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Abstract

The idempotent semigroups (bands) that give rise to partial orders
by defining a ≤ b ⇐⇒ a · b = a are the right-regular bands (RRB),
which are axiomatized by x · y · x = y · x. In this work we consider the
class of associative posets, which comprises all partial orders underlying
right-regular bands, and study to what extent the ordering determines
the possible “compatible” band structures and their canonicity.

We show that the class of associative posets in the signature {≤} is
not first-order axiomatizable. We also show that the Axiom of Choice
is equivalent over ZF to the fact that every tree with finite branches is
associative. We also present an adjunction between the categories of
RRBs and that of associative posets.

We study the smaller class of “normal” posets (corresponding to
right-normal bands) and give a structural characterization.

As an application of the order-theoretic perspective on bands, we
generalize results by the third author, obtaining “inner” direct product
representations for RRBs having a central (commuting) element.

1 Introduction

Idempotent semigroups (bands) carry a natural quasiorder structure given
by

a . b ⇐⇒ a · b = a. (1)

The associated equivalence relation, (≈) := (.) ∩ (&) is not always a con-
gruence relation, but only for “left-semiregular” ones [3]. In particular it
is known that for the variety of right-regular bands (RRB), axiomatized by
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the equation x · y · x = y · x, this congruence is the identity and hence the
quasiorder (1) is actually a partial order.

In this paper, we are interested in studying the class of associative posets,
which comprises all partial orders underlying right-regular bands. In doing
so, we will interpret some constructions that give rise to RRBs from an
order-theoretical point of view. This vantage points proves to be useful in
a number of situations, e.g. the analysis of direct product decompositions
carried out in Section 4. Another example is given by the results in [3], which
characterizes all varieties of bands according to some particular congruences.

The class of associative posets is ample. It includes all meet-semilattices.
Another source of examples is given by the duals of face posets of a hyper-
plane arrangement in n-dimensional Euclidean space [1], and more generally,
any convex subset of faces of such an arrangement (which includes the case
of face posets of convex polyhedra). These examples were originally pre-
sented using left-regular bands (“LRB”, satisfying x · y ·x = x · y) and using
the order defined by

a ≤ b ⇐⇒ a · b = b.

Contrary to the case of commutative bands, for which the class of un-
derlying orders (semilattices) is first-order definable, this is not the case for
associative posets (Corollary 2.17). The search for a sensible (or structural)
characterization of associative posets led us to the question of definability
of such classes.

In the present paper, we prove (Theorem 2.25) that the fact that every
tree with finite branches is associative is equivalent over ZF to the Axiom
of Choice, thereby showing that there is no canonical assignment of a band
structure to each associative poset. Nevertheless, in Section 3 we define a
left adjoint to the forgetful functor from the category of RRB to that of
associative posets.

This discussion of definability permeates our whole work, and many ques-
tions remain open; some of these are gathered in Section 5. After setting up
some preliminaries in the next section, we restrict ourselves in Section 2.2 to
a subfamily of associative posets for which a neat structural characterization
is available.

2 Associative posets

2.1 Preliminaries

For any poset (P,≤), we say that a binary operation · on P is admissible
for (P,≤) whenever x ≤ y if and only if

x · y = x. (2)

for all x, y in P . In the case of an associative poset, we can moreover choose
this to be an RRB operation and then we use the word posemigroup when
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referring to the expanded structure (P,≤, ·). Conversely, given an RRB
(P, ·), we say that the partial order x ≤ y given by (2) is the underlying
order of this RRB.

We start by introducing some useful elementary properties of posemi-
groups.

Lemma 2.1. In every posemigroup,

1. a · b ≤ b; in particular, if b is minimal, a · b = b.

2. a · b · a = b · a.

3. a ≤ b =⇒ b · a = a.

Proof. 1. (a · b) · b = a · (b · b) = a · b.

2. From Item 1 we know that a·(b·a) ≤ b·a and b·a = b·(a·b·a) ≤ a·b·a.
By antisimmetry we obtain a · b · a = b · a.

3. a = a · a = (a · b) · a = b · a, by Item 2.

Corollary 2.2. Every decreasing subset of a posemigroup is a substructure.

Lemma 2.3. For every posemigroup,

1. a ≤ b implies a · x ≤ b · x.

2. c ≤ x, y implies c ≤ x · y, y · x. Hence if x · y = y · x, it must be the
infimum of {x, y}.

Proof. 1. Using Lemma 2.1(2), a · x · b · x = a · b · x = a · x.

2. c = c · x = c · y · x. Hence c ≤ y · x. Symmetrically, c ≤ x · y.

In the following, we use x↓ to denote {a ∈ P | a ≤ x}.

Lemma 2.4. Let P be a posemigroup. If x ·y = y then (y ·x)↓ is isomorphic
to y↓.

Proof. We prove that the function f : (y · x)↓ → y↓ defined by f(a) := a · y
is an isomorphism with inverse b 7→ b · x. The injectivity of f follows from
the fact that for all a ≤ y · x, we have a = a · (y · x) = (a · y) · x. Now,
if b ≤ y, take a = b · x. We know a ≤ y · x by Lemma 2.3(1). Now,
f(a) = (b · x) · y = b · (x · y) = b · y = b. So f is surjective and hence
a bijection. The fact that f is order preserving is a direct consequence of
Lemma 2.3(1). To see that f−1 is order preserving, take a ≤ b ≤ y. By
Lemma 2.3(1) f−1(a) = a · x ≤ b · x = f−1(b). So f is an isomorphism.

Corollary 2.5. Let P be a posemigroup. For every x, y ∈ P , (x · y)↓ is
isomorphic to (y · x)↓.
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Proof. We have (x ·y) · (y ·x) = x · (y ·y) ·x = x ·y ·x = y ·x. Symmetrically,
(y · x) · (x · y) = x · y. By Lemma 2.4 we have (x · y)↓ ≈ (y · x)↓.

Corollary 2.6. Let P be a posemigroup and m ∈ P be minimal. For every
x ∈ P , m · x ≤ x is minimal.

2.2 Normal posets

It is well known [2] that there are four proper subvarieties of RRBs, each of
which can be axiomatized by one extra identity besides the band axioms.
These are:

• x = y. The trivial variety.

• x · y = y · x. The class of partial orders underlying the subvariety of
commutative bands is exactly the class of (meet-)semilattices.

• x · y = y. These are the “right-zero” bands, and the class of partial
orders underlying this one is the class of antichains.

• x · y · z = y · x · z. These are a superset of right-zero bands called
“right-normal” (RNB).

Our goal for this section is to give a characterization of normal posets,
which are the orders underlying right-normal bands. Normal posets are
always relative meet-semilattices (i.e., posets in which every principal ideal
is a meet-semilattice) but not conversely (even assuming associativity; see
Example 2.21). In fact, it is not hard to show that an associative relative
meet-semilattice is a normal poset if and only if it admits an operation which
acts as the meet operation in every principal ideal [4, Lemma 10].

First, we prove an auxiliary result.

Lemma 2.7. Let A be an RRB. Then θ := {(x, y) ∈ A2 : x · y = y & y · x =
x} is a congruence over A and A/θ is a meet-semilattice.

Proof. The relation θ is clearly symmetric and reflexive. If x · y = y and
y · z = z, then x · z = x · (y · z) = (x · y) · z = y · z = z. Analogously
z · x = x. Thus θ is transitive. Suppose now that 〈x, x′〉, 〈y, y′〉 ∈ θ. Then
(x ·y) ·(x′ · y′) = (x ·y) ·(y′ ·x′ ·y′) = x ·y · y′ ·x′ ·y′ = x ·y′ · x′ · y′ = x · x′ ·y′ =
x′ · y′. Therefore θ is a congruence. To see that A/θ is a meet-semilattice,
note that for every x, y ∈ A, (x · y) · (y · x) = x · y · y · x = x · y · x = y · x.
Analogously, (y ·x)·(x·y) = x·y, thus 〈x·y, y ·x〉 ∈ θ. Therefore, we have that
x/θ ·y/θ = (x ·y)/θ = (y ·x)/θ = y/θ ·x/θ. So A/θ is a meet-semilattice.

In view of this result, for any RRB A, we shall call θ the semilattice
congruence of A and A/θ the quotient semilattice of A.

Theorem 2.8. Let P be a poset. The following are equivalent:
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1. P is normal;

2. There exist a meet-semilattice S and an order homomorphism f : P →
S which satisfies that fm := f |m↓ : m↓ → f(m)↓ is an isomorphism
between m↓ and f(m)↓ for every m ∈ P .

It is immediate that in 2, it is enough to verify the condition for each m
in some cofinal M ⊆ P .

Proof. (⇒) Fix an admissible RNB operation · for P . Let θ be the semilat-
tice congruence of (P, ·) and f : P → P/θ the canonical projection. First
note that since each initial segment p↓ is decreasing, it is also a substructure,
so the restriction of any homomorphism to it is a homomorphism. We also
have that RRB isomorphisms are isomorphisms of the underlying orders.
Therefore we only need to check that f |p↓ = fp is bijective for every p ∈ P .
Let p ∈ P ; since (P, ·) is an RNB, if x, y ≤ p and f(x) = f(y), then

x = x · p = y · x · p = x · y · p = y · p = y

since x θ y and hence fp is injective. Also, if x/θ ≤ p/θ, then x · p/θ = x/θ,
so fp(x · p) = x/θ. Thus fp is an order isomorphism for every p ∈ P .

