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Abstract

Under certain natural sufficient conditions on the sequence of uni-
formly bounded closed sets Ek ⊂ R of admissible coefficients, we con-
struct a polynomial Pn(x) = 1+

∑n
k=1 εkx

k, εk ∈ Ek, with at least c
√
n

distinct roots in [0, 1], which matches the classical upper bound up to
the value of the constant c > 0. Our sufficient conditions cover the
Littlewood (Ek = {−1, 1}) and Newman (Ek = {0, (−1)k}) polynomi-
als and are also necessary for the existence of such polynomials with
arbitrarily many roots in the case when the sequence Ek is periodic.
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2 Introduction

Consider a sequence E of uniformly bounded closed sets E1, E2, . . . , Ek, . . . ⊂
R. The uniform boundedness condition means that there exists A ∈ (0,+∞)
such that Ek ⊂ [−A,A] for all k ∈ N. Let P = P(E) be the set of all
polynomials of the form

Pn(x) = 1 +

n∑

k=1

εkx
k, εk ∈ Ek .

What is the maximal number r of distinct roots a polynomial Pn ∈ P of a
given degree n can have in [0, 1] or, equivalently, for a given r ∈ N, what is
the lowest possible degree n of a polynomial Pn ∈ P with at least r distinct
roots in [0, 1]?

The now classical result is that the inequality

r ≤ C(A)
√
n (1)

always holds with some C(A) ∈ (0,+∞) depending on A only. One can find
this estimate, for instance, in [BEK], which goes back to 1999. For reader’s
convenience, we also present a proof in the appendix.

The question then becomes if (or when) this bound is asymptotically
sharp for large n up to the value of the numerical constant C(A). As far
as we know, in this form it has not been previously answered even for such
natural and well-known families as Littlewood polynomials (Ek = {−1, 1})
and Newman polynomials1 (Ek = {0, (−1)k}). In both cases the best pub-
lished lower bounds for r seem to be polylogarithmic in terms of n. Some
more substantial progress has been made for the polynomials with integer
coefficients of height 1 (Ek = {−1, 0, 1}). In this case it was shown in [E]
that r ≥ cn1/4. The interested reader can find more related results and the
general overview of the history of the question in [BEK].

To motivate our next definition, let us consider one simple obstacle that
prevents polynomials in P(E) from having many roots in [0, 1] regardless
of their degree. Suppose that the sequence Ek is M-periodic (Ek+M = Ek

for all k ∈ N) and
∑M

k=1maxEk ≤ 0. Then we can choose real numbers

1The standard definition of the Newman polynomials restricts the coefficients to the
set {0, 1} but then the question about roots should be asked on [−1, 0), so we took the
liberty to change the variable to −x to place this family into our general framework.
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ck ≥ maxEk (k = 1, . . . ,M) with
∑M

k=1 ck = 0 and, for n = ℓM + m,
0 ≤ m < M , represent any polynomial Pn ∈ P as

Pn(x) = 1 +
P (x)(1− xℓM )

1− xM
+Q(x) +R(x) ,

where P (x) =
∑M

k=1 ckx
k, Q(x) =

∑n
k=ℓM+1 εkx

k and R(x) has non-positive

coefficients. Note now that P (1) = 0, so there is a polynomial P̃ of degree

at most M − 1 such that P (x) = (1 − x)P̃ (x). Denoting S(x) =
∑M−1

k=0 xk,
we obtain

S(x)Pn(x) = S(x) + P̃ (x)− xℓM P̃ (x) + S(x)Q(x) + S(x)R(x) .

Hence, a coefficient in the expansion of S(x)Pn(x) can be positive only if

the corresponding coefficient in the expansion of S(x) + P̃ (x) − xℓM P̃ (x) +
S(x)Q(x) is positive as well. However, the latter polynomial can have non-
zero coefficients only at the powers k ∈ [0,M−1]∪[ℓM+1, (ℓ+2)M−2]. Thus,
the coefficient sequence of S(x)Pn(x) can have at most 3M sign changes,
and, therefore, by the Descartes rule of signs, we have r ≤ 3M as well.
Essentially the same argument with the same conclusion applies to the case∑M

k=1minEk ≥ 0.
Thus, for M-periodic sequences E , the necessary condition for the possi-

bility to have arbitrarily many roots in [0, 1] for some polynomial Pn ∈ P(E)
is

M∑

k=1

minEk < 0 and
M∑

k=1

maxEk > 0 . (2)

Since we want to deal with not necessarily periodic sequences E , we generalize
(2) as follows.

Definition. We call a sequence E of uniformly bounded closed sets Ek ⊂ R

balanced if there exist M ∈ N, a > 0 such that for every n ≥ 0, one has

M∑

k=1

minEn+k ≤ −a and

M∑

k=1

maxEn+k ≥ a .

