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The long-lived and optically addressable high-spin state of the negatively charged silicon vacancy
(VSi) in silicon carbide makes it a promising system for applications in quantum technologies.
Most studies of its spin dynamics have been performed in external magnetic fields applied along
the symmetry axis. Here, we find that the application of weak magnetic fields perpendicular to
the symmetry axis leads to nontrivial behavior caused by dynamical reorientation of the VSi spin
multipole under optical excitation. Particularly, we observe the inversion of the quadrupole spin
polarization in the excited state and appearance of the dipole spin polarization in the ground
state. The latter is much higher than thermal polarization and cannot be induced solely by optical
excitation. Our theoretical calculations reproduce well all sharp features in the spin resonance
spectra, and shine light on the complex dynamics of spin multipoles in these kinds of solid-state
systems.

Atom-like defects in solids are attractive for various
quantum applications, including quantum sensing, quan-
tum communication, and potentially quantum computa-
tion. The electronic structure of the ground and the op-
tically accessible excited states (GS and ES, respectively)
of these centers is typically composed of a few electrons
with a well-defined total spin S > 1/2. Celebrated exam-
ples include the nitrogen-vacancy antisite in diamond and
the silicon divacancy in silicon carbide (SiC), both with
S = 1, as well as the negatively charged silicon vacancy
(VSi) in SiC with S = 3/2 [1–4]. A prominent property
of these centers is the ability to initialize spin states by
excitation with unpolarized light [5–7]. Microscopically,
the optically induced spin initialization is caused by spin-
dependent nonradiative relaxation from the ES to the GS
via metastable states (MSs), and its orientation is settled
by the defect symmetry axis.

Importantly, the optical excitation does not generate
the conventional dipole spin polarization, but rather the
quadrupole spin polarization, i.e. the alignment of the
defect spin along the symmetry axis [8]. Obviously, if
the external magnetic field is also applied along the sym-
metry axis, as in most optically detected magnetic reso-
nance (ODMR) experiments on the VSi center [9–12], the
sign of the quadrupole spin polarization does not change.
However, the application of a transverse magnetic field
induces the reorientation of the spin quadrupole, which
occurs at different field strengths for the GS and ES. Re-
cent experiments using transverse magnetic fields [13–15]
suggest that this reorientation, combined with the dy-
namical coupling of the GS and ES spin via the optical
excitation, can result in an unusual behavior of the mea-
sured ODMR spectra, like the observation of negative

spin resonances in the ES [14, 15]. In this contribution,
we experimentally observe and theoretically explain the
dynamical reorientation of the quadrupole spin polariza-
tion at weak transverse magnetic fields, which manifests
itself as an inversion of the ODMR contrast in the ES.
These results could contribute to a better understanding
of the different behaviors observed for the ES spin reso-
nances [16, 17]. Furthermore, we detect a non-zero dipole
spin polarization, which is forbidden under linearly polar-
ized excitation and is orders of magnitude stronger than
the thermally induced polarization due to the Zeeman
splitting.

To demonstrate these effects, we investigate the spin
dynamics of the VSi defect in 4H-SiC with cubic lo-
cal crystallographic environment (also known as the V2
center) [18]. The GS of the V2 center has been pro-
posed as quantum magnetometer [19] with significantly
improved performance by optimizing the material prop-
erties [20, 21], and used in different modalities, including
vector magnetometry [22, 23], microwave-free magnetom-
etry [16] and fiber-integrated magnetometry [24]. In con-
trast to the GS, the ES of the V2 center has received
much less attention, although its huge thermal shift [25]
makes it ideal for quantum thermometry [17, 19], and the
ES is much more sensitive to strain than the GS [14, 26].
Furthermore, the joint spin dynamics of the GS and ES
under simultaneous excitation by optical and microwave
fields is crucial for the realization of spin-photon inter-
faces [27, 28].