(⇐) Assume that S and f : P → S satisfy 2. Consider the antichain
order A := (P,=) on P . Let B ⊆ S ×A given by

B := {〈x,m〉 | x ≤ f(m)} = {〈f(m),m〉 | m ∈ P}↓.

B is a subalgebra of the direct product RNB structure on S × A. Let
h : B → P given by h(〈x,m〉) = (fm)−1(x). Note that h is surjective.

Claim 1. δ := ker h = {〈x, y〉 | h(x) = h(y)} is a congruence over B.

Indeed, if 〈x,m〉 δ 〈x′,m′〉 and 〈y, n〉 δ 〈y′, n′〉, then (fm)−1(x) = (fm′)−1(x′),
and so x = f((fm)−1(x)) = f((fm′)−1(x′)) = x′. Analogously, using that
(fn)

−1(y) = (fn′)−1(y′) we see that y = y′. Now we have

h(〈x,m〉 · 〈y, n〉) = h(〈x ∧ y, n〉) = (fn)
−1(x ∧ y) =: p,

while

h(〈x′,m′〉 · 〈y′, n′〉) = (fn′)−1(x′ ∧ y′) = (fn′)−1(x ∧ y) =: q.

As q ≤ (fn′)−1(y) = (fn)
−1(y) ≤ n, and f(q) = x ∧ y = f(p), we must have

p = q as both p and q belong to n↓.

Claim 2. ϕ : B/ ker h → P given by ϕ([〈x,m〉]) = h(〈x,m〉) is an order
isomorphism.
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The map ϕ is clearly bijective so we only have to check that it is order pre-
serving and that is has an order preserving inverse. Given [〈x,m〉], [〈y,m′〉] ∈
B/ ker h such that [〈x,m〉] · [〈y,m′〉] = [〈x,m〉], we have [〈x,m〉] = [〈x ∧
y,m′〉], so

ϕ([〈x,m〉]) = ϕ[〈x ∧ y,m′〉] = (fm′)−1(x ∧ y) ≤ (fm′)−1(y) = ϕ([〈y,m′〉]).

We also have that ϕ−1(p) = [〈f(p), p〉]. If p ≤ q, then

[〈f(p), p〉] · [〈f(q), q〉] = [〈f(p), q〉] = [〈f(p), p〉] = ϕ−1(p)

Then ϕ is a poset isomorphism. Therefore, the RNB structure of B/ kerh
is admissible for P .

Example 2.9. Applying the previous theorem we can see that the poset
depicted in Figure 1 is normal.

• •

• •

•

Figure 1: A normal poset

Example 2.10. For the leftmost poset from Figure 2, different homomor-
phisms can be chosen. Each one gives rise to a different compatible right-
normal band operation.

• ⋆

△ ◦

⋄

=⇒

• ⋆

△ ◦

⋄

• ⋆

◦ ◦

⋄

=⇒

• ⋆

◦

⋄

• •

◦ ◦

⋄

=⇒

•

◦

⋄

Figure 2: Multiple RNB structures

Note that the quotient semilattice of the RNB obtained in the last part
of the proof is isomorphic to the semilattice S with which we started. Also
the canonical projection of the semilattice congruence is the homomorphism
f . It is not hard to see that in the case of right-normal bands, one can
completely determine the product using two equationally definable binary
relations: the underlying partial order and the semilattice congruence. This
tells us, according to Beth’s Theorem, that there is a first order formula
ϕ(x, y, z) in the language {≤, θ} which is equivalent to the formula x ·y = z.
In fact, Theorem 2.8 provides information for defining it. We simply need
a formula which roughly says “z is the representative of the class x/θ ∧ y/θ
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which is below y”. For this, we define ψ(x, y) which states “x/θ ≤ y/θ”, as
ψ(x, y) := ∃c, c ≤ y ∧ x θ c. Then we set

ϕ(x, y, z) := z ≤ y ∧ ψ(z, x) ∧ ∀d, (ψ(d, x) ∧ ψ(d, y))→ ψ(d, z).

Example 2.11. The non-normal poset in Figure 3 admits two non isomor-
phic right-regular band operations. The semilattice congruence is the same
in both right-regular bands.

•

•

• •

•

Figure 3: An associative poset with a single semilattice congruence.

A few questions regarding definability remain open. One of them is the
following:

Question 2.12. Is the Axiom of Choice needed to define a right-normal
band operation for every normal poset?

2.3 Constructions

In this section we discuss closure under certain model-theoretic operations
of the class of associative posets. These are obviously correlated to algebraic
constructions on the RRB side.

Given two posets (P,≤P ) and (Q,≤Q) with P disjoint from Q, we define
their disjoint union

(

P ⊔ Q, (≤P ) ⊔ (≤Q)
)

, in which the copies of both
posets are unrelated. We extend this concept in the obvious way to define
the disjoint union of a family of posets,

⊔

i∈I Pi. We also define their ordered
sum P +Q as the poset

(

P ⊔Q, (≤P ) ⊔ (≤Q) ⊔ (P ×Q)
)

,

and analogously for a family of posets,
∑

i∈I Pi, for any linearly ordered
index set I.

Lemma 2.13. Let {Pi : i ∈ I} be a family of associative posets. Then
∑

i∈I Pi is associative.

Proof. First, we prove that the sum of two associative posets P and Q is
associative. We define a posemigroup operation over P +Q in the following
manner:

x · y =











min{x, y} x, y comparable

x ·Q y x, y ∈ Q

x ·P y x, y ∈ P

7



A straightforward case analysis shows associativity. By induction, a sum of
a finite family of associative posets is associative.

Now let {Pi : i ∈ I} be a family of associative posets and let ·i denote
an admissible RRB structure over Pi. Consider the following product over
∑

i∈I Pi:

x · y =

{

min{x, y} x and y comparable

x ·i y x, y ∈ Pi

Let x, y, z be arbitrary elements in
⊔

i∈I Pi and i, j, k ∈ I be such that x ∈ Pi,
y ∈ Pj , z ∈ Pk. Now we have, by associativity of Pi + Pj + Pk and the fact
that this finite sum is a subalgebra of

∑

i∈I Pi, that (x ·y) ·z = x · (y ·z).

Lemma 2.14. Let P be an associative (resp., normal) poset, I a set and
Pi an isomorphic copy of P for each i ∈ I. Then

⊔

i∈I Pi is associative
(normal).

Proof. Observe that
⊔

i∈I Pi is the underlying order of the right-regular
(resp., normal) given by (P, ·)×(I, π2), where · is an admissible right-regular
(normal) band structure for P and π2(x, y) = y for any x, y ∈ I.

Similar arguments also yield:

Lemma 2.15. Let {Qi : i ∈ I} be a family of associative posets and let P
an associative poset with top element 1. Let us define Ri = Pi +Qi, with Pi

an isomorphic copy of P , then
⊔

i∈I Ri is associative.

Theorem 2.16. The class of normal posets is not axiomatizable by first-
order sentences.

Proof. Consider the disjoint union P = R ⊔ R, which is normal by Lemma
2.14. It can be shown by using Ehrenfeucht–Fräıssé games that R ⊔ Q is
elementarily equivalent to P . But by Lemma 2.4 this poset is even not asso-
ciative. Therefore, the class of normal posets is not closed under elementary
equivalence and therefore is not a first-order class.

Corollary 2.17. The class of associative posets is not axiomatizable by
first-order sentences.

2.4 Examples

Every poset P admits a binary operation · in the sense of (2). This operation
can be chosen to be commutative if P is not the two-element antichain. As
it is well-known, meet-semilattices are characterized by the fact that · can
be (uniquely) chosen to be commutative and associative; therefore every
meet-semilattice is immediately a normal poset and hence associative.

The following is the smallest example of a non-associative poset.
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Example 2.18 (The hummingbird). The poset in Figure 4 is not associa-
tive. Assume by way of contradiction that it admits an RRB structure ·.
By Lemma 2.3(2), b · x = x and x · b = b; but this contradicts Corollary 2.5.

• a

•x

•

• b

•

Figure 4: The hummingbird.

Example 2.19 (The 3-crown). The poset depicted in Figure 5 is also not
associative, but for totally different reasons (see Appendix A for a proof). It
is noteworthy that analogous (2n)-crowns of even width are all associative.

•
0

•
1

•
2

•
3

•
4

•
5

Figure 5: The crown poset.

Example 2.20 (The puppy). The poset depicted in Figure 6 is an example
of an associative poset in which there is no RRB operation for which x · y =
x∧ y holds for every pair of elements x, y such that x∧ y exists. In the only
admissible RRB operation for this poset, a · b = b and b · a = a.

•a

•

•

•

•

• b
• c

Figure 6: The puppy.

Example 2.21 (The tulip). The poset depicted in Figure 7 is an example
of a non-normal associative relative meet-semilattice (every initial segment
is a meet-semilattice). The situation is analogous to the previous example;
we must have a · b = b and b · a = a.