Note that for periodic sequences the condition of being balanced is equiv-
alent to (2) and that the sequences E corresponding to the Littlewood and
Newman polynomial families are balanced with parametersM = 2 and a = 1,
say.

Our main result is the following
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Theorem. If a sequence E of uniformly bounded closed sets Ek ⊂ [−A,A] is
balanced with parametersM, a, then for every r ∈ N, there exists a polynomial

Pn ∈ P(E) of degree n ≤ C(A, a,M)r2 that has at least r distinct roots in

[0, 1]. Moreover, this polynomial can be obtained by an explicit algorithm with

running time polynomial 2 in r.

The rest of the paper is organized as follows. In Section 3, we present the
classical Jensen bound on the possible smallness of polynomials from P on
the interval I(α) = [1−2α, 1−α] with α ∈ (0, 1

3
). In Section 4, we show how

it can be used to force many roots on that interval and reduce the problem to
building a power series with restricted coefficients converging to 0 at finitely
many given points. In Section 5, we present the Newman Decomposition
Lemma (compare with the argument in [BE], part 3, pages 103-105), which
serves as the main tool for all subsequent constructions. Section 6 reduces
the construction of the power series from Section 4 to the investigation of a
certain one-dimensional controlled dynamical system. Section 7 is devoted to
the analysis of this system and the appropriate control choice. It completes
the formal existence proof. Section 8 discusses the corresponding algorithm,
its running time, and some details of its implementation. The Appendix
contains the proof of the upper bound (1).

3 The Jensen estimate

Lemma 1. Let α ∈ (0, 1
3
) and let E be a uniformly bounded sequence of closed

sets Ek ⊂ [−A,A]. Then for every Pn ∈ P(E), we have

∫

I(α)

log− |Pn(x)| dx ≤ C(A) ,

where I(α) = [1− 2α, 1− α] and log− z = max(0,− log z).

Proof. Consider the polynomal Pn(z) in the domain Ω = (1
3
+ 2

3
D)\ [1−2α, 1]

where D = {z : |z| < 1} is the unit disk. Denote by ω the harmonic measure
on ∂Ω associated with 0. We obtain

0 = log |Pn(0)| ≤
∫

∂Ω

log |Pn| dω =

∫

∂Ω

log+ |Pn| dω −
∫

∂Ω

log− |Pn| dω . (3)

2The running time bound proved in this paper is Õ(r5), where the tilde over O() means
that we ignore factors logarithmic in r.
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Everywhere in the unit disk, we have the estimate

|Pn(z)| ≤ 1 + A

∞∑

k=1

|z|k ≤ max(1, A)
1

1− |z| .

Also, on the boundary ∂Ω, we have 1
1−|z| ≤ 4

|1−z|2 . Indeed, on [1 − 2α, 1], we
can write

1

1− |z| =
1

|1− z| ≤
1

|1− z|2 ,

while on the circle 1
3
+ 2

3
T, we have |z − 1

3
|2 = 4

9
, i.e., 3|z|2 − 2ℜz − 1 = 0, or

|1− z|2 = 2(1− |z|2) = 2(1− |z|)(1 + |z|) ≤ 4(1− |z|) , (4)

which is equivalent to the claimed inequality.
Thus

∫

∂Ω

log+ |Pn| dω ≤
∫

∂Ω

log+
4max(1, A)

|1− z|2 dω(z)

=

∫

∂Ω

log
4max(1, A)

|1− z|2 dω(z) ≤ log[4max(1, A)]

because z 7→ log 4max(1,A)
|1−z|2 is a non-negative harmonic function in Ω, so the

integral of its boundary values with respect to ω does not exceed its value at
0. Hence, by (3),

∫

∂Ω

log− |Pn| dω ≤ log[4max(1, A)]

as well.
It remains to show that dω(z) ≥ c|dz| on I(α) with some absolute c > 0.

To this end, we first apply the conformal mapping ζ = ζ(z) = −i z−1
z+ 1

3

, which

maps Ω to the upper half-plane with a vertical slit from 0 to ih with h = 2α
4

3
−2α

.

Note that

ζ(0) = 3i, ζ(1− 2α) = ih, ζ(1− α) = ih′ = i
α

4
3
− α

, ζ(1) = 0 .

