residual connections, as will be later introduced.
Therefore, range-dF M -body Jastrow factors can be gen-
erated with a residual neural-network (ResNet) Ansatz
with depth M − 1 and filters of width dF .

B. Generalized many-body Gutzwiller projector

In Eq. (5), the many-body term acts as a partial pro-
jection of the wavefunction onto a manifold with specific
values of the local quantum numbers within some finite-
size patch. The choice of the specific values of these quan-
tum numbers is set from a priori knowledge about the
underlying physics. We may loosen this inductive bias at
the cost of a larger number of variational parameters.

Let us consider the following many-body Gutzwiller
Ansatz:

|ψMB⟩ = egMB
∑

i

⊗
v∈V |xv⟩⟨xv|Tv(i) |ψ0⟩ , (10)

where V denotes a set of relative positions with respect to
the ith site, thereby defining a patch, and X = {xv,v ∈
V} some corresponding fixed local configurations given
a priori. Here, Tv(i) denotes the site corresponding to
i translated on the lattice by v. This Ansatz may be
evaluated as

lnψMB(n) = lnΠMB(n) + lnψ0(n), (11)

lnΠMB(n) = gMB

∑

i

1[∧v∈V nTv(i) = xv]; (12)

where 1 denotes the indicator function. The diagonal
many-body projector of Eq. (12) may be represented by
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Figure 3. Rescaled condensate fraction as a function of the
inverse interaction strength for increasing lattice sizes. Plain
lines denote a fit of the scaling function in Eq. (26) to the
variational data. The gray shaded region in the inset indicates
the confidence interval for the critical value of the control
parameter as found by QMC calculations [6]. As expected by
scaling theory, all curves intersect for a same abscissa, showing
good correspondence with the QMC estimation.

a CNN. Indeed, one has that

lnΠMB(n) =
∑

i

h(2)

i,1(n), (13)

h(2)

i,1(n) = ReLU
(
−2gMB∆x

2∑

µ=1

h(1)

i,µ(n) + gMB

)
, (14)

h(1)

i,µ(n) = ReLU
(∑

v∈V

(−1)µ

xTv(i)
nTv(i) − (−1)µ

)
, (15)

where h(n)

i,µ denotes the µth channel of the ith output of

the nth layer of the CNN, and ∆x > maxx∈X (x) [92].
This corresponds to a two-layer CNN with parameters:

K(1)

v,µ,1 = (−1)µ/xTv(i) ∈ R|V|×2×1, b(1)µ = (−1)µ+1 ∈ R2,

K(2)

0,1,µ′ = −2gMB∆x ∈ R1×1×2, b(2)1 = gMB ∈ R. (16)

Therefore, a many-body Gutzwiller Ansatz with K
many-body projectors may be represented by a two-layer
CNN with a filter geometry matching V and K channels.
Relaxing the conditions in Eq. (16) generalizes the pro-
jection to the optimum quantum numbers. In App. A,
we show how this architecture can also account for an at-
tractive confining potential for holons and doublons close
apart, effectively stabilizing the Mott phase.

C. Neural backflow Jastrow Ansatz

This motivates the use of a NQS Ansatz of the form [63]

lnψθ(n) =
∑

i,µ

h(D)

i,µ (n) + lnψ0(n), (17)

where θ denotes the set of all variational parameters,
and hi,µ is the channel µ of site i of a depth-D residual
network with stride equal to one.

Provided the number of channels is large enough, such
a network should be able to encompass both the M -
body Jastrow term and the many-body Gutzwiller pro-
jector. However, the range of the Jastrow terms in such
a parametrization is limited by the width of the filters
dF . This is in contrast with the initial Jastrow Ansatz of
Eq. (3) which could capture the crucial long-range corre-
lations responsible of the singular behavior of the density
structure factor at zero momentum [39].

