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Abstract 

Continuous adaptation to variable environments is crucial for the survival of living organisms. Here, 

we analyze how adaptation, forecasting, and resource mobilization towards a target state, termed 

actionability, interact to determine biological function. We develop a general theory and show that it 

is possible for organisms to continuously track their optimal state in a dynamic environment by 

adapting towards an actionable target that incorporates just current information on the optimal state 

and its rate of change. If the environmental information is precise and readily actionable, it is possible 

to implement perfect tracking without anticipatory mechanisms, irrespective of the adaptation rate. 

In contrast, predictive functions, like those of circadian rhythms, are beneficial if sensing the 

environment is slow or unreliable, as they allow better adaptation with fewer resources. To explore 

potential actionable forecasting mechanisms, we develop a general approach that implements the 

adaptation dynamics with forecasting through a dynamics-informed neural network. 
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Introduction 

In the search for general biological principles, there has been extensive research on network structure, 

decision making, and evolution, among others [1-6]. The key emergent results are centered on the idea 

that biological systems should function reliably, and often optimally, in their environment. The role of 

forecasting capabilities of biological systems has not been so extensively studied. At the computational 

level, predicting the evolution of complex systems from continuously sensed real-time data to act upon 

them and control their behavior is a central challenge across multiple significant problems in biology, 

society, the environment, industry, human health, and many other domains [7-12]. A prominent 

example of inherently predictive behavior in biological systems is provided by circadian rhythms [13]. 

They are internal processes that regulate various physiological and behavioral functions in organisms 

to parallel the recurring 24-hour daily cycle. In most cases, the recurring patterns persist even when 

the organisms are placed under controlled constant conditions. The generation of recurrent rhythmic 

patterns that mimic the expected environment has usually been thought of as an anticipatory 

mechanism that helps adaptation to daily environmental changes [14, 15]. However, the benefits that 

the inherent predictive behavior can provide to biological systems and their interplay with 

actionability, namely, the mobilization of resources based on the anticipated environmental state, 

have remained largely unexplored. 

Here, we develop a general theory to capture the effects of forecasting and actionability in the 

context of continuous adaptation. Unraveling this connection is important because biological systems 

naïvely adapt toward a potentially optimal state with a delay [16, 17]. The longer the delay, the farther 

the system is from the optimal state. Fast adaptation, however, requires higher reaction rates and 

mobilization of resources, which is generally costly and detrimental [18, 19]. Therefore, actionability 

requires a tradeoff between speed and resources. Here, the focus is on how organisms can modify this 

tradeoff towards better adaptation with fewer resources. 

Our results show that adapting towards a function of the current environment and its rate of 

change, which we termed actionable target, rather than to the optimal state itself allows the system 

to precisely track a changing environment without delay. If the information about the current 

environment is precise and readily actionable, anticipatory mechanisms are not needed to implement 

perfect tracking, irrespective of the adaptation rate. Predictability capabilities of circadian rhythms, 

however, could be advantageous with unreliable and slow sensing of the environment. Explicitly, to 

study these tradeoffs, we focus on daily and seasonal clocks as well as on the current and recent 

environment as the sources of information available for the adaptation processes. The main difference 
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between these two types of sources is the instantaneous endogenous information provided by the 

clocks. In contrast, exogenous environmental information needs to be sensed and relayed through 

diverse signaling pathways until it is ready to be actionable, which is not instantaneous. As an explicit 

quantitative environment, we consider solar radiation on the Earth's surface. This quantity is directly 

relevant to the metabolism of photosynthetic organisms such as plants and cyanobacteria as well as 

to the behavior of virtually any system that is coupled to the environment, such as organisms and 

communities that follow the day-night cycle [20]. 

To implement the adaptation dynamics together with the forecasting approach, we developed 

a dynamics-informed neural network (DINN) [21]. This approach allows us to test the performance of 

different actionable forecasting strategies coupled with the dynamics of adaptation. 