Also,

|dζ | = 4

3|z + 1
3
|2 |dz| ≥

3

4
|dz|
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on I(α). Now apply the second conformal mapping ξ = ξ(ζ) =
√
ζ2 + h2,

which (with an appropriate choice of the branch of the square root) maps
the upper half-plane with the slit [0, ih] to the upper half-plane. Then

ξ(3i) = i
√
9− h2, ξ([0, ih]) = [−h, h] ,

and

|dξ| = |ζ |√
|ζ2 + h2|

|dζ | ≥ h′

h
|dζ |

on [ih′, ih]. Finally, the harmonic measure on the line R with respect to the
point i

√
9− h2 is just

1

π

√
9− h2

ξ2 + (9− h2)
|dξ| ≥ 1

π

√
9− h2

9
|dξ|

on [−h, h].
Bringing all these estimates together and observing that each point ζ on

the slit splits into two points ξ on R, we obtain

dω(z) ≥ 1

π

√
9− h2

9

2h′

h

3

4
|dz|

for z ∈ I(α). It remains to note that h = 2α
4

3
−2α

≤ 1 and 2h′

h
=

4

3
−2α
4

3
−α

≥ 2
3
for

α ∈ (0, 1
3
), so we can take c = 1

π

√
8
9

2
3
3
4
=

√
2

9π
, say, and finally get

∫

I(α)

log− |Pn(x)| dx ≤ 9π√
2
log[4max(1, A)] .

Of course, we by no means pretend that this bound is sharp.

4 Forcing roots

To ensure that Pn has many roots in [0, 1], we will use the following elemen-
tary

Lemma 2. Let I be an interval and let f : I → R be a continuous function

on I. Split I into s − 1 equal subintervals Ij. If 1
|I|

∫
I
log− |f | ≤ β and

1
|Ij|

∣∣∣
∫
Ij
f
∣∣∣ < e−2β for each j, then f has at least s−1

2
roots on I.
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Proof. Since 1
|I|

∫
I
log− |f | ≤ β, we can conclude that for at least s−1

2
intervals

Ij, one has 1
|Ij|

∫
Ij
log− |f | ≤ 2β. But for each such Ij , we have

1

|Ij|

∫

Ij

|f | ≥ exp

[
1

|Ij|

∫

Ij

log |f |
]

≥ exp

[
− 1

|Ij |

∫

Ij

log− |f |
]
≥ e−2β >

1

|Ij |

∣∣∣∣∣

∫

Ij

f

∣∣∣∣∣ ,

so f has to change sign on Ij .

We shall apply Lemma 2 to the function f(x) = xL−1Pn(x) with some
suitably chosen L > 0, the value s = 2r, and the interval I(α) = [1−2α, 1−α].
In this case we shall have by the Jensen estimate (Lemma 1)

1

|I(α)|

∫

I(α)

log− |f | ≤ C(A)

α
+ L log

1

1− 2α
=: β .

Let now x1 < x2 < · · · < xs be the endpoints of the s− 1 intervals of equal
length tiling I(α). Then

∫

[xj ,xj+1]

f =

∫

[xj,xj+1]

xL−1

[
1 +

n∑

k=1

εkx
k

]
dx = xLQn(x)

∣∣xj+1

xj
,

where

Qn(x) =
1

L
+

n∑

k=1

εk

L+ k
xk .

Thus, to force r roots of Pn on I(α), it will suffice to ensure that |Qn(xj)| <
α

2(s−1)
e−2β for all j = 1, . . . , s = 2r.

To this end, we shall construct an infinite series

Q(x) =
1

L
+

∞∑

k=1

εk

L+ k
xk , εk ∈ Ek ,

such that Q(xj) = 0 for all j = 1, . . . , s. Truncating it at k = n, we will then
get

|Qn(xj)| ≤
∞∑

k=n+1

|εk|
L+ k

xkj ≤
∞∑

k=n+1

A

L+ k
(1− α)k ≤ A

α(L+ n)
e−nα .
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Bringing all these observations and estimates together, we see that Pn will
have at least r roots on I(α) ⊂ [0, 1] if Q(xj) = 0 for j = 1, . . . , s and n

satisfies

nα + log
α(L+ n)

A
+ log

α

2(s− 1)
> 2

[
C(A)

α
+ L log

1

1− 2α

]
. (5)

Below we will prove the following

Proposition. For every M ∈ N, A, a > 0, there exists η ∈ (0, 1
3
) and L0 > 0

such that if

• a sequence of closed sets Ek ⊂ [−A,A] is balanced with parameters

M, a,

• s ∈ N and x1, . . . , xs ∈ (0, 1) satisfy
∏s

j=1 xj ≥ 1− η,

• L ≥ max(L0,
s
η
),

then there exists a power series

Q(x) =
1

L
+

∞∑

k=1

εk

L+ k
xk , εk ∈ Ek ,

satisfying Q(xj) = 0 for all j = 1, . . . , s.