Figure 1 summarizes the effect of applying an external
magnetic field B0 = (Bx, 0, 0) perpendicular to the c-
axis of the 4H-SiC (ẑ is chosen parallel to the c-axis). In
the absence of Bx, the ODMR spectrum (see Supplemen-
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FIG. 1. (a) ODMR spectra as a function of the MW fre-
quency in the absence (black squares) and under a magnetic
field, Bx, transverse to the c-axis of the 4H-SiC (red circles).
The solid curves are the ODMR spectra obtained from the
theoretical model. The data are vertically shifted for clarity.
(b) Husimi maps of the GS and ES spin distributions (green
and magenta spheres, respectively), for Bx = 0 mT, 7 mT
and 15 mT, generated by optical excitation and spin-selective
relaxation via the metastable states with efficiencies ηg and
ηe. The vertical dashed lines indicate the ẑ direction, and the
horizontal arrows denote the direction and strength of Bx.

tal Material (SM) for a description of the experimental
setup [29]) consists of two positive resonances centered
at 70 MHz and 440 MHz, see black squares in Fig. 1(a).
These resonances correspond to the spin transitions be-
tween the | ± 1/2⟩z and | ± 3/2⟩z spin doublets in the
GS and ES [16]. As soon as Bx is applied (red circles
in Fig. 1(a)), the ES resonance changes sign, and the
GS resonance splits into a doublet with an additional,
negative resonance between the two positive peaks, see

regions marked with magenta dashed and green dotted
circles, respectively.
The differences in the two ODMR spectra of Fig. 1

are a consequence of the reorientation of the GS and ES
spin multipoles under the transverse magnetic field. This
is illustrated in Fig. 1(b), which shows the distributions
of spin quasiprobabilities on the surface of a sphere fol-
lowing the Husimi representation [30] (see SM for the
calculation of the Husimi spin distributions [29]). The
north and south poles correspond to the | + 3/2⟩z and
| − 3/2⟩z states, respectively, and the equator represents
the | ± 1/2⟩z states. In the absence of Bx, the optical
excitation and the spin-selective relaxation via the MSs
lead to a steady-state spin distribution with the |±1/2⟩z
spin doublets preferentially populated for both GS and
ES, see the spheres in the first column of Fig. 1(b). This
distribution corresponds to a zero dipole spin polariza-
tion (the Husimi representation is symmetric with re-
spect to all three xy, yz and xz planes), but to a non-zero
quadrupole spin polarization (different spin densities at
the poles and the equator).

For Bx = 7 mT, the reorientation of the spin toward
x̂ generates an asymmetric spin distribution with respect
to the yz plane for both GS and ES, see the spheres in the
second column of Fig. 1(b), and thus a non-zero dipole
spin polarization along x̂. More importantly, while the
maximum of the GS spin distribution remains on the
equator of the Husimi sphere, the maximum quasiproba-
bilities in the ES spin are shifted toward the poles, thus
indicating a quadrupole spin polarization of opposite sign
to that at Bx = 0. At larger magnetic fields, the reori-
entation of the ES spin is almost fulfilled, and its Husimi
distribution is again similar to that of the GS spin, see
the spheres in the third column of Fig. 1(b).

The ODMR signal for the full range of applied mag-
netic field strengths and microwave (MW) excitation fre-
quencies is shown in the two-dimensional plot of Fig. 2(a).
As already seen in Fig. 1(a), the ODMR spectrum for
Bx = 0 consists of positive resonances (red color) for
both the GS and ES spin transitions. The application of
Bx splits these resonances into new ones, several of them
with negative values of the ODMR signal (blue color).
Note that, due to the large power of the applied MW,
the ODMR measurements of Figs. 2(a) and 1(a) are also
sensitive to non-linear effects taking place at half the fre-
quency of the GS resonances.