 

Results  

Theory 

At the cellular level, the state of the system is in general determined by multiple variables, such as ATP 

levels, number of proteins, etc. We focus on the quantification of one of these variables. Explicitly, we 

consider the cellular state at time 𝑡 described by 𝑦𝑡. For a given environment at time 𝑡, there is an 

optimal cellular state 𝑦𝑡
𝑜 that maximizes the growth rate. Near the optimal state, the growth rate is 

given by 𝑟𝑡 = 𝑟𝑡
𝑜 − 𝑐𝑡  (𝑦𝑡 − 𝑦𝑡

𝑜)2, with 𝑐𝑡 ≡ −𝑑2𝑟𝑡/(𝑑𝑦𝑡)2, which is positive, and 𝑟𝑡
𝑜 being the 

maximum growth rate. This dependence is important to define the optimization problem. Therefore, 

the objective is to minimize the mean square error (MSE) between the optimal and actual state over 

time, which is mathematically defined as 𝑒𝑀𝑆𝐸 = lim
𝑇→∞ 

1

𝑇
∫ (𝑦𝑡 − 𝑦𝑡

𝑜)2𝑑𝑡
𝑇

0
. It is also useful to consider 

the root mean square error (RMSE) defined as 𝑒𝑅𝑀𝑆𝐸 = √𝑒𝑀𝑆𝐸, which has the same units as the 

quantification of the cellular state. 

We consider the dynamics given by   

𝑑𝑦𝑡

𝑑𝑡
= 𝑏𝑡(𝑓𝑡 − 𝑦𝑡), 

(1) 

where 𝑏𝑡 is the adaptation rate of 𝑦𝑡 towards a function 𝑓𝑡 that depends on the environment. This 

equation can straightforwardly be solved as   

𝑦𝑡 = 𝑦0𝑒− ∫ 𝑏𝑠𝑑𝑠
𝑡

0 + ∫ 𝑒− ∫ 𝑏𝑧𝑑𝑧
𝑡

𝑠 𝑏𝑠𝑓𝑠𝑑𝑠
𝑡

0

. 
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(2) 

Naïve adaptation would correspond to adaptation of the cellular state to the optimal value at a given 

time, i.e., 𝑓𝑡 = 𝑦𝑡
𝑜. In this scenario, 𝑦𝑡 will be different from 𝑦𝑡

𝑜.  

It is useful to write 𝑓𝑡 as 𝑓𝑡 − 𝑦𝑡
𝑜 + 𝑦𝑡

𝑜, substitute it in Eq. (2), and integrate by parts the term 

𝑒− ∫ 𝑏𝑧𝑑𝑧
𝑡

𝑠 𝑏𝑠𝑦𝑠
𝑜, which makes use of the identity 

𝑑

𝑑𝑠
𝑒− ∫ 𝑏𝑧𝑑𝑧

𝑡

𝑠 𝑦𝑠
𝑜 = 𝑒− ∫ 𝑏𝑧𝑑𝑧

𝑡

𝑠 𝑏𝑠𝑦𝑠
𝑜 + 𝑒− ∫ 𝑏𝑧𝑑𝑧

𝑡

𝑠
𝑑

𝑑𝑠
𝑦𝑠

𝑜. The 

result  

𝑦𝑡 = 𝑦𝑡
𝑜 + (𝑦0 − 𝑦0

𝑜)𝑒− ∫ 𝑏𝑠𝑑𝑠
𝑡

0 + ∫ 𝑒− ∫ 𝑏𝑧𝑑𝑧
𝑡

𝑠 𝑏𝑠 (𝑓𝑠 − 𝑦𝑠
𝑜 −

1

𝑏𝑠

𝑑

𝑑𝑠
𝑦𝑠

𝑜) 𝑑𝑠
𝑡

0

 

(3) 

shows that it is possible to perfectly track a changing optimal state, so that  𝑦𝑡 = 𝑦𝑡
𝑜 after the initial 

transient, if the system relaxes towards 

𝑓𝑡 = 𝑦𝑡
𝑜 +

1

𝑏𝑡

𝑑

𝑑𝑡
𝑦𝑡

𝑜, 

(4) 

which we have termed the actionable target. Therefore, precise continuous tracking requires 

information on the optimal state, its changes, and the adaptation rate. The faster the adaptation rate, 

the smaller the dependence on the derivative. 

