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1 Introduction

Quantitative systems pharmacology (QSP) is a commonly used approach of mathematically assessing drug pharmacoki-
netics and pharmacodynamics before they go to clinical trial [27]. Many drugs fail phase II and III clinical trials [28]
due to inadequate understanding of the mechanism of action. However, via QSP models, which integrate biological,
physiological and pharmacological data [24], it is possible to understand the underlying biological mechanisms and
optimize drug dose and schedule. Additionally, QSP models can be used to predict drug toxicity or efficacy [19], as
well as individual patient response to the drug.

Despite its benefits, QSP suffers from several limitations which make the models costly and time-consuming to develop.
First, many QSP models are built by making simplifying assumptions about the underlying biology. In general,
manual distillation of the literature (and potentially large amounts of data) is done in order to build these assumptions
accurately, rather than building them directly or automatically in a data-driven way. Secondly, building a model fully
(including parameter estimation) can be very time-consuming due to the model complexity and manual distillation of
the literature [30]. QSP modelling is especially affected by these issues because a QSP model may comprise more
than a dozen dynamical variables, and even more parameters [30]. Recently, machine learning (ML) has been used to
improve and simplify the QSP model-building process. Decision trees, regression, and neural networks are some of the
tools that have been used to predict drug toxicity and patient response in a data-driven way [5]. A major benefit of ML
is the almost entirely automatic learning of patterns in the data by a model, and potentially robust generalization to
unseen data [5]. However, purely ML-based approaches often need large amounts of data to make accurate predictions,
and are often uninterpretable. This means that although the model may produce reasonable predictions, the mechanism
by which it does so is opaque. For this reason, an ML model may be sometimes called a “black box”. In systems
pharmacology, it is often important to know which features are the most important for prediction and why a certain
outcome is expected. These findings shed light on underlying biological mechanisms, and inform drug development.
This is also key to a sanity-check of the model prediction, and trust in the output.

Integrating ML and QSP is a promising research direction which has promise in binding together their strengths while
compensating for their respective weaknesses. Machine learning can be used to automate the learning of complex
patterns, or abstract away the function of less important mechanisms. QSP, on the other hand, can provide structure
to the machine learning model and inform it with prior knowledge. An integration of these two methods means that
some assumptions will be built in or enforced, but other interactions and mechanisms will be learned directly from
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the data. Due to the additional structure imposed by assumptions, potentially less data will be needed to learn the
unknown components. The components of the model that need potentially more manual distillation can be learned
more automatically from the data. Finally, the interpretability of the ML components may be augmented due to the
surrounding structure imposed by the QSP model.

Existing integrations of QSP and ML tackle problems such as parameter inference [23], inference of model structure [9,
22], dimension reduction [6], and creation of virtual patients [1]. A prominent method to identify parameters from
data is physics-informed neural networks (PINNs). PINNs are a flexible framework and have been extended in various
ways [10, 20, 29] for the purposes of model fitting and inference, which are key problems in systems pharmacology.
Given a differential equation that models a particular biological process, PINNs use a neural network to fit a surrogate
solution. The unknown parameters are treated as additional weights to be optimized. However, PINNs cannot be used
to identify entire unknown components of the model. Inference of model structure, as described in [30], has followed
several different directions, such as logic-based modeling [9], integration of QSP with genome-scale computational
models [21], and universal differential equations (UDEs) [22]. UDE’s are a popular method to identify unknown
components of differential equations. However, they are not robust to noise, as [18] recently showed, and the Universal
Physics-Informed Neural Network (UPINN) method is more robust. In this paper, we apply the UPINN method to
chemotherapy modelling, as a proof of concept of what the method can accomplish in the realm of pharmacokinetic
and pharmacodynamic modelling. We have applied the method to both simulated and in-vitro data, and showed high
accuracy of identification of the unknown components of differential equations.

In the remaining sections, we start with an overview of existing modeling approaches to chemotherapy modelling,
physics-informed neural networks and QSP structure identification methods. Following that, we use the UPINN method
to identify the hidden components of various ODEs that model chemotherapy dynamics. We show the performance of
our method on both synthetic and in-vitro data. For the experiments on in-vitro data, we learn the time-dependent effect
of a chemotherapeutic, doxorubicin, on cell growth (proliferation).

Our contributions in this work are:

• We integrate machine learning in the form of PINNs with QSP models in order to identify unknown drug
actions within QSP models. To illustrate, we apply the Universal PINN method to identify hidden terms in
QSP models in cases of both synthetic and in-vitro experimental data.

• Via simulations, we show that three different types of drug action (Log-Kill, Norton-Simon, Emax) can be
identified from the chemotherapy concentration and number of cells over time. We also employ our approach
to recover dose-dependent parameters from several sets of data simultaneously and interpolate these parameters
between dosages. This could potentially replace the repeated application of a standard physics-informed neural
network.

• We show that our approach can successfully identify the time-dependent net proliferation rate in cases of both
synthetic and in-vitro experimental doxorubicin data.

2 Background

2.1 Physics-informed Neural Networks

Physics-informed neural networks [23] (PINNs) were developed by Raissi et al. for the purposes of solving forward
and inverse problems of differential equations (partial (PDE) and ordinary (ODE)). For the forward problem, a neural
network is used to provide a numerical solution to a PDE using data that satisfies the PDE. In this case, the data
generating process is fully known. For the inverse problem, the differential equation is known except for certain
parameters, which take on a real value. Using data, PINNs can be used to identify the parameters that best fit the data.