We then can take s = 2r and α = η
2s
. In this case for any xj ∈ I(α), we

shall have
∏s

j=1 xj ≥ 1 − η, so choosing L = max(L0,
s
η
), we will be able to

apply the proposition to establish the existence of the power series Q(x) we
need. On the other hand, it is easy to see that, for this choice of parameters,
the inequality (5) will, indeed, be satisfied for n = Cr2 with sufficiently large
C > 0 depending on A, a,M only. Hence the proof of our theorem will be
complete once the proposition is established.

5 Newman’s Decomposition Lemma

Lemma 3. For every δ > 0, there exists η = η(δ) ∈ (0, 1
3
) such that for every

s ∈ N and every x1, . . . , xs ∈ (0, 1) with
∏s

j=1 xj ≥ 1− η, there exist νk ∈ R,

k = 0, 1, . . . , satisfying
∑∞

k=0 |νk| < δ and such that

x−1
j − 1 =

∞∑

k=0

νkµ
kxkj (6)

for all j = 1, . . . , s, where µ = 1− η
s
.
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Proof. Fix large ℓ = ℓ(δ) ∈ N and define

B(z) =

s∏

j=1

1− µxjz

µxj(µxj − z)
, Gℓ(z) = 1− ℓ+ 1

ℓ
z−1 +

1

ℓ
z−ℓ−1 .

For k = 0, 1, . . . , put

ck =

∮

T

B(z)Gℓ(z)z
k dz

2πi
,

where, as usual, T = {z : |z| = 1} is the unit circle traversed counterclock-
wise. Note that

∞∑

k=0

ckµ
kxkj =

∮

T

B(z)Gℓ(z)
1

1 − µxjz

dz

2πi

and the integrand on the right hand side has no poles outside the unit disk
because 1 − µxjz in the denominator cancels with the same factor in the
numerator of B(z). Hence, the right hand side evaluates to the residue of
the integrand at ∞, which is − 1

µxj
.

Next we shall find a summable majorant Ck for ck. To this end, we will
shift the contour to Γ = 1

3
+ 2

3
T. Note that the factor

1−µxjz

µxj(µxj−z)
maps T to

1
µxj

T and the circle 1
2
+ 1

2
T with diameter [0, 1] to the circle with diameter

[− 1
µxj
, 1
(µxj)2

]. The image of Γ is squeezed in between, so

|B(z)| ≤
s∏

j=1

1

(µxj)2
≤ 1

(1− η)4
≤ 6

for every z ∈ Γ as long as η ∈ (0, 1
3
). Now put

Ck = 6

∫

Γ

|Gℓ(z)||z|k
|dz|
2π

and notice that Ck depends neither on η, nor on the choice of xj .
Observe also thatGℓ has a root of multiplicity 2 at 1, so |Gℓ(z)| ≤ γℓ|z−1|2

on Γ with some γℓ ∈ (0,+∞). Thus

∞∑

k=0

Ck ≤ 3γℓ

∫

Γ

|z − 1|2
1− |z|

|dz|
π

(4)

≤ 12γℓ

∫

Γ

|dz|
π

= 16γℓ .
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On the other hand, since B(z) is analytic outside the unit disk, B(∞) = 1,
and |B(z)| = ∏s

j=1
1

µxj
≤ 1

(1−η)2
when z ∈ T, we have

∫

T

|B(z)− 1|2 |dz|
2π

=

∫

T

|B(z)|2 |dz|
2π

− 1 ≤ 1

(1− η)4
− 1 → 0

as η → 0, i.e., B converges to 1 in L2(T) as η → 0. Hence, for every fixed
k = 0, 1, . . . , we have

ck →
∮

T

Gℓ(z)z
k dz

2πi
=





− ℓ+1
ℓ
, k = 0;

1
ℓ
, k = ℓ;

0 otherwise.

Setting ν0 = −µc0−1, νk = −µck for k = 1, 2, . . . , we conclude that (6) holds
and also

∑∞
k=0 |νk| → 2

ℓ
as η → 0 by the dominated convergence theorem. It

remains to to choose ℓ > 2
δ
and to notice that ck and, thereby, νk are real

because B(z̄)Gℓ(z̄) = B(z)Gℓ(z).

6 Trap TΨ,Λ

For x1, . . . , xs ∈ (0, 1), introduce the notation

wk =



xk1
...
xks


 , k ∈ Z .

Then we are looking for a sequence εk ∈ Ek such that the series 1
L
w0 +∑∞

k=1
εk

L+k
wk converges to 0 in R

s. Note that since all xj ∈ (0, 1) and |εk| ≤ A

for all k, the series always converges, so it will be enough to ensure that some
subsequence of partial sums tends to 0. Let S = diag[x−1

1 , . . . , x−1
s ] be the

linear operator satisfying Swk = wk−1 for all k ∈ Z.
Define

W (n) = (L+ n)Sn

[
1

L
w0 +

n∑

k=1

εk

L+ k
wk

]
.