Precise tracking does not in principle require information about the future or forecasting 

approaches. However, this property requires no delays in relaying the optimal state information. If 

there is a delay Δ𝑡 and the approach is applied straightforwardly, namely, 𝑓𝑡 = 𝑦𝑡−Δ𝑡
𝑜 +

1

𝑏𝑡

𝑑

𝑑𝑡
𝑦𝑡−Δ𝑡

𝑜 , the 

system would track the delayed optimum value as 𝑦𝑡 = 𝑦𝑡−Δ𝑡
𝑜 . Because 𝑦𝑡

𝑜 − 𝑦𝑡−Δ𝑡
𝑜 ≃

𝑑

𝑑𝑡
𝑦𝑡

0Δ𝑡, the 

value of the MSE, 𝑒𝑀𝑆𝐸 ≃ Δ𝑡2 ⟨(
𝑑

𝑑𝑡
𝑦𝑡

𝑜)
2

⟩, scales proportionally to the square of the delay and the 

average of the square of the rate of change of the optimal state. 

In situations with delays and variable environments, relaxing towards an estimate of the 

current actionable target could potentially be more efficient than relaxing towards the actual delayed 

value. Accurately predicting the actionable target is crucial because the system would relax towards 

𝑓𝑡 = 𝑦̂𝑡
𝑜 +

1

𝑏𝑡

𝑑

𝑑𝑡
𝑦̂𝑡

𝑜, where the hat indicates that the value 𝑦̂𝑡
𝑜 is a forecast of 𝑦𝑡

𝑜 from past values. 
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Validation 

To put the theory in context, we consider adaptation to the normalized hourly changes in solar 

radiation on the Earth's surface. As a normalization factor, we use the maximum radiation. As a 

representative location, we selected latitude 45° N and longitude 0° E. The specific latitude has marked 

seasonal effects superimposed on daily changes as well as weather patterns (Fig. 1). The longitude 

corresponds to the Greenwich meridian, for which the Coordinated Universal Time (UTC) corresponds 

to the mean solar time. The values were obtained from the PVGIS v5.2 database [22]. It uses satellite 

data to compute radiation at hourly resolution from the years 2005 to 2020. We validate the approach 

with the data from the years 2015 to 2020. We keep the data from the years 2005 to 2014 for training. 

The approach is embedded into a predictive framework through a dynamics-informed neural 

network (Figure 2). For the adaptation dynamics, we rely on the discretized integral representation 

[Eq. (2)] with a time-independent adaptation rate constant (𝑏𝑡 = 𝑏0) and without the transient term 

(long-term behavior), which we implement as a convolutional layer of the neural network. The 

discretization follows the sampling of the solar radiation. Explicitly, we use 𝑦𝑡 = ∑ 𝑤𝑖𝑓𝑡−𝑖ℎ 
𝑀
𝑖=0 with the 

kernel 𝑤𝑖 given by 𝑤0 =
1

2
𝑏0 and 𝑤𝑖>0 = 𝑏0𝑒−𝑏0𝑖ℎ. Here, 𝑀 is the size of the kernel and  ℎ represents 

a 1-hour interval. This result is obtained from the trapezoidal rule for numerical integration after a 

change of variables in the convolution of Eq. (2). We use this approach with a single-neuron linear layer 

with fixed weights to implement numerical approaches as well as with a trainable deep neural network 

(DNN) to capture potentially more complex predictive non-linear relationships. 

The naïve adaptation mechanism, with 𝑓𝑡 = 𝑦𝑡
𝑜, leads to a substantial delay in tracking the 

optimal state (Fig. 3A), resulting in an RMSE of 0.147. Incorporating the optimal state rate of change 

through a first-order approximation of the derivate, 𝑓𝑡 = 𝑦𝑡
𝑜 +

1

ℎ𝑏0
(𝑦𝑡

𝑜 − 𝑦𝑡−ℎ
𝑜 ), provides much better 

tracking than the naïve mechanism (Fig. 3B) with an RMSE of 0.027. Trying to improve the estimation 

