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ABSTRACT

Recent observations of caustic-crossing galaxies at redshift 0.7 ≲ z ≲ 1 show a wealth of transient events. Most of them are believed to
be microlensing events of highly magnified stars. Earlier work predicted such events should be common near the critical curves (CCs)
of galaxy clusters (“near region”), but some are found relatively far away from these CCs (“far region”). We consider the possibility
that substructure on milliarcsecond scales (few parsecs in the lens plane) is boosting the microlensing signal in the far region. We study
the combined magnification from the macrolens, millilenses, and microlenses (“3M-lensing"), when the macromodel magnification
is relatively low (common in the far region). After considering realistic populations of millilenses and microlenses, we conclude that
the enhanced microlensing rate around millilenses is not sufficient to explain the high fraction of observed events in the far region.
Instead, we find that the shape of the luminosity function (LF) of the lensed stars combined with the amount of substructure in the
lens plane determines the number of mcirolensing events found near and far from the CC. By measuring β (the exponent of the
LF), and the number density of microlensing events at each location, one can create a pseudoimage of the underlying distribution of
mass on small scales. We identify two regimes: (i) positive-imaging regime where β > 2 and the number density of events is greater
around substructures, and (ii) negative-imaging regime where β < 2 and the number density of microlensing events is reduced around
substructures. This technique opens a new window to map the distribution of dark-matter substructure down to ∼ 103 M⊙. We study
the particular case of seven microlensing events found in the Flashlights program in the Dragon arc (z = 0.725). A population of
supergiant stars having a steep LF with β = 2.55+0.72

−0.56 fits the distribution of these events in the far and near regions. We also identify
a small region of high density of microlensing events, and interpret it as evidence of a possible invisible substructure, for which we
derive a mass of ∼ 1.3 × 108 M⊙ (within its Einstein radius) in the galaxy cluster.

Key words. gravitational lensing – dark matter – cosmology

1. Introduction

Galaxy clusters are the most powerful lenses in the universe.
At the critical curves (CCs hereafter), and ignoring microlenses,
small sources can be magnified by very large factors, with the

⋆ jdiego@ifca.unican.es

maximum magnification for a source of radius R, µmax = µo/
√

R,
where µo is a constant related to the smoothness of the lensing
potential. For galaxy clusters, µo can be of order 10 when R is ex-
pressed in arcseconds. At the caustics of these clusters, stars with
sizes a few times R⊙ (that is, R ≈ 10−11 arcseconds at redshift
z ≈ 1) can reach theoretical extreme magnification factors ex-
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ceeding 106 (Miralda-Escude 1991). In practice, the ubiquitous
presence of microlenses from the intracluster medium (ICM)
reduces the maximum magnification for these stars to < 105

(Venumadhav et al. 2017; Diego et al. 2018). Despite this re-
duction in the maximum magnification due to microlenses, the
flux from massive lensed stars at z ≈ 1 that are at a fraction of a
parsec from a cluster caustic can be boosted by ∼ 7–10 mag and
be detected with current telescopes reaching a depth of 28 mag
(Kelly et al. 2018; Golubchik et al. 2023; Diego et al. 2024).

The extreme magnification near the critical curves of clus-
ters has allowed the discovery of distant stars that would other-
wise remain undetected. The first such star, Icarus at z = 1.49,
was discovered (Kelly et al. 2018) with the Hubble Space Tele-
scope (HST), and was quickly followed by many others also ob-
served with HST (Rodney et al. 2018; Chen et al. 2019; Kaurov
et al. 2019; Diego et al. 2022; Welch et al. 2022; Kelly et al.
2022; Meena et al. 2023a). The farthest star discovered to date
with HST through this technique is Earendel at a record breaking
z ≈ 6 (Welch et al. 2022) In total, HST has already discovered
several dozen lensed-star candidates at 0.725 < z < 6 Kelly et al.
(2022), most of them believed to be blue supergiants (BSGs) and
luminous blue variable stars (LBVs). HST has passed the torch to
the new James Webb Telescope (JWST), which in a short time has
already discovered over a dozen lensed-star candidates (Chen
et al. 2022; Diego et al. 2023b; Meena et al. 2023b; Furtak et al.
2024; Diego et al. 2023c; Yan et al. 2023). Among these, several
are believed to be red supergiants (RSGs), which are difficult to
detect with HST (Diego et al. 2023b,c, 2024; Yan et al. 2023).
JWST will extend the search for distant stars to even higher red-
shifts and also to fainter stars. With a little luck, JWST will even
directly observe the first generation of stars (Pop III) in caustic
crossing high-redshift galaxies (Windhorst et al. 2018).

Some of these transients are believed to be due not to mi-
crolensing, but to intrinsic variability of LBVs that can increase
their brightness by several magnitudes (Weis & Bomans 2020).
They have up to 5 mag variations on decade-long timescales, and
smaller amplitudes on shorter timescales of months to years that
are typical of supergiants. LBVs are luminous enough that they
can be observed even at modest magnification factors (µ ≈ 20)
if they are at z < 1 (a star at z = 1 with L = 106 L⊙ would have
apparent magnitude ∼ 28.7 at µ = 20). Owing to their variable
nature, they can be identified as transients in difference images
between two epochs. At higher redshift, even these bright stars
would become undetectable unless they are magnified by larger
factors (a star at z = 2 with L = 106 L⊙ would have apparent
magnitude ∼ 32.4 at µ = 20 and ∼ 28.2 if µ = 1000). Although
most of the lensed stars are found in regions near cluster CCs,
a significant fraction of these stars have been observed farther
from the CCs where the magnification from the cluster is rel-
atively small (µ < 100). Examples include the off-caustic event
described by Meena et al. (2023a) or some of the events reported
by Kelly et al. (2022) and Yan et al. (2023).

The outbursts of LBVs can be confused with genuine mi-
crolensing events, especially if the observations are separated by
long periods that do not allow us to distinguish a microlensing
event from an LBV outburst based on the light curve. A genuine
microlensing event (in the optically thin regime) near the micro-
caustic (or maximum magnification) has a well-defined shape
for the light curve since the luminosity changes as 1/

√
(t − to),

where t is time and to is the time at which the background star
touches the microcaustic (to is a free parameter). LBVs are very
rare compared with the more numerous but fainter supergiant
stars, and since we can only identify them through their out-
bursts (or active phase), active LBVs are even rarer, so we expect

to see only a few of them. The specific number depends on their
abundance in the host galaxy, driven primarily by the recent star-
formation history of that galaxy; hence, we expect to see them in
very blue portions of lensed galaxies. Despite their scarcity, but
because of their high luminosity and varying nature, LBVs are
good candidates for transient events that take place in regions of
low magnification.

In the lens plane, the magnification at a short distance, d,
from the CC can be well approximated by µ ≈ Θ(′′)/d(′′)
(Schneider et al. 1992). In this expression Θ(′′) is related to the
inverse of the derivative of the lensing potential at that position.
For a symmetric lens, Θ(′′) = constant, and for an isothermal
profile, it is exactly the Einstein radius, but for real nonsymmet-
ric lenses with elliptically shaped CCs, Θ varies along the CC,
with maximum values at the cusps of caustics. For massive clus-
ters where lensed stars have been discovered, Θ(′′) takes values
between ∼ 50′′ and ∼ 100′′. Then, for these clusters, and at dis-
tances d ≳ 1′′, the magnification from the cluster typically drops
below 100. In these regions of the lens plane with µ < 100,
the combined effect from the macrolens and the microlenses is
often subcritical, µ × Σ∗ ≲ Σcrit, for typical values of the sur-
face mass density of microlenses found near CCs, Σ∗ < 20 M⊙.
Near the CC, even for small values of Σ∗ there is always a re-
gion around the CC in which microlensing supercriticality is
achieved, µ × Σ∗ > Σcrit. In this region, the probability of mi-
crolensing events is expected to be maximum (Diego et al. 2018;
Palencia et al. 2023). We refer to this portion of the lens plane
as the “near region.” In contrast, outside this region and away
from the CC, d increases and µ decreases with µ × Σ∗ < Σcrit.
Here we are in the microlensing subcritical portion of the lens
plane where microlensing events are more rare. We refer to this
portion of the lens plane as the “far region” corresponding to the
regions inside and outside the corrugated network of small criti-
cal curves around the galaxy cluster CC (see, for instance, Diego
et al. 2018, for a description of this corrugated network).

It is in principle difficult to explain the apparently high num-
ber of events found in the far region. This begs the question of
whether a significant fraction of these events are active LBVs
which can be more easily observed in the far region, or the
cluster lens model is inaccurate on small scales, lacking sub-
structures in the far region that can boost the magnification, and
hence become supercritical around the substructures. Perturba-
tions in the mass distribution on scales comparable to small satel-
lites in the cluster (millilenses) can create pockets of relatively
high magnification on angular scales of several milliarcseconds
at distances of few arcseconds from the CCs. These pockets of
high magnification become islands of supercriticality where mi-
crolenses along the line of sight can now create more frequent
microlensing events. The combined lensing effect of a galaxy
cluster scale lens, with its swarm of small satellites and the myr-
iad of microlenses from the matter associated with the ICM, has
not been studied previously in detail. We refer to this effect as
3M-lensing (macromodel lenses, millilenses, and microlenses),
and it constitutes one of the foci of this work.

Recent observations made with JWST of some of these clus-
ter lenses have revealed a wealth of unresolved structures in the
ICM (Lee et al. 2022; Faisst et al. 2022; Harris & Reina-Campos
2023). Some of these objects are expected to be globular clusters
(GCs) that are stripped away from their host galaxies by strong
tidal forces from the cluster. These are the same forces that strip
stars away from the infalling galaxies and into the ICM. An ex-
tended population of GCs in the ICM has been found, for exam-
ple, in the rich lensing cluster Abell 2744 at z = 0.3 with JWST
imaging (Harris & Reina-Campos 2023). In addition to GCs, the
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Fig. 1. Dragon arc as seen by HST (blue = F435W, green = F814W, red = F160W). The eight transients (seven in the arc) identified by Kelly et al.
(2022) are marked with circles. Labels are the same as in the original reference. The white curve is the CC from our lens model (see Appendix) at
the redshift of the arc. The two cyan curves mark the boundary region between macromodel magnification above and below 100. The arc covers
∼ 1150 kpc2 in the lens plane. Out of this, 190 kpc2 is within the cyan curves (near region) and 960 kpc2 is outside the cyan lines (far region).

inner regions of galactic cores in small galaxies can survive tidal
forces and appear as GC-like objects. These ultracompact dwarf
galaxies (UCDs) tend to be more massive than GCs and possibly
harbor a supermassive black hole (SMBH) in their center. For
simplicity we refer from now on to all these unresolved objects
as GCs, keeping in mind that other types of objects may fall into
this category.