We will end this section by showing that the order dual of N×N admits
only one RRB structure. It is straightforward to check that the only RRB
operation admissible for a chain is the infimum. The next lemma extends
this observation.
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• • •

•a • b• •

• 0

Figure 7: The tulip.

Lemma 2.22. Let C1 and C2 be chains, and at least one of them has no
minimum. Then the only admissible RRB on the direct product C1 × C2 is
given by the infimum.

Proof. Let ≤i denote the order in Ci, and ≤ the direct product order. Now
assume, by way of contradiction, that there are a, b ∈ L such that a·b 6= a∧b.
Without loss of generality, assume that a · b = b and b · a = a.

Assume that c < a and c � b for a fixed c. Then we have

(c · b) · a = c · (b · a) = c · a = c.

Hence we deduce that c · b < b, c · b 6= c, and c · b � a. From the last one we
have c ∧ b < c · b.

Again without loss of generality, we may assume a = 〈a1, a2〉, b = 〈b1, b2〉
with a1 <

1 b1 and b2 <
2 a2. Also let a′1 <

1 a1, c := 〈a
′
1, a2〉 and s1, s2 ∈ ω

such that c · b = 〈s1, s2〉. We have c ∧ b = 〈a′1, b2〉. Since c < a and c � b,
the calculations of the previous paragraph apply. From c · b < b and c · b � a
we have

s2 ≤
2 b2 b1 ≥

1 s1 >
1 a1, (3)

which, together with c ∧ b < c · b imply s2 = b2. We conclude that c · b ≥
〈a1, b2〉 = a ∧ b, and hence

〈a′1, a2〉 = c = (c · b) · a ≥ (a ∧ b) · a = a ∧ b = 〈a1, b2〉,

which contradicts the fact that a′1 <
1 a1.

The hypotheses on Ci are necessary: The square of the 2-element chain
admits exactly two RRB operations.

Corollary 2.23. The only RRB structure admissible for the cartesian square
of the naturals with the reverse order is given by the infimum.

2.5 Foliated trees

Some of our more general tools for proving associativity of posets involve
trees. In this paper, a tree is a poset (T,≤), with top element 1, such that
for every x ∈ T , x↑ := {y ∈ T : x ≤ y} is linearly ordered; a forest is a
disjoint union of trees.
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Proposition 2.24. Let T be a forest and x, y ∈ T . If there is a z such that
z ≤ x, y, then x and y are comparable.

We will say that a tree has finite branches if every chain in the tree is
finite. Moreover, given a natural number n, we will say that a tree with
finite branches has height n if every chain has at most n elements and there
is at least one chain with n elements. Finally, we call a tree T foliated if for
every x ∈ T , there is a minimal element below x. Note that a foliated tree
might still have branches without a minimal element.

Theorem 2.25. The following are equivalent (in ZF):

1. Every foliated tree is associative.

2. Every tree with finite branches is associative.

3. Every tree with height 3 is associative.

4. The Axiom of Choice.

Proof. 1⇒2 and 2⇒3 are trivial. Let us prove 3⇒4. Let F be a non empty
family of mutually disjoint non empty sets. We now define a tree order over
T := {F} ∪ F ∪

⋃

F : x < y if and only if x 6= y, and y = F or x ∈ y (we
are considering F ∩

⋃

F = ∅. If this was not the case, the order obtained
would not be that of a tree with height 3. This can be fixed by considering
{F}×{2}∪F ×{1}∪

⋃

F ×{0} as the universe for T and defining the order
as: x′ = 〈x, n〉 < y′ = 〈y,m〉 if and only if y′ = 〈F , 2〉 or x ∈ y and n < m).
Note that this is a tree with height 3 and therefore it is associative. Fix an
admissible RRB structure for T and a minimalm ∈ T . Then {m·B : B ∈ F}
is transversal for F as for B ∈ F , m · B is a minimal element below B by
Corollary 2.6.

Let’s now see that 4⇒1. To this end, we fix a foliated tree T and we
invoke the Axiom of Choice to define an admissible RRB structure for T .

Let M := {x ∈ T : x is minimal}. Define a well order over M of type κ
for κ a suitable ordinal. We can now think of M as M = {xα : α < κ}. We
now proceed to decompose T into disjoint convex chains {Cα : α < κ}. We
define the chains Cα recursively. First, we take C0 := x0↑. Now for α < κ,
we define Cα = xα↑ \

⋃

β<αCβ.

Claim 3.
⋃

α<κCα = T .

Proof. M ⊂
⋃

α<κCα is trivial Let y ∈ T \M and My := M ∩ y ↓, which
is non-empty as the tree is foliated. Now, let αy := min{β < κ : xβ ∈My}.
By the construction of {Cα : α < κ} we have that for every β < αy, y /∈ Cβ.
Also y ∈ xαy

↑ by hypothesis. Then y ∈ xαy
↑ \ {Cβ : β < αy} = Cαy

.
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Let’s now define a function F in the following manner: For y ∈ M ,
F (y) = y, and for y ∈ T \M , F (y) = xαy

with αy defined as in the proof of
the last claim.

Claim 4. Let y, z such F (y) ≤ z ≤ y, then F (z) = F (y).

Proof. If z ∈ M , then we must have F (z) = z = F (y) and the result holds
trivially. Let’s check that the claim holds for z ∈ T \M . Note that since
Mz ⊂ My, we get αy ≤ αz. As we also have xαy

∈ Mz by hypothesis, we
obtain that αz ≤ αy. Then F (z) = xαz

= xαy
= F (y).

Let’s now define an RRB structure for T :

x · y =

{

min{x, y} if they are comparable

F (y) otherwise

Let x, y, z in T . Then

(x · y) · z =











min{x, y, z} (1)

F (z) (2) ∨ (4)

F (y) (3)

Where

1. x and y comparable and z and min{x, y} comparable; or equivalently
x, y, z mutually comparable (By Proposition 2.24).

2. x and y comparable and z and min{x, y} incomparable. We consider
the following subcases:

(a) x ≤ y, z and x incomparable.

(b) y < x, z and y incomparable.

3. y incomparable with x and F (y) ≤ z. We consider the following
subcases:

(a) F (y) ≤ z ≤ y, x and y incomparable.

(b) F (y) ≤ y < z, x and y incomparable.

This classification is exhaustive because by 2.24 z and y must be
comparable.

4. y incomparable with x and F (y) incomparable with z. We consider
the following subcases:

(a) z < y.

(b) z and y incomparable.
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There are no more subcases because F (y) is minimal below y and F (y)
is incomparable with z.

Let’s now check the value of x · (y · z).

1. x · (y · z) = min{x, y, z} = (x · y) · z.

2. (a) It cannot be y ≤ z (as this would imply x ≤ z), then either z and
y are incomparable or z < y. In the first case x·(y ·z) = x·F (z) =
F (z) = x·z = (x·y)·z. In the second case x·(y·z) = x·z = (x·y)·z.

(b) y and z are incomparable. Then x · (y · z) = x · F (z) = F (z) =
y · z = (x · y) · z.

3. (a) In this case we know by 2.24 that x and z must be incomparable
as x and y are so: x ≤ z would imply x ≤ y, as z ≤ x, together
with 2.24 would imply that x and y are comparable. We also
have that F (y) = F (z) by Claim 4. Then x · (y · z) = x · z =
F (z) = F (y) = F (y) · z = (x · y) · z.

(b) x · (y · z) = x · y = F (y) = F (y) · z = (x · y) · z.

4. (a) In this case x, z are incomparable. Then x ·(y ·z) = x ·z = F (z) =
(x · y) · z.

(b) x · (y · z) = x · F (z) = F (z) = F (y) · z = (x · y) · z.

Example 2.26. We now present an application of Theorem 2.25. Let T be
the tree in (a) of Figure 8. In (b) of Figure 8 we can see a decomposition
of T into disjoint convex chains. For the RRB operation induced by this
decomposition, we have that x · y = b and y · x = a.

•

•x • y •

• • • b •

• • • ••a

•

•x ⋆ y ⋄

• ◦ ⋆ b ⋄

◦ △ ⋄ ⊙•a

(a) (b)

Figure 8: An application of Theorem 2.25.

Remark 2.27. If a tree has a minimal element but is not foliated, by Corol-
lary 2.6 it cannot be associative.
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Remark 2.28. The previous theorem still holds if we chose T to be a forest of
foliated trees instead of just a foliated tree. This result follows from the fact
that if we have a forest of foliated trees T , then we can consider the poset
T ′ := T + {1}, where 1 /∈ T . T ′ is a foliated tree and is therefore associative
by the previous theorem. Finally, since T is a decreasing subset of T ′, it
is associative; in fact, it is a subalgebra with respect to the operation we
defined in the previous theorem.

The last theorem in this section will show that certain homomorphic
preimages of foliated trees are associative.

Theorem 2.29. Let P be a poset. Suppose there exist a forest T consisting
of foliated trees and a surjective homomorphism f : P → T such that:

1. f(x) < f(y) implies x < y.

2. For all a ∈ f(P ), f−1(a) is an associative subposet of P and in addi-
tion, if a is minimal in T , then f−1(a) has a minimum element.

Then, P is an associative poset.