To circumvent this, we instead introduce the many-
body features of the ResNet as an equivariant backflow
transformation of a translationally invariant two-body
Jastrow with maximum range. This leads to the vari-
ational Ansatz that we shall consider throughout this ar-
ticle:

lnψθ(n) =
Ld∑

i,j=1

ñiWdij ñj , (18)

where the weights only depend on the L1 minimum-image
distance dij between all pairs (i, j). We also dropped
the original mean-field prior ψ0 which proves useful only
for small system sizes. Fed to this Jastrow factor are
translation-equivariant many-body features obtained ac-
cording to the following backflow transformation of the
original local occupation factors:

ñi = ni +

αD∑

µ=1

aµh
(D)

i,µ . (19)

Here, h(D)

i,µ are translation-covariant features extracted
from the original occupations through a residual neu-
ral network of depth D with Nc channels, and the mix-
ing weights aµ both combine all channels and control
the magnitude of the backflow transformation. The
former are obtained as h(2ℓ)

i,µ = h̃(2ℓ−1)

i,µ and h(2ℓ+1)

i,µ =

LayerNorm(h(2ℓ−1)

i,µ + h̃(2ℓ)

i,µ ), with

h̃(ℓ)

i,µ = σ

(
αℓ∑

µ′=1

∑

v : v∞≤dK
K(ℓ)

v,µµ′h
(ℓ−1)

Tv(i),µ′ + b(ℓ)µ

)
, (20)

where, σ is an activation function (GELU), αℓ the num-
ber of channels of the ℓth layer, dK the kernel size,
Tv(i) corresponds to the site i translated by v, and
(K(ℓ)

v,µµ′ , b(ℓ)µ ) the filters and bias of the ℓth layer. To fur-
ther improve stability, the input occupations are rescaled
as ni 7→ ni/n̄− 1, ∀i, with n̄ = Np/L

d. The architecture
of the model is illustrated in Fig. 1.

Let us note that this construction, in presence of a bias
term in the last layer of the backflow transformation, is
at least as expressive as the bare ResNet. Furthermore
it allows one to perform VMC more efficiently by initial-
izing the weights of the Jastrow with those obtained by
first optimizing a bare two-body Jastrow Ansatz of the



5

−0.2 −0.1 0.0 0.1 0.2 0.3

(J − Jc)/U × L1/ν

0.0

0.5

1.0

1.5

2.0
ρ

0
L
β
/
ν

12×12

16×16

20×20

Figure 4. Data collapse of the data of Fig. 3 when plotted
against the rescaled centered control parameter, showing the
universal behavior of observables close to the critical point.

form of Eq. (3), and then optimizing the entire network
altogether. Indeed, provided the backflow weights are
initialized such that they initially act perturbatively, this
allows to start the optimization closer from the ground
state and thus with a much lower variance on all Monte
Carlo estimates involved in the process.

Splitting the layout of the wavefunction into a sim-
ple mean-field-like long-range behaviour and a complex
short-range structure seems a sensible design choice, es-
pecially for gapped Hamiltonians whose ground states
exhibit some finite-range quantum correlations.

Very recent variational Ansätze based upon the visual-
transformer architecture [52, 93, 94] adopt a reminiscent
structure, rooted in representation learning [95], where a
strong scission of the model into a deep embedding and
a shallow final correlator proves optimal.

IV. NUMERICAL RESULTS

In what follows, we optimize the parameters θ of the
model defined by Eq. (18) by minimizing the variational
expectation value of the energy

Eθ =
⟨ψθ| Ĥ |ψθ⟩
⟨ψθ|ψθ⟩

, (21)

with Ĥ as given by Eq. (1). This is achieved with
guarantees of exponential convergence via the stochastic-
reconfiguration prescription [96], where the parameters
are evolved in time according to

θ̇ = −S−1F , (22)

where S and F respectively denote the quantum geomet-
ric tensor [97] and the vector of forces, as given by

Skk′ = En

[
O⋆k(n)Ok′(n)

]
− En

[
O⋆k(n)]E

[
Ok′(n)

]
, (23)

Fk = En

[
O⋆k(n)Eloc(n)

]
− En

[
O⋆k(n)

]
En

[
Eloc(n)

]
,

(24)

Table I. Comparison of the variational energy obtained by the
neural backflow Jastrow (NBFJ) Ansatz with depth D = 6
and those of Green-function Monte Carlo (GFMC) [99] and
recent NQS simulations [64].