of the derivative through a centered second-order approximation, 𝑓𝑡 = 𝑦𝑡
𝑜 +

1

2ℎ𝑏0
(𝑦𝑡+ℎ

𝑜 − 𝑦𝑡−ℎ
𝑜 ), is 

not possible because it will require values from the future. Relying only on current and past values, a 

second-order backward difference approximation of the derivative, 𝑓𝑡 = 𝑦𝑡
𝑜 +

1

2ℎ𝑏0
(3𝑦𝑡

𝑜 − 4𝑦𝑡−ℎ
𝑜 +

𝑦𝑡−2ℎ
𝑜 ), further improves the tracking (Fig. 3C) with an RMSE of 0.013. This result shows that if the 

actionable target is not delayed, there is accurate tracking without anticipatory mechanisms, even 

when the environment is noisy. 
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Delayed inference and extrapolation 

The main limitation of this type of tracking lies in the ability to infer the value of the actionable target 

at time 𝑡. Explicitly, if only the past is actionable, namely, if there is a delay, the tracking ability is 

substantially reduced, for the naïve case, 𝑓𝑡 = 𝑦𝑡−ℎ
𝑜 , with RMSE of 0.195 (Fig. 4A) and for the second 

backward difference approximation of the derivative, 𝑓𝑡 = 𝑦𝑡−ℎ
𝑜 +

1

2ℎ𝑏0
(3𝑦𝑡−ℎ

𝑜 − 4𝑦𝑡−2ℎ
𝑜 + 𝑦𝑡−3ℎ

𝑜 ), 

with RMSE of 0.079 (Fig. 4B). Note that in the latter case the RMSE is essentially the square root of the 

average value of (𝑦𝑡
𝑜 − 𝑦𝑡−ℎ

𝑜 )2, which in this case is 0.082. We also considered the second order 

extrapolation of the optimal state and its derivative as 𝑦̂𝑡
𝑜 = 𝑦𝑡−ℎ

𝑜 +
1

2
(3𝑦𝑡−ℎ

𝑜 − 4𝑦𝑡−2ℎ
𝑜 + 𝑦𝑡−3ℎ

𝑜 ) and 

𝑑

𝑑𝑡
𝑦̂𝑡

𝑜 =
1

2ℎ
(5𝑦𝑡−ℎ

𝑜 − 8𝑦𝑡−2ℎ
𝑜 + 3𝑦𝑡−3ℎ

𝑜 ), which leads to an RMSE of 0.073 (Fig. 4C). Here, we have used 

explicitly 𝑓𝑡 = 𝑦̂𝑡
𝑜 +

1

𝑏𝑡

𝑑

𝑑𝑡
𝑦̂𝑡

𝑜. In this case, linear extrapolation does not significantly improve the 

precision of the tracking because of the inherently noisy nature of the environment. 

If the system has a recurrent component, such as those of daily cycles, it would be possible to 

estimate the optimal state and its change considering also values from one day earlier, namely, as 

 𝑦̂𝑡
𝑜 = 𝑦𝑡−ℎ

𝑜 + 𝑦𝑡−24ℎ
𝑜 − 𝑦𝑡−24ℎ−ℎ

𝑜  and  
𝑑

𝑑𝑡
𝑦̂𝑡

𝑜 =
1

2ℎ
(𝑦𝑡−24ℎ+ℎ

𝑜 − 𝑦𝑡−24ℎ−ℎ
𝑜 ). The resulting tracking has 

an RMSE of 0.087 (Fig. 5A). This type of approach, which can be improved to consider multiple days 

back in time, as in the Holt-Winters’ seasonal method [23], provides the system with periodic 

information. When the results of the delayed and the recurrent approaches are averaged together, 

the RMSE is reduced to 0.066 (Fig. 5B), which is lower than the values obtained for each of them 

separately. The tracking error can be reduced further by considering the extrapolated instead of the 

delayed approach in the average with the recurrent information, which leads to an RMSE of 0.057. 

Such consistent error reductions upon averaging different estimations indicate that random 

fluctuations play a fundamental role in preventing the system from tracking the optimal value when 

forecasting is needed. 