Proof. We begin by establishing two claims which will be necessary for this
proof:

Claim 5. If f(z) 6= f(y) = f(x) and z ≤ y, then z ≤ x

Proof. z ≤ y =⇒ f(z) ≤ f(y), as f(z) 6= f(y), f(z) < f(y) = f(x), then
z < x by 1.

Claim 6. For all x, y ∈ P , if the set {x, y} has a lower bound, then either
x and y are comparable, or f(x) = f(y).

Proof. Let z be such a lower bound. That is z ≤ x and z ≤ y. Then
f(z) ≤ f(x) and f(z) ≤ f(y). As the codomain of f is a forest, f(x) and
f(y) are comparable by 2.24. If f(x) 6= f(y), then either f(x) < f(y) or
f(y) < f(x). In both of these cases x and y are comparable.

Let’s take an element 1 not belonging to T . Let F̃ : T + {1} → T + {1}
a function defined like the one in 2.25. That is, a function such that F̃ (a) is
minimal below a for ever a in T , and also, for every minimal b ∈ T , F̃−1(b)
is a convex chain containing b.

Let’s define F : P → P as

F (x) = min{f−1(F̃ (f(x)))}.

Note that if f(x) = f(y) then F (x) = F (y).

Claim 7. If F (y) ≤ z ≤ y then F (y) = F (z).
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Proof. If f(y) = f(z), the result holds trivially. Otherwise, we have that
f(z) < f(y). Note that f(F (y)) = F̃ (f(y)) ≤ f(z) < f(y) and therefore
by 4, F̃ (f(z)) = F̃ (f(y)). This tells us, by definition of F , that F (z) =
F (y).

Let’s take for every a ∈ T , an admissible RRB ·̃a for f−1(a). We now
define a binary operation · over P in the following manner:

x · y =











min{x, y} x, y comparable

x ·̃a y f(x) = f(y) = a

F (y) x, y incomparable and f(x) 6= f(y)

(4)

Note that for all x, y ∈ P we have x · F (y) = F (y): if they are comparable,
as F (y) is minimal in P we must have F (y) ≤ x. If f(x) = f(F (y)) = a,
then they are comparable (as F (y) = min f−1(f(F (y))) and we can apply
the previous reasoning. Otherwise, we have that x·F (y) = F (F (y))) = F (y)
by definition of F and F̃ .

To lighten the notation we will omit the reference to a in ·̃a, writing
just ·̃ instead. The associative law (x · y) · z = x · (y · z) for x, y, z ∈
P is proved by the following case distinction. We first consider whether
f(x) is equal to f(y). Next we consider whether f(y) = f(z). Thirdly,
we consider the comparability condition between x and y. And lastly, we
consider the comparability condition between y and z. We will showcase
some representative cases.

Consider that f(x) = f(y) 6= f(z) x ≤ y and y, z incomparable. Then
x · (y · z) = x · F (z) = F (z) = x · z = (x · y) · z because x and z are
incomparable. This is because, if x ≤ y and y is incomparable with z, it
cannot be the case that z ≤ x. It also cannot be x ≤ z because that would
imply that y, z has a lower bound, which contradicts 6. Now consider that
f(x) 6= f(y) = f(z) x, y incomparable,y ≤ z. Then (x · y) · z = F (y) · z =
F (y) = F (y ·̃ z) = x · (y ·̃ z) = x · (y · z) because F (y) ≤ z, F (y) = F (y ·̃ z),
and because x is incomparable with y ·̃ z (since it cannot be x ≤ y ·̃ z by 5,
and it cannot be y ·̃ z ≤ x because that, together with 6, would imply z ≤ x
and that would mean y ≤ x).

Example 2.30. We now present an example of an application of Theorem
2.29. The theorem tells us that the poset depicted in (a) of Figure 9 is
associative.

3 An adjunction

Until now, our focus has been on a specific class of ordered algebraic struc-
tures. We’ve explored the relationship between right-regular bands and
associative posets, whose respective categories can be canonically linked by
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•

• •

⋆

⋆

⋆

◦ ◦

◦ ◦

⊙

⋄

⋄
△

△ △

△

•

⋆ ◦

⋄ △ ⊙

(a) (b)

Figure 9: An application of Theorem 2.29.

a forgetful functor. Now we present a more general result: The existence of
left adjoints for a broad family of forgetful functors.

We fix a first-order language L with at least an n-ary relation symbol R.

Definition 3.1. LetK be a class of L-structures. We will say that R is defin-
able by conjunctions of identities over K if there exist L-terms t1(x1, . . . , xn),
. . . , tm(x1, . . . , xn), s1(x1, . . . , xn), . . . , sm(x1, . . . , xn) such that

K � ∀x1, . . . , xnR(x1, . . . , xn) ⇐⇒
∧

1≤i≤m ti(x1, . . . , xn) = si(x1, . . . , xn).

Definition 3.2. Let K be a class of L-structures. We denote the set of
function symbols of L by Lalg, and denote the reducts of K to Lalg and to
{R} by Kalg and KR, respectively.

From now on, K will denote a class of L-structures such that R is defin-
able by conjunctions of identities over K. Throughout this section we will
study the interplay between the categories Kalg and KR, which consist of the
classes Kalg and KR and their homomorphisms, respectively.

There is a canonical forgetful functor U : Kalg → KR which assigns to
every A ∈ Kalg the structure AR := (A,RA) where

〈a1, . . . , an〉 ∈ R
A ⇐⇒ A �

∧

1≤i≤m ti(a1, . . . , an) = si(a1, . . . , an);

and to every Kalg-morphism f : A→ B, the KR-morphism Uf : AR → BR

given by Uf(a) = f(a) (that is, U preserves morphism as maps).
We will show:

Theorem 3.3. If Kalg is a variety, the forgetful functor U : Kalg → KR has
a left adjoint F .

We will start by defining the functor F on objects.
For each set X, let’s consider the Kalg-free algebra over X, denoted by

FK(X). We construe FK(X) as the quotient of the term algebra T (X),
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by the least congruence δX such that the quotient belongs to Kalg. For t ∈
T (X), we will denote by [[t]] the equivalence class of t under that congruence.
In particular, {[[x]] : x ∈ X} is the set of free generators of FK(X).

We know that FK(X) has the following universal property: For every
B ∈ Kalg and any function α : X → B, there exists a homomorphism
β : FK(X) → B such that α(x) = β([[x]]) for every x ∈ X. We will use the
following particular application:

Proposition 3.4. Let X and Y be sets and f : X → Y a function. Then the
map given by f̃([[t(x̄)]]) = [[t(f(x̄))]] is a morphism f̃ : FK(X)→ FK(Y ).

Now, for X ∈ KR, consider the congruence θX on FK(X) generated by

{〈[[ti(x1, . . . , xn)]], [[si(x1, . . . xn)]]〉 | 1 ≤ i ≤ m, 〈x1, . . . , xn〉 ∈ R
X},

and denote the quotient FK(X)/θX by FX.
We will also need Grätzer’s version of Mal’cev’s characterization of com-

pact congruences.

Lemma 3.5. Let A be any algebra and let c, d ∈ A, ā, b̄ ∈ Aj . Then 〈c, d〉 ∈
CgA(ā, b̄) if and only if there exist (j +m)-ary terms r1(x̄, ū), . . . , rk(x̄, ū),
with k odd, and z̄ ∈ Am such that:

c = r1(ā, z̄)

rl(b̄, z̄) = rl+1(b̄, z̄) l odd,

rl(ā, z̄) = rl+1(ā, z̄) l even,

rk(b̄, z̄) = d.

Lemma 3.6. Let X,Y ∈ KR and f : X → Y an homomorphism. The
function Ff : FX → FY given by Ff([[t(x̄)]]/θX) = [[t(f(x̄))]]/θY is well
defined and is a morphism.

Proof. Let f be as in the assumptions, and let f̃ : FK(X) → FK(Y ) be
the morphism provided by Proposition 3.4 for f . In particular, we have
f̃([[x]]) = [[f(x)]] for every x ∈ X. Now, take c, d ∈ FK(X) (where, c = [[t(x̄)]]
and d = [[s(x̄)]] for some s, t ∈ T (X)) such that 〈c, d〉 ∈ θX. If we can show
that 〈f̃(c), f̃ (d)〉 ∈ θY, we can then define Ff([[t(x̄)]]/θX) := f̃([[t(x̄)]])/θY,
and by how we have chosen f̃ , this function will satisfy what we want. Since
〈c, d〉 ∈ θX is witnessed by finitely many tuples from the generators of θX,
namely 〈[[tip(x

p
1, . . . , x

p
n)]], [[sip(x

p
1, . . . , x

p
n)]]〉 for some appropriate xpl ∈ X

(with l = 1, . . . , n, p = 1, . . . , j), Lemma 3.5 gives us (j + m)-ary terms
r1(x̄, ū),. . . , rk(x̄, ū), with k odd, and z̄ ∈ FK(X)m such that:

c = r1([[W̄ ]], z̄), (5)

rl([[V̄ ]], z̄) = rl+1([[V̄ ]], z̄) for odd l, (6)

rl([[W̄ ]], z̄) = rl+1([[W̄ ]], z̄) for even l, (7)

rk([[V̄ ]], z̄) = d (8)
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where

x̄ := x11, . . . , x
1
n, . . . , x

j
1, . . . , x

j
n

W̄ = W̄ (x̄) := ti1(x
1
1, . . . , x

1
n), . . . , tij (x

j
1, . . . , x

j
n)

