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Pathology-genomic fusion via biologically informed
cross-modality graph learning for survival analysis
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Zhenyu Zhang and Zhi-Cheng Li

Abstract—The diagnosis and prognosis of cancer are typically
based on multi-modal clinical data, including histology images
and genomic data, due to the complex pathogenesis and high
heterogeneity. Despite the advancements in digital pathology and
high-throughput genome sequencing, establishing effective multi-
modal fusion models for survival prediction and revealing the
potential association between histopathology and transcriptomics
remains challenging. In this paper, we propose Pathology-
Genome Heterogeneous Graph (PGHG) that integrates whole
slide images (WSI) and bulk RNA-Seq expression data with
heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation
learning network and pathology-genome heterogeneous graph.
The representation learning network utilizes the biological prior
knowledge of intra-modal and inter-modal data associations to
guide the feature extraction. The node features of each modality
are updated through attention-based graph learning strategy.
Unimodal features and bi-modal fused features are extracted via
attention pooling module and then used for survival prediction. We
evaluate the model on low-grade gliomas, glioblastoma, and kidney
renal papillary cell carcinoma datasets from the Cancer Genome
Atlas (TCGA) and the First Affiliated Hospital of Zhengzhou
University (FAHZU). For demonstrating the model interpretability,
we also visualize the attention heatmap of pathological images
and utilize integrated gradient algorithm to identify important
tissue structure, biological pathways and key genes.

Index Terms—Heterogeneous Graph Neural Network, Multi-
modal Fusion, Survival Analysis

I. INTRODUCTION

CANCER diagnosis and prognosis usually involve het-
erogeneous clinical data including histology images and

genomic data owing to the complex pathogenesis and high
heterogeneity [1]. Despite the enormous advancement of digital
pathology and high-throughput genome sequencing technology,
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it remains challenging to establish an effective multi-modal fu-
sion model and identify the correlations between histopathology
and transcriptomics. Whole slide images (WSI) contain rich
information about tissue structure (e.g., fibrous tissue, glandular
tissue or blood vessels) and cell type (e.g., cancer cells, stromal
cells or immune cells) which can illustrate the malignant
degree and development stage of tumor. Consequently, the
pathologists usually consider the pathological characteristics
as an important criteria of cancer diagnosis and grading [2].
However, the subjective pathological descriptions fail to capture
survival-associated features due to high heterogeneity of WSI
and multifactorial influence of prognosis. Transcriptomics
provides complementary prognostic information [3] including
quantitative measurement of RNA expression levels which can
reveal cancer pathogenesis and progression from a microscopic
perspective. Meanwhile, according to the central dogma of
molecular biology, gene expression can affect the protein
translation, consequently influencing the cells growth and
proliferation, which can be reflected as pathological features
in WSI, thus gene expression patterns have the potential
correlation with histopathological characteristics. The major
challenge posed by the integration of both modalities for
survival prediction is how to establish intra-modal and inter-
modal correlations that are consistent with prior biological
knowledge to achieve reasonable and effective fusion of
genomic data and histology images. Currently, multi-modal
fusion strategies can be divided into early, late, and intermediate
fusion. Early fusion integrates feature of different modalities
through vector concatenation, bilinear pooling or element-wise
sum before input the fused feature into a unified model [4],
which requires feature alignment across different modalities.
However, different modalities are usually complementary and
intersectional [5], especially genomic data and WSI that have
huge data heterogeneity gap and vast spatial scales discrepancy
[6], [7]. Late fusion allows for the specific feature extraction
networks for each modality and then aggregates the output
of each network [8]. Although promising performance has
been reported by numerous researches, the late fusion method
usually ignores the correlation among different modalities due
to the separated representation learning networks. Compared
with early fusion and late fusion, the intermediate fusion
integrates the representation learning and multi-modal fusion
network, which means inter-modal information interaction in
fusion layer can influent feature extraction of each modality in
representation learning network under the multimodal context
[9], [10], [11]. Moreover, intermediate fusion enables the model
to explore complex correlation across multi-modal data, which
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has substantial potential in improving the model interpretability.
Cross-guided fusion is a frequently-used intermediate fusion
strategy which allow the guidance of feature extraction among
different modalities. For instance, recent work has incorporated
transformer-based architecture to multi-modal fusion task and
model complex interaction across each modality via guided-
attention mechanism [3], [12]. However, transformer-based
architecture calculate the co-attention matrix simply through
matrix multiplication which ignore the intrinsic associations of
each modality e.g., spatial information of WSI and biological
correlation of biological pathways. In this paper, we propose
pathology-genome heterogeneous graph (PGHG) consisting of
biological knowledge guided representation learning network
and pathology-genome heterogeneous graph to integrate WSI
and bulk RNA-Seq expression data for survival analysis. Specif-
ically, pathway enrichment analysis is performed to obtain
biological pathways which have been verified that involved
in different physiological and metabolic processes in cells
and have specific biological meanings, then we represent the
pathways as nodes in the genome subgraph, and the topology
relationship among each pathway node is established according
to the common RNA number. Besides, whole slide image is
divided into non-overlapping patches which are represented
as nodes in pathology subgraph and the edges are built based
on the adjacent relation of each patch. In the representation
learning network, inspired by the graph auto-encoder that
learns the node representations with structure information by
reconstruct adjacent matrix of pathway subgraph, we further
conduct RNA-Seq expression data reconstruction to make
sure the characteristics of RNA expression are also preserved.
Besides, given the central dogma of molecular biology and the
potential associations between genomic data and histology
image,we propose to utilize biological priori information
to guide representation learning network to extract genome-
relevant pathological feature and alleviate the interference of
redundant features. Specifically, gene set variation analysis
(GSVA) is applied to RNA-Seq data and the GSVA scores of
each pathway are used to supervise the pathological feature
extraction. Lastly, to reduce the large data heterogeneity gap and
explicitly model the correlation between histology image and
RNA-Seq expression data, we extract the global representation
of each modality with attention pooling module and minimize
the Euclidean distance of the global embeddings in the feature
space. In the pathology-genome fusion heterogeneous graph, we
construct the edges between pathology subgraph and genomic
subgraph through fully connecting each heterogeneous node
pairs, considering that bulk RNA-Seq expression data represents
the comprehensive sequencing outcomes of cells within the
entire sampled tissue. The heterogeneous graph learning is
similar to graph attention networks and each node aggregates
information from the intra-modal and inter-modal neighbor
nodes consecutively, then we obtain the intra-modal feature
and inter-modal feature of node in each subgraph which will
be used in subsequent survival prediction.