Overall, the results show that, indeed, it is possible to substantially improve the naïve 

mechanism considering adaptation to the delayed actionable target, which can be further improved 

through forecasting, or anticipatory, mechanisms for the current optimal state and its time-derivative 

contribution (Figs. 4 and 5). The forecasting mechanisms used so far should be considered as a baseline 

since they are linear, account for the recent past, and incorporate only the recurrences of 1 day before.  
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An integrated actionable forecasting strategy 

Through the previous analyses, we have shown that in general there is short- and long-term 

information that can contribute to predicting changes in the optimal state. To generally address these 

dependencies, we consider a general Deep Neural Network (DNN) framework that explicitly 

incorporates short-term, long-term, and recurrent dependencies. The motivation for using a DNN is 

their ability to encode general functional dependencies between variables, their trainability 

properties, and their computational equivalence to biomolecular networks. Indeed, multiple results 

have shown explicitly that biomolecular networks, including enzymatic, signal transduction, and gene 

regulatory networks, can perform computations equivalent to those of artificial neural networks and 

other architectures in machine learning [24-27]. 

The potential role of recurrent effects enters the approach through a functional dependency 

on the time of the day (circadian) and the time of the year (circannual). Multiple organisms, from 

microorganisms as simple as bacteria to humans, have indeed biomolecular mechanisms to tackle daily 

changes in environmental conditions. Circannual rhythms are needed to regulate physiological and 

behavioral processes over the changes that organisms experience through seasons, such as 

temperature and day-length changes [28, 29]. To account for these recurrent events, we consider 

explicitly a clock that performs a circular motion in the unit circle in phase space as 𝐜𝑡
𝑑 =

(sin
2𝜋𝑡

𝜏𝐷
, cos

2𝜋𝑡

𝜏𝐷
) for the daily changes and 𝐜𝑡

𝑎 = (sin
2𝜋𝑡

𝜏𝑌
, cos

2𝜋𝑡

𝜏𝑌
) for annual effects. Here, 𝜏𝐷 is the 

day length (24 hours) and 𝜏𝑌 is the year length (265.25 days). We do not delve into the potential 

biomolecular mechanisms for the clocks, which have been the subject of intense research [14, 30-32]. 

We only need their output as they are entrained by the environment [33]. In this regard, clocks do not 

rely on precisely sensing the environment since only minimal coupling leads to perfect synchrony with 

external time. The recent environment is characterized through the 𝑛-dimensional vector 𝐲𝑡−ℎ,𝑡−𝑛ℎ
𝑜 =

(𝑦𝑡−ℎ
𝑜 , 𝑦𝑡−2ℎ

𝑜 … 𝑦𝑡−𝑛ℎ
𝑜 ) with the most recent 𝑛 values of the optimal state before the time 𝑡. 

Explicitly, given 𝐜𝑡
𝑑 , 𝐜𝑡

𝑎, and 𝐲𝑡−ℎ,𝑡−𝑛ℎ
𝑜 , we consider 𝑓𝑡 = 𝑓𝐷𝑁𝑁

𝑛𝑑𝑎(𝐲𝑡−ℎ,𝑡−𝑛ℎ, 𝐜𝑡
𝑑 , 𝐜𝑡

𝑎), 𝑓𝑡 =

𝑓𝐷𝑁𝑁
𝑛𝑑 (𝐲𝑡−ℎ,𝑡−𝑛ℎ, 𝐜𝑡

𝑑), and 𝑓𝑡 = 𝑓𝐷𝑁𝑁
𝑛 (𝐲𝑡−ℎ,𝑡−𝑛ℎ) for different values of 𝑛. Here, 𝑓𝐷𝑁𝑁

𝑛 , 𝑓𝐷𝑁𝑁
𝑛𝑑 , and 𝑓𝐷𝑁𝑁

𝑛𝑑𝑎 

are the outputs of the DNNs for systems without, with circadian, and with both clocks, respectively. 

We analyze explicitly to what extent diverse types of systems can perfectly adapt to the changing 

optimal state depending on the information available and the network architecture implemented. We 

trained the networks with the data from the years 2005 to 2014. The validation was performed with 

data from the years 2015 to 2020 to test the predictive capabilities with unseen data. 