Then W (0) = w0 and W (n) satisfy the controlled recurrence

W (n+ 1) =
L+ n + 1

L+ n
S W (n) + εn+1w0 , (7)
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where from now on we will think of the mapping R
s ∋ W 7→ L+n+1

L+n
SW ∈ R

s

as an unstable time dependent dynamical system (the role of time is played
by n here) and of the sequence εn ∈ En as of control we can choose to try to
stabilize it.

Our goal will be to build a bounded trap T ⊂ R
s such that W (0) = w0 ∈

T and if W (n) ∈ T for some n ≥ 0, then we can ensure by an appropriate
choice of εn+1, . . . , εn+m that W (n +m) ∈ T for some m ≥ 1 again. If such
a trap is constructed, then we shall have W (n) ∈ T or, equivalently,

1

L
w0 +

n∑

k=1

εk

L+ k
wk ∈

1

L+ n
S−nT ,

for infinitely many n. But 1
L+n

S−nT shrinks to 0 as n → ∞, so the desired
convergence to 0 will be established.

To this end, fix δ > 0 to be chosen later and take η = η(δ) ∈ (0, 1
3
) given

by the Newman Decomposition Lemma (Lemma 3). Then for any choice of
x1, . . . , xs ∈ (0, 1) satisfying

∏s
j=1 xj ≥ 1− η, we have the decomposition

w−1 = w0 +

∞∑

k=0

νkµ
kwk with

∞∑

k=0

|νk| < δ , (8)

where, as before, µ = 1− η
s
.

We shall be interested in the representations

W (n) = ψnw0 +
∞∑

k=1

λn,kµ
kwk, ψn, λn,k ∈ R .

Since W (0) = w0, we can set ψ0 = 1, λ0,k = 0 for k = 1, 2, . . . . Using the
recurrence (7) and the Newman decomposition (8) of w−1 = Sw0, we see that
we can put

ψn+1 =
L+n+1
L+n

[ψn + ν0ψn + µλn,1] + εn+1 (9)

and
λn+1,k =

L+n+1
L+n

[µλn,k+1 + ψnνk] . (10)

Now put Uk =
∑∞

i=k |νi|, k = 0, 1, . . . , and fix a big Λ > 0. Assume that
L is chosen so that L+1

L
µ ≤ 1 (L ≥ s

η
will suffice for this). Assume also

11



that |λn,k| ≤ ΛUk for all k = 1, 2, . . . and that |ψn| ≤ µΛ. Note that these
inequalities hold for n = 0, provided that Λ ≥ 3

2
, say. Then

|λn+1,k| ≤ L+n+1
L+n

[
µ|λn,k+1|+ |ψn||νk|

]

≤ L+1
L

[
µΛUk+1 + µΛ|νk|

]
=

L+1
L

µΛUk ≤ ΛUk

again.
Thus, we shall not lose control over |λn,k| before we encounter ψn with

|ψn| > µΛ. Our task now is to show that if Λ = Λ(A, a,M) is chosen large
enough and δ = δ(A, a,M) is chosen small enough (in this order), then we
can keep |ψn| under µΛ for all n by choosing our control εn in an appropriate
way.

From the technical standpoint, it becomes just a question about the con-
trolled one-dimensional dynamics of ψn given by (9). It will suffice to show
that there exists Ψ ∈ [1, µΛ] such that if |ψn| ≤ Ψ, then also for some
m ∈ N, we have |ψn+m| ≤ Ψ while |ψn+1|, |ψn+2|, . . . , |ψn+m−1| ≤ µΛ (but
not necessarily ≤ Ψ). Then the set

T = TΨ,Λ =

{
ψw0 +

∞∑

k=1

λkµ
kwk : |ψ| ≤ Ψ, |λk| ≤ ΛUk

}

will be our desired trap. Note that all entries of all vectors in T do not exceed
Ψ + Λδ

∑∞
k=1 µ

k = Ψ+ Λδ
1−µ

in absolute value, so T is, indeed, bounded.

7 One dimensional controlled dynamics

Let us see first how fast ψn can grow in principle regardless of the choice of
the controls εn. We have

ψn+1 = ψn +∆n + εn+1 ,

where

|∆n| =
∣∣∣ 1
L+n

ψn +
L+n+1
L+n

(ν0ψn + µλn,1)
∣∣∣

≤ 1
L
µΛ +

L+1
L

(|ν0|µΛ+ µΛU1)

=
1
L
µΛ+

L+1
L

µΛU0 ≤
(
1
L
+ δ

)
Λ

12



as long as |ψn| ≤ µΛ. We also have |εn+1| ≤ A.
Thus, if we start with |ψn| ≤ Ψ < µΛ and run into trouble after m steps

(i.e., have |ψn|, |ψn+1|, . . . , |ψn+m−1| ≤ µΛ but |ψn+m| > µΛ), we must have

m
[(

1
L
+ δ

)
Λ + A

]
> µΛ−Ψ .