As mentioned previously, a drawback of PINNs is that they cannot be used to identify entire hidden terms of differential
equations. In [18], a method called Universal PINNs (UPINNS) was developed to find the hidden terms in a data-driven
way. was demonstrated on the Lotka-Volterra system of ODEs, on a model of cell apoptosis with bistability, and on
Burger’s equation, a PDE. In this paper, we explore further the power of the method in identifying unknown terms
from data, thereby avoiding modelling assumptions. We base our work on the models in [16] and [13] We show
that in every combination of drug action, we are able to make an approximation of the drug action using a neural
network. Furthermore, we can combine the UPINNs approach from [18] with the traditional PINN approach to identify
parameters first, and then use these parameters to inform the identification of the hidden terms.
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2.2 Chemotherapy modelling

Much of the effort of the modelling of chemotherapeutics has gone into optimizing the drug schedule. This means
finding the dosing schedule that kills the most cancer cells, while limiting the toxicity to normal cells. In many
studies, the modelling of the drug is performed using assumptions on how the drug acts on the cells, and afterwards,
the parameters of the model may be fit from data. For example, in [25], a Norton-Simon model of drug action and
Gompertzian growth was assumed, and then fit to data. After, the drug schedule can be perturbed and the best dosing
schedule can be identified from model predictions. In [7], a reaction kinetics analogy is assumed for the model, and the
parameters are fit to tumours in untreated mice. Fits are subsequently evaluated for treated mice. [3] used assumptions
based on paclitaxel’s effect on cells in different phases of the cell cycle. Hence their model is compartment based, with
differential equations governing the transition of cells from one phase to the next. In [11], tumour growth was modelled
with logistic growth, but the effect of the chemotherapeutic (also paclitaxel) is modelled only through its effect on the
carrying capacity. In [4], a novel fractional-order Gompertz model is introduced and determined to be a better fit for
experimental mouse tumour data.

Optimizing the order and sequence of chemotherapy and surgery is also an important problem. In [13], a mathematical
model of ovarian cancer was developed to determine whether chemotherapy, then surgery, or whether surgery then
chemotherapy was a better treatment. The authors examined Gompertzian and logistic growth, and three different types
of cell-kill methods: log-kill, Norton-Simon, and Emax. In all cases, the sequencing of chemotherapy followed by
surgery led to better outcomes than surgery followed by chemotherapy. However, it is key to note that in order to make
a conclusive recommendation, all reasonable possibilities and assumptions need to be examined. When data is available,
these assumptions can be learned from data, as we endeavour to show by adapting the UPINN method to this problem.

3 Methods

We build on the methods in [18]. In this work, we apply UPINNs in three different scenarios. First, we apply it to learn
the drug action of a cancer growth ODE, modifying the method for better performance. Using the method, we are able
to obtain an approximation of the drug action in three ODEs with three different drug actions. Secondly, we apply the
method to a situation where the parameters vary with dose. We learn the parameters as a function of the dosage, and
interpolate between observed dosages. Finally, we learn the net proliferation rate of doxorubicin from in-vitro data,
after validating the method on similar synthetic data.

In the following subsections, we first describe how to apply the method generally, and in the subsequent sections, we
detail the specific applications.

3.1 General approach

Suppose an ODE in the following form, with m variables, where u : t → Rm and F,G : u, t → Rm:

du

dt
= F (u, t) +G(u, t) (1)

Suppose furthermore that F can be evaluated for every possible input, but G is unknown and so cannot be. Then given a
dataset of n points {ti, ui} which satisfy the differential equation, we can use the UPINN method to approximate G at
these points, and at points that are linear combinations of pairs (tj , uj) in the dataset. We do this by representing G(u, t)
with a neural network GNN , taking u and t as input and returning a vector-valued output for each such combination.
However, some of the outputs of G may be a priori known to be zero, and as such don’t need to be modeled by the
neural network. A case of this can be seen in the following sections. Furthermore, although in (1), F and G are assumed
to be added, this assumption need not hold in order for the method to learn G. Instead, there may be a different (known)
function combining F and G on the right-hand side of (1) (e.g. F ·G) and if G is identifiable given the data, the UPINN
method should still be able to learn G. However, more complex expressions tend to be more difficult for the method to
learn.

As per the standard PINN approach, along with an approximation of G, we obtain an approximation of the differential
equation solution u using a neural network UNN . UNN and GNN are trained by minimizing the following loss:

L = LMSE + LODE

The MSE loss ensures that the output of the surrogate solution UNN adheres to the data {ti, ui}:
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LMSE =
1

N

n∑
i=1

(UNN (t)− ui)

As for the ODE loss, UNN is autodifferentiated1 with respect to t and evaluated at a set of collocation points {tj}. This
loss minimizes the difference between the derivative of UNN (t) and the right hand side of eq. 1. In effect, this loss
component enforces the differential equation to hold.

LODE =
1

K

K∑
j=1

(
dUNN (t)

dt

∣∣∣∣
tj

− (F (UNN (tj), tj) +GNN (UNN (tj), tj))

)

GNN is trained through the ODE loss component, and UNN is trained through both loss components. A flowchart of
the components and their interactions can be seen in Fig 1.

+

Loss

PINN loss

+

MSE loss

F
(known component)

G
(unknown component)

U
(surrogate solution)

t (time)

Û

Û

Ut

(autodiff)

Neural networks
Loss components

Figure 1: Overview of the structure of the UPINN method as applied to (1), which shows inputs and outputs of all known
and unknown components, as well as losses. The surrogate solution U outputted by the UPINN takes time t as input.
Both F (the known component of the differential equation) and G (the unknown component, to be fit by the UPINN)
take in time and Û , the prediction of the neural network, as input. F and G, along with Ut (the autodifferentiated
derivative of UNN w.r.t. time) and is passed as input to the PINN loss. Then, the PINN loss computes the error between
Ut and F +G. The MSE loss computes the error between the surrogate solution Û and the data.