The superimposed green dashed and magenta dotted
curves display the magnetic field dependencies of the GS
and ES spin resonances, respectively, estimated from the
spin Hamiltonian

H(g,e) = g(g,e)µBSxBx + hD(g,e)

(
S2
z − 5

4

)
. (1)

Here, g(g,e) ≈ 2 is the g-factor, µB the Bohr mag-
neton, h the Planck constant, and D(g) = 35 MHz,
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FIG. 2. (a) Experimental measurement of the relative change
in PL intensity as a function of MW frequency and magnetic
field, Bx. (b) Change in PL intensity predicted by the the-
oretical model. The green dotted and magenta dashed lines
in both panels denote the magnetic field dependencies of the
relevant GS and ES spin transitions estimated using Eq. (1).

D(e) = 220 MHz are the room temperature zero-field
splitting constants stemming from the crystal field for the
GS and ES, respectively. The green and magenta curves
in Fig. 3 show the energy dependence of the spin eigen-
states for the GS (lower panel) and ES (upper panel), re-
spectively, according to Eq. (1). In the absence of Bx, the
four spin eigenstates are split into two Kramers doublets
|±1/2⟩z and |±3/2⟩z in both GS and ES. The application
of Bx turns the spin quantization axis towards x̂. The
substantial change in the spin structure occurs when the
Zeeman term overcomes the zero-field term in Eq. (1).
This happens at Bx > hD(g)/(gµB) = 1.25 mT for the
GS, and at a much larger Bx > hD(e)/(gµB) = 7.86 mT
for the ES. However, for the sake of simplicity, we will
use the projection along x̂ at Bx → ∞ to label both GS

and ES spin states under Bx ̸= 0.

Taking into account the calculated GS spin eigenstates
in Fig. 3, and the fact that their spin quantization axis
is practically x̂ at Bx > 1.25 mT, the only allowed spin
resonances above this magnetic field value are those ful-
filling ∆Sx = ±1, similar to the case when B0 is applied
along ẑ [31]. Therefore, the positive doublet observed in
Fig. 2(a) corresponds to the | + 3/2⟩x → | + 1/2⟩x and
| − 3/2⟩x → | − 1/2⟩x spin transitions, see the red ver-
tical arrows in the lower panel of Fig. 3. However, an
additional, negative resonance now appears at the cen-
ter of the doublet, which corresponds to the |+ 1/2⟩x →
| − 1/2⟩x spin transition (blue arrow in the lower panel
of Fig. 3). The presence of this new resonance in the
ODMR spectrum of Fig. 2(a) indicates a population dif-
ference between the | + 1/2⟩x and | − 1/2⟩x spin states,
and thus an optically generated dipole spin polarization.

Regarding the ES spin resonance, it changes sign at
Bx ≈ 1 mT, see transition from red to blue in Fig. 2(a),
and then splits into two branches. According to the spin
Hamiltonian of Eq. (1), these resonances correspond to
the |+ 3/2⟩x → |− 3/2⟩x and |+ 1/2⟩x → |− 1/2⟩x spin
transitions, see blue vertical arrows in the upper panel of
Fig. 3. The |+ 3/2⟩x → | − 3/2⟩x spin resonance is only
allowed at low Bx, where the mixing of the spin states
leads to a nonzero matrix element for this transition (such
resonance is also observed in the GS at Bx < 2 mT).
Above Bx ≈ 8 mT, this resonance is almost suppressed
and only the |+1/2⟩x → |−1/2⟩x spin transition fulfilling
the condition ∆Sx = ±1 is still observed.

To better understand the new features observed in
Fig. 2(a), we have modeled the spin dynamics of the VSi

center using the spin-density matrix approach. In the
model, both GS and ES are described by the 4× 4 spin-
density matrices ρg and ρe, corresponding to the total
electron spin 3/2. The model also includes the dark in-
termediate MS with spin S = 1/2, described by a single
occupation number Nm [32]. In the absence of Bx, the
optical transitions between GS and ES are spin conserv-
ing, while the nonradiative relaxation via the MS is spin
dependent. We therefore assume larger relaxation rates
via the MS for the | ± 1/2⟩z states than for the | ± 3/2⟩z
ones. Under these conditions, the spin dynamics is gov-
erned by the set of kinetic equations described in the
SM [29].