The number and distribution of these GCs is in agreement
with observations made at lower redshift and also with expec-
tations from numerical N-body simulations. Thousands of GCs
with masses in the range 105 M⊙ < M < 107 M⊙ are ex-
pected to be found within the critical curve of these clusters
(Faisst et al. 2022; Lee et al. 2022; Diego et al. 2023a; Har-
ris & Reina-Campos 2023). These GCs can act as millilenses,
whose lensing effect is magnified by the macrolens (Gilman et al.
2017; Dai et al. 2018; Williams et al. 2024). In the vicinity of
GCs, pockets of high magnification are created which, combined
with the ubiquitous microlenses, can result in an increased rate
of microlensing events around the millilenses, and near their
small CCs around them, typically spanning a few milliarcsec-
onds in the image plane. That is, for the smallest millilenses
the increased rate of events would appear to originate from the
same HST or JWST pixel (30 milliarcseconds for NIRCam short-
wavelength detectors). Small dark matter (DM) structures can
also act as millilenses, since these are predicted by many DM
models (Kolb & Tkachev 1993; Graham et al. 2016; Visinelli
et al. 2018; Arvanitaki et al. 2020; Gilman et al. 2021; Gorghetto
et al. 2022). Microlenses overlapping with these small-scale DM
structures make transient events more likely around them, serv-
ing as signposts of small-scale fluctuations in the distribution of
DM. This is discussed in detail in this work.

The small CCs around these millilenses (or in general small
DM structures) will inevitably overlap with the microlenses from
the same ICM. The net lensing effect is a combination of the
macrolens, the millilens, and the numerous microlenses. The ef-
fect of large macromodel magnifications plus microlenses has
been studied in detail in earlier work (Venumadhav et al. 2017;
Diego et al. 2018; Diego 2019; Palencia et al. 2023). The com-
bined effect of large macromodel magnification plus millilenses
was studied over two decades ago by (for example) Mao &
Schneider (1998) and Metcalf & Madau (2001), and more re-
cently by many others (e.g., Hezaveh et al. 2016; Gilman et al.
2017, 2018; Dai et al. 2018; Cyr-Racine et al. 2019; Gilman et al.
2019, 2020; Powell et al. 2023a; Gilman et al. 2024; Williams
et al. 2024; Tsang et al. 2024). The combination of the three ef-

fects has not been considered in detail so far, and to the best of
our knowledge is presented here for the first time.

In this work we pursue four goals: (i) study the
macro+milli+micro lensing (“3M-lensing”) effect over stars at
cosmological distances and near cluster CCs in order to provide
context for recent and future discoveries of lensed stars where
3M-lensing is likely taking place, (ii) address the question of
whether the millilensing effect from the numerous millilenses
is sufficient to explain the transient events found at distances
d > 1′′ from cluster CCs, (iii) study the relation between the
number of observed microlensing events, the amount of sub-
structure on small scales in the lens plane, and the luminosity
function of the background population of high-redshift stars, and
(iv) apply our results to recent observations, in particular to the
case of the seven alleged microlensing events found by HST in
the Dragon galaxy at z = 0.725 as part of the Flashlights pro-
gram (Kelly et al. 2022). This arc was originally known as the
Giant Arc or A370 Arc01 (Soucail et al. 1987, 1988; Lynds &
Petrosian 1989; Grossman & Narayan 1989; Smail et al. 1993,
1996), and rebranded as the Dragon arc after new images were
obtained following the HST Servicing Mission 4 update of the
ACS in 20091.

The paper is organized as follows. Section 2 presents a se-
ries of definitions that are used throughout and gives examples
of typical scales appearing in lensing that become useful in later
portions of the paper. The simulations of the 3M-lensing effect
used in this work are presented in Section 3 . We focus in Sec-
tion 4 on the probability of magnification in 3M-lensing. Sec-
tion 5 discusses the scaling of the effect with millilens mass
and macromodel magnification. In Section 6 we describe how
to compute the contribution, from a given mass function of GCs,
to the area in the source plane (which can be interpreted as a
probability) where microlensing effects are expected to be maxi-
mum. Section 7 estimates the probability of microlensing events
in the far region around millilenses, while Section 8 estimates
the probability of microlensing events anywhere in the far re-
gion, not just near millilenses. In Section 9 we discuss how to
apply the previous results to map the distribution of DM on small
scales, and apply our results to the particular case of the Flash-
light microlensing events in the Dragon arc. The Dragon arc has
been observed by the VLT/MUSE, providing resolved spectral
information along the arc (Patrício et al. 2018). We discuss our
results in Section 10 and conclude in Section 11. An Appendix

1 https://www.newscientist.com/article/dn17765-upgraded-hubble-
telescope-spies-cosmic-dragon/
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contains details of the lens model for the particular example used
to illustrate this work.

2. Definitions and useful numbers

We use several definitions throughout the paper, which for con-
venience we summarize here. Critical curves (CCs) are the re-
gions in the image plane (also known as lens plane or plane of
the sky) where magnification formally diverges. The image plane
and observer (or source) plane are connected through the lens
equation, β = θ − α(θ,M), where β are positions in the source
plane, θ are positions in the image plane and α(θ,M) is the de-
flection angle that depends on the distribution of mass of the lens.
Through this equation, we can map the CCs into the correspond-
ing curves in the source (or observer) frame, which are called
caustics. A caustic region is the portion of the source plane which
is bounded by the caustic curves. The near region is defined as
the portion of the lens plane close to the cluster CC where the
rate of microlensing events is maximized. This region is defined
in terms of the cluster magnification and the surface mass density
of microlenses. It is a band around the cluster CC where the clus-
ter magnification is above the critical value, µ ≳ µcrit = Σcrit/Σ∗,
where Σcrit and Σ∗ are the critical surface mass density for lensing
and the surface mass density of microlenses, respectively (Diego
et al. 2018). An example is shown in Figure 1, where the near re-
gion is contained within the two thin cyan curves. Similarly, the
far region is the portion of the lens plane where the macromodel
magnification is µ < µcrit, and in the same figure it would be the
region outside the band defined by the two cyan curves.

Following standard practice (e.g., Treu 2010), the term
macrolens is used when referring to the galaxy cluster scale
lens, and the term millilens is used when referring to GCs or
in general unresolved structures such as galactic core remnants,
dwarf galaxies in the ICM, satellites in general, small DM halos,
or intermediate-mass primordial black holes (Dike et al. 2023).
These systems are expected to have Einstein radii of order mil-
liarcseconds, hence the term millilensing. The term microlens is
used for stars or stellar remnants in the ICM, which have Ein-
stein radii of order microarcseconds. Some DM candidates such
as primordial black holes with masses comparable to stellar ob-
jects would also fit in this category (see, for instance, Diego et al.
2018; Oguri et al. 2018; Vall Müller & Miralda-Escudé 2024).

For example, the Einstein radius of a 1 M⊙ microlens at
z = 0.375 and for a source at z = 0.725 (the redshifts of the
cluster lens and Dragon galaxy, respectively) is 1.8 microarcsec-
onds (µas) before accounting for the effect of the macrolens or
millilens. For the same redshifts, a millilens with mass 105 M⊙
would have an Einstein radius of 0.57 milliarcseconds (mas),
also before accounting for macromodel effects. For any other
mass, M, at the same redshift, the Einstein radius would be
θE ≈ 1 mas ×

√
M/(3.1 × 105 M⊙). In general, when embedded

in a macromodel potential with magnification µ, the CC around
the millilens or microlens with mass M behaves as a larger
millilens or microlens with effective mass µt × M (Diego et al.
2018; Oguri et al. 2018), where µt is the tangential macromodel
magnification (µr would be the radial component and µ = µtµr).
For the particular case of a microlens near a millilens, the same
scaling with magnification applies, only in this case the magni-
fication µt is from the combined effect of the macromodel plus
the millilens.

The CCs associated with these types of lenses are macro-
CCs, milli-CCs, and micro-CCs. Similarly, we use the terms
macrocaustic, millicaustic, and microcaustic when referring to

the corresponding caustics. We refer to the macromodel mag-
nification as µ1m, while we use the term µ2m when referring to
the magnification from the combined macromodel plus millilens,
and µ3m (the 3M-lensing magnification) when referring to the
magnification of all three components (macrolens plus millilens
plus microlenses).

In Section 9 we define the luminosity function (LF) of stars
as dN/dL = ϕ(L) ∝ (1/L)β, which gives the number of stars
per luminosity bin and unit area. This “classic definition" is use-
ful when working with nonmagnified and uniform distributions
(or sources in the source plane before magnification is applied),
since in this case the properties of the LF are independent of the
region being considered. But when dealing with lensed sources,
there is a strong dependence on the magnification. Because of
this, we also use a different definition for the lensed luminosity
function, or ϕ̂(L), which gives the number of stars per luminosity
bin and in a given area (not per unit area). This alternative defi-
nition is useful when we are considering the number of stars in a
particular region with macromodel magnification µ, in the inter-
val µmin < µ < µmax. That is, in this case ϕ̂(L) means ϕ̂(L, µmax

min ),
where µmax

min is all macromodel magnifications in the interval of
magnification, but for convenience we simply use the expression
ϕ̂(L).

Below we present a few useful numbers for the particular
case of the Dragon arc, which holds the record for the num-
ber of transients discovered as part of the Flashlights program
Kelly et al. (2022). The location of these events in relation to
the CC is shown in Figure 1. This arc contains seven high-
significance transients, with at least two of them found in the
far region (see Figure 1) and good candidates to be stars im-
pacted by 3M-lensing (Kelly et al. 2022). For the particular case
of the Dragon galaxy, the redshift of the lens is 0.375 (A370
cluster), and the redshift of the lensed galaxy is 0.725. We adopt
a flat-universe cosmology with Ωm = 0.3 and h = 0.7. For this
model, the angular diameter distances to the lens at z = 0.375,
the source at z = 0.725, and from the lens to the source are
1066 Mpc, 1495 Mpc, and 646 Mpc, respectively. For the same
cosmology, 1′′ subtends 5.16 kpc at z = 0.375 and 7.24 kpc at
z = 0.725. The critical surface mass density for these redshifts
is Σc = 3640 M⊙ pc−2 and the distance modulus to z = 0.725 is
43.24 mag. For illustration purposes, a star with absolute mag-
nitude −7 (color corrected in a given filter) and magnified by a
factor of 100 would have apparent magnitude 31.2, still out of
reach of JWST with 1 hr integration in one of the wide filters.
However, the same star during a microlensing event (lasting typ-
ically a few days to a few weeks depending on the mass of the
microlens, relative speed, and direction of motion with respect
to the microcaustic), can be temporarily magnified by a factor of
∼ 1000, and would appear ∼ 2.5 mag brighter (i.e., ∼ 28.7 mag)
during that period. This would be detectable in a 1 hr integration
time with JWST and be interpreted as a transient.