1A common operation in the training of neural networks, which in this case computes the derivative of the output of the neural
network.
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3.2 Application to the identification of a cell-kill strategy

We are interested in applying the above method to identify the kind of drug action that a specific chemotherapeutic has.
Using an ODE, we simulate a situation where the chemotherapeutic is applied in a single dose to a culture of cells,
and the cell numbers are measured at intervals after the application of the chemotherapeutic. We choose the following
differential equation to simulate the concentration and cell numbers over time:

dN

dt
= βN(1−N)− C(t)G(N) (2)

dC

dt
= −γNC (3)

where C(t) is the concentration of the drug (between 0 and 1), and N(t) is normalized cell count, and as such takes
values between 0 and 1. The first term governing the tumour dynamics is a growth term and is known. In general, we
assume to have no information about G(N), the drug action of the chemotherapeutic. However, for the purposes of
testing the method, we choose G to have one of the three following forms, as per [13, 16]:

1. a1N (Log-kill model)

2. a2βN(1−N) (Norton-Simon model)

3. a3N/(N + δ) (Emax model)

where aj are constants.

We generate synthetic data {ti, Ni, ci} satisfying the above differential equation, with initial condition N(0) = 0.01. C
is assumed to be zero for t ∈ [0, 12], and at day 12, the drug is instantaneously added to create a concentration of 1.
From there the drug decays depending on the parameter γ = 1.0. For the Emax case, we have δ = 0.55. β is assumed
to be known and equal to 1.0, but can be fit using a regular PINN from untreated growth data. Finally, the constants
a1,2,3 are set as a1 = 2.8, a2 = 11.0, a3 = 2.4. An example of this workflow is shown in the results.

We set up three neural networks as follows: let G(t,N) = C(t)G(N) and we approximate G(t,N) with a neural
network GNN with two inputs (t and N ) and one output. Separately, we approximate C(t) by CNN with one input,
t, and one output, C(t). Finally, we have a neural network UNN with one input (t) and one output (N ), which
approximates the solution N(t).

The workflow proceeds in three steps. First, we train CNN using only an MSE loss with respect to the {ti, ci} data.
The purpose of this network is to enable the interpolation of the concentration between observed timesteps. Then,
we train GNN (t,N) using the data {ti, Ni} using exactly the method described in the previous subsection. Finally,
having obtained predictions for a set of times {tj} from both CNN and GNN we divide the prediction of GNN by the
prediction of CNN to obtain an approximation of G(N) for every timestep tj . Since we also have the solution UNN for
every timestep, we are able to get an approximation of G(N) for any N within the bounds of the data. This function
cannot extrapolate to unseen N , so in generating {ti, Ni, ci} it is important that the widest range possible is covered by
the values Ni.

This method enables us to create a black-box representation of drug actions. The approximation of G(N) for different
timesteps tj may then be run through a symbolic regression algorithm to obtain a closed-form of the function. For
example, AI Feynman [26] can suggest possible closed-form functions linking the tj and G(N), trading off the
simplicity of the function with how well it fits the data. This is different than training a regression model or neural
network because the symbolic regression algorithm searches a wide space of possible functions (e.g. including
mathematical functions such as log or cos directly) rather than restricting the search space to polynomials or multi-layer
perceptrons. Although the symbolic regression algorithm can find a closed form, which may shed some light on the
underlying biological mechanisms of the hidden term, certain downstream applications for the drug action (e.g., finding
an optimal drug schedule using reinforcement learning as in [8]) do not require a closed form.

The UPINN was implemented in PyTorch [17]. The neural network which represents the surrogate solution was a
fully-connected network with 8 hidden layers with 20 hidden units each, tanh activation. All neural networks used in
this work are structured similarly and use tanh activation. Each neural network which represents a hidden term was
structured the same way. First, 5000 Adam [12] iterations were run, and then the Limited Memory BFGS optimization
algorithm [14] was run until sufficient convergence. The MSE and PINN loss components were weighted equally at all
times. The inputs to each neural network were scaled such that it would be between 0 and 1 for all inputs (both time
and number of cells).
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3.3 Application to parameter identification for several drug dosages

In some situations, the differential equations that govern a specific biological process has parameters that vary not in
time, but as a function of chemotherapy dosage. One such example can be created by assuming that the parameters
kp, θ in logistic growth

dN

dt
= kpN

(
1− N

θ

)
(4)

are in fact a function of the administered chemotherapy dosage, D. This changes the previous equation to

∂N(t,D)

∂t
= kp(D)N(t,D)

(
1− N(t,D)

θ(D)

)
(5)

where kp(D) and θ(D) are now the dose-dependent growth rate and carrying capacity. An initial condition constraint
N(0, D) = N0 can be included as well. In this case, for a higher dosage of chemotherapy, the growth of the cells would
remain logistic, but the growth rate and carrying capacity would decrease. Conversely, if the dosage is low then the
growth rate and carrying capacity would be higher. We consider this a realistic scenario for modelling the effects of
doxorubicin, due to a model employed in a recent work [15].