The ODMR spectra are calculated by including in the
model a magnetic field in the form B = B0 +B1e

−iωt +
B∗

1e
iωt, where B0 ∥ x̂ is the static field and B1 ∥ ŷ

is the MW field that is assumed to be small. We solve
the kinetic equations up to terms ∼ B1B

∗
1 and find the

corresponding correction to the photoluminescence (PL)
intensity IPL = ΓTr ρe, with Γ being the optical recombi-
nation rate. Figure 2(b) shows the results of our calcula-
tion. It reproduces all the features of Fig. 2(a), including
the change of sign at Bx ≈ 1 mT for the ES resonances
and the appearance of the negative resonance in the GS.
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FIG. 3. Fine energy structure of the GS and ES spin eigen-
states (lower and upper panels, respectively) under a trans-
verse magnetic field, Bx. The line thicknesses are proportional
to the population densities of the corresponding spin states
according to our theoretical model. The color brightnesses
are proportional to the PL intensities for optical transitions
between ES and GS with the same spin projection.

In addition to the energy of the spin eigenstates, we
also show in Fig. 3 the calculated steady-state popula-
tion densities of the spin sublevels (proportional to the
thickness of the curves), and the intensity of the opti-
cal transitions between ES and GS (proportional to the
color brightness). The MW magnetic field brings the VSi

center from the more populated spin state towards the
less populated one, see the directions of the red and blue
vertical arrows in Fig. 3. The sign of the ODMR sig-
nal is positive if the final spin state is brighter than the
initial state (red arrows), and negative in the opposite
case (blue arrows). Our spin model leads to a steady-
state spin distribution at Bx = 0 with the | ± 1/2⟩z
states preferentially populated in both the GS and ES,
cf. the thicker curves for the | ± 1/2⟩z eigenstates in
Fig. 3 and the spin distributions around the equator of
the spheres in Fig. 1(b). This spin configuration corre-
sponds to a negative quadrupole spin polarization, de-
fined as ⟨δS2

z ⟩ ≡ 1
3 ⟨2S2

z − S2
x − S2

y⟩ = ⟨S2
z − 5/4⟩, and

calculated according to the formula:

⟨δS2
z ⟩ =

n|±3/2⟩z − n|±1/2⟩z
n|±3/2⟩z + n|±1/2⟩z

. (2)

Here, n|±3/2⟩z and n|±1/2⟩z are the corresponding spin
population densities. Since the | ± 3/2⟩z states are
brighter than the |±1/2⟩z ones, the model predicts a pos-
itive ODMR signal in both GS and ES, see red vertical

arrows at Bx = 0 in Fig. 3. Moreover, n|+3/2⟩z = n|−3/2⟩z
and n|+1/2⟩z = n|−1/2⟩z , which means that the optical ex-
citation does not create any dipole spin polarization.
The spin distributions in the absence of Bx change sig-

nificantly as soon as the transverse magnetic field is ap-
plied. The reorientation of the spin towards x̂ causes
a reorganization of the population densities, with the
| ± 3/2⟩x states being now more populated than the
| ± 1/2⟩x states, see the thicker curves for the | ± 3/2⟩x
eigenstates at large magnetic fields in Fig. 3. In addition,
n|+3/2⟩x ̸= n|−3/2⟩x and n|+1/2⟩x ̸= n|−1/2⟩x . There-
fore, the application of Bx generates a dipole spin po-
larization along x̂, which causes the appearance of the
| + 3/2⟩x → | − 3/2⟩x and | + 1/2⟩x → | − 1/2⟩x spin
resonances in the ODMR spectra of Fig. 2(a), as long as
their transition matrix elements are nonzero.
We focus now on the sign change in the ES spin reso-