Our contributions are summarized as follows: (1) The
representation learning module utilizes biological prior knowl-
edge to guide feature extraction of histology image and
genomic data and align the feature embeddings from each

modality which can decrease the heterogeneous gap of multi-
modality. (2) The heterogeneous graph construction is in
accordance with biological prior knowledge and can model
the correlation of multi-modal data through graph attention-
based architecture which specifies the associations between
biological pathways and histology image patches, presenting a
intra-modal and inter-modal insight of model interpretability.
(3) The heterogeneous graph neural network provides a novel
perspective of biological guided intermediate fusion strategy
which allows for the expansion of arbitrary number of data
modalities and other graph construction strategy conforming
to the specific characteristics of each modality.

II. RELATED WORK

A. Survival Analysis with Genomic features

Recently, the advancement in sequencing technologies
greatly deepens the understanding of molecular biology, several
genomic-based survival models utilizing molecular biomarkers
and genomic expression data have been proposed. For instance,
Shuguang Zuo et al. [13] developed a COX regression model
with six selected gene signatures for survival analysis of patients
with glioblastoma and evaluated the relevant contribution of
each gene signature for the survival prediction. However
this strategy can only utilize limited number of selected
signatures and failed to handle high-dimensional genomic
profiles. Subsequently, recent works have incorporated deep
neural network into genetic-based survival analysis. Safoora
Yousefi et al. [14] proposed a feedforward network driven by a
Cox survival model with mRNA, gene mutations, copy number
variations (CNV), and protein expression features as model
input, besides the model hyperparameters were searched based
on the Bayesian optimization. Zhi Huang et al. [15] proposed to
conduct gene co-expression network analysis and then used the
identified co-expression modules and other cancer biomarkers
for survival analysis, thus simplified high-dimensional gene
expression data, provided a promising solution for improving
the model interpretability and exploring the potential biological
functions. However, these strategies fail to incorporate with
other data modalities which may involve more comprehensive
tumor-relevant prognostic information.

B. Survival Analysis with histology image

The combination of digital pathology and artificial intelli-
gence has greatly accelerated the development of computational
pathology, deep learning based diagnostic whole slide images
analysis has been widely used in numerous clinical task such as
cancer diagnosis, prognosis, therapeutic response predictions,
etc. However, the training and deployment of conventional
prognostic models remain challenging due to the gigapixels
of WSI. Currently, the mainstream of survival analysis using
WSIs is patch-based multiple instance learning. Gang Xu et
al. [16] proposed a weakly supervised learning framework
that leveraged image-level label to supervise the generation
of instance-level labels, which were further assigned to the
corresponding pixels and thus achieved pathological image
segmentation. Besides, Richard J. Chen et al. [7] incorporate
Attention MIL (AMIL) [17] into cancer survival analysis
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with WSIs, which can generate the attention scores for the
importance quantification of each image patch and identify
the pathological characteristics in the high-attention regions.
Later, they further proposed Hierarchical Image Pyramid Trans-
former (HIPT), a transformer-based hierarchical self-supervised
framework for the representation learning of histological image,
the model was pretrained with 10678 gigapixel WSIs from
33 cancer types and achieved remarkable performance in
cancer subtyping and survival prediction. Despite the promising
improvement MIL has achieved, treating each image patch
as a separated instance neglects the morphological feature
correlations between cell identities and pathological tissues,
which may contain enormous prognostic information. Thus
graph-based networks [18], [19] were proposed to address this
problem, specifically, each histology image patch was regarded
as a node in the graph and the edge was constructed based on
the adjacency relation, thus the topological organization in the
tumor microenvironment was considered in the graph learning.

C. Survival Analysis with Multi-modal Learning

With the emergence of clinical data in various modalities, the
deep learning-based multi-modal fusion algorithm has become
a promising strategy that seeks to aggregate multiple data
modalities, improve prediction precision and explore multi-
modal biomarkers. Richard J. Chen et al. [6] proposed to
aggregate the histologic deep features, cell morphological
characteristics and genomic features through Kronecker Product
and gating-based attention mechanism. Subsequently, they also
employed a simple late fusion mechanism: combining histology
feature with genomic data through vector concatenation at the
last layer and then evaluated the effectiveness of the strategy
on 6,592 H&E diagnostic WSIs of 14 cancer types from
TCGA [7]. Besides, Transformer-based multi-modal fusion
approaches have also shown great potential. There has been
numerous studies on survival prediction using cross-attention
module to model the correlation between different modalities
[12], [20], [20], for instance, using a query generated from
the genomic embedding to guide the histological feature
extraction and thus generate genomic-guided histological image
embeddings. However these approaches fail to make full use
of potential biological prior knowledge and merely treat each
data modalities as structured feature embedding, thus the intra-
modality and inter-modality information are not taken into
consideration.