Rather than solving (5), it is simpler to use an ODE solver to solve (4) for different (kp, θ). This generates several time
series datasets {ti, ni}D of the number of tumour cells ni over time (t), one for each chemotherapy dosage condition
D. It is possible to aggregate them into one dataset and fit kp(D) and θ(D) simultaneously to all available data. In
our UPINNs setup, we simulate three different datasets using logistic growth, under low, medium and high dosage
conditions. Three different dosages were considered in each experiment (low, medium and high), given as 15.0, 25.0,
and 45.0 nM respectively to the model. Since this data is synthetic and the dosage is not used in the ODE directly, the
numerical values of the drug concentration are somewhat arbitrary. 48 datapoints were used in total for each experiment,
which means there were 16 datapoints per dosage. We added noise proportionally to the mean of the data, as per
synthetic experiments in [18] at a noise level of 0.03. We aggregate the data for all dosages, and model the system via
eq. 5. In our setup, we have three neural networks: one that models the surrogate solution, and two that model kp(D)
and θ(D) respectively. The surrogate solution takes both the time and dosage as input. The remaining two neural
networks have only one input (dosage) and one output each. As there are only three dosages for which kp and θ need to
be fit, the parameters for unobserved dosages can be interpolated by the model. We note that additional constraints on
the interpolation can be included by adding another loss term.

It is worth noting that if standard PINNs were utilized to fit these dose-dependent parameters, a separate PINN would
have to be fit for the dataset corresponding to each dose. This is a more significant computational burden, and also
not scalable when more than a few dosages are available. It also does not allow interpolation between dosages. By
modelling eq (2) using UPINNs, we are able to fit one surrogate solution N to all the datasets and obtain all the
dose-dependent parameters simultaneously, provided they are identifiable.

The architecture of all neural networks was the same as in the previous section. Training proceeded very similarly,
with 5000 Adam iterations at first. Then, the data loss was weighted with a value λ = 0.001 and Adam training was
continued for 1000 iterations. Then, L-BFGS finished the optimization. This training method was used in order to
ensure that the PINN loss was minimized sufficiently during training. Similar scaling was employed on the input.

3.4 Application to in-vitro experimental data

We now apply our method to identify the drug action of a real chemotherapeutic from in-vitro cell counts. For this
purpose, we gathered the data used in [15]. In this series of experiments, four different cell lines (MDA-MB-468
(basal-like 1), SUM-149PT (basal-like 2), MDA-MB-231 (mesenchymal), and MDA-MB-453) were first allowed to
grow undisturbed for at least three days, and then they were exposed to different concentrations of doxorubicin. The
cells were exposed to doxorubicin for 6, 12 or 24 hours, after which the medium was changed. The concentrations of
doxorubicin that were used by [15] are: 10nM, 20nM, 39nM, 78nM, 156nM, 312nM, 625nM, 1250nM, 2500nM.

In this work, the time-series cell count data is described by the following model:

6
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dNTC

dt
= (kp − kd(t,D))NTC(t)

(
1− NTC

θ(D)

)
(6)

kd(t,D) = kd,A(D) (7)

kd(t,D) = kd,B(D)r(D)te1−r(D)t (8)

where NTC(t) is the number of cells over time, kp is the constant growth rate under control conditions, kd(D, t) is the
death rate, dependent on dosage and time, θ(D) is the dose-dependent carrying capacity, and r(D) is also a function
of dosage. These parameters also take on different values per cell line. In [15], eq 7 and eq 8 are fit separately, and
the final prediction for each dosage is a weighted combination of the predictions of the two models. The authors
have fit kd,A(D), r(D), kd,A(D) as constant parameters per dosage using a nonlinear least squares approach. No
time-dependent or dose-dependent functions are fit.

We note that if kp is allowed to take on any value, then fitting k(D, t) and θ(D) simultaneously using our method is not
identifiable. Hence, we simplified this model to the two following forms:

dNTC(t)

dt
= FD(N, t)NTC(t) (9)

dNTC(t)

dt
= GD(t)NTC(t) (1−NTC(t))) (10)

The subscript D indicates that this function is different for each dosage. In our implementation, FD takes only time as
the input, although it could take both numbers of cells, N and time t as input. We suggest and work with these two
formulations of the hidden term, because for different applications, more prior knowledge can be incorporated if it is
known.

Equations 9 and 10 are certainly identifiable for all tuples of time, cell count and time derivative values, denoted by
{ti, Ni, dNi}. This is because for every tuple {ti, Ni, dNi} at each of the collocation points, there is a unique solution
of either eqs. 9 and 10 for FD or GD (respectively) at each dose D. Note that the equations 9 and 10 are general
enough to be applicable to several scenarios: simulated data from eq 7, simulated data from eq 8, and the in-vitro
data. Hence, we learn FD(N, t) and GD(t) for all three of these cases, except FD(N, t) generated using eq 7. This is
because FD(N, t) takes on a single constant value in that case.

The loss function was the same as in the previous sections, and the training proceeded similarly. The neural network
architectures used were of 8 hidden layers of 128 units each, for each fully-connected neural network. Training was
done such that Adam iterations were stopped at 1500 iterations, or upon reaching a loss of 2 · 10−3, whichever comes
first. Then, L-BFGS iterations were started. This conditional stopping of Adam iterations was done in order to bring
the weights sufficiently close to the optimum before L-BFGS starts, but not so close that L-BFGS fails to perform any
optimization steps.

4 Results

In the following three sections, we detail the performance of the identification of hidden terms in all three of the
scenarios. We apply our method to learn the drug action (the model that best describes the cell dynamics after treatment)
as a function of the cell count only, then we learn growth rate parameters as a function of the dosage, and finally we
learn the net proliferation rate of doxorubicin as a function of time.

4.1 Identification of drug action (Log-kill, NS, E-max) from synthetic data

As described in the methods, we generate synthetic data for three different drug actions, and we evaluate how well the
underlying true drug action can be recovered. We test our method on sparse noiseless data generated in two different
ways, and noisy data. We also test a two-step procedure where we recover β first from the untreated data using a regular
PINN, and then apply our method to find the drug action.