Finally, we use the term “detectable through microlensing"
(or DTM) stars to refer to all the stars that have detectable
changes in brightness due to microlensing. These are either stars
that (i) are detected in several epochs but between two epochs
change their brightness by some amount (due to a microlensing
event), or (ii) are detected in only one epoch because microlens-
ing is temporarily boosting their flux. In general, we assume that
the second type of DTM stars are ∼ 2 mag below the detection
threshold before microlensing. During a microlensing event, any
DTM star increases (or decreases) its brightness by ∼ 2 mag and
can be recognized as a transient.
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3. 3M-lensing

To study the 3M-lensing effect, we rely on simulations that com-
bine all three mass ranges (macro, milli, and micro). Since our
focus is to study microlensing events around millilenses (embed-
ded in a macrolens potential), we set the simulation parameters
to match the scale of millilenses but at the same time resolve the
microlenses. As mentioned in Section 2, before macromodel ef-
fects, the scale of a 105 M⊙ millilens is typically ∼ 1 mas in the
image plane. On that scale, the effect of the macromodel can be
very well approximated as a smooth gradient with a slope that
is roughly the inverse of the Einstein radius of the macrolens
(Diego et al. 2018). The scale of microcaustics is ∼ 1 µas. To
properly resolve microcaustics, the pixel size needs to be much
smaller than 1 µas. A pixel size of 10 nanoarcseconds (nas) in the
source plane is sufficient to resolve the microcaustics from the
smallest microlenses. After accounting for macromodel effects,
the critical region of the millilens grows as the macromodel mag-
nification. Hence, the simulation needs to span several milliarc-
seconds in the image plane if the macromodel magnification is
µ1m > 10. To simulate several milliarcseconds in the image plane
with a resolution of 10 nas in the source plane would require a
prohibitive number of ∼ 1012 pixels. We can significantly reduce
this by simulating a smaller millilens, since the number of pix-
els needed scales approximately with the mass of the millilens.
Luckily, the magnification properties of 3M-lensing for larger
millilenses can be extrapolated by simply rescaling the results
derived with smaller millilenses (see Section 5). In particular,
we consider very small millilenses with masses of order 103 M⊙
and later study how our results scale with the millilens mass.

Hence, to explore 3M-lensing in a wide range of scenarios,
we define a fiducial model that is used for the main calculations
and later study the scaling with macromodel, millilens, and mi-
crolenses around this fiducial model. For the fiducial model we
adopt a macromodel magnification µm = µt × µr = ±10 × 2.3,
where µt and µr are respectively the tangential and radial mag-
nifications from the macromodel. The magnification can be pos-
itive or negative depending on what side of the critical curve we
are considering. The side with positive magnification is also the
side with positive parity (counterimages have the same orienta-
tion as the original source). In contrast, when the magnification
is negative the counterimage has negative parity (inverted in re-
lation to the original source). The assumed macromodel magnifi-
cation is small enough such that the microcaustics do not usually
overlap and microlensing is a rare event. For the millilens we as-
sume a fiducial model with a relatively small GC having a mass
of 2 × 103 M⊙, with a truncated core power-law density profile

ρ(r)3D ∝
1

(Rc + r)α
, (1)

where Rc is the core radius and the profile is truncated at
some radius Rmax. This millilens is representative of a small
and compact GC that would survive the strong tidal forces in
clusters. The core radii of the density profiles of millilenses
can be approximately estimated from dwarf galaxies. Typical
radii of 109 M⊙ galaxies in the LITTLE THINGS galaxy survey
are about 300 pc, with substantial variation between individual
galaxies (Table 2 of Oh et al. 2015). This size is consistent with
those presented by Wolf et al. (2010). Motivated by the virial
condition and assuming that the concentration parameter is the
same for all subhalos, rcore ∝ m1/3. This relation can be scaled
to smaller masses (Williams et al. 2024). For instance, for very
small millilenses with mass 2× 103 M⊙, the core radii should be
a factor of ∼ 80 smaller than for the 109 M⊙ halo, or ∼ 3.7 pc.

  

4x104 Mo, Rc=1.5 pc & Rmax=20 pc 

104 Mo, Rc=0.3 pc & Rmax=4 pc, α=2 
104 Mo, Rc=1.2 pc & Rmax=10 pc, α=2 
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μmacro = -10x2.3

0.72 pc

α=
1.5

α=1.5

α=2α=2

Fig. 2. Effect of the millilens profile. Comparison of millicaustics for
four millilenses under the influence of the same macromodel magnifi-
cation (|µ1m| = 23) but for different mass, core size Rc, truncation radius
Rmax, and exponent α. The profile is defined as ρ(r) ∝ (Rc + r)−α. The
image shown in grayscale is the sum of the four magnifications from the
four millilenses. The caustics for the two millilenses with mass 104 M⊙
and slope α = 2 are nearly identical and fall on top of each other, in-
dicating that the mass is the main driver defining the size of the caustic
region. The largest millicaustic corresponds to a millilens with 4 times
more mass, and larger core and truncation radii, but the same slope
α. The area above µ = 100 is a factor of 4 larger than in the smaller
millilenses. A third millilens with the same mass, Rc, and Rmax but a
shallower profile (α = 1.5) behaves as the larger millilens with α = 2
but a mass of 2.93 × 104 M⊙, owing to the reduction in mass within the
Einstein radius. Even shallower profiles (α ≲ 1) with large cores re-
sult in subcritical millilenses (no caustics or cusps). On the other hand,
a steeper profile with α = 3 or greater produces a millicaustic almost
indistinguishable from the one obtained when α = 2.

For our calculations we adopt the most optimistic scenario where
millilenses are most lensing-efficient, and therefore we assume a
much smaller core radius of rc = 0.15 pc. For the truncation ra-
dius we take ∼ 10 times the core radius. Very compact structures
in the Milky Way, such as the central region of R136 in the Large
Magellanic Cloud (LMC), would have a similar scale (diameter
≈ 1 pc from Massey & Hunter 1998). Our core and truncation
radii for the small 2 × 103 M⊙ GC are also consistent (after ex-
trapolation to smaller masses) with the radii of the more massive
GCs found in the Milky Way by Baumgardt & Hilker (2018),
who find typical half-mass radii of ∼ 5 pc for GCs with mass
∼ 105 M⊙. A small core radius also accounts for the fact that we
expect the more compact structures to be the ones surviving in
denser environments (Moliné et al. 2017).

The specific shape of the profile and truncation radius play
a role in the lensing effect since they define the mass contained
within the Einstein radius of the millilens. As mentioned above,
in this work we consider the most favorable condition where
the millilenses are very compact and most of their mass is con-
tained within the Einstein radius. This is satisfied when α = 2
or greater. In this situation, the dependence on the profile is very
weak. Only for shallow profiles (α ≲ 1.3) and large cores, the
millilens may be subcritical and not able to produce large mag-
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Fig. 3. Simulated magnification maps of 3M-lensing. Left panels. Shown as grayscale is the log of the magnification in the observer plane (caustics)
around a millilens with mass 2 × 103 M⊙, in two regions (positive and negative parities) where the macromodel magnification is ±23 and with
a surface mass density of microlenses Σ = 50 M⊙pc−2. The numbers in yellow indicate typical magnification values at these positions. For
millilenses in regions with positive parity, outside the millicaustic region the magnification is typically below the macromodel value (but higher
at the microcaustic regions). In the center of the millicaustic region, the typical magnification is ∼ 50% higher than the macromodel value. This
situation is reversed in the region with negative parity. Right panels. Zoom-in around the regions of highest magnification at the millicaustics and
marked with black rectangles in the left panel. Near the millicusps and millicaustics, microcaustics always overlap one another at magnifications
greater than 100, hence maximizing the occurrence of microlensing events.

nification factors. A visual comparison of the millicaustics for
four different millilens models is shown in Figure 2. The macro-
model magnification for the four millilenses in the figure is set
µ1m = µt × µr = −10 × 2.3 = −23. The two smallest millilenses
have exactly the same mass and produce millicaustics that are
nearly identical, despite the two millilenses having different core
sizes and truncation radii (but the same α). The two millilenses
with larger mass have a correspondingly larger millicaustic area.
For the large millilens with α = 2, the gap between the caus-
tic regions (demagnification region) increases as the square root
of the mass when compared to the smaller millilenses with the
same α, so a millilens 100 times more massive can demagnify a
region 10 times larger in diameter. For the millilens with identi-
cal mass but a shallower profile (α = 1.5), we observe a reduc-
tion in the lensing probability (or area with magnification greater
than some value) of ∼ 25%. On the other hand, a steeper slope
with α = 3 (and consistent with N-body simulations of subhalos;
Moliné et al. 2017) increases the lensing probability, but only by
∼ 2%, so our choice of α = 2 is valid to represent even more
compact millilenses with α > 2.

Finally, to complete our fiducial model for the 3M-lensing
simulations, for the microlenses we consider a surface number
density of Σ∗ = 50 M⊙ pc−2. This is close to the expected value
around the Dragon arc, if one assumes that stars in the ICM con-
tribute ∼ 2% to the total projected mass at this position. The
value is also consistent with direct estimates of the surface mass
density of stars in the intracluster light (ICL) from recent JWST
data in massive clusters and at distances between 50 kpc and

70 kpc from the center of the cluster (Montes & Trujillo 2022),
the distance at which our case study (the Dragon arc) is from the
center of A370.

Originally, the pixel scale is set to 30 nas, and in the lens
plane we distribute the microlenses randomly in a circular region
of radius 1.2 mas until we reach the desired surface mass density
of Σ∗ = 50 M⊙ pc−2. For the mass function of the microlenses
we adopt a Chabrier (2003) model with a lower mass of 0.1 M⊙.
The specific model for the mass function plays a secondary role,
since the most relevant parameter for microlensing is the value
of Σ∗. The considered circular area is sufficiently large to easily
accommodate the small millilens of the fiducial model. A second
higher resolution simulation is later done around the cusps of the
millicaustics and with a smaller pixel size of 10 nas that resolves
the microcaustics even better.

Since the macromodel magnification can be positive (outside
the cluster CC or positive-parity region; Blandford & Narayan
1986) or negative (interior to the cluster CC or negative-parity
region), and the millilens caustics behave very differently de-
pending on the parity, we simulate both parities but keep the ab-
solute value of the macromodel magnification constant. When
simulating the two parities, we only change the tangential com-
ponent of the macromodel magnification — that is, we take
the two values µt = ±10. In tangential critical curves, the
tangential magnification changes rapidly as one gets closer to
(or farther away from) the CC, while the radial component of
the macromodel magnification changes very slowly. A value of
µt = ±10 is representative of scenarios similar to the far region,
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where macro+microlensing alone is unlikely to produce tran-
sient events but the combined 3M-lensing effect can boost the
probability of transients around millilenses in the far region.

The magnification in the observer plane (caustics) is com-
puted using standard ray tracing. We show the result for the fidu-
cial model in Figure 3, and for the two parities, that is for µt = 10
(positive parity) and µt = −10 (negative parity). The radial mag-
nification is identical in both cases, µr = 2.3. The left panels
show the caustic region with the 30 nas pixel size while the right
panels display the higher resolution simulation with 10 nas per
pixel and around two of the cusps of the millilens caustics. In
all cases, the magnification (grayscale) is shown in log scale to
better appreciate the details. The numbers in yellow indicate the
typical magnification (from the macrolens and millilens) outside
the caustic region and near the center of the caustic region.