III. METHODS

The main framework of our proposed model is illustrated as
Fig 1, which consists of biological knowledge guided represen-
tation learning module and pathology-genome heterogeneous
graph module. In the representation learning module, we extract
pathological and genomic feature embeddings and leverage the
biological prior knowledge to capture potentially correlated
information between pathological and genomic modalities.
Specifically, we first divide WSI into non-overlapping patches
after the image background removal. Besides, pathway enrich-
ment is conducted to identify statistically enriched biological
pathways. Then we propose to leverage known biological

information of intra-modality and inter-modality associations to
guide the feature extraction of histological image patches and
biological pathways, which are denoted as nodes in pathological
subgraph and genomic subgraph respectively. For the reasonable
and effective integration of pathological images and genomic
data, we construct the pathological subgraph and genomic
subgraph based on spatial location and common gene number
respectively, pathological patch nodes are fully interconnected
with pathway nodes to sufficiently model the intricate inter-
modality interactions. In the heterogeneous graph module, the
node embeddings are updated through attention-based graph
learning [21] and attention pooling module are utilized to
extract the unimodal global feature and bi-modal fused global
feature from each subgraph. Then the concatenated global
feature is input into a fully connected layer to make the final
survival prediction.

A. Pathological feature extraction and subgraph construction

Computational pathology has achieved remarkable progress
in multiple clinical task e.g. cancer detection [22], diagnosis
[23] and prognosis [2]. In recent years, an increasing number
of researches adopted multiple instance learning (MIL) to
gigapixel whole slide images analysis through representing each
separated patch as an independent instance and integrating all
the instances via global feature aggregation. Despite promising
results have been reported, conventional MIL approaches
may ignore the location information across patches and the
interactions between cells and tissues remain indiscernible.
Inspired by Patch-GCN [18], we construct the pathology
subgraph Gp = (Fp, Ap) with pathological image, each patch
is denoted as a node f i

p and connected to the 8 hop proximal
neighbor patches N (i). The adjacent matrix of pathology
subgraph is denoted as Ap. Specifically, we divide each WSI
into 256×256 patches at 20× magnification (0.5 µm/pixel) and
extract feature embeddings which is denoted as the nodes
feature Fp =

[
f0
p , f

1
p , . . . , f

m
p

]
using ResNet50 pretrained on

ImageNet. The adjacency matrix Ap is defined as following
formula:

Ap[i, j] =

{
1, j ∈ N(i)

0, otherwise

B. Biological pathway feature extraction and subgraph con-
struction

Gene expression profiles are highly associated with cancer
progression and may have the potential to provide fundamental
explanation of cancer pathogenesis. Traditional techniques of
transcriptome data analysis are usually based on statistical tests
or machine learning which focus on differential gene expression
analysis [24] and identify the key genes, tumor-specific
molecular mechanisms and candidate targets for drug therapy,
etc. However, recent studies have indicated that the biological
pathways are more conducive to revealing the pathogenesis
of cancer [25], [26], [27]. Thus we choose the biological
pathway as the basic unit of genomic subgraph. Firstly, we
identify the top 20000 genes with the highest variance from
external genomic dataset, which are not involved in model
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Fig. 1: Schematic illustration for the proposed method: pathology-genome heterogeneous graph. The blue box contains the
biological knowledge guided representation learning network. The yellow box contains the pathology-genome heterogeneous
graph.

training and validation, then we conduct pathway enrichment
to high variance genes using biological pathway database
KEGG and REACTOM. Pathways with statistical significance
(adj P value < 0.05) are reserved for the genomic subgraph
construction. Subsequently, a logarithmic transformation for
the gene expression values of each pathway is performed to
reduce the impact of extreme values. The genomic subgraph
Gg = (Fg, Ag) is constructed in the following steps: (1) denote
the biological pathway as the node and the sequencing data
of genes contained in the each pathway are represented as
the genomic node feature Fg; (2) we propose to quantify the
correlation of biological function between pathways with the
ratio of common genes number and the total genes number
of both pathways. Each pathway node f i

g is connected to the
top-10 pathway nodes that have the highest relevance score
sij (j ∈ [0, 1, . . . n]). The formulas are as follows:

sij =
num(f i

g ∩ f j
g )

num(f i
g) + num(f j

g )

Ag[i, j] =

{
sij , if sij ∈ top10 (sik, k ∈ {1, 2, . . . , n})

0, otherwise

C. Biological prior knowledge guided representation learning

Genomic knowledge-guided pathway feature extraction In
previous work, differential gene expression analysis of normal
tissue and tumor tissue are usually conducted to identify the
key genes which may relate to the molecular mechanism
of cancer pathogenesis. However, the identified key genes
may exhibit significant bias due to variations in statistical
methods. Moreover, the functional dependency between genes
or pathways which has been proved that have the potential
to reveal the cancer pathogenesis remains unexploited [24],
[25], [28]. Similar to the graph autoencoder [29], we conduct
the reconstruction of pathway subgraph adjacent matrix and
gene expression value to ensure the pathways correlation
information and gene expression patterns can be preserved
in the representation learning. Specifically, after the above-
mentioned graph construction, we obtain the pathway subgraph

represented as Gg = (Fg, Ag). It’s notable that the initial
feature embedding of pathway node f i

g (i ∈ {1, 2, . . . n}) is
composed of different number of genes and thus the dimension
of pathway node features is not unified. Therefore, we adopt
SNN encoder networks which consist of fully connected layer,
exponential linear units (ELU) and Alpha Dropout to each
pathway node to convert the features into dimension-unified
embeddings f i

gu. After the graph convolution operation, the
pathway embeddings Z are used to reconstruct the adjacent
matrix Ag via inner product. Ãg = D−1/2AgD

−1/2 represents
the symmetrically normalized adjacency matrix and D is the
degree matrix. The graph convolution and adjacent matrix
reconstruction formulas are as follows:

Z = ReLU(ÃgReLU(ÃgFguW1)W2)

A′
g = sigmoid(ZZT )

LAdj =− 1

N ×N

(
N∑
i=0

N∑
j=0

aij log (a
′

ij)

+ (1− aij) log (1− a
′

ij)

)
where the aij represents the element in pathway subgraph

adjacent matrix and the a′ij is the element of reconstructed
adjacent matrix. LAdj is the cross-entropy loss of the graph
reconstruction.