If we now choose Ψ = Λ
3
= 3MA + 1 and 1

L
, δ ≤ 1

9M
, we shall have

µΛ−Ψ ≥ 2

3
Λ− 1

3
Λ = Ψ

and (
1
L
+ δ

)
Λ + A ≤ 2

9M
3Ψ +

1

3M
Ψ =

Ψ

M
,

so m > M . Thus, starting with |ψn| ≤ Ψ, we shall be safe with our values
of ψn+1, . . . , ψn+M for any choice of the controls. The choice we will make is
the one pushing ψn+1 towards 0 as hard as possible. More precisely, we will
define

εn+1 =

{
minEn+1, ψn +∆n ≥ 0;

maxEn+1, ψn +∆n < 0.
(11)

With this control, two things may happen.
One possibility is that for some m ∈ {1, . . . ,M}, there is at least one

sign change in the sequence ψn+m−1, ψn+m−1 + ∆n+m−1, ψn+m. In this case,
we have

|ψn+m| ≤ |∆n+m−1|+ |εn+m| ≤
(
1
L
+ δ

)
Λ + A ≤ Ψ

M
≤ Ψ ,

so we have returned to our trap T and may start counting all over.
The other possibility is that all the numbers ψn+m−1 + ∆n+m−1, m =

1, . . . ,M and ψn+m, m = 0, . . . ,M are of the same sign and we have εn+m =
minEn+m if this sign is positive or εn+m = maxEn+m if it is negative all the
way from 1 to M . This case requires a bit more careful alalysis. Suppose
that the sign is positive and εn+m = minEn+m for m = 1, . . . ,M . Then,
using the condition that our sequence E of sets is balanced with parameters
M, a, we get

ψn+M = ψn +
M∑

m=1

∆n+m−1 +
M∑

m=1

minEn+m ≤ Ψ+M
(
1
L
+ δ

)
Λ− a .

13



Thus, to be certain that ψn+M ≤ Ψ in this case, we need to impose yet
another condition on L and δ, which is

1

L
, δ ≤ a

2MΛ
=

a

6M(3MA + 1)
.

The same condition will suffice for the case when the sign is negative and we
choose all maxima.

The final choice of the parameters will then be the following:

Λ = 3(3MA + 1), Ψ = 3MA + 1, δ = min

(
1

9M
,

a

6M(3MA + 1)

)
,

η = η(δ), L0 = max

(
6M(3MA + 1)

a
, 9M

)
, L ≥ max

(
L0,

s

η

)
.

It is easy to see that Λ,Ψ, δ, η, L0 depend on A, a,M only, so the proof of the
proposition is complete.

8 The algorithm

It should be clear now how to build an algorithm for finding a polynomial
Pn ∈ P(E) with a given number r of roots in principle. Given r, one should
choose s ≥ r + 1, n ≍ r2, L ≍ r, η ≍ 1 and set α = η

2s
, µ = 1 − η

s
. Then

one needs to choose the points x1, . . . , xs ∈ I(α) and compute ν0, ν1, . . . , νn
(the rest of the coefficients in the Newman decomposition are never used in
the determination of ε1, . . . , εn). Finally, one can initialize ψ = 1, λk = 0
and update their values according to (9) and (10) choosing the coefficient
sequence εn as in (11).

The total running time is the time of the pre-computation of νk plus the
time of the determination of the coefficients. Since each coefficient deter-
mination requires updating an array of length n, we get n steps that take
≍ n elementary arithmetic operations each. So it looks like we need about
n2 ≍ r4 operations for this part. However, as it is usual with the real number
computations, the question of the propagation of the rounding errors arises.

In theory, we are just running the exponentially unstable dynamics

W (0) = w0, W (m+ 1) =
L+m+ 1

L+m
SW (m) + εm+1w0

14



and trying to stabilize it by choosing an appropriate control sequence εm. A
small issue, however, is that we determine εm not from the vectors W (m)
directly, but rather from their representations

W (m) = ψmw0 +
∞∑

k=1

λm,kµ
kwk ,

so the adequate computation model seems to be given by

Ŵ (m) = ψ̂mw0 +
∞∑

k=1

λ̂m,kµ
kwk ,

ψ̂m+1 =
L+m+1
L+m

(ψ̂m + ν0ψ̂m + µλ̂m,1) + ε̂m+1 +O(τ) ,

λ̂m+1,k =
L+m+1
L+m

(µλ̂m,k+1 + ψ̂mνk) +O(τ) ,

(12)

where τ is the fixed point rounding error and ε̂m are determined as in (11)

but using the (erratic) values ψ̂m and λ̂m,k instead of the true ψm and λm,k,
i.e,

ε̂m+1 =




minEm+1,

L+m+1
L+m

(ψ̂m + ν0ψ̂m + µλ̂m,1) ≥ 0;

maxEm+1,
L+m+1
L+m

(ψ̂m + ν0ψ̂m + µλ̂m,1) < 0.