nance. According to our model, it happens at the mag-
netic field where the population densities of all four ES
spin eigenstates are similar (same curve thickness in the
upper panel of Fig. 3). The value of this magnetic field
is determined by the relative efficiencies of the two mech-
anisms involved in the formation of quadrupole spin po-
larization shown in Fig. 1(b): (i) depletion of the ES
| ± 1/2⟩z population with efficiency ηe due to the spin-
dependent transitions from the ES to the MS, and (ii) in-
crement of the GS |±1/2⟩z population with efficiency ηg
caused by the spin-dependent transitions from the MS to
the GS. Moreover, at Bx = 0, the spin-preserving optical
transitions lead to an efficient transfer of the spin popu-
lations between GS and ES. By assuming that ηg > ηe,
our model results in steady-state spin populations with
n|±1/2⟩z > n|±3/2⟩z for both the GS and ES at Bx = 0.
However, the fast reorientation of the spin quantization
axis in the GS at low transverse magnetic fields sup-
presses the spin transfer from the GS to the ES. Under
these conditions, we get n|±3/2⟩z > n|±1/2⟩z in the ES,
and thus a reversal of the quadrupole spin polarization
defined in Eq. (2). The transition between both regimes
happens at a magnetic field determined by the ratio ηe/ηg
according to the formula [29]:

ηe
ηg

=
1

4

(
1 +

3

1 + b2g + b4g

)
, (3)

with bg = gµBBx/hD
(g). Introducing the experimentally

obtained values of Bx ≈ 1 mT and D(g) ≈ 35 MHz in
Eq. (3), we obtain ηe/ηg ≈ 0.7.
Finally, Figs. 4(a) and 4(b) show the magnetic field

dependencies of the out-of-plane quadrupole spin polar-
ization (solid curves) and the in-plane dipole spin po-
larization (dashed curves) for the ES and GS, respec-
tively, predicted by our spin density matrix model. The
solid and open symbols show the experimental values es-
timated from the peak areas of the ODMR spectra (see
SM for the details of the theoretical calculation and the
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FIG. 4. (a) Calculated magnetic field dependencies of the
steady state quadrupole spin polarization, ⟨δS2

z ⟩e (solid ma-
genta curve), and dipole spin polarization along x, ⟨Sx⟩e
(dashed magenta curve), in the ES. The solid and open sym-
bols are the experimental values extracted from the measured
ODMR spectra in Fig. 2(a). (b) Same as (a), but for the
GS spin multipoles (solid green curves and solid symbols for
⟨δS2

z ⟩g, dashed green curve and open symbols for ⟨Sx⟩g).

procedure to extract the experimental values [29]). While
the GS quadrupole spin polarization is always negative
for the whole range of magnetic fields studied (green solid
curve), the ES quadrupole spin polarization becomes pos-
itive at magnetic fields larger than 1 mT (magenta solid
curve). This result confirms that the reorientation of the
spin quadrupole polarization under the transverse mag-
netic field is responsible for the sign change of the ES
resonances in the ODMR spectrum.

As for the dipole spin polarization, its appearance is
responsible for the observation of the |+1/2⟩x → |−1/2⟩x
and |+3/2⟩x → |−3/2⟩x resonances in the ODMR spectra
of Fig. 2(a). Moreover, our model predicts an inversion
of the dipole spin polarization for both GS and ES at
Bx ≈ 4 mT, which is responsible for the sign change of
the GS | + 1/2⟩x → | − 1/2⟩x spin resonance predicted
in Fig. 2(b). Such an inversion is not clearly seen in the
experimental data of Fig. 2(a) due to the overlap of the
spin resonances at weak magnetic fields. However, the
dipole spin polarization is nonzero only over a limited
magnetic field range and this resonance should vanish
when gµBBx is much larger than both hD(g) and hD(e).