Lattice size U/J Method # parameters E/JL2

8×8
8.5

GFMC [99] — −1.544669(8)
NBFJ 6681 −1.544668(3)

17.0
GFMC [99] — −0.5375(4)

NBFJ 6681 −0.53804(2)

10×10
16.0

NQS-OH [64] 426 −0.5721(3)
NBFJ 6683 −0.58972(3)

20.0
NQS-B [64] 206 −0.4068(9)

NBFJ 6683 −0.43329(3)

with Ok(n) := ∂θk lnψθ(n) the log-derivative of the vari-

ational Ansatz and Eloc(n) := ⟨n| Ĥ |ψθ⟩ / ⟨n|ψθ⟩ the
so-called local energy. In the above, expectation values
are implicitly taken with respect to the Born distribution
|ψθ|2.
Importantly, all of these quantities can be efficiently es-

timated by drawing samples from this probability density
function thanks to, e.g., Markov chain Monte Carlo and
the Metropolis-Hastings algorithm. More details about
the variational optimization are given in App. B.

In all following simulations, ResNet-based backflow
transformations with square filters of width dF = 3 and
α = 12 channels per layer were used. A depth of D = 8
was used for 20×20 lattices and D = 6 for the rest. All
models were optimized through NetKet 3.0 [98] on a sin-
gle GPU.

A. Benchmarking

The scaling of the Hilbert-space dimension with sys-
tem size is rather adverse for bosonic lattices. Therefore,
exact-diagonalization reference quantities are restricted
to very small systems which are not very representative
of the physics at work in the thermodynamic limit.

At moderate system size, ground-state predictions may
be efficiently obtained via Green-function Monte Carlo
(GFMC) [7–9]. These provide a valuable reference value
since they are exact up to a controllable systematic bias.
In Table I, we compare the variational energies achieved
by our Ansatz for a 8×8 lattice against a GFMC refer-
ence [99], showing perfect agreement. Therein, we further
compare our variational energies to the best previously
achieved NQS results [64] for a 10×10 system, obtaining
values 3 to 6% lower, although with a higher number of
parameters.

For larger system sizes, instead, we assess the accuracy
of our wavefunction by means of the recently introduced
variational score (V-score) [100], which allows to system-
atically compare Ansätze. For bosonic systems, this score
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can be computed as

V-score =
LdVar[Eθ]

(Eθ − EMF)
, (25)

Where Ld is the number of sites of the system, Var[Eθ]
is the variance of the variational energy, and EMF is the
mean-field energy. The latter is given by EMF/L

d =
n̄(Un̄/2− zJ) for Bose Hubbard with coordination num-
ber z (z = 4 here).
This quantity is intensive. Therefore, it allows one to

systematically compare the accuracy of a simulations at
varying system sizes. It vanishes when the variational
Ansatz exactly matches the ground state by virtue of the
zero-variance property. Furthermore, it was empirically
verified [100] that the relative error on the variational
energy of the ground state positively correlates to the
V-score of the Ansatz following a universal trend. This
can be used to roughly infer the error, which proves very
useful whenever exact diagonalization is not available.

A V-score in the range 10−4–10−6 signals a relative
error roughly below 10−5, indicating that the problem
has been—for all practical purposes—solved variation-
ally. This is the case, for instance, of spin models in the
absence of magnetic frustration.

In Fig. 2, we show the V-score achieved by the
backflow-Jastrow Ansatz for Bose Hubbard at unit filling
on a periodic 2D lattice with N = 16×16 and N = 20×20
sites. The problem is clearly harder in the vicinity of
the critical point, where the gap closes in the thermo-
dynamic limit. A few ResNet layers in the backflow
transformation dramatically improve the accuracy over
bare Jastrow, lowering the V-score from 10−1 down to
about 2×10−4 for a depth of D = 8 layers. We observe
that increasing the depth D of the backflow transforma-
tion consistently improves the accuracy. Interestingly,
the depth required to reach a given accuracy does not
seem to depend on the lattice size. Variational energies
along with corresponding V-scores for all tested neural-
backflow depths at U/J = 16.8 (∼ Uc/J) are provided in
App. C.