For systems that can only act on information about the most recent past value of the optimal 

state, 𝑛 = 1, the presence of clocks significantly increases the ability to track the optimal state (Fig. 
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6A). The presence of clocks brings the tracking capabilities of the DNNs along the lines of the combined 

extrapolated and recurrent approaches (Fig. 5C). In the absence of clocks, in contrast, the capabilities 

of a DNN do not substantially improve the results of naïve adaptation to the last optimal value available 

(Fig. 4A). For systems that can act on information about the two most recent past values of the optimal 

state, 𝑛 = 2, the differences between approaches are not as marked (Fig. 6B). In all the cases, the DNN 

outperforms the results from the linear estimates of the actionable target (Figs. 4 and 5). For large 

numbers of actionable past values, as for instance 𝑛 = 30, the results are essentially the same for all 

the DNNs, with an RMSE of ~0.040 (Fig. 6C). 

An exhaustive analysis for values up to 𝑛 = 50 shows that all the approaches become 

essentially equally accurate at 𝑛 ≃ 25 as the number of actionable values increases (Fig. 7). The most 

salient result is the ability of systems with daily and annual clocks to reach nearly maximum tracking 

accuracy, as exemplified in Fig. 6B, with just acting on to past values of the optimal state at 𝑛 = 2. In 

this case, information about the recurrent environment is encoded as a function of the time of the day 

and of day of the year through the training of the network along the environment history.  

  

Discussion 

Continuously adapting to the optimal state in a changing environment is essential to the survival of 

virtually any organism. Multiple biomolecular processes sense the environment and respond to the 

current condition to adapt to it. These processes include mechanisms as diverse as transcription, 

translation, phosphorylation, methylation, and changing multiple intracellular molecular 

concentrations [34]. The classical example in gene regulation, known as the lac operon, is the 

production of the enzymes needed to metabolize lactose only in the presence of lactose with glucose 

absent [35]. This reactive approach implies a delay in reaching the optimal state, determined by the 

speed of the cellular process, when bacteria switch from glucose to lactose metabolism, as shown by 

cells stopping growing during this transition [36]. This delay has sensing and responding components 

[37]. Sensing involves the transport of extracellular lactose inside the cell, its transformation into 

allolactose, and inhibition of the lac repressor by its binding to allolactose. Responding involves 

transcription and translation that leads to the production of the enzymes needed to metabolize lactose 

and the use of lactose as a metabolite [38]. Typically, resuming growth takes about two hours in the 

bacterium E. coli. 

 Besides reactive approaches, there are also proactive approaches, such as the regulatory, 

metabolic, and physiological oscillations that match daily and annual changes [13]. Therefore, multiple 

systems do not present a delayed response to recurrent environmental changes. In many cases, these 
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oscillations persist even when the organisms are artificially kept under constant environments. This 

persistence has been attributed to the need for organisms to anticipate changes in the natural 

environment [33].  

Here, we have shown that it is possible to continuously track the optimal state as it changes 

by adapting towards a combination of the current optimal state and its rate of change, which we have 

termed the actionable target. This quantity, and hence accurate adaptation to a changing 

environment, does not depend on the future values of the environment. The key limitation for accurate 

temporal tracking is obtaining an accurate actionable target. In general, there are inherent delays that 

would prevent obtaining current values and intrinsic fluctuations that would prevent obtaining precise 

values [39]. Therefore, the limitations for continuous adaptation are not as much as anticipating the 

future but obtaining reliable estimates of the present. 

A key quantity besides the optimal state of the system is its rate of change. Remarkably, 

sensing changes, in addition to absolute values, is widely present across organisms, even in cases as 

simple as bacteria. The most studied example is perhaps bacterial chemotaxis, which relies on sensing 

temporal changes in nutrient concentrations as the bacterium moves through an inhomogeneous 

nutrient distribution [40]. In higher organisms, there are multiple examples of complex pathways that 

can sense concentrations and their changes, such as the TGF-β/BMP pathways [17]. These complex 

pathways can even perform complex computations [41, 42]. The computations of this sensing, 

however, are relayed with a delay. Therefore, the system needs to anticipate the present from delayed 

information. 