In conclusion, we show that the dynamical reorienta-
tion of the spin multipoles by a magnetic field transverse
to the symmetry axis of the VSi center leads to the ap-
pearance of new, sharp features in the ODMR spectra.
The experimental results are well reproduced by our the-

oretical model, which explains the nontrivial transforma-
tion of the ODMR by the inversion of the quadrupole
spin polarization and the appearance of a dipole spin
polarization within certain magnetic field ranges. The
understanding of the multipole spin dynamics in the GS
and ES under optical excitation is important for the re-
alization of simultaneous magnetic field and temperature
sensing using the same spin center as well as for the im-
plementation of spin-photon interfaces. Our theoretical
model is not limited to the 3/2-spin of the VSi, and we
expect similar effects to happen for any color center with
S > 1/2 and a well defined symmetry axis.
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This Supplemental Material contains information about:

• Experimental details of the ODMR measurements

• Husimi spin distributions

• Kinetic equations for the spin density matrices

• Rate equations for the spin-level populations

• Extracting dipole and quadrupole spin polarization from the ODMR signal

EXPERIMENTAL DETAILS OF THE ODMR MEASUREMENTS

The sample consists of a 10× 10 mm2 semi-insulating 4H-SiC substrate containing an ensemble of VSi centers at a
depth of 2.5 µm below the surface. The VSi centers were created by proton irradiation with an energy of 375 keV and
a fluence of 1015 cm−2. The sample was placed on a coplanar wave guide for microwave (MW) field excitation with a
nominal power of 30 dBm using a MW signal generator connected to a high-power amplifier. The ODMR experiments
were performed at room temperature in a confocal µ-PL setup. The VSi centers were optically excited by a 780 nm
laser beam focused to a spot size of 10 µm by a 20× objective with numerical aperture NA=0.4. The VSi PL band
centered around 917 nm was collected by the same objective, spectrally separated from the reflected laser beam using
an 805 nm dichroic mirror and an 850 nm long-pass filter, and detected by a silicon photodiode. The output signal of
the photodiode was locked to the amplitude modulation frequency of the MW signal. The sample and the coplanar
waveguide were placed between the poles of an electromagnet applying an external magnetic field B0 = (Bx, 0, 0)
perpendicular to the c-axis of the 4H-SiC substrate. The magnetic field of the MW excitation is perpendicular to
both the c-axis and B0.

HUSIMI SPIN DISTRIBUTIONS

To illustrate the quadrupole spin polarization and its transformation under a transverse magnetic field, we show in
Fig. 1(b) of the manuscript the distributions of the Husimi quasiprobability densities, P (θ, φ)g,e, on the surface of a
sphere, for two magnetic field strengths. These distributions are obtained from the 4×4 spin-density matrices ρg,e of
the model described below by calculating the average

P (θ, φ)g,e = ⟨3/2|θ,φ ρg,e |3/2⟩θ,φ. (S1)

Here, |3/2⟩θ,φ is the coherent spin state with the spin projection +3/2 on the direction determined by the polar and
azimuthal angles θ and φ, that is

|3/2⟩θ,φ = e−iφSze−iθSy |+ 3/2⟩z. (S2)

Note that, although P (θ, φ) is always positive, it is not the conventional probability distribution, since the states
|3/2⟩θ,φ with different θ and φ are not orthogonal and, therefore, not mutually exclusive.
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FIG. S1. Scheme of the electronic levels of the spin center. It includes all transition rates appearing in the kinetic equations (S3)
.

KINETIC EQUATIONS FOR THE SPIN DENSITY MATRICES

The state of the 3/2-spin vacancy is described by the 4×4 density matrices ρg and ρe, corresponding to the GS and
ES, respectively, and the population of the MSs, Nm. The spin dynamics is governed by the following set of kinetic
equations

dρg
dt

=
i

ℏ
[ρg, Hg] + Γρe − Pρg − γg(ρg − Tr ρg/4)

+
Nm

2
(Γ(1/2)

g P1/2 + Γ(3/2)
g P3/2),

dρe
dt

=
i

ℏ
[ρe, He]− Γρe − γe(ρe − Tr ρe/4)