B. Finite-size scaling

We can exploit the ability of our approach to scale to
large system sizes to investigate the universal finite-size
scaling of physical quantities of the system. According
to the usual finite-size scaling argument, the order pa-
rameter ρ0/N for a lattice of linear size L should de-
pend on the control parameter (J − Jc)/U as ρ0/N |L ∼
L−β/ν f̃(L1/ν(J − Jc)/U) where f̃ is some scaling func-
tion. Hence, when plotting ρ0/N |LLβ/ν against J/U for
various values of L, all curves should intersect at the crit-
ical value Jc/U , provided the ratio of critical exponents
β/ν is correct.
In Fig. 3, we perform the above analysis using the criti-

cal exponents of the 3D XY universality class [101]. Upon

fitting to our variational data the fitting function

f(J/U) =
[
softplusa(J/U − b)

]c
, (26)

with softplusα(x) := ln
(
1 + eαx

)
/α, and parameters a,

b ∼ Jc/U and c, all curves intersect within the confi-
dence intervals of the best available estimation of the
critical value of J/U [6]. In Fig. 4, we verify that all of
the variational data collapse into a universal curve upon
rescaling and centering the abscissa of Fig. 3.

C. Entanglement entropy

One of the strengths of variational approaches is the
direct access to the wavefunction, in contrast with other
techniques such as QMC. This allows us to compute
quantities beyond usual linear forms on the wavefunction.
In particular, a quantity of interest is the entanglement
entropy, which quantizes the degree of entanglement of
a subsystem composed of a subset of the lattice A and
its complement Ā. It is defined as the entropy of the
reduced density ρ̂A = TrĀ[|ψθ⟩⟨ψθ|]. While the von Neu-
mann entropy is typically used, the Rényi-2 entanglement
entropy, as given by

S2(ρ̂A) = − ln
(
Tr ρ̂2A

)
, (27)

can be easily estimated via Monte Carlo sampling of two
independent replicas through the estimator [102–104]

S2(ρ̂A) = − lnEn,n′∼|ψθ|2

[
ψθ(n

′
A,nĀ)ψθ(nA,n

′
Ā
)

ψθ(nA,nĀ)ψθ(n′
A,n

′
Ā
)

]
.

(28)
In this estimator, samples n and n′ are first drawn from
two independent Markov chains and split into configura-
tions of either complementary subspace n(′) = (n(′)

A ,n
(′)
Ā
).

In the numerator, the wavefunction is evaluated on con-
figurations generated by partially swapping the configu-
rations of the replicas according to nA ↔ n′

A. Impor-
tantly, when evaluating the above estimator, we enforce
that ψθ(n) = 0 whenever

∑
i ni ̸= N . In what follows,

we shall consider the first half of the lattice, of dimen-
sion L × L/2 and boundary length of |∂A| = 2L, as the
subsystem A.
Such a system is expected to exhibit an area-law scal-

ing of the entanglement entropy. However, at finite size,
the degeneracy of the ground state in the superfluid is
slightly lifted. This tower-of-states mechanism [74] in-
duces a correction in the superfluid phase scaling as the
logarithm of the size of the boundary, resulting into the
law [41]

S2(ρ̂A) = aL+ b1[U > Uc] lnL+ c+O(1/L), (29)

where b = 1/2 is a universal coefficient related to the
number of Goldstone modes (1 for the 2D Bose-Hubbard
and 3D XY models).
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Figure 5. (a) Rényi-2 entropy S2(ρ̂A) evaluated on the reduced density matrix of the first half (A) of the lattice. (b) En-
tanglement entropy rescaled by the typical dimension of the subsystem’s boundary length |∂A| ∼ L. In the Mott insulating
phase, a strict area law is observed while the spontaneous breaking of the continuous symmetry induces a logarithmic cor-
rection in the superfluid phase. (c) Area-law coefficient a obtained by fitting Eq. (29) to the variational data for linear sizes
L ∈ {8, 10, 12, 14, 16, 20}. In panels (a) and (b), errors are estimated by bootstrap; a cubic spline interpolation of the S2 fit is
added as a guide to the eye.