First, we test on sparse data with spacing that is uniform through time. We generate a time series dataset of 54 points
for each drug action. Fig 2 shows the learned drug action for all three types of cell-kill strategies, when the spacing was
uniform in time. In other words, it plots the learned G(N) as a function of different N that appeared in the training data.
We note that the mean squared error (MSE) between the true drug action and the predicted drug action, as reported in

7
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(a) (b) (c)

(d) (e) (f)

Figure 2: Datasets for the different drug actions (a, b, c) with their respective drug actions learned below them (d, e, f).
Data was collected with a fixed time period (0.15 days) elapsing between each data point. The drug actions are the
functions G(N) in Eq (2), replaced by one of: log-kill, Norton-Simon and Emax.

Table 1 for all three types of drug action, are all on the order of 10−4. A visual inspection shows that the predicted drug
action matches the true drug action for almost all values of N .

For the second data collection strategy, the spacing of the datapoints was dynamically chosen based on the rate of
change of cell populations, so that there are proportionally more points at higher-slope areas compared to low-slope
areas. This was done by first solving each ODE with many timesteps (time-step size 0.001), and then filtering the
resulting data. The settings for the filtering were such that 1 point was present for each cell decline of 0.05, and no
more than 500 contiguous points were removed. This yielded datasets of 31 points for the log-kill model, and 29
points for the others. The results of running the UPINNs on these datasets can be seen in Fig 3. As evidenced by the
mean-squared errors in Table 1, the learned drug actions for both the log-kill and Norton-Simon model are on the order
of 10−4 and 10−5, giving comparable or better MSEs than using spacing that is equal in time. Given that the adjusted
spacing uses half as much data, but achieves errors on the same order of magnitude (10−4) highlights the importance of
data collection in high-slope areas. In practice, this might mean collecting data as frequently as possible when a high
cell decline is to be expected, and collecting less frequently when the cell growth has reached a plateau.

Then, we test the method on noisy data, constructed by adding noise to both dynamically spaced (Fig 4) and equally
spaced data (Fig 5). For each of the drug actions (log-kill, NS, and Emax), we find that the method has an MSE of
10−4, 10−3, and 10−5 respectively (Table 1) under noisy conditions when the spacing is equal in time, but not when the
spacing is adjusted dynamically. When the spacing is adjusted dynamically then the errors are an order of magnitude
higher (10−3, 10−2, and 10−4 respectively). The noise is added proportionally to the mean of the data, with the noise
level being 0.03. The predicted drug action is visually quite a bit different from the true G(N) for larger values of N
when the spacing is adjusted. More investigation is needed into why the adjusted spacing has a detrimental effect when
the data is noisy. In addition, it is worth noting that adding only noise to equally spaced data has a negligible effect
on the MSE of all drug actions. The MSEs remain at most 10−4 for both noisy and noiseless equispaced data. This
highlights the robustness of the method. A comparison of the MSE values of the learned drug actions for all three types
of tests can be seen in Table 1, with the lowest values for each column bolded.

Finally, we apply a two-step process where first β is learned using a standard PINN from both noiseless and noisy data,
and then this β estimate is employed during the estimation of G(N). This showcases a way to apply UPINNs where no
prior knowledge of the parameters or drug action is needed. The results of this test can be seen in Fig 6. Fig 6 (a) is the
noiseless data, created using the same parameters as before, using the Norton-Simon model. For noiseless data, we
obtain an estimate of β = 0.999 from the untreated data, which yields an MSE of 1× 10−6 compared to the true β = 1,

8
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(a) (b) (c)

(d) (e) (f)

Figure 3: Datasets for the different drug actions (a, b, c) with their respective drug actions learned below them (d, e, f).
The data is noiseless but collected such that there is at one datapoint for each 0.05-interval decrease in N . Although
there are half as many points collected than in the equispaced case, the MSE between the true drug action and the
predicted drug action is still on the order of 10−4 as shown by Table 1

Type of data

Drug action
Log-kill Norton-Simon Emax

Equal spacing 1.00× 10−4 4.13× 10−4 1.85× 10−4

Adjusted spacing 6.30× 10−5 3.84× 10−4 2.00× 10−4

Equal spacing + noise 1.66× 10−4 4.17× 10−3 7.32× 10−5

Adjusted spacing + noise 4.29× 10−3 1.22× 10−2 1.96× 10−4

Table 1: Mean-squared error of the drug action predictions (compared to the ground truth drug action) for different
types of data. Equal spacing means that the was equally spaced in time (one datapoint per 0.15 days). Adjusted spacing
means that the data was collected with proportionally more datapoints when the cell decline has a high rate. When
noise is added, the noise level is 0.03, added proportionally to the mean of the data. The lowest value in each column is
bolded.

with subsequent MSE of the drug action being 1.3× 10−4. For noisy data, we obtain an estimate of β = 0.997 (MSE
of 9× 10−6), with subsequent MSE of the drug action being 4.5× 10−3. The performance is clearly worse when the
data is noisy, but a visual inspection shows that we can recover the curve and β well for both noisy and noiseless data.

Overall, we show that the UPINN method applied to the discovery of chemotherapeutic drug actions is effective in
recovering the drug action in three common cases. It recovers the drug action with a low MSE (10−3) in cases of both
sparse and noisy data, and can be combined with the standard PINN approach to yield MSEs on the same order of
magnitude.