Meanwhile, recent research indicates that the topological
information of graph should not be over-emphasized while
feature reconstruction with corruption is necessary to improve
model robustness [30], especially given the unstability of gene
sequencing technique due to diverse sequencing depth, coverage
and sample batch effect etc. Thus we additionally reconstruct
the gene expression values Fg to ensure the preservation of
gene expression pattern in representation learning. Concretely,
we input pathway node feature f i

gu into the decoder networks
which have similar network structure with encoder network
to convert the dimension-unified pathway embedding into
the reconstructed pathway node feature f i

gr that has the
identical dimension with f i

g . To improve the generalization and
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robustness of model to unstable genomic data, we randomly
mask 20% of the gene expression values within each pathway
nodes in each epoch during the training process.

For the pathway node f i
g , M denotes the gene index set that

is randomly chosen to be masked, the masked pathway node
f i
gm is defined as:

f i
gm[q] =

{
f i
g[q] , q ∈ M

0 , q /∈ M
q ∈ [0, 1, . . . , n]

F i
recon(·) denote the decoder network of pathway node i. The

reconstruction of gene expression values Fg are defined as
follows:

f i
gr = F i

recon(f
i
gu)

LRNA =
1

m

m∑
i=0

||f i
gr − f i

g||2

where the f i
g is the reconstructed feature of pathway node i

and the fgr is the initial pathway node feature. LRNA denotes
the loss of pathway node reconstruction.

Genomic knowledge-guided pathological feature extrac-
tion Digital pathological images contain enormous semantic
information and thus have been regarded as a vital criterion
of diagnosis and treatment decisions in oncology. However
some normal tissues such as stroma, adipose tissue, fibroblasts
exhibit less relevance to the cancer prognosis. Thus it is an
intractable problem to extract prognosis-relevant information
from the abundant pathological feature due to the high image
heterogeneity. RNA sequencing (RNA-Seq) data serves as a
direct indicator of gene expression levels and patterns within the
cell nucleus, providing insights into transcriptional activity and
biological function, which have been extensively linked to the
cell abnormal growth, proliferation and cancer tissue formation.
Several studies have successfully applied deep learning based
pathological images analysis to cancer grading [27], gene
mutations prediction [23], and gene expression prediction
[31] etc, which demonstrate the feasibility of extracting gene-
relevant pathological features. Thus we propose to guide
the extraction of pathological feature via biological pathway
information. Different from previously mentioned methods that
predict the expression level or mutation status of identified key
genes, we propose to conduct gene set variation analysis(GSVA)
on the genomic data and supervise the pathological feature
extraction with GSVA score of each pathway fgsva(m × 1),
which can reveal the biological pathway activities in the
tumor tissue. Specifically, we use attention pooling module
to pathology subgraph feature embedding Fp to generate the
global representation of the WSI denoted as fpwsi

, the global
embedding fpwsi

is further input into the feedforward network
to predict the GSVA score f

′

gsva. The GSVA prediction loss
Lgsva is calculated as follows:

ai =
exp(f0(tanh(W0 · f i

p)⊙ tanh(W1 · f i
p)))∑m

j=0 exp(f0(tanh(W0 · f j
p )⊙ tanh(W1 · f j

p )))

fpwsi
= GAP (Fp) =

m∑
i=0

ai · f i
p

f ′
gsva = Wgsva · fpwsi

Lgsva = ||f
′

gsva − fgsva||2

Genomic and pathological feature alignment Pathological
images and genomic data contain cancer progression-related
information at distinct scales, offering diverse insights into the
etiology and pathogenesis of cancer. However the heterogeneity
gap between two modalities poses substantial obstacles in
multi-modal fusion. Especially given that the elementary unit
of genomic subgraph is biological pathways, which elaborate
distinct and complicated biological process of pathological
tissue. Recent work proposed to map genomic and medical
image data into an unified feature space and align different
modalities via contrastive learning [32]. Based on that, we
combine the feature alignment with the survival prediction
to ensure that the network can be trained in an end-to-end
manner with the supervision of specific downstream task.
Specifically, we adopt a attention pooling module to the
pathway node feature and obtain the global representation of
pathway subgraph fgpw , which is then converted into the feature
space of fpwsi through linear projection and the contrastive
loss between global representation of genomic subgraph f ′

gpw
and pathology subgraph fpwsi

is as follows:

f ′
gpw = Wpw · fgpw

Lalign = ||f
′

gpw − fpwsi
||2

D. Pathology-genome heterogeneous graph learning

Following the multi-modal representation learning module,
we obtain the feature embedding of pathological nodes and
pathway nodes respectively. Considering bulk RNA sequencing
reveals the holistic information of genetic material within the
cell nuclei of pathological tissues, each biological pathway
exhibits certain associations with pathological patches, we
fully connect the node pairs with different modalities in the
heterogeneous graph construction. Additionally, for quantifying
the intra-modality and inter-modal associations and enhancing
the model interpretability, we adopt a graph learning strategy
similar to graph attention network. For each node in the
heterogeneous graph, we iteratively aggregate neighbor node
features from intra-modality subgraph and inter-modality
subgraph in each layer, and then we obtain unimodal node
feature and bi-modal fused node feature from each subgraph.
Take pathological node f i

p (f i
p ∈ Fp) as an instance, we first

aggregate the neighbor node f j
p

(
f j
p ∈ Np (i)