+ Pρg − Γ(1/2)
e {P1/2, ρe} − Γ(1/2)

e {P3/2, ρe},
dNm

dt
= Γ(1/2)

e Tr (P1/2ρe) + Γ(3/2)
e Tr (P3/2ρe)

− (Γ(1/2)
g + Γ(3/2)

g )Nm, (S3)

together with the normalization condition Tr ρg + Tr ρe +Nm = 1. Here, Hg(e) are the Hamiltonians of the GS and
ES given by Eq. (1) in the manuscript, P and Γ the optical pump and recombination rates,

Γ1/2(3/2)
g = Γe(1± ηg), (S4)

Γ1/2(3/2)
e = Γe(1± ηe) (S5)

the spin-dependent relaxation rates between the MSs and the ±1/2 (±3/2) states in ES and GS, and γg,e the spin
relaxation rates within GS and ES, which are assumed isotropic. We also used the notation {A,B} = (AB +BA)/2,
[A,B] = AB −BA, P1/2 = |+ 1/2⟩z⟨+1/2|z + | − 1/2⟩z⟨−1/2|z and P3/2 = |+ 3/2⟩z⟨+3/2|z + | − 3/2⟩z⟨−3/2|z.

RATE EQUATIONS FOR THE SPIN-LEVEL POPULATIONS

When the fine structure splittings of the spin centers are much larger than the relaxation or pump rates, we can
neglect the off-diagonal components of the density matrices ρg,e. Then, the spin state is described by the population of
the four eigestates in the GS and ES, fg = (fg1, fg2, fg3, fg4) and fe = (fe1, fe2, fe3, fe4), which are ordered according

to their energies in descending order. We introduce the population variations δf
(i)
g(e) = f

(i)
g(e)−

∑
i f

(i)
g(e)/4, which satisfy

the following set of equations in the steady state

ηgΓeNeT̂g0d0 − (P + γg)δfg + ΓT̂geδfe = 0 , (S6)

−ηeΓeNeT̂e0d0 + P T̂egδfg − (Γ + Γe + γe)δfe = 0 ,



3

where Ne = Tr ρe is the population of the excited state, d0 = (−1,−1, 1, 1)/2 the population variation corresponding
to the spin quadrupole in zero magnetic field, and T̂ ij

g0 = |U ij
g0|2, T̂ ij

e0 = |U ij
e0|2, T̂ ij

eg = T̂ ji
ge = |U ij

eg|2. Here, U ij
g0 (U ij

e0)
is the unitary matrix relating the eigenstates in GS(ES) under Bx ̸= 0 to the corresponding eigenstates in Bx = 0,
while U ij

eg relates the eigenstates in the ES to those in the GS under Bx ̸= 0.

The solution of Eq. (S6) reads

fe =
ΓeNe

Γ + Γe + γe

(
1− PΓ

(P + γg)(Γ + Γe + γe)
T̂egT̂ge

)−1 (
ηg

P

P + γg
T̂egT̂g0 − ηeT̂e0

)
d0 , (S7)

and the PL intensity variation is given by

∆PL = −ηed0 · T̂0eδfe . (S8)

Application of a MW field with frequency matching the energy difference between a pair of spin sublevels i and j
inside GS or ES leads to a change in the population of the spin eigenstates

(ḟg,e)k ∝ |Mij |2[(δfg,e)j − (δfg,e)i](δi,k − δj,k) , (S9)

where Mij is the matrix element of the spin transition. Such variation of population leads to a corresponding change
of the ES quadrupole, which determines the intensity of the corresponding ODMR lines for ES and GS:

∆PLe = −ηed0 · T̂0e

[
1− PΓ

(P + γg)(Γ + Γe + γe)
T̂egT̂ge

]−1

ḟe , (S10)

∆PLg = −ηed0 · T̂0eT̂eg

[
1− PΓ

(P + γg)(Γ + Γe + γe)
T̂egT̂ge

]−1

ḟg (S11)