4.2 Inference and interpolation of dose-dependent logisitic growth parameters

In this set of synthetic experiments, we show that we attain low MSE (10−3 to 10−8) in recovering the true proliferation
rate kp(D) and carrying capacity θ(D) for known dosages, and interpolate between the dosages. At the low dosage,
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(a) (b) (c)

(d) (e) (f)

Figure 4: Datasets for the different drug actions (a, b, c) with their respective drug actions learned below them (c, d, f).
The data has a noise level of 0.03 added proportionally to the mean of the variables.

the growth rate and carrying capacity are set to be the highest (kp = 0.03, 0.08 hr−1, θ = 2.0, 4.0), and at the highest
dosage they are the lowest (kp = 0.01, 0.06 hr−1, θ = 1.0, 3.0). The set of values chosen for kp reflects either low
growth rates (0.01-0.03), high growth rates overall (0.06-0.08), or a large range of growth rates (0.01-0.08). Similar
parameter choices were made for θ, where low growth rates correspond to θ ranges 1.0-2.0, large range of growth rates
correspond to ranges 1.0-4.0, and high growth rates overall correspond to θ between 3.0-4.0. Table 2 and 3 show the
accuracy in recovering the true parameters and fitting the data for both noisy and noiseless data respectively. The true
parameters are recovered on the order of 10−3 to 10−6 even in cases of sparse and noisy data. The specific values of
these parameters were selected to be similar to those fit by [15]. The resulting surrogate solution MSE for noiseless and
noisy data is at most 10−3.

kp(D) θ(D) MSE of θ MSE of kp Model MSE

[0.03, 0.02, 0.01] [2.0, 1.5, 1.0] 0.00012 6.3e-7 2.4e-05

[0.08, 0.07, 0.06] [2.0, 1.5, 1.0] 3.678e-06 6.5e-05 0.0002

[0.08, 0.05, 0.01] [2.0, 1.5, 1.0] 0.00014 0.0029 0.00154

[0.03, 0.02, 0.01] [4.0, 3.5, 3.0] 0.000465 4.456e-08 2.8e-05

[0.08, 0.07, 0.06] [4.0, 3.5, 3.0] 4.94e-05 6.69e-05 0.0004

[0.08, 0.05, 0.01] [4.0, 3.5, 3.0] 0.00042 1.67e-05 0.006

[0.03, 0.02, 0.01] [4.0, 2.5, 1.0] 0.0011 5.8e-07 1.9e-05

[0.08, 0.07, 0.06] [4.0, 2.5, 1.0] 4.35e-05 7.01e-05 0.0002

[0.08, 0.05, 0.01] [4.0, 2.5, 1.0] 0.0036 0.00089 0.0035

Table 2: Mean squared errors for each experiment (noiseless data). The row of θ and kp indicates the values used for
each dosage (low, medium, and high dosages respectively). Model MSE is the MSE between the data and the model.

Figure 7, (a)-(c) shows the results for row 4 of the noisy data, and Figure 7, (d)-(f) shows the results for row 7 of the
noisy data. It can be seen that the interpolation is performed on a smooth continuous curve, the surrogate solution
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(a) (b) (c)

(d) (e) (f)

Figure 5: Datasets for the different drug actions (a, b, c) with their respective drug actions learned below them (c, d, f).
The data is spaced so that times of high cell decline have proportionally more observations (one datapoint for each
0.05-interval decrease in N ). It also has a noise level of 0.03 added proportionally to the mean of the variables.

kp(D) θ(D) MSE of θ MSE of kp Model MSE

[0.03, 0.02, 0.01] [2.0, 1.5, 1.0] 0.0006 3.72e-06 0.001

[0.08, 0.07, 0.06] [2.0, 1.5, 1.0] 0.0001 7.97e-05 0.0017

[0.08, 0.05, 0.01] [2.0, 1.5, 1.0] 0.00024 0.0029 0.0015

[0.03, 0.02, 0.01] [4.0, 3.5, 3.0] 0.0029 9.0e-07 0.0044

[0.08, 0.07, 0.06] [4.0, 3.5, 3.0] 0.00016 6.6e-05 0.0086

[0.08, 0.05, 0.01] [4.0, 3.5, 3.0] 0.025 0.00094 0.0095

[0.03, 0.02, 0.01] [4.0, 2.5, 1.0] 0.0011 2.7e-07 0.0033

[0.08, 0.07, 0.06] [4.0, 2.5, 1.0] 0.00023 7.1e-05 0.0055

[0.08, 0.05, 0.01] [4.0, 2.5, 1.0] 0.0058 0.0013 0.0092

Table 3: Mean squared errors for each experiment (noisy data). The row of θ and kp indicates the values used for each
dosage (low, medium, and high dosages respectively). The noisy data was created using a noise level of 0.03. Model
MSE is the MSE between the data and the model.

is correct for each dosage, and the resulting equations, when solved using the estimated parameters, fit the data very
well visually. In addition, the model MSE (the MSE between the data and the model) is on the order of 10−3. It is
worth noting that sometimes, the surrogate solution returns and the fit implied by the parameters does not agree. The
surrogate solution may agree with the data but the inferred parameters, when substituted into the differential equation,
do not show an accurate fit. This may happen because the PINN loss is not sufficiently minimized compared to the
MSE loss. For this reason, for this set of experiments, we perform both checks to ensure that the results are reasonable.
Overall these results show that the UPINN method may provide an alternative to fitting multiple PINNs, with the added
capability of interpolating between observations.
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(a) (b)

(c) (d)

Figure 6: (a) Equispaced noiseless data with Norton-Simon drug action, (b) Learned drug action after the parameter β
was fit from the first 12 days of noiseless data (final estimate: 0.999, MSE 1× 10−6),(c) Equispaced noisy (0.03) data
with Norton-Simon drug action, (d) Learned drug action after the parameter β was fit from the first 12 days of noisy
data (final estimate: 0.997, MSE 9× 10−6)

4.3 Learning doxorubicin dynamics

In the next set of experiments, we aim to learn doxorubicin dynamics from in-vitro data, as gathered and modelled
by [15]. Due to the absence of the ground truth net proliferation rate for in-vitro experimental data, we first validate
the method using simulated data. We use [15]’s ODE to generate data from eq. 6 and one of 7 and 8. We then learn
FD(N, t) and GD(t) as per the methods for eq. 8, and we learn FD(N, t) from data generated by eq. 7. Subsequently,
we learn FD(N, t) and GD(t) from the in-vitro SUM-149 data.