)
in pathology

subgraph, the graph learning procedures are as follows: 1) Input
the node feature Fp into a linear projection layer to obtain Fp0;
2) Calculate the element-wise product of center nodes f i

p0 with
the neighbor nodes f j

p0 (j ∈ Np(i)) and then input into linear
projection layer to calculate the attention score appij of each
neighbor pathological node; 3) Normalize the attention score of
each neighbor nodes using the softmax function, then add the
attention weighted neighbor node feature appij f

j
p0 to the center

node f i
p0 and the updated node feature is represented as f i

pp;
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4) Input the pathway node feature Fg into a linear projection
layer to obtain Fg0; 5) Calculate the element-wise product
of center pathological node f i

p0 with the neighbor pathway
node fk

g0 (k ∈ Ng(i)) and then input it into a linear projection
layer to calculate the attention score apgik of each neighbor
node; 6) Normalize attention score of each neighbor nodes
using the softmax function, then add the attention weighted
neighbor node feature apgik f

k
g0 to the center node f i

p0 and the
updated node feature is represented as f i

pg; The procedures of
genomic node learning is similar to abovementioned steps and
the formulas are as follows:

Fp0 = Wp0 · Fp

appij =
exp(Wpp · (f i

p0 ⊙ f j
p0))∑

j∈Np(i)
exp(Wpp · (f i

p0 ⊙ f j
p0))

f i
pp = f i

p0 +
∑

j∈Np(i)

appij f
j
p0

Fg0 = Wg0 · Fg

apgik =
exp(Wpg · (f i

p0 ⊙ fk
g0))∑

k∈Ng(i)
exp(Wpg · (f i

p0 ⊙ fk
g0))

f i
pg = f i

pp +
∑

k∈Ng(i)

apgik f
k
g0

The center node can aggregate 1 hop neighbor node feature
of both modalities in each graph learning step. And in our
experiment the graph learning procedures are performed once
which means each node in the heterogeneous graph aggregate
1 hop neighbor node from both modalities. After the above
mentioned graph learning, we obtain pathological unimodal
feature Fpp and bi-modal feature Fpg from pathological sub-
graph, genomic unimodal feature Fgg and bi-modal feature Fgp

from genomic subgraph, respectively. Then we use attention
pooling module to generate the global feature representations
as follow:

fi = GAP (Fi) i ∈ {pp, pg, gp, gg}

In addition, we employ a gating-based attention mechanism
[33] to control the weights of each features in the survival
prediction task. Specifically, we use four linear projection layers
of the concatenated feature [fpp, fpg, fgp, fgg] to generate four
attention scores which can evaluate the relative importance of
each feature embeddings. Then we integrate the gated atten-
tion weighted feature embeddings using vector concatenation
followed by two fully-connected layers to predict the survival
risk.

αi = W i
gate[fpp, fpg, fgp, fgg] i ∈ {pp, pg, gp, gg}

For each patient we denote the censorship status as c while
c=0 represents the patient’s death and c=1 represents the patient
had lived past the last follow-up time. We denote t as the time in-
terval between patient’s diagnostic and the last follow-up if c=1
or the patient’s death if c=0. We denote gated attention weighted
feature [αppfpp, αpgfpg, αggfgp, αgpfgg] as s. Besides, we
adopt the negative log-likelihood (NLL) survival loss proposed

by Shekoufeh [34] which converts the time t into equal non-
overlapping time intervals [tj−1 , tj ] , j ∈ {1, 2, ..., q}, and use
model to predict the label yj that represent the time interval
instead of a specific time point tj and the clinical data can be
represented as [c, yj , s]. The log likelihood survival loss can
be formulated as:

fhaza (yj |s) = Sigmoid(ŷj)

fsurv (yj |s) =
j∏

k=1

(1− fhaza (yk|s))

Lsurv =

N∑
i=0

−ci log fsurv(y
i
j |si)

+ (1− ci) log fsurv(y
i
j − 1|si)

+ (1− ci) log fhaza(y
i
j |si)

where ŷj is the predicted risk at time interval j and N is the
number of patients.

The total loss is combined with survival prediction loss
Lsurv , genomic-pathological embedding alignment loss Lalign,
GSVA prediction loss Lgsva, RNA reconstruction loss LRNA

and genomic subgraph adjacent matrix reconstruction loss LAdj .
The formula is as follows:

L = α1Lsurv + α2Lalign + α3Lgsva + α4LRNA + α5LAdj

where αi is the hyperparameter.

E. Multimodal Interpretability

To improve the interpretability of the model, we adopt
attention visualization and gradient integration algorithms
to interpret feature importance in pathological images and
biological pathways, respectively. The visualization of attention
weight consists of two parts: 1) attention weight obtained from
pathological feature embeddings after the intra-modal learning,
which aim to identify the important pathological tissue related
to cancer prognosis. 2) pathway-pathological node co-attention
generated in the heterogeneous graph learning, which reflects
the correlation between pathological features and biological
pathways. Besides, we also use the Integrate Gradient (IG)
[35], a gradient-based interpretability method, to describe how
the gene expression values contribute to the prognostic risk and
further identify the important biological pathways and genes
with potential prognostic value.