In Fig. 5(a), we show the Rényi-2 entropy S2(ρ̂A) as
a function of the strength of the interactions. Upon in-
creasing the lattice size, S2 approaches a step-like sin-
gular behavior. This singular behavior is a signature
of bosonic criticality [75]. In Fig. 5(b), we rescale this
quantity by the the dimension of the boundary L. As
in Ref. [41], we observe a strict area-law dependence
of the entanglement entropy in the Mott phase along
with a logarithmic departure in the superfluid phase.
In Fig. 5(c), we further extract area-law coefficient a of
Eq. (29). There, as predicted by Ref. [75], one observes
a pronounced cusp at the critical point, a signature of
the contribution of the Higgs mode to the entanglement
entropy.

V. CONCLUSION

In this paper, we introduced the neural backflow-
Jastrow architecture. We physically motivated its rel-
evance for the study of interacting lattice bosons and an-
alytically proved that it encompasses the structure of var-
ious standard variational architectures while providing a
natural generalization. We benchmarked our Ansatz on
the Bose-Hubbard problem and systematically assessed
its variational accuracy, achieving a V-score as low as
2× 10−4 on a 20×20 lattice. Its great scalability allowed
us to scale up VMC simulations to lattices with up to
20×20 sites on a single GPU with no local Hilbert-space
truncation. Thanks to this, we performed a finite-size
scaling analysis at zero temperature, showing remark-
able agreement with the results obtained in QMC calcu-
lations by extrapolating finite-temperature results. Fur-
thermore, we were able to investigate the entanglement
properties of the system. We observed the logarithmic
correction of the entanglement entropy due to the spon-

taneous breaking of the U(1) continuous symmetry and
were able to extract its universal scaling prefactor, which
we found to display a second-order singularity at the crit-
ical point.
This work clears the way for the simulation of many

bosonic lattice systems which remain out of reach for
other techniques. A prime example is the simulation of
bosons in the presence of a synthetic magnetic field. In-
deed, such systems are intrinsically plagued with the sign
problem, thereby ruling out QMC, and set in two spatial
dimensions, which severely challenges tensor-network ap-
proaches, hitherto constrained to narrow-ladder geome-
tries. Another interesting prospect is the extension of this
architecture to driven-dissipative scenarios, where accu-
rate neural representations of the density matrix are still
unavailable. This would enlarge the scope of the NQS
approach to the field of quantum optics.
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Appendix A: Holon-doublon confinement

Close to the Mott-to-superfluid transition, the state of
the system can be expressed as a perturbative expansion
around the U/J ∼ +∞ limit. To leading order, this
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yields the following correction to the Mott state |ψ∞⟩:

|ψU ⟩ − |ψ∞⟩ ∝ J

U

∑

⟨i,j⟩
(â†i âj + â†j âi) |ψ∞⟩+O

(
(J/U)2

)
.

(A1)
At unit filling this corresponds to the emergence of iso-
lated holon-doublon bound pairs at any neighboring pair
of sites. Similarly, higher-order contributions involve ad-
ditional pairs, or pairs separated by a larger distance.
Within the Mott phase, such an expansion converges and
holon-doublon pairs must thus be spatially confined ex-
ponentially in order to stabilize the phase.

Such a confinement can be encoded in the variational
wavefunction in the form of an attractive potential [38]

|ψ′⟩ = e−
∑

ij ĥiVdij
d̂j |ψ⟩ , (A2)

where Vd ≤ 0, for 0 < d ≤ R, and Vd = 0 otherwise.
Upon assuming any holon (doublon) is not surrounded
by more than one doublon (holon), the many-body pro-
jector of Eq. (5) is a particular case of the above with-
range R = 1 and V1 = −gMB. The R > 1 case can be
easily represented by a convolutional network. Indeed,
upon neglecting occupations above 2 bosons per site and
assuming that pairs are distant from each other by more
than R, one has

−
∑

ij

Vdij ⟨n| ĥid̂j |n⟩ =
∑

i

h(2)

i,1(n), (A3)

h(2)

i,1(n) = ReLU
(
−V0

2∑

µ=1

h(1)

i,µ(n)−
R∑

d=1

Vdh
(1)

i,2+d(n)
)
,

(A4)

h(1)

i,µ≤2(n) = ReLU
(
(−1)µ(ni + 1)

)
, (A5)

h(1)

i,µ=2+d(n) = ReLU
(∑

v∈V
δv,dxTv(i)