For our in-silico analysis, we generated time series data {ti, ni} (number of tumour cells over time) either via equation 7
or 8, for different sets of realistic parameters. Since kd,A(D), kd,B(D), θ(D), r(D) take on scalar real values for a
given dosage, it suffices to generate a dataset with one parameter combination for each “dosage”. We generated several
such datasets. By comparing it to the ground truth net proliferation rate, we are able to validate the performance of
the model. Parameter values for these data were chosen to be similar to the values obtained via fitting by [15]. kp was
selected to be 0.0354 hr−1. This value was obtained by fitting a standard continuous PINN [23] to the control data
provided by the authors of [15]. Finally, we added noise to the synthetic data, as per synthetic experiments in [18]
at a noise level of 0.03. The data generated for each dosage was normalized such that both the time and cell counts
range from 0 to 1. In other words, the carrying capacity information and the timescale information is lost at this stage,
but can be recovered later after FD(N, t) and GD(t) are fit, by undoing the scaling. This initial scaling improves the
performance of the UPINN method.
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(a) (b) (c)

(d) (e) (f)

Figure 7: (a) Surrogate solution for row 4 of Table 3. (b) Fit and interpolated parameters per dosage. Blue is θ, and red
is kp. (c) Data was simulated using the inferred parameters for each of the three dosages. (d)-(f) Same as (a)-(c) but for
row 7 of Table 3.

First, data from eq. 6 combined with 7 was generated, utilizing different parameter values to create datasets for different
“dosages". Table 4 summarizes the different parameters and noise levels tested. For the same dataset, the UPINN
was used to fit FD(N, t) from eq 9 5 times, and the best, mean and standard deviation MSE is reported. The MSE
is computed between the predicted cell count and the actual cell count. The predicted cell count was obtained by
substituting the learned FD(N, t) into eq 9 and solving the equation numerically. Figure 8 shows a particular fit of
FD(N, t) using data generated from θ = 1.0, kd,A = 0.03 hr−1. The method performs well in identifying FD(N, t)
for different realistic values of the parameters, as evidenced by the MSE model error being at most 10−4. Given that
the standard deviation of the fits is on the order of 10−5 and 10−6, we can conclude that for this equation, the UPINN
method produces reproducible fits.

θ kd,A noise Best solution fit MSE Mean MSE St. Dev. of MSE

1.0 0.05 0.0 1.11e-05 4.17e-05 2.31e-05

1.0 0.03 0.0 6.03e-06 1.42e-05 1.48e-05

1.0 0.01 0.0 2.20e-07 3.24e-06 2.99e-06

1.0 0.05 0.03 5.83e-04 5.98e-04 2.41e-05

1.0 0.03 0.03 5.02e-04 5.11e-04 1.30e-05

1.0 0.01 0.03 2.15e-04 2.17e-04 1.71e-06

Table 4: Fit of FD(N, t) using data generated via eq. 7, with MSE computed between the inferred solution (using the
learned hidden term) and the data. Each experiment was run 5 times; the error of the best fit is shown, along with the
mean and standard deviation of all 5 runs.

Next, data from eq. 6 combined with 8 was generated. In this case, the net proliferation rate is time-dependent, whereas
in eq. 7 it is constant. Table 5 summarizes the MSE of the learned FD(N, t) when the data was generated according to
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(a) (b)

Figure 8: (a) Fit of FD(N, t) to data from eq 7 with parameters kd,A = 0.03, kp = 0.0354 (b) ODE solution generated
using the inferred FD(N, t), along with the data for comparison. FD is recovered well using the UPINN method, and
the resulting model using the recovered FD matches the data well.

eq 8. We can see that the model MSE is on the order of at most 10−4 for most parameter combinations. In this case,
several different (rd, kd,B) combinations are chosen, and the best runs of 5 are chosen similarly. Since the standard
deviation is at most 10−3 (unless one of the runs completely fails to learn the underlying function), we do not anticipate
that adding more runs would change these MSEs significantly. The values chosen for these parameters were informed
in part by [15] such that a variety of realistic growth curves were generated. Carrying capacity θ is set to 1 to avoid
the additional step of rescaling the cell counts. Table 5 reports the results for both noisy and noiseless data. It can be
seen that the very first row had a run that has an error on the order of 101, but the MSE for the best model run is still
10−5. This means that for this particular parameter combination, many of the model fits were not accurate, but due to
the stochasticity of the neural network fitting process, it is still possible to obtain a model with MSE less than 10−3

within 5 trials. Figure 9 (a), (b) shows a fit of FD(N, t) to row 2 of Table 5. The solution shows a time-dependent net
proliferation rate, which is learned with a model MSE of 10−6. We also demonstrate that GD(t) can be learned well
from equation (8). Figure 9 (c), (d) shows the fit of the same row 2, with parameters rd = 0.017 and kd,B = 0.05, but
this time fitting GD(t). In this case, the solution matches the ground truth very closely except for t ∈ [0.6, 1.0]. At this
point, the predictions start to diverge. This is likely because the function ceases to be identifiable in this time interval.

rd θ kd,B noise Best solution MSE Mean MSE St. Dev. of MSE

0.017 1.0 0.05 0.0 1.83e-05 23.0 46.0

0.017 1.0 0.03 0.0 4.38e-06 8.06e-05 6.14e-05

0.017 1.0 0.01 0.0 1.35e-05 2.59e-05 9.87e-06

0.017 1.0 0.05 0.03 2.28e-04 1.03e-02 6.56e-03

0.017 1.0 0.03 0.03 4.37e-04 4.99e-04 7.25e-05

0.017 1.0 0.01 0.03 5.00e-04 5.11e-04 8.82e-06

Table 5: FD(N, t) (eq 9) using data generated via eq. 8, with MSE computed between the inferred solution (using the
learned hidden term) and the data. Each experiment was run 5 times; the error of the best fit is shown, along with the
mean and standard deviation of all 5 runs.