IV. EXPERIMENT AND RESULTS

A. Datasets and Preprocessing

For this study, we collected whole slide images and genomic
data of low grade gliomas (TCGA-LGG, n=466) and kidney
renal papillary cell carcinoma (TCGA-KIRP, n=256) from The
Cancer Genome Atlas (TCGA). Additionally, we gathered
181 cases of low grade gliomas (FAHZU-LGG, n=181) and
111 cases of glioblastoma (FAHZU-GBM, n=111) from First
Affiliated Hospital of Zhengzhou University. Each patient
contains paired pathological image and RNA expression data.

For each cancer dataset, the pathological image preprocess
procedures are as followed: we first removed the background
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of histology slide and divided the tissue region into non-
overlapping 256×256 patches at 40× (0.5 µm/pixel), then
stain normalization [36] was performed to pathological image
patches to reduce the inconsistency of histology slides across
different sites. Finally, we extracted feature embedding of each
image patch via pretrained ResNet50. For genomic data, a
log transformation was performed to reduce the impact of
extreme values and top 20000 genes with highest variance
were reserved. Then we conducted pathway enrichment with
biological pathway database (KEGG and REACTOM) and
preserved biological pathways with statistical significance (adj
P value <0.05). 480, 428 and 472 pathways were obtained
in LGG, GBM and KIRP dataset respectively. The gene set
variation analysis was then conducted and the GSVA scores of
biological pathways were calculated to guide the pathological
feature extraction. The models in our experiments were trained
using 5-fold cross validation. The TCGA-KIRP, FAHZU-GBM
and TCGA-LGG dataset were used for model training and
validation while the FAHZU-LGG dataset served as an external
validation dataset to evaluate the generalization of models
trained in TCGA-LGG dataset.

B. Implementation Details

Parameter Setting The pathological features were extracted
via ResNet50 with the pretrained weights from ImageNet [37]
and the 1024-dimensional feature embeddings were obtained
from the average pooling layer behind the 3rd residual block.
Considering the biological pathways contained different number
of RNA, we first adopted encoder networks to each pathway
to obtain the unified dimensional pathway features. Then
feedforward network which consisted of two fully connected
layers, ReLU activation and Dropout layers (p=0.2) was adopted
to pathology feature embeddings to unify the feature dimension
of both modalities. In heterogeneous graph learning stage, the
node feature of pathological image patch and genomic pathway
aggregated neighbor node feature from intra-modal subgraph
and inter-modal subgraph consecutively. Considering the edges
of inter-modality were built through fully connecting, each
node feature only aggregated 1-hop neighbor nodes from each
modality. The following ablation experiment and comparison
experiment were conducted in the same train/valid splits. All
networks were trained using Adam optimizer with weight
decaying of 1×10−4 and learning rate of 2×10−4. The batch
size is 1 with 8 gradient accumulation steps.
Model Evaluation We evaluated our proposed method with
standard quantitative and statistical metrics for survival analysis.
Specifically, we evaluated the prediction performance using
the Concordance Index (CI) which represents the proportion of
patient pair that predicted risk is ranked in the same order as
survival time among all uncensored patients. We calculated the
CI value of each model trained in 5-fold cross validation and the
model performance was given in terms of mean and standard
deviation. Besides, we also conducted the Kaplan–Meier
(KM) analysis to visualize the patient stratification result. For
assessing the significance of stratification, the log rank test
[38] was utilized to determine the statistical significance of the
difference between low and high risk patient group.

C. Ablation Study

We conducted an ablation study to evaluate the performance
of unimodal networks including pathological subgraph and
genomic subgraph to verify the effectiveness of multi-modal
fusion. Besides, to demonstrate the performance improvement
of biological knowledge guided representation learning module,
we also trained the network without the module using the
same parameter settings. And Table I has shown the result of
ablation experiments that the multimodal fusion models yielded
better performance comparing to both unimodal subgraph in
each cancer dataset. Meanwhile the PathoGenoSurvGraph with
biological knowledge guided representation learning module
achieved the consistently highest c-Index. For the low-grade
gliomas dataset, the performance of genomic subgraph surpass
the pathological subgraph and the same result is observed in the
TCGA-KIRP dataset. And the PathoGenoSurvGraph achieves
2.1% and 4.9% performance increase comparing to the best
unimodal model in TCGA-LGG and FAHZU-LGG dataset,
respectively. For FAHZU-GBM dataset, we observe that the
pathological subgraph achieves better performance than the
genomic subgraph, which is different from the other datasets
and PathoGenoSurvGraph also achieves 4.5% performance
gain comparing with the pathological subgraph. Furthermore,
we also observe 4.9% and 3.5% performance improvement
comparing with the best performance of unimodal model and
the PathoGenoSurvGraph without the biological knowledge
guided representation learning module in TCGA-KIRP dataset.

TABLE I: Concordance index of PathoGenoSurvGraph and
ablation experiments in cancer survival prediction

Model TCGA-LGG FAHZU-LGG∗ FAHZU-GBM TCGA-GBM

PathoGraph 0.602±0.037 0.534±0.021 0.574±0.034 0.661±0.087

GenoGraph 0.806±0.021 0.653±0.035 0.531±0.038 0.737±0.079

PGHG (wo BG) 0.806±0.021 0.655±0.025 0.596±0.030 0.747±0.114

PGHG (w BG) 0.823±0.026 0.685±0.011 0.600±0.032 0.773±0.109

w/wo BG: with/without the biological knowledge guided representation
learning module.