V̄ = V̄ (x̄) := si1(x
1
1, . . . , x

1
n), . . . , sij (x

j
1, . . . , x

j
n),

with the following abuses of notation: We take equivalence classes term-wise,

[[W̄ ]] = [[ti1(x
1
1, . . . , x

1
n)]], . . . , [[tij (x

j
1, . . . , x

j
n)]],

and apply functions in the same way:

h(W̄ ) = h
(

ti1(x
1
1, . . . , x

1
n)
)

, . . . , h
(

tij (x
j
1, . . . , x

j
n)
)

W̄
(

h(x̄)
)

= ti1
(

h(x11), . . . , h(x
1
n)
)

, . . . , tij
(

h(xj1), . . . , h(x
j
n)
)

Using the fact that 〈f(xi1), . . . , f(x
i
n)〉 ∈ R

Y for every i, we will show that
the terms obtained witness the fact that 〈f̃(c), f̃ (d)〉 ∈ θY by transitivity.

f̃(c) = f̃
(

r1([[W̄ (x̄)]], z̄)
)

by (5)

= r1
(

f̃([[W̄ (x̄)]]), f̃ (z̄)
)

f̃ is a morphism

= r1
(

[[W̄ (f(x̄))]], f̃ (z̄)
)

. by definition of f̃

Observe now that 〈r1([[W̄ (f(x̄))]], f̃(z̄)), r1([[V̄ (f(x̄))]], f̃(z̄))〉 ∈ θY, where
the second term appears for l = 1 below. In general, for odd l,

rl
(

[[V̄ (f(x̄))]], f̃ (z̄)
)

= rl
(

V̄ ([[f(x̄)]]), f̃ (z̄)
)

δY is a congruence

= rl
(

V̄ (f̃([[x̄]])), f̃ (z̄)
)

by definition of f̃

= rl
(

f̃(V̄ ([[x̄]])), f̃ (z̄)
)

f̃ is a morphism

= rl
(

f̃([[V̄ (x̄)]]), f̃ (z̄)
)

δX is a congruence

= f̃
(

rl([[V̄ (x̄)]], z̄)
)

f̃ is a morphism

= f̃
(

rl+1([[V̄ (x̄)]], z̄)
)

by (6)

= rl+1

(

f̃([[V̄ (x̄)]]), f̃ (z̄)
)

f̃ is a morphism

= rl+1

(

f̃(V̄ ([[x̄]])), f̃ (z̄)
)

δX is a congruence

= rl+1

(

V̄ (f̃([[x̄]])), f̃ (z̄)
)

f̃ is a morphism

= rl+1

(

[[V̄ (f(x̄))]], f̃ (z̄)
)

by definition of f̃ .

In general, 〈rl+1([[W̄ (f(x̄))]], f̃(z̄)), rl+1([[V̄ (f(x̄))]], f̃ (z̄))〉 ∈ θY, for l ≤ k−1.
Similarly, for even l,

rl
(

[[W̄ (f(x̄))]], f̃ (z̄)
)

= rl
(

f̃([[W̄ (x̄)]]), f̃ (z̄)
)

by definition of f̃

= f̃
(

rl([[W̄ (x̄)]]), z̄
)

f̃ is a morphism

= f̃
(

rl+1([[W̄ (x̄)]], z̄)
)

by (7)

= rl+1

(

f̃([[W̄ (x̄)]]), f̃ (z̄)
)

f̃ is a morphism

= rl+1

(

[[W̄ (f(x̄))]], f̃ (z̄)
)

by definition of f̃ .
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Finally,

rk
(

[[V̄ (f(x̄))]], f̃ (z̄)
)

= rk
(

V̄ ([[f(x̄)]]), f̃ (z̄)
)

δY is a congruence

= rk
(

V̄ (f̃([[x̄]])), f̃ (z̄)
)

by definition of f̃

= rk
(

f̃(V̄ ([[x̄]])), f̃ (z̄)
)

f̃ is a morphism

= rk
(

f̃([[V̄ (x̄)]]), f̃ (z̄)
)

δX is a congruence

= f̃
(

rk([[V̄ (x̄)]], z̄)
)

f̃ is a morphism

= f̃(d) by (8).

Therefore the function Ff is well defined. Now take q an n-ary operation
symbol in Lalg. We have that

Ff
(

qFX([[u1]]/θX, . . . , [[un]]/θX)
)

= f̃
(

qFK(X)([[u1]], . . . , [[un]])/θX
)

= qFK(Y )
(

f̃([[u1]]), . . . , f̃([[un]])
)

/θY

= qFY
(

f̃([[u1]])/θY, . . . , f̃([[un]])/θY
)

= qFY
(

Ff([[u1]]/θX), . . . , Ff([[un]]/θX)
)

so Ff is indeed a morphism.

For a structure X ∈ KR, we define an inclusion ηX : X → UFX by
ηX(a) := [[a]]/θX. The previous lemma allows us to prove the following:

Lemma 3.7. For every X and Y in KR, and KR-morphism h : Y → X:

UFh ◦ ηY = ηX ◦ h. (9)

Proof. Let y ∈ Y . We have: (ηX ◦ h)(y) = ηX(h(y)) = [[h(y)]]/θX. Notice
that, by the definition of Fh, this element is equal to Fh([[y]]/θY) =

(

Fh ◦
ηY

)

(y). And since U preserves morphisms as functions, we have that this
is equal to

(

UFh ◦ ηY
)

(y).

For a structure X ∈ KR, we define a congruence DX on T (X) as follows:
〈t(x̄), s(x̄)〉 ∈ DX if and only if tA(x̄) = sA(x̄) for every A ∈ Kalg such that
UA = X. It is clear that δX ⊆ DX.

Lemma 3.8. Given a structure X ∈ KR, and an algebra A ∈ KF such that
UA = X there exists a morphism g : FX → A such that g(ηX(x)) = x for
every x ∈ X.

Proof. Note there is a morphism f : T (X)/DX → A for which f(x/DX) =
x, given by f(t(x̄)/DX) := tA(x̄); this is well defined by definition of DX.

We have that θX ⊆ DX/δX : For every x̄ ∈ Xn such that x̄ ∈ RX we
have that 〈ti(x̄), si(x̄)〉 ∈ DX for 1 ≤ i ≤ m and hence

{〈[[ti(x̄)]], [[si(x̄)]]〉 : 1 ≤ i ≤ m, x̄ ∈ R
X} ⊆ DX/δX
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by definition of DX/δX . Since θX is generated by those pairs, we obtain the
inclusion.

We now know that there is a projection morphism

π : (T (X)/δX )/θX → ((T (X)/δX )/θX)/((DX/δX)/θX)

which satisfies

π([[x]]/θX) = ([[x]]/θX)/
(

(DX/δX )/θX
)

.

By the Second Isomorphism Theorem, there are isomorphisms

h1 :
(

(T (X)/δX )/θX
)

/
(

(DX/δX )/θX
)

→ (T (X)/δX )/(DX/δX)

and
h2 : (T (X)/δX )/(DX/δX)→ T (X)/DX

which satisfy

h1
(

([[x]]/θX)/
(

(DX/δX )/θX
))

= [[x]]/(DX/δX)

and
h2

(

[[x]]/(DX/δX)
)

= x/DX.

We can now take g := f ◦h2◦h1◦π : FX→ A which is a morphism satisfying
g(ηX(x)) = x.

Definition 3.9. We define the map F : KR → Kalg which assigns to ev-
ery structure X the algebra FX and to every morphism f : X → Y, the
morphism Ff : FX→ FY.

Lemma 3.10. F : KR → Kalg is a functor.

Proof. Given X,Y,Z ∈ KR, and f : X→ Y, g : Y → Z KR-morphisms, we
show that Fg ◦ Ff = F (g ◦ f). Let x ∈ FX and assume x = [[t(x̄)]]/θX for
some t and x̄. We have

(Fg ◦ Ff)(x) = Fg([[t(f(x̄))]]/θY) = t(gf(x̄))/RZ)/θZ) = F (g ◦ f)(x).

Now let X ∈ KR; we show that F1X = 1FX. Take x = [[t(x̄)]]/θX ∈ FX.
We have that

F1X(x) = [[t(1X(x̄))]]/θX = [[t(x̄)]]/θX = x.

Consider now the map ϕX,A : Kalg(FX,A)→ KR(X, UA) between hom-
sets given by ϕX,A(f) = Uf ◦ ηX.

Theorem 3.11. The triple 〈F,U, ϕ〉 is an adjunction from KR to Kalg.