At the caustics the magnification can be very large. For
these simulations the maximum magnification is limited by the
nonzero size of the pixel but still results in magnification factors
of ∼ 1000 at the caustics for the 30 nas pixel and a few thousand
for the 10 nas pixel. A large star at z = 0.725 with R ≈ 100 R⊙
would be ∼ 33 times smaller than this pixel size, and the maxi-
mum magnification at the caustic would be ∼ 6 times larger.

The case with positive parity (top-left panel) shows the clas-
sic diamond-shaped caustic. In the simulations, the larger tan-
gential magnification from the macromodel goes in the horizon-
tal direction, resulting in a caustic that is more stretched in the
vertical direction. The magnification near the center of the caus-
tic is almost twice the magnification of the macromodel, so most
of the inner-caustic region provides a relatively modest boost
in relation to the macromodel value. Only in the small regions
near the four cusps of the caustic, and very close to the caus-
tics themselves, the magnification from the millilens alone can
be sufficiently large to make luminous stars at z = 0.725 de-
tectable. Immediately outside the caustic region the most com-
mon value for the magnification is below the macromodel value.
In this outer region the effect of the millilens is to slightly demag-
nify sources, hence compensating the larger magnification inside
the millicaustic region, and ensuring that the average magnifica-
tion over sufficiently large areas equals the macromodel value
(flux conservation). A source which is significantly larger than
the millilens caustic, for instance a star-forming region several
parsecs in size, will have an average magnification very close to
the macromodel value and thus insensitive to the presence of the
millilens. Only very small objects within such a source, for in-
stance stars, can attain large magnification values when they are
near the millicusps or millicaustics.

For the case of negative parity (bottom-left panel) we ob-
serve some significant differences, with two small triangle-
shaped high-magnification regions bracketing a larger low-
magnification region. This is a well-known configuration for
caustics in negative-parity regions (Chang & Refsdal 1979,
1984). The magnification between the two triangular-shaped
caustic regions can be very small, of order 1. A small object with
a size of 1 pc or less placed in this inner region would be demag-
nified by the millilens, making its detection more difficult. This
scale would be larger for heavier millilenses or larger macro-
model magnification values. Hence, it is possible that sources a
few pc in size such as GCs or small star-forming regions in the
lensed galaxy get demagnified by a millilens and remain unde-
tected if their lensed counterimage is in a negative-parity region
behind a millilens. This cannot happen for counterimages behind
the millilens in the portion of the lens plane with positive par-
ity, where demagnification more than a few percent cannot take
place. Since sources near a cluster caustic form two highly mag-

nified counterimages near the CC, one counterimage with posi-
tive parity and one counterimage with negative parity, objects as
small as a star or a small group of stars may appear highly mag-
nified on one side of the CC (positive parity) and remain unde-
tected on the other side of the CC (negative parity). This mecha-
nism could explain the lack of asymmetry between the positive-
and negative-parity images of stars or groups of stars recently
observed in highly magnified galaxies (Diego et al. 2023c, 2022;
Adamo et al. 2024). On smaller scales, a similar mechanism but
involving microlenses was used to explain the lack of counter-
images of lensed stars such as Icarus (Kelly et al. 2018).

At the smaller microlens level, we show in the right panels
a zoomed-in version of the high magnification near a diamond-
shaped cusp (positive parity) and a triangular-shaped caustic re-
gion (negative parity). In both cases we see how microcaustics
adopt similar shapes (diamonds and triangles) and have a ten-
dency to align with the millicaustics. In some cases, microlenses
around the millilens on the side with positive parity behave as
microlenses with negative parity and vice versa for the side with
negative parity. These rare exceptions can be appreciated near
the cusp regions, where locally the parity can be inverted owing
to the influence of the millilens. As expected, the number den-
sity of microcaustics increases in the cusps and near the caustics.
This is due to the larger magnification of the millilens that con-
centrates more microcaustics in these regions. The size of the
microcaustics also grows with the millilens magnification in a
fashion similar to that near the caustics of galaxy clusters. The
highest probability of observing microcaustic crossings is then
near the cusps of millilens caustics. As described in earlier work
(Diego et al. 2018; Palencia et al. 2023), when the effective sur-
face mass density of microlenses approaches the critical value,
Σcrit, microlensing effects are maximized (in particular, fluctu-
ations in the observed flux). For our fiducial model, this hap-
pens when the combined magnification from the macrolens and
millilens is µ2m ≳ Σcrit/Σ∗ ≈ 75. The right panel of Figure 3
shows this effect near the cusps. For convenience, the baseline
magnification (that is, µ2m) is marked at different positions. In
the case of millilens cusps in positive-parity regions (top-right
panel), the magnification just outside the cusp is typically 25%
smaller than the macromodel value. Inside the cusp region the
magnification is higher than the macromodel and can exceed val-
ues of µ = 100 near the cusps and caustics. There are also small
areas around a few microcaustics where the parity is inverted and
the magnification can be relatively smaller. One such example is
marked with the magnification value 50 in the top-right panel.

For millilenses in regions with negative macromodel par-
ity (bottom-right panel), the most striking difference is the re-
gions with significant demagnification. Outside the caustic re-
gion (or triangle), microcaustics can demagnify (with respect to
the macromodel) regions as big as R = 0.01 pc, for instance the
optical portion of a quasar accretion disk or a supernova pho-
tosphere months after the explosion2. In regions not containing
a microcaustic, outside the caustic region the typical magnifi-
cation ranges between µ ≈ 25 and µ ≈ 40 — that is, between
∼ 10% and ∼ 75% higher than the macromodel value — again
compensating the lower magnification between the two caus-
tic regions. Inside the caustic region the typical magnification
is higher, especially near the cusps of the caustics. There is a
sharp transition between the main caustic in the bottom portion
of the figure where the magnification changes rapidly between
extreme values to values of order 10. Inside the caustic region

2 This area would be even larger in regions with higher macromodel
magnification.
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Fig. 4. Probability of magnification in 3M-lensing. Blue lines are for
macromodel plus microlenses only, while red and green lines are for
3M-lensing and for two millilens masses. Dashed lines correspond to
negative parity and solid lines to positive parity. The probability scales
as the total small-scale mass (millilens plus microlenses).

we also observe local changes in the parity, for instance around
the microlens marked with magnification 200. As in the previ-
ous examples, near the cusps the microcaustics overlap, filling
the space, and the probability of microlensing is maximum. In
both examples we see this effect when µ2m ≳ 100, close to the
value µ2m ≈ 75 derived above. We adopt this value (µ2m = 100)
as the critical magnification above which microcaustics are con-
stantly overlapping and microlensing effects are maximum —
that is, in what follows we assume µcrit = 100. In Section 10 we
discuss how our results depend on this choice.

4. Statistics of 3M-lensing magnification near a
single millilens

The magnification pattern discussed in the previous section is
interesting to interpret some events, and in particular to explain
the lack of symmetry between pairs of images close to CCs when
small objects, up to a few pc in size, are multiply imaged. In
this work we are interested in the regime where the macromodel
magnification is not that large, farther away from the CC, and
in particular on the probability of having microlensing events
around millilenses. For this it is useful to compute the area in
the source plane having magnification above µcrit, or A(µ > µcrit,
since stars in this area are the most likely to show microlensing
effects.

We compute A(µ > µcrit in the two regions shown on the right
side of Figure 3, for the two parities and around the cusps of the
millilenses. We compare with the area computed in the same re-
gion and for the same configuration of microlenses but removing
the millilens. The result is shown in Figure 4. Dashed lines refer
to the area computed in portions of the lens plane with negative
parity (bottom-right panel of Figure 3), while solid lines are for
positive parity (top-right panel of Figure 3). The green lines are
for a millilens with mass 2×103 M⊙ plus microlenses, while the
blue curves are for the case where only microlenses are included
in the simulation. For comparison, we show as red lines the case
where the mass of the millilens is reduced by a factor of 2. As in
the case of microlensing near caustics explored in earlier work,
the probability of high magnification is slightly larger in areas
with negative parity (dashed lines). In these regions significant
demagnification can take place in relatively large areas, that is
compensated by the larger magnifications of the cusps.

In all cases, the probability of magnification scales as the ex-
pected µ−2 power law. The departure from this scaling at µ >
1000 is mostly an artifact due to the nonzero pixel size, although
at larger magnification factors of µ > 10, 000 many microcaus-
tics overlap and the magnification is expected to fall faster than
µ−2 and become a log-normal distribution (Diego 2019; Palencia
et al. 2023). The ratio of the green to the blue curves corresponds
approximately to the ratio of masses between the millilens and
the stellar mass in the same region. For this particular area the
stellar mass in the right panels of the figure is roughly the fiducial
value times the area of the two right panels and times the macro-
model magnification (to transform the source area into image
area): M∗ = (50 M⊙ pc−2)× (0.163 pc)× (0.41 pc)×23 = 77 M⊙.
Dividing the millilens mass (2 × 103 M⊙) by this mass gives a
ratio of 27, which is roughly the ratio between the green and blue
lines. Similarly, reducing the mass of the millilens by a factor of
2 results in a reduction in the probability by approximately the
same factor (red curves).

Although not shown in the figure, the corresponding proba-
bility for the case where microlenses are ignored would be very
similar to the fiducial model but a bit below the green lines owing
to the small reduction in mass due to the absence of microlenses.
Hence, if we are interested in the probability of having magni-
fication µ3m > 100, this is basically determined by the millilens
and the macromodel. In this situation, microlenses play the role
of providing the temporary boost in flux to the lensed stars mov-
ing across the dense web of microcaustics to promote them be-
yond the detection limit and hence appear as transients. The
problem can then be reduced to studying the contribution from a
population of millilenses to the probability of having µ2m > 100
and across an area in the image plane where the macromodel
takes different values of µ1m.

5. Scaling with millilens mass and macromodel
magnification

Having established that the most interesting 3M-lensing effects
concentrate around the cusps of the millilenses, and that we can
reduce the problem we seek to solve to computing the probability
that the macrolens plus millilens produce magnification greater
than some value µ2m, we now focus on the scaling of A(> µ2m)
with the mass of the millilens (Mmil) and macromodel magnifi-
cation (µ1m).

We characterize this probability by fitting the tail of the mag-
nification with the canonical law A(> µ) = Ao/µ

2. The parameter
Ao defines the strength of the millilens and contains the scaling
we seek. Figure 5 shows an example with two masses for the
millilens and two values for the macromodel magnification. As
in Figure 4, dashed lines indicate negative parity and solid lines
are for positive parity. The black vertical line shows a multiplica-
tive factor of 4. This factor corresponds to the difference in mass
and to the square of the difference in macromodel magnifica-
tions. Hence, the parameter Ao scales with mass as Ao ∝ M and
with macromodel magnification as Ao ∝ µ

2
1m. A similar result is

found in earlier work for microlenses (Diego et al. 2018; Palen-
cia et al. 2023).