Through the ablation experiment, we demonstrate that the
integration of pathological image feature and the genomic
feature can consistently achieve performance improvement
in each cancer dataset. And the additive performance gain
of adopting the biological knowledge guided representation
learning module suggests that biological knowledge is infor-
mative to guide the extraction of semantically meaningful
information related to cancer prognosis. We also conduct the
Kaplan-Meier (KM) analysis to visualize the performance of
patient stratification, and then log rank test is used to test
the statistical significance of high-low risk group. Figure 1
shows that the KM curves of pathological subgraph, genomic
subgraph, PathoGenoSurvGraph w/wo biological knowledge
guided representation learning module in each dataset.

The result shows that PathoGenoSurvGraph w/wo biological
knowledge guided representation learning module consistently
achieve superior stratification performance compared to the
pathological subgraph and genomic subgraph. And the KM
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Fig. 2: Kaplan Meier curves of PathoGenoSurvGraph, includes pathological subgraph, genomic subgraph and
PathoGenoSurvGraph w/wo biological knowledge guided representation learning module.

curves of external dataset FAHZU-LGG, which has relatively
shorter follow-up time and thus higher stratification difficulty,
also shows statistically significance, thus further reveals the
effectiveness and generalization of PathoGenoSurvGraph.

D. Comparison Experiment

In comparison with other state of the art models, we
conducted comparison experiment with other unimodal and
multimodal strategies in each datasets. In unimodal model
comparison, we adopted Multi-Layer Perceptron (MLP) and
Self-Normalizing Network (SNN) [39] to genomic data which
has extremely high feature dimension. The SNN consisted of

linear projection layer, SeLU activation and Alpha Dropout.
And for pathological unimodal model comparison, we adopted
the AttenMIL [17] with gated-attention pooling and TransMIL
[40] with Nystrom attention pooling [41]. In the multi-modal
comparison experiment, late fusion strategy was used to
combine AttenMIL and TransMIL with SNN through vector
concatenation to fuse pathological and genomic feature, besides
we also compared with the transformer-based method SurvPath
which utilized the cross-attention matrix of pathological image
and genomic pathway to guide the fusion of both modalities.
In the comparison experiment, all models used the same hyper-
parameters and five-fold cross-validation. In total, we trained

TABLE II: Concordance index of PathoGenoSurvGraph and comparison experiments in cancer survival prediction

Model Patho Geno TCGA-LGG FAHZU-LGG∗ FAHZU-GBM TCGA-GBM

MLP 0.799±0.040 0.597±0.015 0.556±0.096 0.625±0.112

SNN 0.809±0.035 0.641±0.025 0.550±0.073 0.637±0.123

AttenMIL 0.591±0.066 0.643±0.009 0.511±0.044 0.592±0.082

TransMIL 0.600±0.031 0.534±0.025 0.552±0.038 0.652±0.085

AttenMIL+SNN 0.822±0.022 0.673±0.012 0.526±0.074 0.743±0.128

TransMIL+SNN 0.819±0.017 0.680±0.011 0.545±0.064 0.761±0.110

SurvPath 0.798±0.024 0.654±0.016 0.578±0.035 0.661±0.107

PGHG (wo BG) 0.806±0.021 0.655±0.025 0.596±0.030 0.747±0.114

PGHG (w BG) 0.823±0.026 0.685±0.011 0.600±0.032 0.773±0.109
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Fig. 3: Genomic and histological interpretability in low grade gliomas. A: Global attention visualization and three high mean
absolute IG biological pathways (REACTOME NON INTEGRIN MEMBRANE ECM INTERACTIONS, KEGG GLIOMA and
KEGG FOCAL ADHESION) co-attention visualization for high-risk patient and low-risk patient in TCGA-LGG dataset. B:
Top 10 absolute IG value RNA in three biological pathways with the color indicates the relative expression color.

220 models in the ablation experiment and the comparison
experiment and the result is showed in the Table II.

The result shows that our method achieve superior per-
formance than all other unimodal and multimodal models.
In the TCGA-LGG dataset, we observed that the genomic
unimodal models have better performance than the pathological
unimodal models while the opposite was observed in the
FAHZU-GBM dataset, which was in accordance with the
result in ablation experiment. The consistently performance
improvement achieved by the fusion of pathological and
genomic features also demonstrated the effectiveness of our
multimodal fusion strategy in survival prediction task. For the
TCGA-LGG dataset and the external FAHZU-LGG dataset,
the PathoGenoSurvGraph outperformed the best unimodal
model with 1.7% and 6.5% improvements respectively, reaching
c-Index of 0.823 and 0.685. Simultaneously, compared to
other multimodal models based on late fusion strategy, it also
achieved a modest performance improvement. Similarly, in the

TCGA-KIRP, all of the multimodal models achieved superior
performance compared with the unimodal model. And compar-
ing to the best multi-modal network, the PathoGenoSurvGraph
also achieved the performance increase of 1.6%.

E. Multimodal Interpretability
We also demonstrated the interpretability of our method.

Firstly, we obtained the attention value from the attention
pooling layer and generated the attention heatmap of WSIs
from high and low risk group to identify the morphological
features with prognostic value. To explore the potential genomic
biomarkers relevant to cancer prognosis, we selected three
key pathways from the top 25 pathway with the highest IG
value. Specifically, we visualized the co-attention heatmap to
demonstrate the association with tumor tissue and identified the
key genes through the IG values. The Figure below contains
the WSI global attention heatmap, key pathway co-attention
heatmap and Top 10 genomic features with the highest IG
value.
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Fig. 4: Genomic and histological interpretability in glioblastoma. A: Global attention visualization and three high mean absolute
IG biological pathways (REACTOME SIGNALING BY ERBB2, REACTOME ANTIGEN ACTIVATES B CELL RECEPTOR
BCR LEADING TO GENERATION OF SECOND MESSENGERS and REACTOME GABA RECEPTOR ACTIVATION)
co-attention visualization for high-risk patient and low-risk patient in FAHZU-GBM dataset. B: Top 10 RNA in each biological
pathways with the color indicates the relative expression value.