In this context, our results show that biological clocks are not needed to anticipate future 

changes but to provide reliable estimates of the expected current changes that mimic historical 

changes. As the expected rate of change is encoded through the phase of the clock, it does not depend 

on sensing the environment. Our results show that, in a variable uncertain environment, biological 

clocks can be combined with sensing recent past values of the optimal state to increase further the 

reliability of the estimation of the actionable target. In the case of tracking the solar radiation on the 

Earth's surface, we have shown that only two recent values are needed to reach the limits of precise 

tracking when circadian and circannual clocks are present. The fact that the system only needs sensing 

two values is equivalent to sensing the environment, 𝑦𝑡−ℎ
𝑜 , and its rate of change, 

1

ℎ
(𝑦𝑡−ℎ

𝑜 − 𝑦𝑡−2ℎ
𝑜 ),  

which are widely present capabilities of organisms. In the absence of clocks, the limit is reached at 

about 25 values, which is unclear how a bimolecular system would record, act upon, and process such 

an amount of temporal information [43]. In contrast, actionable forecasting can be implemented 

efficiently through biological functions that rely on oscillatory behavior. 
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Methods 

Field data 

We retrieved the data from the PVGIS v5.2 database [22] using the web API command 

'https://re.jrc.ec.europa.eu/api/v5_2/seriescalc?lat=45&lon=0&raddatabase=PVGIS-ERA5'. Data from 

the years 2015 to 2020 was used for validation of the approach with numerical estimates of the 

actionable target and for performance assessment of DINN implementation. The data from the years 

2005 to 2014 was used for training the DNN weights. 

Convolutional layer kernel parametrization 

We considered the integral representation of the dynamics through Eq. (2) with a time-independent 

adaptation rate constant and without the transient, which after a change of variable in the convolution 

leads to 𝑦𝑡 = ∫ 𝑒−𝑏0(𝑡−𝑠)𝑏0𝑓𝑠𝑑𝑠
𝑡

0
= ∫ 𝑒−𝑏0𝑠𝑏0𝑓𝑡−𝑠𝑑𝑠

𝑡

0
. Using the trapezoidal rule, the integral is 

approximated as 𝑦𝑡 ≃ 𝑏0 ∑
1

2
(𝑒−𝑏0𝑖ℎ𝑓𝑡−𝑖ℎ + 𝑒−𝑏0(𝑖+1)ℎ𝑓𝑡−(𝑖−1)ℎ)𝑀

𝑖=0 ≃ ∑ 𝑤𝑖𝑓𝑡−𝑖ℎ 
𝑀
𝑖=0 , which defines 

the kernel 𝑤𝑖. We selected 𝑏0 =
1

3ℎ
 as a typical value, and 𝑀 = 25 so that 

1

2
𝑒−𝑏0(𝑀+1)ℎ = 8.6 × 10−5 

and subsequent terms for longer delays are negligible. 

Computational Implementation 

The overall approach was implemented in Keras [44] with TensorFlow [45]. For the DINN, we 

considered a DNN with 4 dense layers, each containing 16 neurons with the Exponential Linear Unit 

(ELU) function activation. As input of the DNN, we used values of the vectors 𝐲𝑡−ℎ,𝑡−𝑛ℎ
𝑜 , 𝐜𝑡

𝑑 , and 𝐜𝑡
𝑎. 

The output of the DNN was combined into a single-neuron linear layer, which provided the actionable 

target 𝑓𝑡 used as the input of the convolutional layer that implements the dynamics. The MSE between 

the output of the convolutional layer, 𝑦𝑡, and the optimal state, defined as the normalized solar 

irradiance, 𝑦𝑡
𝑜, was used as a loss function. Training of the overall network was performed over 365 

intervals 744-hour long as a single batch. The intervals were chosen randomly from the years 2005 to 

2014. Validation was performed over 219 intervals 744-hour long chosen randomly from the years 

2015 to 2020. For the numerical estimation of the actionable target, we considered the estimated 

value of 𝑓𝑡 as the input of the convolutional layer. No training was involved. Validation was performed 

exactly as for the DINN. 
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Figures 

 

 

Figure 1. Solar radiation on the Earth's surface at latitude 45° N and longitude 0° E illustrates the 

recurrent daily and annual fluctuations. The values from the PVGIS v5.2 database [22] are shown for 

a period of a week to illustrate daily fluctuations (A) and  a year to illustrate seasonal variability (B). 
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Figure 2. Implementation of continuous adaptation as a dynamics-informed neural network (DINN). 