By fitting the different curves we find the scaling of the prob-
ability with the millilens mass (Mmil) and macromodel magnifi-
cation (µ1m),

A2m(> µ) = 0.19
(

Mmil

103 M⊙

) (
µ1m

µ

)2

pc2 . (2)

This scaling is almost insensitive to the particular values of the
tangential and radial values of the macromodel magnification,
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Fig. 5. Scaling of probability of magnification. The curves show the area
in the source plane with magnification greater than a certain value due
to millilenses in the lens plane. Solid lines are for millilenses in regions
of the lens plane where the macromodel magnification is positive (posi-
tive parity), while dashed lines are for millilenses in regions of the lens
plane with negative macromodel magnification (negative parity). Blue
curves are for a millilens with mass 103 M⊙ and macromodel magni-
fication ±23, red curves are for millilenses with mass 4 × 103 M⊙ and
macromodel magnification ±23. Green curves are for a millilens with
mass 103 M⊙ and macromodel magnification ±46. The black vertical
line indicates a factor of 4 difference. The probability of magnification
scales linearly with the mass of the millilens and quadratically with the
macromodel magnification.

and the probability depends only on their product, or µ1m. In rare
situations where µr ≈ µt, the caustic shape morphs into a singu-
lar point, but the probability of magnification is still given by the
same scaling and depends only on the product µt × µr = µ1m.
The law above is derived for the redshifts of the Dragon arc and
cluster A370, but it can be rescaled for other redshifts simply by
correcting for the factor Dds/DdDs. Also, the scaling in Equation
2 appears to work for individual microlenses. We tested the scal-
ing with a single simulation of a 2 M⊙ microlens in a potential
with µ1m = 20 at a resolution of 2 nas per pixel, and the scal-
ing in Equation 2 holds even at this low mass. One can even
extrapolate this relation to cluster-scale lenses by considering
µ1m = 1, since cluster lenses are generally in large-scale po-
tentials with magnification µ1m ≈ 1. The prediction for the area
above µ = 30 for a cluster at z = 0.375 with mass 1015 M⊙, a
source at z = 0.725, and µ1m = 1 is A(µ > 30) ≈ 210 kpc2, while
for five well-modeled clusters in Vega-Ferrero et al. (2019) with
masses ∼ 1015 M⊙ (excluding the supermassive MACS0717
cluster), the area A(> µ = 30) for these redshifts ranges between
∼ 1300 kpc2 and ∼ 3700 kpc2, corresponding to a factor of ∼ 6 to
∼ 20 more. Despite this disagreement, it is still remarkable that
the prediction comes to within one order of magnitude, consider-
ing there is a 12 orders of magnitude difference in mass between
a small 103 M⊙ millilens and a massive 1015 M⊙ galaxy cluster,
and the latter are highly irregular, rich in substructure, and with
shallower potentials (that are more efficient at increasing the area
in the source plane with high magnification).

6. Probability of 3M-lensing far from the cluster CCs
from a population of millilenses.

Evolved GCs have masses in the range ∼ 103–106 M⊙ and are
baryon dominated with mass-to-light ratios of a few (Goud-
frooij & Fall 2016; Harris et al. 2017; Bragaglia et al. 2017;
Baumgardt & Hilker 2018). Puffy or low-mass GCs are less re-

silient against disruption from tidal forces in the galaxy clus-
ter, which together with two-body interactions can lead to their
complete dissolution. Almost the entire range of GC luminosi-
ties has been measured in the Virgo and Fornax Cluster galaxies
(Jordán et al. 2007; Villegas et al. 2010), where it is found that
the luminosity functions (LFs) of evolved GCs are well matched
by a log-normal distribution Harris et al. (2014). At higher red-
shifts, it is expected that the faint end of the LF will be boosted,
since young low-mass clusters will not have been disrupted yet
(Reina-Campos et al. 2022). Dynamical disruption mechanisms
also affect massive clusters, thus lowering the maximum mass,
but the presence of ultracompact dwarf galaxies (UCDs) in the
observed samples would prevent detecting differences in this
regime. Since colors and luminosities alone are not sufficient to
disentangle these two populations, and both would produce the
millilensing effect considered in this paper, we consider them
both indistinctly. Recent work based on JWST has revealed a
population of massive GC-like objects in galaxy cluster environ-
ments at intermediate redshifts, z ≈ 0.2–0.4 (Faisst et al. 2022;
Lee et al. 2022; Harris & Reina-Campos 2023). The high masses
of some of these objects, exceeding in some cases 107 M⊙, are
larger than those for massive GCs and are suspected to be the
stripped galactic cores of dwarf galaxies (Faisst et al. 2022). The
population of GC-like objects in galaxy clusters is then probably
a combination of true GCs and UCDs.

To describe the mass function of GCs, we adopt a log-normal
LF (Harris et al. 2014; Harris & Reina-Campos 2023). Assum-
ing a constant mass-to-light ratio, the mass function should be
similar to the LF (given as a function of magnitude in that ref-
erence). For the log-normal shape, we assume three parameters:
(i) the peak, Mo, of the log-normal, which depends on the effect
of dynamical disruption processes, as well as on the detection of
the faintest and harder to detect GCs, (ii) the dispersion, σ, of the
log-normal, and (iii) the number of GCs which we parameterize
as a number density of GCs (the total area covered in the lens
plane by the Dragon arc is ∼ 1150 kpc2, out of which 960 kpc2

are in the far region). The GC mass function takes the form (see
Eq. (1) of Harris et al. 2014)

dN
d log10 M

=
N
√

2πσ
exp

[
−

(log10 M − log10 Mo)2

2σ2

]
, (3)

where N is a normalization constant. We consider two alterna-
tive models that are shown in Figure 6; each one has a differ-
ent value of Mo and σ. Model 1 (with log10(Mo) = 5.2 and
σ = 0.6) is our reference model and corresponds to the expected
mass function of GCs from numerical simulations of star-cluster
populations within cosmological zoom-in Milky-Way-mass sim-
ulations (Reina-Campos et al. 2022). In contrast, Model 2 (with
log10(Mo) = 5.8 and σ = 0.5) is an alternative and top-heavy
mass function that we use to check the dependency of our re-
sults with the GC mass function. The value of σ in these models
is comparable to the universal value derived for the LF by Harris
et al. (2014).

We can now combine all ingredients and compute the area
in the source plane with magnification µ2m > µcrit created by
millilenses in the far region. Above µcrit, microcaustics are con-
stantly overlapping in the source plane and the probability of
microlensing saturates at its maximum. As discussed earlier, we
adopt µcrit = 100, which satisfies the supercritical condition
Σeff = µcritΣ∗ ≳ Σcrit when Σ∗ ≈ 50 M⊙ pc−2.

The area in the source plane where microlensing is most
likely to take place is computed as the integral over the region in
the lens plane with macromodel magnification µ1m < µcrit = 100
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Fig. 6. GC mass function. The two colored lines show the two log-
normal models used in this work (see text).

and the mass functions of GCs,

Afar(µ2m > 100) =
∫

dµ1m

∫
dN
dM

P(µ1m)A2m(> µ) dM , (4)

where A2m(> µ) is given by Equation 2, the magnification is in-
tegrated between 1 and 100, and P(µ1m) is the probability for the
macromodel magnification (or area with magnification µ) in the
lens plane. This probability goes as µ−1 when taking logarithmic
bins in µ. That is, we take P(µ1m) = dA/d log(µ) = Po/µ1m and
determine Po with the constraint

∫
dµP(µ1m) = 1.

7. Expected vs. observed number of transients near
millilenses in the far region

With Equation 4, we can compute the area in the source plane
around millilenses in the far region with magnification µ2m >
100, or Afar(µ2m > 100), but we want to compare this area with
the area in the near region satisfying µ1m > 100, or Anear(µ1m >
100). Most microlensing events are expected to take place in
these two areas. Microlensing can in principle take place with
similar probability in both areas, provided the number density of
stars is the same in both regions.3

The area in the near region is determined by the lens model
for the galaxy cluster. We use the free-form WSLAP+model de-
rived for this cluster with the latest constraints from HST (see
Appendix). Based on the WSLAP+ model, we first compute the
area in the source plane (from the macromodel) with magnifi-
cation > 100 and that overlaps with the Dragon arc. This area
can be computed in the image plane, then divided by a factor
of 100 to transform it into source-plane area, and finally divided
by an additional factor of 2 to account for the two parities. This
results in 0.95 kpc2 in the near region of the source plane where
the macromodel should produce two counterimages with mag-
nification µ > 100 each. The two counterimages should appear
in the corresponding near region in the image plane (band de-
termined by the two cyan curves in Figure 1). Alternatively, the
area above a certain magnification can be computed directly in
the source plane with ray-tracing methods. In this case we ob-
tain the total magnification of a source that gets multiply im-
aged into N counterimages. At large magnification factors, usu-
ally two of the counterimages carry most of the amplification
(this happens when the source is very close to a cluster caustic).
3 In Section 9 we see how this also depends on the LF of the back-
ground stars.

In this situation one can approximate the total magnification as
twice the magnification from each counterimage. To account for
this effect we then need to compute the area in the source plane
with magnification > 200, resulting in an estimate of 0.57 kpc2

in the source plane. Neither method is perfect when addressing
global properties of an entire galaxy, especially in the case of the
Dragon arc where multiple cluster caustics intersect the back-
ground galaxy but the range 0.57–0.95 kpc2 should be a good
approximation to the truth (within a factor of 2). This range for
the area Anear(µ1m > 100) is shown as an orange horizontal band
in Figure 7. The luminous stars in this area are the most likely to
experience microlensing near the cluster CC.

Before computing the result of Equation 4, we confirm that
the macromodel probability of the WSLAP+ model does indeed
scale as P(µ1m) = dA/d log(µ) = Po/µ1m. This is demonstrated
in Figure A.1 in the Appendix. The ordinate in Figure 7 shows
Equation 4 computed in the far region and for the two GC mass-
function models shown in Figure 6. That is, for each model we
show the total area near millicaustics in the source plane with
magnification greater than µcrit = 100, and as a function of the
number density of GCs overlapping with the Dragon arc in the
far region (µ1m < 100). Any star in the background galaxy that
falls within this area in the source plane will have the same prob-
ability of experiencing a microlensing event (creating counterim-
ages in the far region of the image plane) than stars with similar
brightness in the near region of the source plane and with an esti-
mated area of 0.57–0.95 kpc2 (counterimages would form in the
near region of the image plane).

The area in the near region (source plane) is shown as a hori-
zontal orange band at the top of the figure. Clearly, the prediction
(solid lines) is below the orange band for any reasonable number
density of GCs (vertical blue band).

Microlenses overlapping with the millilenses would increase
this only by a small amount since the stellar mass from the
ICL overlapping with the millilenses is much smaller (see Fig-
ure 4), so the contribution from microlenses overlapping with the
millilens to the area, A(µ > 100), is very small.