20



Proof. We first prove that ϕX,A is injective. Let g : FX→ A and h : FX→
A be two KF -morphisms such that ϕX,A(h) = ϕX,A(g), i.e.,

Uh(ηX(x)) = (Uh ◦ ηX)(x) = (Ug ◦ ηX)(x) = Ug(ηX(x))

for all x ∈ X. From this we deduce that g and h coincide on all elements of
FX of the form [[x]]/θX = ηX(x): We have that h(ηX(x)) equals Uh(ηX(x))
since U preserves morphisms as functions. By hypothesis, Uh(ηX(x)) =
Ug(ηX(x)), the latter being equal to g(ηX(x)) for the same reason. There-
fore, h(ηX(x)) = g(ηX(x)) for all x ∈ X. Now, let y ∈ FX be of the form
x = [[t(x1, . . . , xk)]]/θX. Since g and h are morphisms, we have:

g(y) = g([[t(x1, . . . , xk)]]/θX)

= tA
(

g([[x1]]/θX), . . . , g([[xk]]/θX)
)

= tA
(

h([[x1]]/θX), . . . , h([[xk]]/θX)
)

= h([[t(x1, . . . , xk)]]/θX)

= h(y),

which means that g = h.
Next we show that ϕX,A is surjective. Let f : X → UA be a KR-

morphism. Take Ff : FX→ FUA the Kalg-morphism given by Lemma 3.6,
and compose it with the morphism g : FUA → A given by Lemma 3.8.
Now we have ϕX,A(g ◦ Ff)(x) = U(g ◦ Ff) ◦ ηX(x). Since U preserves
morphisms as functions, this element is equal to g(Ff(ηX(x))) which, by
the definition of Ff , is equal to g(ηUA(f(x))), and this last term is equal to
f(x) by construction of g. Therefore, f = ϕX,A(g ◦ Ff).

Now let’s see that ϕ satisfies the naturality conditions. That is, we
want to show that for every pair of objects X ∈ KR and A ∈ Kalg, every
Kalg-morphism f : FX → A, every KR-morphism h : Y → X, and every
Kalg-morphism k : A → B, it holds that ϕX,B(k ◦ f) = Uk ◦ ϕX,A(f) and
ϕY,A(f ◦ Fh) = ϕX,Af ◦ h.

On the one hand, we have ϕX,B(k ◦ f) = U(k ◦ f) ◦ ηX = Uk ◦Uf ◦ ηX =
Uk ◦ ϕX,A(f), as desired.

On the other hand, we have ϕY,A(f ◦Fh) = U(f ◦Fh)◦ηY = Uf ◦UFh◦
ηY = Uf ◦ ηX ◦ h = ϕX,A(f) ◦ h, since UFh ◦ ηY = ηX ◦ h by Equation 9
from Lemma 3.7.

Therefore, the naturality conditions are satisfied. Thus, ϕ is a natural bi-
jection between Kalg(FX,A) and KR(X, UA), and hence the triple 〈F,U, ϕ〉
forms an adjunction.

Corollary 3.12. Let RRB and AP be the categories of RRBs with semigroup
homomorphisms and associative posets with non decreasing maps, respec-
tively. Then the forgetful functor U : RRB→ AP admits a left adjoint.
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Example 3.13. In Figure 10 we can see an example of the partial order
underlying FP for a simple poset P = (P,≤). The product of two distinct
maximal elements in UFP is one of the two elements in the second level.

•x

• 0

• y

•ηP(x)

•

• ηP(0)

•

• ηP(y)

P UFP

Figure 10

4 Factor congruences of right-regular bands

In the following, we provide an application of the order-theoretic perspective
on bands to the study of direct product decompositions of RRBs with a
central element. This generalizes the results from [5].

One key idea from that paper (which studies join-semilattices) was that
existing binary infima in finite direct products of join-semilattices must fac-
torize and satisfy some distributive and absorption properties with respect
to the join. Since the (≤, ·)-posemigroups associated to RRBs correspond to
meet-semilattices, all concepts here will be dual those in [5]; in particular,
we will be speaking of partial binary suprema. We have the analogous

Lemma 4.1. For any pair of RRBs C,D and elements c, e ∈ C and d, f ∈
D, the element 〈c, d〉 ∨ 〈e, f〉 exists in C ×D if and only if c ∨ e and d ∨ f
exist.

The main difference between this section and [5] is that, unlike ∨ nor ∧,
the RRB operation · is not a commutative in general. We do assume that
at least one element commutes with every other:

Definition 4.2. Given an RRB (A, ·), an element c ∈ A is said to be central
if for all x ∈ A, we have x · c = c · x.

We will highlight modifications to the proofs in the sequel.

4.1 Decomposition into direct product of RRBs

For the remainder of this chapter, we will write formulas in the language
{·,∨}; occurrences of ≤ can be reduced using (2). The formula “x ∨ y = z”
will be interpreted as “z is the supremum of {x, y}”:

x, y ≤ z & (∀u : x, y ≤ u → z ≤ u),
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unless otherwise specified; in general, every equation t1 = t2 involving ∨
should be interpreted as “if one of the terms exists, so does the other and
they are equal.” It is easy to check that the laws of associativity hold for
the partial operation ∨ in every poset.

From now on, let A be an RRB and c ∈ A be a fixed central element.
Let ϕ(c, x1, x2, x) be the conjunction of the following formulas:

comm x · x1 = x1 · x and x · x2 = x2 · x.

dist x = (x · x1) ∨ (x · x2).

p1 x1 = (x · x1) ∨ (c · x1).

p2 x2 = (x · x2) ∨ (c · x2).

prod x1 · x2 = x · c.

Note that comm is the only formula that does not appear in the formula
ϕ(c, x1, x2, x) defined in [5]. Note also that, due to the assumption that c is
central and comm, Lemma 2.3(2) guarantees that all products appearing in
ϕ except for the last one are actually infima. We will write “x = 〈〈x1, x2〉〉c”
to denote that ϕ(c, x1, x2, x) holds.

Definition 4.3. Suppose that I1, I2 are subsemigroups of A. We will say
that A is the c-direct product of I1 and I2, and write A = I1 ×c I2, if and
only if the following conditions hold:

Perm The elements of I1 commute with those of I2.

Mod1 For all x, y ∈ A, x1 ∈ I1, and x2 ∈ I2, if x · c ≤ x1 · x2, then
(

(x · x1) ∨ (x · x2)
)

· y = (x · x1 · y) ∨ (x · x2 · y),

y ·
(

(x · x1) ∨ (x · x2)
)

= (y · x · x1) ∨ (y · x · x2).

Mod2 For all x, y ∈ A, x1 ∈ I1, andx2 ∈ I2, if x ≥ x1 · x2, then
(

(x · xi) ∨ (c · xi)
)

· y = (x · xi · y) ∨ (c · xi · y),

y ·
(

(x · xi) ∨ (c · xi)
)

= (y · x · xi) ∨ (y · c · xi).

for i = 1, 2.

Abs For all x1, y1 ∈ I1, and z2 ∈ I2, we have: x1 ∨ (y1 · z2) =
x1 ∨ (y1 · c) (and exchanging the roles of I1 and I2).

Exi ∀x1 ∈ I1, x2 ∈ I2 ∃x ∈ A : x = 〈〈x1, x2〉〉c.

Onto ∀x ∈ A ∃x1 ∈ I1, x2 ∈ I2 : x = 〈〈x1, x2〉〉c.

Note that these are “two-sided” versions of the conditions in [5], plus
the commutativities Perm.

For the sake of brevity, we will omit the reference to c, writing x =
〈〈x1, x2〉〉 instead of x = 〈〈x1, x2〉〉c. Note that Exi implies:

Ori ∀x1 ∈ I1, x2 ∈ I2 (x1 · x2 ≤ c).
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4.2 The representation lemma

Lemma 4.4. Suppose A = I1×c I2. Then x = 〈〈x1, x2〉〉 defines an isomor-

phism 〈x1, x2〉
ϕ
7→ x between I1 × I2 and A.

Proof. The proof that the function 〈x1, x2〉
ϕ
7→ x is well-defined is very similar

to that in [5], but it involves essential uses of Perm and comm. It is left as
an interesting exercise for the reader.

The function defined by ϕ is surjective by Onto; to see it is injective, let
x = 〈〈x1, x2〉〉 and x = 〈〈y1, y2〉〉. We have:

x1 = x1 ∨ (x1 · x2)

= x1 ∨ (x · c) by prod

= x1 ∨ (y1 · y2) by prod again

= x1 ∨ (y1 · c) by Abs

and then x1 ≥ y1 · c. Similarly, y1 ≥ x1 · c and in conclusion, by Lemma
2.3(1),

x1 · c = y1 · c. (10)

On the other hand,

x · y1 = y1 · x by comm

= y1 · ((x · x1) ∨ (x · x2)) by dist

= (y1 · x · x1) ∨ (y1 · x · x2) by Mod1

= (x · y1 · x1) ∨ (x · y1 · x2) by comm

= (x · y1 · x1) ∨ (x · y1 · x2 · c) by Ori

= (x · y1 · x1) ∨ (x · c) c central and x · c ≤ x1, y1, x2, y2

= x · y1 · x1, by the same argument.

and also

x · x1 = ((x · y1) ∨ (x · y2)) · x1 by dist

= (x · y1 · x1) ∨ (x · y2 · x1) by Mod1

= (x · y1 · x1) ∨ (x · x1 · y2) by Perm

= (x · y1 · x1) ∨ (x · x1 · y2 · c) by Ori

= (x · y1 · x1) ∨ (x · c) c central and x · c ≤ x1, y1, x2, y2

= x · y1 · x1. by the same argument.