Since the UPINN method is able to accurately recover the hidden terms FD(N, t) and GD(t) for both model 7 and 8, we
apply the UPINN method to learn FD(N, t) and GD(t) for in-vitro data, where no ground truth is available. Figure 10
shows the learned time-dependent term FD(N, t) for the application of the doxorubicin chemotherapeutic to SUM-149
cells, at 312nM concentration, for an exposure time of 6hrs. The cells were then allowed to grow undisturbed. This
curve is very similar in shape to the one shown in Fig. 9 (a). The peak occurs at approximately the same height as well.
Figure 10 (c), (d) shows the time-dependent net proliferation, GD(t), learned for the same in-vitro dataset. We can
see that this curve is not possible to construct using equation 7 or 8 alone, or even with a weighted average of these
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Figure 9: (a) Fit of FD(N, t) (eq (9)) to data from row 2 of Table 5 (eq. 8, parameters r = 0.017, kd,B = 0.03) (b)
ODE solution generated using the inferred FD(N, t), along with the data for comparison (c), (d) Same as (a), (b) but
GD(t) is fit. FD in (a) is recovered with a solution MSE of 10−6, but GD in (c) appears to not be fully identifiable
from the data.

equations. This is because the function shown is very flat up until t = 0.4, but the derivative increases after this point.
By contrast, a weighted average of 7 and 8 could not have a derivative of zero for any finite time interval given their
formulations. Hence, fitting the UPINN to find GD(t) provides insights into the true net proliferation rate as a function
of time. Initially, the net proliferation rate behaves more like 7, and subsequently more like 8. Table 6 shows the MSE
between the solution using the learned function FD(N, t) and the data. The inferred solution fits the data well in most
cases, as evidenced by the MSE between the inferred solution and the data being on the order of 10−4 for over half of
the time-series datasets.

5 Discussion

In this work, we apply the UPINN method to learn the chemotherapy drug action in several different ODEs, applying the
method to both synthetic and in-vitro experimental data. Rather than making assumptions about the drug action, we can
learn it from data in order to identify how to best model the effect of the chemotherapeutic on cells over time. In addition,
this learned drug action may allow us to learn more about the underlying biological mechanism. Finally, the learned
drug action can then be used for downstream tasks such as drug treatment schedule optimization. Current limitations of
this method is a lack of uncertainty quantification, which is especially important given the method’s stochastic nature
and potential high-risk downstream applications, lack of integration with model identifiability workflows, and minimal
quantification of differential equation setups where it is unlikely to perform well.

General future work in this direction would involve understanding the conditions under which this method performs
well and when it is not able to learn the drug action effectively (e.g. noise level, shape and properties of the ground
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Figure 10: (a) Fit of FD(N, t) (eq (9)) to experimental data: 312nM, 6h exposure (b) ODE solution generated using the
inferred FD(N, t), along with the data for comparison (c), (d) Same as (a), (b) but GD(t) (eq (10)) is fit. The overall
curve of (a) is similar in shape visually to Fig. 9 (a), indicating that the growth is captured to some extent by Model (6).
Additionally, (c) shows a plateau in the function before an increase in cell killing, which cannot be captured by a linear
combination of (7) and (8).

truth function). If there is more than one function to be learned, understanding the identifiability of the functions would
provide more guidance on whether the method can successfully recover the ground truth. This could be a mathematical
analysis similar to parameter identifiability, or it could be a more nuanced quantification of the uncertainty of the output
of the neural networks, taking into account the abundance of data. Uncertainty quantification has been proposed for
PINNs [29], but it would be especially helpful to quantify the uncertainty for UPINNs. Additionally, it would be
beneficial if the uncertainty quantification method has validity guarantees, such as conformal prediction [2]. Finally,
applying the method to a drug with a known model of drug induced death (e.g. Norton-Simon) would further validate
the method’s performance. As an additional step after the functions have been learned, symbolic regression could be
performed to find a closed form of the function.

As an extension to learning the dynamics of doxorubicin, the UPINN method can be easily adapted to learn the unknown
net proliferation rate G(t,D) as a function of dosage and time (and possibly cells) simultaneously. This would involve
treating the number of cells as a function of both dosage and time as well. However, there are several considerations:
due to the limited dosage data (only 9 measurements), interpolation between these measurements may not yield good
results. However, it should be possible to fit G(t,D) correctly for the available dosages. Secondly, there may be
identifiability issues and there may not be a single unique G which satisfies the equation.
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6 Conclusion

In this paper, we integrate machine learning in the form of the Universal Physics-Informed Neural Network (UPINN)
method with QSP models in order to learn the drug action of chemotherapeutics accurately and with minimal computa-
tional expenses. We showcase the ability of the method to identify three different well-known drug actions, the Log-kill
model, Norton-Simon, and Emax. The learned drug actions match the ground truth very well. This method can also be
used to infer many parameter sets simultaneously rather than running a separate fitting procedure for each dataset. In
addition, the method can interpolate between fitted parameters. Finally, we employ the method to learn the drug action
of doxorubicin from time-series data.
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