)
, (A6)

with V0 =
∑
d>0|Vd| and where input occupations are

shifted by the unit density such that configurations n =
−1 and n = 1 correspond respectively to a hole and a
doublon, such as in the main text. This bears the form
of a two-layer convolutional network with parameters

K(1)

v,µ≤2,1 = (−1)µδv,0 ∈ R|V|×2×1, b(1)µ = (−1)µ ∈ R2,

K(1)

v,µ=2+d,1 = δv,d ∈ R|V|×R×1, b(1)µ = 0 ∈ RR,

K(2)

0,1,µ′ = −Vµ ∈ R1×1×2, b(2)1 = 0 ∈ R. (A7)

Appendix B: Optimization procedure

In all simulations the learning rate was set to η = 1×
10−3, the diagonal-shift regularization of the quantum
geometric tensor was set to λ = 5 × 10−4 (1 × 10−3)
for the (neural backflow) Jastrow. 8192 samples were
used for most of the VMC calculations, and 12 288 for
backflow transformations of depth D = 8 for the largest
lattice, while the number of samples was set to 32 768 for
our simulations in Table I.

1. Metropolis-Hastings transition rule

In all simulations, Markov-chain Monte Carlo
(MCMC) was used in order to sample from the Born
probability distribution pθ(n) := |ψθ(n)|2/∥ψθ∥2. At
each MCMC step, an update from the current config-
uration n into a new configuration n′ is proposed with
probability given by the proposition distribution g(n′|n),
and accepted with probability

pacc(n → n′) = min

(
1,
pθ(n

′)
pθ(n)

g(n|n′)
g(n′|n)

)
. (B1)

Our proposition distribution is induced by the
first-quantization local transition rule g(1)(x′|x) =∏N
µ g

(1)

loc(x
′
µ|xµ) with

g(1)

loc(x
′|x) ∝ 1

[
∥x− x′∥ = a

]
, (B2)

where a denotes the lattice parameter. This proposal is
clearly ergodic and corresponds to the Hamiltonian rule
for a non-interacting system. It simply moves a particle
picked at random into any of its neighboring sites. In
second quantization, this can be achieved through the
update kernel g(2)(n′|n) =∏⟨i,j⟩ g

(2)

loc(n
′
i, n

′
j |ni, nj) with

g(2)

loc(n
′
i, n

′
j |ni, nj) ∝ niδn′

i,ni−1δn′
j ,nj+1. (B3)

This corresponds to choosing a site with a probability
proportional to its occupation number and then transfer-
ring one of the occupations to any neighboring site. This
kernel is not symmetric, hence, a correction is needed to
enforce detail balance. This is accounted for in Eq. (B1)
thanks to the following ratio of proposal densities:

g(2)

loc(ni, nj |n′i, n′j)
g(2)

loc(n
′
i, n

′
j |ni, nj)

=
n′j
ni
. (B4)

Appendix C: Worst-case variational figures of merit

Variational Monte Carlo proves the most demanding
in the Mott phase at the vicinity of the critical point
U+
c /J . In Table II, we compile the variational energies

and corresponding variational scores in that challenging
region (U/J = 16.8) as a function of system size and
depth D of the neural backflow transformation.
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Table II. Variational figures of merit at U/J = 16.8. 12 288
samples were used in optimizing the networks of depth D = 6
and D = 8 for the largest system size, 8192 otherwise.

Lattice size depth Eθ/JL
2 V-score

8×8
0 −0.452(2) 8.4× 10−2

6 −0.54783(6) 5.6× 10−5

12×12
0 −0.444(1) 7.9× 10−2

6 −0.54320(7) 1.6× 10−4

16×16

0 −0.446(1) 8.1× 10−2

2 −0.5375(2) 3.7× 10−3

4 −0.5411(1) 7.3× 10−4

6 −0.54191(7) 3.0× 10−4

20×20

0 −0.4414(9) 7.8× 10−2

2 −0.5373(1) 3.1× 10−3

4 −0.54119(5) 6.8× 10−4

6 −0.54162(5) 3.1× 10−4

8 −0.54182(4) 1.8× 10−4
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passinger, J. Simonet, K. Sengstock, R. Höppner,
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