The abscissa in Figure 7 shows the number density of GCs.
The total number of GCs can be obtained after multiplying by
the area contained in the far region of the Dragon arc in the lens
plane (960 kpc2). The average mass of a GC after integrating the
GC mass function (normalized to

∫
dN/dM = 1 GC) is close

to the peak of the log-normal, so the abscissa also can be trans-
formed into surface mass density by simply multiplying by this
number. Since the Dragon arc is at a distance of ∼ 50–70 kpc
from the brightest cluster galaxy (BCG), we can compare this
number density with the one observed in nearby clusters (such
as Coma or Virgo). The blue vertical band in Figure 7 is the
observed number density in the local universe from Peng et al.
(2011) and for distances in the range 50–70 kpc.

Recent observations from the HST Flashlights program sug-
gest that the observed rate in the far region is almost comparable
to the number of events in the near region. The Dragon arc holds
the record for the largest number of transient events reported so
far in an individual galaxy. Kelly et al. (2022) find seven tran-
sients in this arc after comparing two deep epochs in very wide
filters taken with HST. Six of these events have estimated macro-
model magnifications below 100 (from two lens models), indi-
cating a clear preference for these events to appear in regions of
the lens model where the macromodel magnification is not ex-
treme. The uncertainty in the magnification of these events is rel-
atively high, especially near the CCs, but even adopting a more
conservative value for the critical magnification of µcrit = 30,
three of the events have magnifications below 30 in the two lens
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Fig. 7. Expected and observed area in the source plane with magnifica-
tion µ > 100. The red and blue solid lines show Afar(µ2m > 100), the
expected area in the source plane with magnification greater than 100
around millilenses in the far region for the two different mass functions
shown in Figure 6. This area is computed as a function of the num-
ber density of millilenses, NGC, and later rescaled to the area in the far
region (960 kpc2). The blue vertical band shows the typical range of
number density of GCs at the distance of the Dragon arc from nearby
clusters. The horizontal orange band shows Anear(µ1m > 100), the area in
the source plane with macromodel magnification µ1m > 100. The green
horizontal band represents the fraction of microlensing events found in
the far region with respect to the near region (∼ 0.1 to 0.5 times the
number of events found in the near region).

models considered by Kelly et al. (2022). From our lens model,
at least two events are clearly in the far region (see Figure 1). As
a conservative and generous range, we assume that the ratio of
far-to-near events is between 0.1 and 0.5 times the lower bound
of the orange band. This range is represented by the green band
in Figure 7.

A similar result is found in the Warhol galaxy (z = 0.94) but
with JWST observations (Yan et al. 2023). Seven transient events
were found, with three in regions having macromodel magnifi-
cation below 100 (and as low as µ ≈ 30). Interestingly, all three
events peak their emission at wavelengths λpeak > 2 µm, suggest-
ing these are cool stars. For the case of Warhol the rate of far-
to-near events would then be close to 0.5, and given the very red
nature of these transients, the LBV hypothesis seems less likely.
The smaller number of events is partially due to the fact that the
galaxy is farther away, so it requires even more extreme mag-
nification factors to detect the same star, disfavoring the LBV
hypothesis for these events. Also, the cross section of the cluster
caustics with the background galaxy is substantially smaller than
for the Dragon arc, hence reducing the chance of finding stars
near high-magnification regions. On the other hand, Warhol is
at half the distance from the BCG than the Dragon arc, so the
number density of GCs and the probability of microlensing near
GCs in Warhol should be at least double the probability of the
Dragon galaxy, but still far too small to explain the observed ra-
tio of more than 0.1. In the same work (Yan et al. 2023), four
additional events are reported in the galaxy Spock, at a slightly
larger redshift, z = 1.0054. One out of the four events was found
in a region with predicted macromodel magnification below 100,
which would put the rate of far-to-near events at ∼ 1/3, again
orders of magnitude higher than expected. As in the case of
Warhol, this transient is also very red, λpeak > 2 µm, making the
LBV interpretation equally unlikely. For the Spock galaxy the
high ratio of events far away from the CC is even more striking
since this galaxy is in a portion of the cluster with an estimated

Fig. 8. Contribution from microlenses in the far region to high magni-
fication. This result is similar to Figure 7, but considers only the effect
of macromodel magnification and microlenses in the far region. The
two solid black curves show the area in the far region of the source
plane where microlenses create magnification factors > 100 and 200,
and as a function of the surface mass density of microlenses. Above
µ > 100 in the far region, stars are already very close to a microcaus-
tic and can reach it in a few months. For µ > 200 more stars can be
detected, but they reach the microcaustic on a shorter timescale. The
vertical blue band shows the expected range of surface mass densities
for microlenses that constitute 1% and 2% of the total projected mass.
(The convergence at the redshift of the Dragon arc from the macromodel
in the Dragon arc region ranges between 0.58 and 0.62, so we adopt the
mean value 0.6, while the shear ranges from 0.36 to 0.38.) The vertical
dashed line is the fiducial microlensing model.

surface number density of microlenses lower than for Warhol
and the Dragon arc, so the amount of magnification needed (from
the macromodel) to achieve the critical surface number density
is higher. A detailed treatment for the Warhol and Spock galax-
ies is beyond the scope of this paper (see, however, Diego et al.
2024, where two of the HST microlensing events in the Spock
arc were studied in more detail). Here we simply use them as
additional examples of an apparently high ratio of events in the
far to near regions.

If the number density of stars that can be detected during a
microlensing event is the same in the far and near region, the
ratio of the areas in the near and far regions translates directly
into the expected rate of microlensing events in the near and far
regions. In Section 9 we will see how the LF of the background
stars plays also an important role in determining the final number
of microlensing events, but here we can anticipate that for any
reasonable LF, and at GC densities of 1 GC kpc−2, the area from
millilenses in the source plane (and hence the relative probability
between the far to near events) is far below what is needed to
produce a significant number of microlensing events in the far
region (horizontal green band).

8. Transients from microlenses alone (no
millilenses) in the far region

So far we have focused all our attention on the possible role
played by millilenses at explaining the 0.7 < z < 1 transient
events observed in the far region of cluster CCs. Since in this
region the macromodel magnification is relatively small, micro-
caustics from stars contributing to the ICM do not overlap in
the source plane and the probability of microlensing is greatly
diminished, but this does not mean microlensing in areas with
lower magnification µ2m cannot take place.
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One fundamental difference between microlenses and
millilenses is that microlenses have a much higher number den-
sity. At the distance from the BCG of the Dragon arc, the
surface mass density of microlenses in our fiducial model is
Σ∗ = 50 M⊙ pc−2. This estimate is consistent with measurements
based on the ICL at similar distances (Montes & Trujillo 2022).
In the 960 kpc2 occupied by the Dragon arc, this surface mass
density translates into a total mass of 4.8 × 1010 M⊙. This is a
factor of 50 larger than the mass from GCs assuming a number
density of 1 GC per kpc2 and a mean mass of 106 M⊙ per GC
(Model 1).

It is then natural to expect that microlenses alone should play
a bigger role than millilenses. We repeat the calculation done for
the GCs, but this time as a function of the surface mass density
of microlenses and ignoring the contribution from millilenses.
Since the GCs assumed earlier are very compact, with masses
contained within their effective Einstein radius, they behave as
point masses, so we can use the scaling law in Equation 2 by
simply replacing the millilens mass by the surface mass density
of microlenses. This extrapolation can be tested against the sim-
ulation result shown in Figure 4, where for 77 M⊙ we find an
area above µ = 100 of ∼ 5 × 10−4 pc2, while for the same mass
and the scaling in Equation 2 we expect 7.7 × 10−4 pc2 (in both
cases µ1m = 23).

The result for microlenses alone is shown in Figure 8, where
we compare the area in the far region of the source plane with
magnifications µ > 100 and µ > 200. As expected from their
larger surface mass density, the contribution from microlenses is
substantially more than from millilenses. In the figure, we mark
with a vertical dashed line the surface mass density of our fidu-
cial model. The microlenses in this model are sufficient to ex-
plain the elevated rate of events in the far region. The blue verti-
cal band marks the range of surface mass densities correspond-
ing to convergence from the stellar component between 1% and
2% of the total convergence of the cluster at the position of the
Dragon arc. Our fiducial model corresponds to κ∗ = 2.3%, a rea-
sonable value for distances between 50 and 70 kpc to the center
of the cluster.

The results presented so far have not taken into account the
LF of the background stars, since we are simply looking at the
ratio of areas (or relative probabilities) between the far and near
regions where µ2m > 100 (or µ3m > 100 for the far region) and
µ1m > 100 (for the near region). The probability of microlensing
is proportional to these areas, but the number of stars that can be
detected through microlensing (as mentioned earlier, we refer to
this group of stars as DTM stars) depends strongly on the LF as
we shall see in the next section, where we also discuss the key
elements that makes imaging DM substructure with lensed stars
possible.

9. Mapping dark matter substructures with
microlensing events

We have seen how millilenses are not the most likely explana-
tion for the high fraction of events (proportional to the area with
high magnification) found in the far region, but microlenses (and
LBVs) offer a more likely explanation. However, we have also
seen how the rate of microlensing events is enhanced around
millilenses (or in general perturbations in the small-scale distri-
bution of mass). Figures 7 and 15 of Williams et al. (2024) show
that the number of highly magnified images is proportional to
the length of millilens CCs. This offers the interesting prospect
of using distant stars as backlights and microlensing events as

the markers of substructure that is influencing the number of de-
tected microlensing events. We can then map the location of mi-
crolensing events, and use them to learn about the distribution
of matter along the line of sight. This is analogous to using a
photographic plate to trace the distribution of photons crossing
an imperfect glass with nonuniform thickness, where in our case
the photons are the distant stars being microlensed and the ir-
regularities in the glass screen are the small perturbations in the
lensing potential from DM substructures. The analogy with pho-
tographic plates will be made more evident later in this section.

So far we have ignored the role played by the LF of the popu-
lation of lensed stars, but the distribution of microlensing events
depends on the distribution of matter and the specific form of the
LF. Many of the microlensed stars are ∼ 1–2 (apparent) magni-
tudes below the detection threshold before microlensing. In the
following sections, we assume all microlensing events provide
a boost of ∼ 2 mag (on average), so the DTM stars would be
the ones that during a microlensing event can be detected. The
specific amount of magnification provided by microlenses is ir-
relevant for our calculations. All that matters is that microlens-
ing can promote fainter stars beyond the detection threshold and
make them vary in flux between two epochs, so they can be rec-
ognized as transients in the difference of images taken with the
same filter. Most of the DTM stars would be undetectable with-
out microlensing, but some may be already detectable with just
the boost provided by the macrolens (and the millilens, if one
happens to be nearby) and before microlensing, but all of them
would appear as transients during a microlensing event.