Thus, we obtain x ·x1 = x ·y1. (Here, we must use the fact that x ·y1 = y1 ·x
because otherwise, it is not possible to prove that x ·y1 = x ·x1). Combining
this with (10) and using p1, we have

x1 = (x · x1) ∨ (c · x1) = (x · y1) ∨ (c · y1) = y1.
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By the same reasoning, x2 = y2. The preceding part requires a more exten-
sive development than the proof in [5].

Next we prove that ϕ preserves ·. Suppose x = 〈〈x1, x2〉〉 and z =
〈〈z1, z2〉〉; since each I1, I2 is a subsemigroup, we know that xj · zj ∈ Ij for
j = 1, 2. We want to show x · z = 〈〈x1 · z1, x2 · z2〉〉. The property prod is
immediate (and therefore, we can apply Mod1 and Mod2 to x · z). Now we
prove dist:

x · z =
(

(x · x1) ∨ (x · x2)
)

· z by dist for x

= (x · x1 · z) ∨ (x · x2 · z). by Mod1

This last term is equal to

(x · x1 · z · z1) ∨ (x · x1 · z · z2) ∨ (x · x2 · z · z1) ∨ (x · x2 · z · z2), (11)

by dist for z and Mod1. Note that, for any y,

(y · z · z1) = y · z · (z · z1 ∨ c · z1) by p1 for z1

= (y · z · z1) ∨ (y · z · c · z1) by Mod1 for z

= (y · z · z1) ∨ (y · z1 · z2 · z1) by prod for z

= (y · z · z1) ∨ (y · z2 · z1) by Lemma 2.1

= (y · z · z1) ∨ (z2 · y · z1) by Perm

= (y · z · z1) ∨ (z1 · z2 · y · z1) by Lemma 2.1 again

= (y · z · z1) ∨ (z · c · y · z1) by prod for z

= (z · y · z · z1) ∨ (z · y · c · z1) by Lemma 2.1 and because c is central

= z · y · (z · z1 ∨ c · z1) by Mod1 for z

= z · y · z1.

This development is necessary in order to permute x1 and x2 with z in the
first and fourth term of (11) respectively, as we cannot guarantee that ·
commutes over these elements. This equality will be used multiple times in
this proof, always for the same reason. Similarly, z · y · z2 = y · z · z2.

We can now rewrite the term (11) as follows:

(x · z · x1 · z1) ∨ (x · x1 · z · z2) ∨ (x · x2 · z · z1) ∨ (x · z · x2 · z2).

Note that

x · x1 · z · z2 = x · x1 · z2 · z by comm

= x · x1 · z2 · c · z by Ori

= x · c · x1 · z2 · z1 · z2 by Lema 2.1 and c is central

= x1 · x2 · x1 · z2 · z1 · z2 by prod

= x2 · x1 · z1 · z2

= x1 · x2 · z1 · z2. by Perm
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Similarly, x · x2 · z · z1 = x1 · x2 · z1 · z2
Let’s see that (x1 · x2 · z1 · z2) ≤ (x · x1 · z · z1):

(x1 · x2 · z1 · z2) · (x · z · x1 · z1) = x2 · z2 · x · x1 · z · z1

= x1 · x2 · z2 · x · z · z1 by comm and Perm

= x · c · z2 · x · z · z1 by prod for x

= z2 · x · z · c · z1

= z2 · x · c · z · c · z1

= z2 · x1 · x2 · z1 · z2 · z1 by prod for z

= x1 · x2 · z2 · z1

= x1 · x2 · z1 · z2.

Therefore, we can eliminate the two middle terms in Equation (11) and
obtain dist for x · z:

(x · z) =
(

(x · z) · (x1 · z1)
)

∨
(

(x · z) · (x2 · z2)
)

.

Here, the method for eliminating the two terms also differs from what was
done in [5]. We can obtain p1 and p2 in a similar way. We prove p1:

x1 · z1 = ((x · x1) ∨ (c · x1)) · z1 by p1 for x

= (x · x1 · z1) ∨ (c · x1 · z1). by Mod2

By p1 for z followed by Mod2 on each term of the supremum, the last term
is equal to

(x · x1 · z · z1) ∨ (x · x1 · c · z1) ∨ (c · x1 · z · z1) ∨ (x1 · c · z1).

Due to the observed fact (that z · x1 · z1 = x1 · z · z1) and the fact that c is
central, we can rewrite this term as

(x · z · x1 · z1) ∨ (x · c · x1 · z1) ∨ (x1 · z · c · z1) ∨ (c · x1 · z1). (12)

Note that (x · c ·x1 · z1) = x · (c ·x1 · z1) ≤ (c ·x1 · z1), so we can eliminate the
second term of the supremum. To eliminate the third term, we can rewrite
it as:

(x1 · z · c · z1) = (x1 · z1 · z2 · z1) By prod for z

= (x1 · z2 · z1)

= (x1 · z · c) by prod for z

= (c · x1 · z). c is central
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Let’s see that (c · x1 · z) ≤ (c · x1 · z1):

(c · x1 · z) · (c · x1 · z1) = z · c · x1 · z1

= z1 · z2 · x1 · z1 by prod for z

= x1 · z1 · z2 by Perm

= x1 · z · c by prod for z

= c · x1 · z. c is central

Then Equation (15) becomes:

(x · z · x1 · z1) ∨ (c · x1 · z1)

and this is equal to

((x · z) · (x1 · z1)) ∨ (c · (x1 · z1)).

4.3 The factorization theorem

We begin by introducing some notation. Recall that ker f (cfr. Claim 1)
is always a congruence when f : A → B is a homomorphism. We say
that two congruences θ, δ ∈ Con(A) are complementary factor congruences
if θ ∩ δ = IdA and their relational compositions θ ◦ δ and δ ◦ θ equal A ×
A. Complementary factor congruences are in 1-1 correspondence to direct
product decompositions.

As 〈〈·, ·〉〉 defines an isomorphism, there exist canonical projections πj :
A→ Ij with j = 1, 2 such that:

∀x ∈ A, x1 ∈ I1, x2 ∈ I2 : x = 〈〈x1, x2〉〉 ⇐⇒ π1(x) = x1 and π2(x) = x2.
(13)

Let’s define, for any congruence θ on A, the set Iθ := {a ∈ A : a θ c}.

Theorem 4.5. Let A be an RRB and c ∈ A be a central element. The
mappings

〈θ, δ〉
I
7−→ 〈Iθ, Iδ〉

〈ker π2, ker π1〉
K
←−[ 〈I1, I2〉

are mutually inverse maps defined between pairs of complementary factor
congruences of A and the set of pairs of subsemigroups I1, I2 of A such that
A = I1 ×c I2.

Proof. The only part of this proof that differs in a nontrivial way from [5]
is the verification that Mod1 and Mod2 hold

The mapping a 7→ 〈a/θ, a/δ〉 is an isomorphism between A and A/θ ×
A/δ. Under this isomorphism, Iθ corresponds to {〈c′, a′′〉 : a′′ ∈ A/δ} and
Iδ corresponds to {〈a′, c′′〉 : a′ ∈ A/θ}, where c′ = c/θ and c′′ = c/δ. From
now on, we will identify Iθ and Iδ with their respective isomorphic images
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and verify the axioms for Iθ ×c Iδ = A in A/θ × A/δ. Note that since c is
central, c′ and c′′ are also central.

To verify Mod1, suppose x = 〈x′, x′′〉, y = 〈y′, y′′〉, x1 = 〈c′, x′′1〉 ∈ Iθ,
and x2 = 〈x

′
2, c

′′〉 ∈ Iδ. Notice that x · c ≤ x1 · x2 implies

x′ · c′ ≤ c′ · x′2 x′′ · c′′ ≤ x′′1 · c
′′. (14)

From the first inequality in (14), we obtain

(x′ · c′) · (x′ · x′2) = x′ · x′2 · c
′ c′ is central

= x′ · c′ · x2 · c
′

= (x′ · c′) · (x′2 · c
′)

= x′ · c′.

In other words, x′ · c′ ≤ x′ · x′2.
Similarly, from the second inequality in (14), we obtain x′′ · c′′ ≤ x′′ · x′′1.

That is:

x′ · c′ ≤ x′ · x′2 x′′ · c′′ ≤ x′′ · x′′1, (15)

and therefore, we have x′ · c′ · y′ ≤ x′ · x′2 · y
′ and x′′ · c′′ · y′′ ≤ x′′ · x′′1 · y

′′.
Applying Lemma 4.1, we obtain:

(x · x1 ∨ x · x2) · y = 〈(x′ · c′ ∨ x′ · x′2) · y
′, (x′′ · x′′1 ∨ x

′′ · c′′) · y′′〉

= 〈x′ · x′2 · y
′, x′′ · x′′1 · y

′′〉

= 〈x′ · c′ · y′ ∨ x′ · x′2 · y
′, x′′ · x′′1 · y

′′ ∨ x′′ · c′′ · y′′〉

= x · x1 · y ∨ x · x2 · y.

Now, to distribute to the left, the equations (14) also imply

y′ · x′ · c′ = y′ · x′ · c′ · x′2 · c

= y′ · x′ · x′2 · c

= c · y′ · x′ · x′2.