It is not hard to see that if we allow ourselves some extra leeway in the
inequalities for Λ, Ψ, L and δ, then we will not need very high precision to
stabilize the erratic dynamics. Indeed, as far as λ̂m,k are concerned, we just

notice that if |λ̂m,k| ≤ δ + ΛUk and ψ̂m ≤ µΛ, we can write

|λ̂m+1,k| ≤ L+1
L

[µ(δ + ΛUk+1) + µΛνk] +O(τ)

≤ [
L+1
L

µδ +O(τ)] + ΛUk ≤ δ + ΛUk ,

as long as
L+1
L

µδ < δ and O(τ) is too small to span the difference. Recalling

that µ = 1− η
s
and taking L ≥ 2s

η
, we see that the precision τ ≍ r−1 is already

enough to keep the values λ̂m,k bounded by 2δ as long as |ψ̂m| remain bounded

by µΛ. Stabilizing the one-dimensional dynamics of ψ̂m then imposes an
even weaker restriction on τ . We just need to add an extra O(τ) term to
the estimate for |∆m| in all previous calculations, where we can afford even
a constant leeway.
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However, the real issue is not the stabilization of the erratic dynamics per
se, but ensuring that the true dynamics with the controls ε̂m based on the
erratic computations results in not too large vectors W (m). More precisely,
we need to show that for the sequence of vectors defined by

W (0) = w0, W (m+ 1) =
L+m+ 1

L+m
SW (m) + ε̂m+1w0 ,

we still have a decent bound on the size of W (n). To this end, we will just

compare W (m) to Ŵ (m), for which we know a good bound from the bounds

on ψ̂m and λ̂m,k. Taking (12) into account, we see that Ŵ (m) satisfy

Ŵ (0) = w0, Ŵ (m+ 1) =
L+m+ 1

L+m
SŴ (m) + ε̂m+1w0 +

1

1− µ
O(τ) ,

where the last term is obtained by summing up the rounding errors in ψ̂m+1

and λ̂m+1,k, i.e., evaluating the sum
∑∞

k=0 µ
kO(τ).

Thus,

W (m+ 1)− Ŵ (m+ 1) =
L+m+ 1

L+m
S(W (m)− Ŵ (m)) +

1

1− µ
O(τ) ,

whence, by induction on m,

∣∣W (m)− Ŵ (m)
∣∣ ≤ 1

1− µ
O(τ)

m−1∑

k=0

‖S‖k ≤ 1

1− µ
O(τ)

(1− 2α)−m+1

2α

because ‖S‖ ≤ 1
1−2α

as all xj ≥ 1−2α. Recalling that µ = 1− η
s
and α = η

2s
,

we see that ∣∣W (n)− Ŵ (n)
∣∣ ≤ O(s2)eO(n/s)O(τ) .

Since s ≍ r and n ≍ r2, we conclude that to keep the differenceW (n)−Ŵ (n)
bounded in this computational model, we need to choose τ = e−Cr with
sufficiently large C.

Now we can address the question on the required precision of the compu-
tation of µ and νk. It should be clear at this point that to have our model
justified, their values must be computed with the same precision τ . That is
not a big deal for µ, which is given by a simple arithmetic formula in terms of
our parameters but the computation of νk that are obtained by the contour
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integration requires a separate discussion. Recall that νk are obtained by
elementary expressions from

ck =

∮

T

B(z)Gℓ(z)z
k dz

2πi
,

so it will suffice to compute ck with precision τ for k = 0, . . . , n. To this end,
we suggest just to discretize the integral to the sum

1

N

N−1∑

j=0

B
(
e2πij/N

)
Gℓ

(
e2πij/N

)
e2πij(k+1)/N

for sufficiently large N > n+1 that is a power of 2 and to use the fast Fourier
transform. Note that, for 0 ≤ k < N−1, this sum, even if computed exactly,
is not the true value of ck but ck + ck+N + ck+2N + . . . . Fortunately, since all
poles of B(z) and Gℓ(z) lie reasonably deep inside the unit disk, |ck| decays
fairly fast as k → ∞. To get a simple but sufficient for our purposes bound,
we will just shift the contour to uT with u = 1− η