9.1. Number density of DTM stars

The number density of DTM stars, and in a region with magnifi-
cation µ, is given by

ρ(µ, β) =
As(µ)
Ai(µ)

∫ Lmax

L1(µ)
ϕ(L) dL , (5)

where ϕ(L) ∝ (1/L)β is the classic (per unit area) LF of the
background population of stars, L1(µ) = Lmin/µ with Lmin the
minimum luminosity that could be detected at the redshift of the
background galaxy at magnification µ = 1 and is set by the depth
of the observations, Lmin = 100.4(mthr−dm(z)), with mthr the limiting
magnitude of the observations, dm(z) the distance modulus to
redshift z, and for simplicity we ignore color corrections. In re-
ality, since we are interested in stars that can be detected through
microlensing, Lmin is smaller by a factor of 102/2.5 = 6.31, or
2 mag fainter, and during a microlensing event, a star with lumi-
nosity Lmin/6.31 will be magnified enough to be detected. Since
these are DTM stars, they can be detected when experiencing a
microlensing event, and eventually all of them would be detected
if one could monitor the area for a sufficiently long time. Lmax is
the most luminous star in the area considered and depends on
the assumed shape of the LF, or the existence of a limiting lumi-
nosity for the stars, such as the Humphreys-Davidson (HD) limit
for RSGs s(Humphreys 1978). For our purposes, we assume the
observations are deep enough such that we can see microlensing
from stars much less luminous (before magnification) than the
most luminous star in the portion of the galaxy being magnified.
In the expression above we assume that the probability of magni-
fication when millilenses and microlenses are added is similar to
the one given by the macromodel alone, so we can simply rely on
the macromodel magnification. This is a very good approxima-
tion since millilenses and microlenses do not modify the proba-
bility of magnification significantly (when computed over areas
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much larger than the scale of the micro or millilenses), but rather
they borrow magnification from surrounding regions and redis-
tribute it around the millilenses and microlenses (see Figures7
and 8 of Diego 2019, where the probabilities of magnification
for the smooth model and the smooth model plus microlenses
are very similar). For moderate magnification factors and typical
depths, L1(µ) > Lmax and the integral is zero in Equation 5, but
for sufficiently large µ, L1(µ) < Lmax and the number of DTM
stars (and consequently microlensing detections) is greater than
zero. The areas in the image and source plane are Ai and As (re-
spectively), and they are related by As = Ai/µ. Taking as unit
area As = 1 and replacing ϕ(L) by (1/L)β, we find

ρ(µ, β) =
L1−β

µ(1 − β)

∣∣∣∣∣Lmax

L1(µ)
(6)

except for if β = 1, in which case the number density is

ρ(µ, β) =
log(L)
µ

∣∣∣∣∣Lmax

L1(µ)
. (7)

For a steep LF with β = 3 and sufficiently large values of µ, we
find that ρ(µ) ∝ µ, where we have assumed that L1(µ) << Lmax.
The number density of DTM stars from such a population of
background stars would then directly trace the magnification,
and with it the distribution of mass on small scales. If mi-
crolenses are present in this area, they will make these DTM
stars detectable, with a rate of microlensing events that increases
with the abundance of microlenses as shown in Section 8. The
tight relation between the LF and the number of microlensing
events is discussed later in Section 9.3.

In general, for any β > 1 and for Lmin/µ << Lmax, the number
density of DTM stars scales with µ as

ρ(µ, β) ∝ µ(β−2) . (8)

Based on this, we can define two distinct regimes, which we
identify with traditional photographic plate imaging, where pho-
tons are crossing a glass with nonuniform thickness. For steep
LF with β > 2, we are in the positive-imaging regime. Here, the
number density of DTM stars (the photons that reach the pho-
tographic plate) is larger around substructures with larger mag-
nification factors (or in our analogy, when photons are crossing
portions of the glass that focus the light more into the photo-
graphic plate). For shallow LF with β < 2 we are in the negative-
imaging regime, where the number density of DTM stars is re-
duced around substructures. In our photographic-plate analogy,
this would correspond to the negative of the photograhic plate,
where the silver particles have absorbed more photons behind
the small-scale structures. For the particular case of an LF with
β = 2, we expect the number density of events to be uniform and
independent of magnification. The photographic analogy would
be the superposition of the positive image and the negative plate,
leaving as a result a homogeneous image.

To better illustrate this specific case, we discuss a simple
experiment. For β = 2, and considering two logarithmic bins
in magnification, we can think of two regions, A and B, with
the same LF but different magnifications; 10 < µB < 100 and
100 < µA < 1000. Region A has mean magnification a factor of
10 larger than region B. In the image plane, region A is 10 times
smaller than region B (true for logarithmic bins in µ), while in
the source plane, region A is 102 times smaller than region B.
The number density of DTM stars in the source plane of region
A is 10 times larger than in region B (

∫ ∞
L1

L−2 dL ∝ L−1
1 , with

L1 10 times smaller in A than in B), but the area is 102 smaller
so there are 10 times fewer objects detected in the image plane
in region A than in B (see Figure 10), but since the area in the
image plane of B is 10 times larger, the number density of DTM
stars in the image plane is the same in A and B.

The case of a shallow LF, β < 2, is counterintuitive since we
expect to see a smaller number density of DTM stars in regions
of higher magnification. This shallow LF resembles the faint end
of the LF of quasistellar objects (QSOs) at high redshift. Most
lensed QSOs are found in regions with moderate magnification
factors, in agreement with Equation 8 above. This is similar to
the enhancement-dilution effect, or magnification bias, discussed
in the context of distant lensed galaxies and QSOs (Canizares
1981; Narayan 1989; Borgeest et al. 1991; Narayan & Walling-
ton 1993; Broadhurst et al. 1995; Umetsu et al. 2014).

9.2. The observed luminosity function.

The LF of the observed events, ϕ̂(L), can be directly related to
the LF of the background stars (before magnification). For an LF
with β , 3 and considering a region with minimum magnifica-
tion µ1, we have

ϕ̂(L) =
∫ µmax

µ1

ϕ(L/µ)As(µ)
dµ
µ
∝ µ

β−3
1 ϕ(L) , (9)

where µmax is the maximum magnification for a star, µmax ≈ 104

for supergiant stars (see Section 10.1), and we have assumed
µmax >> µ1. The extra term 1/µ inside the integral is the reduc-
tion in luminosity bin size at magnification µ, and As(µ) ∝ µ−3.
For the particular case of β = 3 we have

ϕ̂(L) ∝
(
log(µmax) − log(µ1)

)
× ϕ(L) , (10)

which has a weak dependence on µ1. As discussed in Section 2,
the luminosity functions in Equations 9 and 10 do not conform
with the classic definition of number density per luminosity and
unit area, but instead correspond to regions in the image plane
with an area that depends on µ1 and µmax. The LF maintains its
form, but its amplitude (compared with the amplitude of ϕ(L)),
scales as µβ−3

1 for β , 3, and remains virtually independent of the
magnification when β ≈ 3. For a LF with β ≈ 3, the reduction in
area in the source plane (As(µ) ∝ µ−3) is almost perfectly com-
pensated by the increase in the number of objects with smaller
luminosity L/µ. In this case, the number of lensed objects per
logarithmic interval in magnification is the same at all magni-
fications (a visual example of this constancy in µ is shown in
Section 9.4).

Similarly, we can define the probability of magnification of
the lensed stars, ˆϕ(µ) as

ϕ̂(µ) =
∫ ∞

Lmin

ϕ(L/µ)As(µ) dL ∝
µβ−3

Lβ−1
min

. (11)

For an LF with β = 3, all magnifications have similar probability,
so the observed population of lensed stars will have equal frac-
tions of fainter and luminous stars. A shallower LF with β < 3,
will be dominated by low-magnification events far from the CC
(i.e., from intrinsically very luminous stars), while a steeper LF
with β > 3 will produce mostly high-magnification events near
the CC (i.e., low intrinsic luminosity stars).
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9.3. Connecting the distribution of transients with the LF and
the amount of substructure.

Interestingly, the observed number density of events in Flash-
lights traces the magnification (higher concentration of events
in the near region), so this points (in principle) to a population
of DTM with β > 2 (Equation 8). But this would be true only
if substructure is not present. The relation between the LF and
substructure adds complexity to this interpretation, as we have
seen in Sections 7 and 8, where the probability of having tran-
sient events (proportional to the area where large magnification
factors are possible) in the far region depends also on the amount
of substructure (micro- and millilenses). To estimate the ratio of
microlensing events in the far and near regions, one needs to take
into account both the LF and the amount of substructure.

We begin by computing the number of DTM stars in a log-
arithmic bin in magnification. For the sake of clarity, we derive
the scaling with µ both in the image and source planes, and show
how they are both equivalent. To show this scaling with µ, we
consider two areas, A and B, with magnifications µA < µB. For
simplicity, the widths in magnification of areas A and B are the
same in logarithmic scale. In particular, we will be considering
two bins in magnification (in log scale), 10 < µ < 100 for the far
region and 100 < µ < 1000 for the near region. When consid-
ering logarithmic bins, the area of A is µB/µA times bigger than
the area of B when computed in the image plane. In the source
plane, the area of B is reduced in size by an extra factor µB/µA
since As = Ai/µ. That is, when computing areas in the source
plane the area of A is (µB/µA)2 times bigger than the area of B as
expected (Schneider et al. 1992).
Image plane interpretation: We count DTM stars in the image
plane in areas A and B with magnification µA and µB. The num-
ber of DTM stars are the ones that are found in the smaller areas
A/µA and B/µB in the source plane, and above the luminosity
L1(µ) = Lmin/µ, where µ = µA or µ = µB. Since B = AµA/µB,
then the area of B in the source plane is B/µB ∝ A/µ2

B, and the
number of DTM stars scales with µ as

dNDT M

dlog(µ)
∝

1
µ2

∫ Lmax

L1(µ)
ϕ(L)dL ∝

µβ−3

Lβ−1
min

. (12)

Source plane interpretation: We count stars that fall in the
source plane in areas A and B with magnifications µA and µB.
In this case, the calculation is simplified since we can work di-
rectly with the area in the source plane which scales as ∝ µ−2.
The number of DTM stars above luminosities L1(µ) = Lmin/µ is
then

dNDT M

dlog(µ)
∝

1
µ2

∫ Lmax

L1(µ)
ϕ(L)dL,∝

µβ−3

Lβ−1
min

, (13)

and thus equivalent to Equation 12. In the above equations,
where we have made the usual approach that Lmax >> L1(µ) =
Lmin/µ. For DTM stars, we have seen how Lmin is approximately
6.31 times below the luminosity corresponding to the detection
limit (2.5log10(6.31) ≈ 2 mag). We have also ignored the multi-
plicity of counterimages, but this cancels out when considering
the ratio of events in the near and far region, assuming the mul-
tiplicity is the same in both regions. From Equation 13, and for
an LF with β = 3, we expect the same number of DTM stars
per logarithmic bin in magnification (see also Equation 11). In
the image plane, the area per logarithmic bin in magnification
scales as µ−1, so the number density of DTM stars for this case
would go as µ and trace the magnification, in agreement with
Equation 8.

Fig. 9. Ratio Nnear/Nfar as a function of β and Σ∗ (expressed in units of
M⊙ pc−2). The white lines show the combination of β and Σ∗ that predict
the same number of events in the far and near regions (Ratio = 1) or five
time more events in the near region than in the far region (Ratio = 5).