This gives us y′ · x′ · c′ ≤ y′ · x′ · x′2 and, analogously, y′′ · x′′ · c′ ≤ y′′ · x′′ · x′′1.
Then, together with (15), we have

y · (x · x1 ∨ x · x2) = 〈y
′ · (x′ · c′ ∨ x′ · x′2), y

′′ · (x′′ · x′′1 ∨ x
′′ · c′′)〉

= 〈y′ · x′ · x′2, y
′′ · x′′ · x′′1〉

= 〈y′ · x′ · c′ ∨ y′ · x′ · x′2, y
′′ · x′′ · x′′1 ∨ y

′′ · x′′ · c′′〉

= y · x · x1 ∨ y · x · x2.

We leave Mod2 to the reader.
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As in [5], the characterization of direct representations assume a simpler
forms when c is an endpoint of the poset. For example,

Theorem 4.6. Let A be an RRB with identity 1. Then A = I1×1 I2 if and
only if I1, I2 ≤ A satisfy:

Perm The elements of I1 commute with those of I2.

Abs For all x1, y1 ∈ I1 and z2 ∈ I2, we have: x1 ∨ (y1 · z2) =
x1 ∨ y1 (and interchanging I1 and I2).

Onto I1 · I2 = A.

Moreover, I1 and I2 are filters of A.

5 Conclusion

We have presented many examples which showcase the usefulness of an
order theoretical point of view for studying bands. We proved that we can
define, for certain posets, a band operation by invoking some of its structural
properties, such as the existence of a special order-preserving function for
a normal poset, or a decomposition into disjoint convex subchains with
minimum for a foliated tree. More so, we showed that in the first case, this
is the only way of defining a right-normal band operation over a normal
poset. Here, natural definability questions arise. There appears to be no
way of canonically assigning a right-normal band operation to every normal
poset. We can then ask ourselves if being able to define this assignment is
equivalent to the Axiom of Choice or some fragment of it.

We proved the equivalence of the associativity of foliated trees and the
Axiom of Choice. This, together with the observations regarding right-
normal bands, shows that assigning a (right-regular or right-normal) band
operation to an associative poset is highly non-canonical. We believe that
a broader family of trees might be proven to be associative. It appears
to be that for associative trees there must exist, perhaps as some sort of
limit, some order type that “occurs densely”. That is, a type order which
appears in arbitrary low levels of the tree. Therefore, this leads us to believe
that every tree admiting a decomposition into disjoint convex subchains with
isomorphic initial segments might be associative.

The following is a list of problems/questions which remain open:

Question 5.1. Is every associative disjoint union of meet-semilattices a
normal poset?

We know that every disjoint union of meet-semilattices with minimum
is normal, so if the answer to this question is negative, at least one of the
meet-semilattices in our counterexample must be infinite.
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Question 5.2. Is there a family of posets whose “normality” is equivalent
to the Axiom of Choice?

A result of this sort would be an analogue of Theorem 2.25

Question 5.3. Is every disjoint union of finite associative posets associa-
tive?

We believe the answer to this question to be negative. From Theo-
rem 2.29 we know that every disjoint union of associative posets with min-
imum is associative, so if a counterexample exists, at leats one of the asso-
ciative posets must not have a minimum.

Question 5.4. Can Theorem 2.25 be extended to prove associativity of a
more general class of posets/trees?

Question 5.5. Is there a more suitable notion of morphism of associative
posets which yields a more interesting category?

Acknowledgment : We thank Dr. Miguel Campercholi for suggesting
that we study the existence of a left adjoint for the forgetful functor between
the categories of RRB and associative poset.

A Additional proofs

A.1 The crown is not associative

In the next lemmas, we assume that there is an admissible RRB structure
for the crown poset. By minimality we obtain:

Lemma A.1. 1. 3 · 2 ∈ {4, 5}.

2. 4 · 1 ∈ {3, 5}.

3. 5 · 0 ∈ {3, 4}.

So far, we have the situation pictured in Table 1.

Lemma A.2. 1. 5 · 0 = 3 if and only if 3 · 2 = 5.

2. 3 · 2 = 4 if and only if 4 · 1 = 3.

3. 5 · 0 = 4 if and only if 4 · 1 = 5.

Proof. For the first item, assume 5 · 0 = 3. If 3 · 2 6= 5, by Lemma A.1,
3 · 2 = 4. We obtain, using Lemma 2.1(2),

4 = 4 · 0 = 3 · 2 · 0 = 5 · 0 · 2 · 0 = 5 · 2 · 0 = 5 · 0 = 3,
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· 0 1 2 3 4 5

0 0 ? ? 3 4 5
1 ? 1 ? 3 4 5
2 ? ? 2 3 4 5
3 3 3 A 3 4 5
4 4 B 4 3 4 5
5 C 5 5 3 4 5

Table 1: The partial crown product; A ∈ {4, 5}, B ∈ {3, 5}, C ∈ {3, 4}.

a contradiction. Thus we have the direct implication. For the converse, the
map given by the permutation (53)(20) is an isomorphism.

For the other items, there are isomorphisms that send the first equiva-
lence to the other two.

Proposition A.3. The crown poset does not admit an RRB structure.

Proof. Assume it is related to a posemigroup. Then all previous lemmas
apply.

4 · 1 = 3 ⇐⇒ 3 · 2 = 4 Lemma A.2

⇐⇒ 3 · 2 6= 5 Lemma A.1

⇐⇒ 5 · 0 6= 3 Lemma A.2

⇐⇒ 5 · 0 = 4 Lemma A.1

⇐⇒ 4 · 1 = 5 Lemma A.2.

This contradiction shows that Table 1 can’t be completed to obtain an as-
sociative product.

A.2 Preimages of foliated trees

We present here the complete analysis of the case distinction required by
the last paragraphs of the proof of Theorem 2.29.

Each case will be named by a 4-tuple. Its first and second coordinates
determine if f(y) is equal to f(x) and f(z) respectively; if f(x) = f(y), then
the first number in the name will be 1, otherwise it will be 2. Similar remarks
hold for the second coordinate. The third and fourth coordinate determine
the comparability conditions between x and y, and y and z respectively; if
x ≤ y the third coordinate will be 1, if y < x the third coordinate will be 2,
and if x and y are incomparable, the third coordinate will be 3. The fourth
coordinate behaves analogously. If an asterisk is present in any coordinate,
it means the reasoning applied in that case holds for all possible choices for
that coordinate. As an example of these conventions, the name [1.2.3.2]
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corresponds to the case in which f(x) = f(y), f(y) 6= f(z), x and y are
incomparable, and z < y.

In the following calculations, we denote the product defined in (4) by
juxtaposition.

[1.1.∗.∗] In this case:

(xy)z = (x ·̃ y) ·̃ z = x ·̃ (y ·̃ z) = x(yz)

[∗.∗.1.1]
(xy)z = xz = x = xy = x(yz)

[∗.∗.1.2]
(xy)z = xz = x(yz)

[∗.∗.2.1]
(xy)z = yz = y = xy = x(yz)

[∗.∗.2.2]
(xy)z = yz = z = xz = x(yz)

[1.2.1.3]
x(yz) = xF (z) = F (z) = xz = (xy)z

[1.2.2.3]
(xy)z = yz = F (z) = xF (z) = x(yz)

As x · F (z) = F (z).

[1.2.3.1]
(xy)z = (x ·̃ y)z = x ·̃ y = xy = x(yz)

As (x ·̃ y) < z by Claim 5.

[1.2.3.2]
(xy)z = (x ·̃ y)z = z = xz = x(yz)

by Claim 5.

[1.2.3.3]
(xy)z = (x ·̃ y)z = F (z) = xF (z) = x(yz)

because (x ·̃ y) must be incomparable with z by Claim 6 as x ·̃ y ≤ y.

[2.1.1.3]
(xy)z = xz = x = x(y ·̃ z) = x(yz)

by Claim 5.
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[2.1.2.3]
(xy)z = yz = y ·̃ z = x(y ·̃ z) = x(yz)

by Claim 5.

[2.1.3.1]
(xy)z = F (y)z = F (y) = xy = x(yz)

as F (y) ≤ y ≤ z.

[2.1.3.2]
(xy)z = F (y)z = F (z)z = F (z) = xz = x(yz)

because F (y) = F (z) and the fact that x and z are incomparable .

[2.1.3.3]
(xy)z = F (y)z = F (y) = F (y ·̃ z) = x(y ·̃ z) = x(yz)

as F (y) ≤ z, F (y) = F (y ·̃ z) and x and y ·̃ z are incomparable.

[2.2.1.3]
(xy)z = xz = F (z) = xF (z) = x(yz)

as x and z are incomparable.

[2.2.2.3]
(xy)z = yz = F (z) = xF (z) = x(yz)

[2.2.3.1]
(xy)z = F (y)z = F (y) = xy = x(yz)

[2.2.3.2]
(xy)z = F (y)z = F (z) = xz = x(yz)

Because if F (y) ≤ z then F (y) = F (z). Otherwise they are incompa-
rable.

[2.2.3.3]
(xy)z = F (y)z = F (z) = xF (z) = x(yz)

because F (y) and z are incomparable.
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