2s
and observe that for each

Blaschke factor
1−µxjz

µxj(µxj−z)
, we have

|1− µxjuz| ≤ |1− u|+ |1− µxjz| ≤ 3
2
|1− µxjz| ,

while
|µxj − uz| ≥ |µxj − z| − |1− u| ≥ 1

2
|µxj − z| ,

so |B(uz)| ≤ 3s|B(z)| ≤ 3s

(1−η)2
when z ∈ T. As to Gℓ, we just estimate

maxz∈T |Gℓ(uz)| ≤ u−ℓ−1maxz∈T |Gℓ(z)|. At last, uk = (1 − η
2s
)k ≤ e−

ηk

2s .
Thus, to make the sum ck+N+ck+2N+. . . negligible (i.e., less than τ = e−Cr),

we can take any N for which 3se−
ηN

2s is substantially smaller than e−Cr, which
forces us to choose N ≍ r2 too.

Thus, the cost of the pre-computation is about sN+N logN ≍ r3 elemen-
tary arithmetic operations, which is r times less than the cost of computing
all the coefficients ε̂m, m = 1, . . . , n. The total running time is then about
r4 times the time needed for an elementary arithmetic operation on Cr-digit
numbers, which is Õ(r). That gives Õ(r5) claimed in the statement of the
theorem.

Finally, a few words about the practical implementation, if somebody feels
a desire to try it. While the orders of magnitude in the above discussion are
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all correct, the numerical constants given by our rigorous proofs are certainly
suboptimal, so the best way to choose an appropriate value for η and ℓ is by
trial and error. This won’t waste too much time because if the blow-up in
our dynamical system occurs at all, it usually happens rather fast and can
be seen after about r iterations already. Also, while the theory guarantees r
roots for s = 2r, in practice s = r + 1 may already be enough.

Appendix

In this section we shall prove the classical bound r ≤ C(A)
√
n for the number

r of the roots of a polynomial Pn(x) = 1 +
∑n

k=1 εkx
k with |εk| ≤ A on

the interval [0, 1]. This bound holds for the number of roots counted with
multiplicity, so no assumption that the roots are distinct will be required in
the proof. Since Pn(0) = 1, it is enough to get an estimate for the number
of roots of Pn in (0, 1]. We shall follow the exposition in [B] (Theorem 5 on
page 55) with some minor modifications.

Suppose that one can construct a polynomial q of degree m with real
roots such that

q(0) = 1,
n∑

k=1

|q(k)| < 1

A
.

Then the polynomial P̃n(x) = 1 +
∑n

k=1 q(k)εkx
k will have no roots in (0, 1]

because the constant term 1 dominates the sum of the absolute values of all
other terms. However, writing q(x) = γ

∏m
j=1(x− ρj) with γ, ρj ∈ R, we can

express P̃n as

P̃n = γ
[ m∏

j=1

Dρj

]
Pn ,

where Dρf = (x d
dx

− ρ)f .
Since Dρf = xρ+1 d

dx
(x−ρf), each application of Dρ diminishes the number

of roots of a function f on the interval (0, 1] by at most 1. Indeed, Rolle’s
theorem guarantees the existence of a root between two distinct roots, and
the multiplicity of a repeated zero drops by 1. Since afterm such applications
the polynomial Pn loses all its roots on that interval, we conclude that its
initial number of roots r satisfied r ≤ m.
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Now, to construct the polynomial q of low degree with the desired prop-
erty, for ℓ ∈ N, consider the normalized Dirichlet kernel

1

2ℓ+ 1

[
1 + 2

ℓ∑

k=1

cos(ky)

]
=

1

2ℓ+ 1

sin(ℓ+ 1
2
)y

sin y
2

.

It can be written as q0(cos y) where q0 is a polynomial of degree ℓ having ℓ

roots on [−1, 1]. We have q0(1) = 1 and |q0(t)| ≤ 1
2ℓ+1

√
2

1−t
for t ∈ [−1, 1).

Now put q1(t) = q0(1− 2t
n
). Then q1 is also of degree ℓ, still has all its roots

real, q1(0) = 1, and |q1(k)| ≤ 1
2ℓ+1

√
n
k
for k = 1, . . . , n. Taking ℓ = ⌈√n ⌉,

we conclude that q1(k) ≤ 1
2
√
k
for k = 1, . . . , n. But then for every integer

power v ≥ 4, we have

n∑

k=1

|q1(k)|v ≤ 2−v

∞∑

k=1

1

k2
≤ 21−v ,

so q = qv1 with some v = v(A) will satisfy the desired property and have the
degree m = v(A)⌈√n ⌉, yielding the claimed bound for r.
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