TCGA-LGG The global attention heatmap of both high risk
patient and low risk patient indicates that the high-density
gliomas cell and microvascular proliferation are more informa-
tive for the survival prediction. For the key pathway co-attention
heatmap, we observe that REACTOME NON INTEGRIN M
EMBRANE ECM INTERACTIONS pathway has relatively
high mean absolute IG values, which is known to relate to the
interaction of glioma cells with the extracellular matrix and
the subsequent destruction of matrix barriers, the shift of gene
expression in this pathway may further initiate or influence
the process of glioma cell invasion [42], the corresponding co-
attention heatmap demonstrates the association of the pathway
with high-density tumor cells and necrosis area. Besides, our
approach also highlights the several prognostic markers such
as NTN4, PDGFA. Specifically, the overexpression of NTN4
can act as an anti-inflammation factor in endothelial cell
and decrease the risk [43], which we similarly observe that
higher NTN4 expression can improve prognosis. Besides, we

also observe that increasing the expression of COL4A1 and
PDGFA can increase the risk, which is consistent with previous
study [44]. KEGG FOCAL ADHESION also involves with
the interaction with downstream targets of integrins and growth
factor receptors, thus further influence the survival, proliferation
and invasion of tumor cell, the corresponding co-attention
heatmap demonstrates that the pathway is closely related to
regions with tumor cell. FLNC, COL4A1 and RASGRF1 are
also highly attributed that increase FLNC [45], COL4A1 [44]
expression and decrease RASGRF1 expression can increase
the risk of cancer death [46].
FAHZU-GBM In FAHZU-GBM dataset, the global attention
heatmap also allocates large attention weight on the regions
with tumor cells. Besides, the majority of important pathways
relates to cell invasion, apoptosis, and cancer prognosis. For
instance, REACTOME SIGNALING BY ERBB2 pathway
has been implicated in regulating cell proliferation, migration
and apoptosis and the corresponding high attention histological
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Fig. 5: Genomic and histological interpretability in kidney renal papillary cell carcinoma. A: Global attention visualization
and three high mean absolute IG biological pathways (REACTOME FCERI MEDIATED MAPK ACTIVATION, KEGG ECM
RECEPTOR INTERACTION and REACTOME SIGNALING BY MODERATE KINASE ACTIVITY BRAF MUTANTS)
co-attention visualization for high-risk patient and low-risk patient in TCGA-KIRP dataset. B: Top 10 RNA in each biological
pathways with the color indicates the relative expression value.

tissue exhibiting the presence of high-density gliomas cells
and microvascular, which can provide efficient blood supply
of tumor growth and metastasis [47]. From the top 10 IG
gene plot, we can observe numerous oncogenes and prognostic
markers such as EGFR [48], GAB1 [49] which have signif-
icant impact on the tumor progression, the overexpression
of both genes are significantly associated with progression,
proliferation, and metastasis across many cancers [50]. Besides
the expression level of GAB1 also correlates with cellular
proliferation, evasion of apoptosis and angiogenesis. REAC-
TOME GABA RECEPTOR ACTIVATION can regulate the
growth of malignant tumors with the corresponding co-attention
heatmap concentrating on the high-density tumor cell and
necrosis area. Besides, the model discovers that increasing
GNG4 [51] expression can lead to poor prognosis, which is
also in line with existing literature.

TCGA-KIRP The global attention heatmap mainly concen-
trates on the fibrovascular cores on high risk patient while

also attends to large areas of hemorrhage in low risk group.
Besides, the model allocates high attribute value to the gene
in REACTOME FCERI MEDIATED MAPK ACTIVATION
pathway which is critical to regulate the biological response
of immune cells, the co-attention heatmap attends towards tall
columnar tumor cells and fibrovascular cores area in both cases.
The high IG gene plot also demonstrates that key biomarker
such as FOS which has shown downregulation across many
cancers [52], [53], can greatly influence the cancer prognosis.
Besides, REACTOME SIGNALING BY MODERATE KIN
ASE ACTIVITY BRAF MUTANTS and KEGG ECM REC
EPTOR INTERACTION pathways are also identified to be
significant in predicting kidney renal papillary cell carcinoma
prognosis, while the former pathway has been demonstrated
that can influence cancer progression through regulating certain
kinase activity and the latter pathway involves in the regulation
of cell migration and invasion.

The above-mentioned result demonstrates that our model
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can uncover the pivotal biological pathway and genes which
may serve as the biomarkers in cancer diagnosis and prognosis.
Besides, the pathway-histology co-attention analysis also reveal
the association between both modalities, which can be used in
cancer pathogenesis study.

V. CONCLUSION

In this work, we propose a heterogeneous graph framework
to establish the correlation between histological image and
genomic pathway. We represent the histological patches and
genomic pathways as nodes in each subgraph and construct
the edges based on the spatial location of patches and the
common gene number of genomic pathways respectively.
The edges between each subgraph are fully connected to
identify the correlation of pathological tissue and genomic
data. After the graph construction, we design the biological
prior knowledge-based loss function for the genomic and
pathological feature extraction and adopt graph attention
mechanism for heterogeneous graph training. Then we use
the global attention pooling module to extract the unimodal
and bi-modal feature embeddings from each subgraph and
make the survival prediction. The model is evaluated in LGG
and KIRP dataset from TCGA, GBM dataset from FAHZU
and an external validation dataset of LGG from FAHZU and
achieves promising performance in comparisons with other
methods. Besides, the heterogeneous graph network is scalable
and interpretable which can incorporate with diverse modalities
of clinical data and uncover the potential and novel biomarkers.
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