Small magnetic fields

The application of a small magnetic field gµBBx ≪ D(e) affects the GS eigenstates, while the ES eigenstates remain
almost unperturbed. In this situation, the quadrupole momentum of the ES reads

d0 · δfe =
ηg

Γ + Γe + γe

(
1− xPΓ

(P + γg)(Γ + Γe + γe)

)−1 (
xP

P + γg
− ηe

ηg

)
, (S12)

with

x =
1

4

(
1 +

3

1 + b2g + b4g

)
(S13)

being the eigenvalue of the matrix T̂0gT̂g0, that satisfies the equation T̂0gT̂g0d0 = xd0 and describes the loss of the
spin quadrupole upon its transition from ES to GS and back. We also introduced bg = gµBBx/D

(g).

In the particular case of γe, γg,Γe ≪ P,Γ, the ODMR signal for ES assumes the simple form

∆PLe ∼
ΓeNe

(1− x)Γ
ηeηg

(
x− ηe

ηg

)
. (S14)

Note that, if 1/4 < ηe/ηg < 1, the ODMR signal for ES changes sign when x = ηe/ηg.

The sign of the ODMR signal for all spin transitions within the GS is determined by

∆PLg ∼ ηeηg

(
1− ηe

ηg

)
. (S15)
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Large magnetic fields

At large magnetic fields, gµBBx ≫ D(g), the GS zero-field splitting can be neglected, and the spin in the GS is
quantized along the x axis. In this case, the ODMR signal intensities for the three observed GS spin transitions are
given by

∆PL±1/2↔±3/2
g ∼ ηeηg

4
(1 + b2e)

(
1− 2− b2e + 2b4e

2(1 + b2e + b4e)

ηe
ηg

)
,

∆PL−1/2↔+1/2
g ∼ −5η2e

4

b2e(1 + b2e)

1 + b2e + b4e
, (S16)

with be = gµBBx/D
(e). While the ODMR signal for the −1/2 ↔ +1/2 transition is always negative at large magnetic

fields, the ODMR signal of the ±1/2 ↔ ±3/2 transitions is positive if ηe/ηg < 1, as observed in our experiment where
ηe/ηg ≈ 0.7, negative if ηe/ηg > 2, and would change sign twice at certain magnetic fields b∗ and 1/b∗ if 1 < ηe/ηg < 2.

EXTRACTING DIPOLE AND QUADRUPOLE SPIN POLARIZATION FROM THE ODMR SIGNAL

From the experimentally measured intensities of the ODMR signal (peak areas), we can extract the population
difference between the various pairs of spin sublevels. In the experimental spectra, three GS spin transitions between
the 1 ↔ 2, 2 ↔ 3, and 3 ↔ 4 eigenstates are observed (as in the previous section, the spin eigenstates are numbered
according to their energy in decreasing order). With the matrix elements and the brightness of all the levels, we

extract the population variation for all four GS spin sublevels, δf
(i)
g , from the intensities (resonance peak areas) of

three GS transitions and taking into account the constraint
∑

i δf
(i)
g = 0. A similar approach is used to get the ES

population variations, δf
(i)
e . Since in this case only the ES spin transitions between the 1 ↔ 4 and 2 ↔ 3 eigenstates

are observed, the remaining transitions are prescribed with zero intensity.

Once δf
(i)
g and δf

(i)
e are obtained, the quadrupole and dipole spin polarizations are given by

⟨δS2
z ⟩ =

(2 + b)(δf2 − δf4)

4
√
1 + b+ b2

+
(2− b)(δf1 − δf3)

4
√
1− b+ b2

,

⟨Sx⟩ =
(1 + 2b)(δf2 − δf4)

4
√
1 + b+ b2

+
(1− 2b)(δf3 − δf1)

4
√
1− b+ b2

+
1

2
(δf1 + δf3 − δf2 − δf4), (S17)

where b = gµBBx/D
(g,e) for GS and ES, respectively.