The panel on left shows, from bottom to top, the structure of the DINN. The input, depicted as an 

orange square, consists of values of the vectors 𝐲𝑡−ℎ,𝑡−𝑛ℎ
𝑜 , 𝐜𝑡

𝑑 , and 𝐜𝑡
𝑎, which are connected to the 

lower layer of the DNN (red lines). The DNN consists of 4 dense layers, each containing 16 neurons 

with the Exponential Linear Unit (ELU) function activation. The output of the DNN was combined into 

a single-neuron linear layer, which provided the actionable target 𝑓𝑡. Blue lines connecting dense 

neurons (grey circles) represent trainable weights. The actionable target is used as the input of the 

convolutional layer (green rectangle) that implements the dynamics. The output of the convolutional 

layer is the state of the system 𝑦𝑡. The panel on the left illustrates the approach with the numerical 

estimation of the actionable target. We considered the estimated value of 𝑓𝑡 (orange square) as the 

input of the convolutional layer.   
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Figure 3. Adaptation towards the actionable target leads to precise tracking even with discretely 

sampled data. The dotted blue line shows normalized measured values from the PVGIS v5.2 database 

[22]. Solid red lines show the results for the adaptation towards the current optimal state (A), the 

current actionable target with a first-order discrete backward approximation of the derivative (B), and 

the current actionable target with a second-order discrete backward approximation of the derivative 

(C). The RMSE for the years 2015-2020 between the measured (dotted blue line) and tracked values 

(solid lines) are shown in the legends in each panel.  
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Figure 4. Delayed relay of the actionable target prevents perfect tracking but improves naïve 

adaptation. The dotted blue line shows normalized measured values from the PVGIS v5.2 database 

[22]. Solid red lines show the results for the adaptation towards the 1-hour-delayed optimal state (A), 

the 1-hour-delayed actionable target (B), and the extrapolation to current time from the 1-hour-

delayed actionable target (C). In both cases, the actionable target was computed with a second-order 

discrete backward approximation of the derivative. The RMSE for the years 2015-2020 between the 

measured (dotted blue line) and tracked values (solid lines) are shown in the legends in each panel. 
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Figure 5. Estimation of the actionable target with long-term recurrent changes improves tracking. 

The dotted blue line shows normalized measured values from the PVGIS v5.2 database [22]. Solid red 

lines show the results for the adaptation towards the current time estimate of the actionable target 

with values of the previous day (A), the average of panel A and Fig. 4B actionable targets (B), and the 

average of panel A and Fig. 4C actionable targets (C). The RMSE for the years 2015-2020 between the 

measured (dotted blue line) and tracked values (solid lines) are shown in the legends in each panel. 
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Figure 6. A dynamics-informed neural network with daily and yearly clocks reaches the limit of 

predictability with just two recent past values of the optimal state. The dotted blue line shows 

normalized measured values from the PVGIS v5.2 database [23]. Solid lines show the results for the 

adaptation towards the estimate of the actionable target using a dynamics-informed neural network 

(DINN) for systems without (blue), with daily (orange), and with daily and annual (green) clocks for 1 

(A), 2 (B), and 30 (C) actionable past values of the optimal state. The RMSE for the years 2015-2020 

between the measured (dotted blue line) and tracked values (solid lines) are shown in the legends in 

each panel. 
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Figure 7. Dynamics-informed neural network approaches without, with daily, and with daily and 

annual clocks become essentially equally accurate at 𝒏 ≃ 𝟐𝟓 as the number of actionable past values 

of the environment increases. The RMSE for the years 2015-2020 between the measured and tracked 

values is shown as a function of the number of past actionable values, denoted by 𝑛, for systems 

without (blue), with daily (orange), and with daily and annual (green) clocks.  

 

 

 