The total number of stars that experience microlensing in
the far region is given by the number of DTM stars in that re-
gion (Eq. 13) times the probability of each star to experience
microlensing. This probability is proportional to the black solid
line in Figure 8:

Nfar ∝
dNDTM

dlog(µ)
× A(µ2m > 100,Σ∗) . (14)

For the near region, we have a similar expression, but replacing
A(µ2m > 100,Σ∗) by A(µ1m > 100), which is given by the or-
ange band in Figure 8. Here we ignore millilenses since we have
established in Section 8 that the dominant effect is coming from
microlenses.

We can now express the ratio of events in the near and far
regions:

Nnear

Nfar
=

(
µ̂near

µ̂far

)β−3 A(µ1m > 100)
A(µ2m > 100,Σ∗)

. (15)

In the expression above, we made the simplification that in the
far and near regions the number of events can be expressed in
terms of their corresponding average magnification, µ̂, computed
as the mean magnification in the source-plane region with µ >
µ1,

µ̂ =

∫ ∞
µ1
µAsdµ∫ ∞

µ1
Asdµ

= 2µ1 . (16)

Here we adopt µ1 = 10 for the far region of the Dragon arc and
µ1 = µcrit = 100 for the near region.

The value of β can be obtained by inverting the equation
above,

β = 3 +
log(Nnear/Nfar) − log(RA(Σ∗))

log(µ̂near/µ̂far)
, (17)

where RA is the ratio of areas,

RA(Σ∗) =
A(µ1m > 100)

A(µ2m > 100,Σ∗)
= A(µ1m > 100)

500
Σ∗(M⊙ pc−2)

, (18)
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Fig. 10. Monte Carlo realization of lensed stars for a case with β = 2.
For this example, half a million stars with luminosities in the range
50 L⊙ < L < 5×105 L⊙ are placed in a region with magnification µ3m >
10. The maximum luminosity corresponds to the observed HD limit for
supergiant stars in the local universe Humphreys (1978). The diagonal
cut in the red points is just Lobs = 50×µ L⊙. The simulation is complete
above Lobs ≈ 106 L⊙. The LF of stars has a slope of β = 2. Blue dots
represent stars before magnification and red dots are the magnified stars.
In the top-right inset we show the LF of the stars before magnification
(blue curve) and the observed LF after magnification (red curve). In the
bottom-right inset we show the spatial distribution of the 500 brightest
events and for a model with magnification µ = 1”/d where d is the
distance to the CC (marked with a vertical light blue line at d = 0”) in
arcseconds.

where from Figure 8) we have A(µ2m > 100,Σ∗) =
Σ∗(M⊙ pc−2)/500. For the near region, we take A(µ1m > 100) ≈
0.7 kpc2, which is approximately in the middle of the orange
band in Figure 8. That is, RA = 7 for Σ∗ = 50 M⊙ pc−2. Only
the ratio of areas in the far and near regions is relevant for this
calculation, and this ratio of areas is independent of the value
of µcrit (see Section 10.2 below). The number of microlensing
events is Nfar = 2, (numbers 3 and 6 in Figure 1) and Nnear = 5,
while the ratio µ̂near/µ̂far = 10. Replacing these numbers in Equa-
tion 17, we finally obtain β = 2.55+0.69

−0.48
+0.18
−0.29 = 2.55+0.72

−0.56, where
the first error comes from Poissonian uncertainty in Nnear and
Nfar, and the second error corresponds to the range 25 M⊙ pc−2 <
Σ∗ < 75 M⊙ pc−2. The final error bar is obtained after adding in
quadrature the first two uncertainties.

With Equation 17, β can be quickly calculated for any ar-
bitrary amount of substructure. Even though we have expressed
Equation 17 as a function of the stellar surface mass density,
Σ∗, in truth this value represents all substructure that contributes
to the area in the source plane with magnification µ > 100.
For a larger value of Σ∗ = 140 M⊙ pc−2 we find β = 3 and for
Σ∗ = 14 M⊙ pc−2 we find β = 2, or β = 1 for an unrealistically
low Σ∗ = 1.4 M⊙ pc−2. Since β can be measured directly through
the observed LF (when sufficient events are available), one can
invert Equation 17 and derive Σ∗, or in general the surface mass
density of substructure since all small substructure contributes to
Σ∗.

Equation 17 summarizes the intricate relationship between
the number of observed microlensing events, the LF, and the
amount of substructure. The same ratio of events in the far and
near regions can be obtained by (i) reducing β (hence increasing
the relative number of DTM stars in the far region) and reducing
Σ∗, or (ii) increasing β, which increases the number of DTM stars
in the near region in relation to the number of available DTM

Fig. 11. Similar to Figure 10 but for the case where β = 3. In this case,
all magnifications have comparable probability as predicted by Equa-
tion 11. The lensed LF (thick red line) lies a factor of µ̂β−1 above the
nonlensed LF (blue line). The smaller number of events at high lumi-
nosity when compared to Figure 10 is due to the fact that the number
of stars in the simulation is the same in both cases, but for the steeper
LF there are more stars with lower luminosities. The number density if
events concentrates around the CC, tracing the magnification.

stars in the far region, but increasing Σ∗ as well, thus compen-
sating the reduction of DTM stars in the far region by increasing
the chance of a microlensing event.

A visual version of Equation 17 is shown in Figure 9, where
we invert the equation to show the ratio of events in the near and
far regions as a function of β and the amount of substructure Σ∗.
In the figure we highlight with white lines two possible combi-
nations of the parameters Σ∗ and β that produce equal ratios of
events in the far and near regions, or five times more events in
the near region than in the far region. The measured ratio using
Flashlights data (2.5) falls in between these two lines. Future ob-
servations of this fascinating galaxy will improve the constraints
of the observed ratio of events near-to-far and the exponent β.
This can later be used to derive the amount of substructure, Σ∗,
needed to make the observed ratio compatible with the observed
β.

9.4. Validation with Monte Carlo simulations

In order to test the validity of Equations 8, 9, 11, and 13, we per-
form Monte Carlo simulations (see Kelly et al. 2018, where they
also used simulated data to study the particular case of Icarus).
One example is shown in Figure 10 for the particular case of
β = 2 and computed in a region where the magnification is > 10
(i.e., µ1 = 10). We create a sample of half a million stars from
the LF with luminosities L > 50 L⊙. This sample is shown as
thick blue dots. For this simulation we have set an upper limit to
the intrinsic luminosity equal to the HD limit of 5 × 105 L⊙, so
no blue dots are found above this value. The LF from this sam-
ple is shown as a blue line in the top-right panel. To each star
we assign a random magnification in the interval µ1 < µµmax and
following the canonical probability As(µ) ∝ µ−3. After multiply-
ing the luminosity by the magnification, the magnified stars are
shown as red dots, with the magnification for each star indicated
on the abscissa. We compute the lensed LF from the same sam-
ple of half a million stars (red curve in the top-right panel). In a
realistic situation, the number of stars in an area with magnifica-
tion µ1 < µ < µmax should be a factor µ̂2 smaller, but we use the
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same sample for convenience. In these conditions, the amplitude
of the red line scales as µ̂β−1, instead of the expected µ̂β−1 from
Equation 9, so for this particular case of β = 1, the red line is
above the blue one by a factor m̂u = 20. Only one star is above
a detection threshold of 29 mag, but a few dozen have apparent
luminosities (after magnification) above several million and are
in regions where the magnification already exceeds the critical
value, µcrit = 100, so they are good candidates to move toward a
microcaustic and be promoted beyond the detection threshold.

The diagonal cut in the red points corresponds to the small-
est luminosity considered in the simulation, 50 L⊙. In the sim-
ulation, there is no star brighter than the HD limit of Lmax ≈

5 × 105 L⊙, while in the lensed sample, we can reach appar-
ent luminosities exceeding 107 L⊙. The most luminous stars in
the lensed sample correspond in this case to relatively moderate
magnification factors, µ ≈ 400 (before microlensing).

Regarding the number density, Equation 8, the uniform num-
ber density of observed events when β = 2, is also well repro-
duced by the Monte Carlo, as shown in the bottom-right inset
plot of Figure 10. The abscissa shows the inverse of the magni-
fication of the observed events, which can be transformed into a
distance to the CC for an spherical isothermal lens model with a
small Einstein radius of ∼ 1′′. A small reduction in the number
density is observed at larger distances (small magnifications).
This reduction in number is due to the imposed HD limit in the
Monte Carlo simulation.

The dependence on the exponent β is made more evident
when we compare the previous result with the Monte Carlo sim-
ulation for the case with β = 3, and shown in Figure 11. The red
points have a uniform distribution in magnification, as predicted
by Equation 11. As before, the observed LF (thick red line in
the upper-right inset plot) lies above the blue curve by a factor
µ̂β−1 = (2× 10)2. The spatial distribution shows a much different
distribution than in the case with β = 2, with the number density
directly tracing the magnification (Equation 8).

9.5. A possible invisible millilens in the Dragon arc

Since β can be estimated directly from the observed ˆϕ(L), or
from the distribution of events as discussed above, combining the
spatial distribution of the number density with the observed LF it
is then possible to identify deviations that can be attributed to lo-
cal departures from the macromodel magnification or regions in
the source plane with a different LF. Departures from a smooth
distribution in the number density can be taken as evidence for
substructure, which can locally increase the number density of
DTM stars (and transient events) according to ρ(µ, β) ∝ µ(β−2).
The number density of microlensing events is then a direct tracer
of substructure, and can be used to map the underlying structure
of DM fluctuations on subarcsecond scales and down to the mil-
liarcsecond scale (see also the CC structure around millilenses
in Williams et al. 2024, Fig.3).

In Section 4 we discussed how a millilens with mass as small
as 2 × 103 M⊙ can boost the probability of microlensing by at
least an order of magnitude when compared to the case of mi-
crolenses only (see Figure 4). Such a millilens and its associated
Einstein ring would be too small to be resolved even with JWST,
so all the microlensing events near the cusps of the millilens
would seem to originate from the same pixel. Since the timescale
for a single star with µ ≈ 100 to reach the closest microcaustic is
about 1 yr (see next section), repeated observations with high ca-
dence (weeks) should reveal the population of bright stars behind
the microlens as each one crosses one of the multiple microcaus-
tics around the millilens cusp. As discussed above, the LF of all

events coming from this single pixel should be proportional to
the LF of the background population of luminous stars, and with
the same exponent β.

For larger millilens masses, and β > 2, the microlensing
events around the millilens will take place in neighboring pix-
els and form a cluster of events. The clustering of detected
events can be used to trace the underlying mass distribution of
millilenses. Since microlensing events are most likely in super-
critical regions, if a substructure in the far region becomes super-
critical, microlensing events will more likely be detected around
that region than in nearby subcritical regions. If enough events
are detected in a lensed galaxy, a pattern emerges with clusters of
events at the position of these substructures. We can approximate
the size of a supercritical region of a substructure with mass Msub
as the area contained within its observed Einstein radius, which
is given byΘobs ≈

√
µ1m×ΘE (Diego et al. 2018). If the substruc-

ture has circular symmetry, ΘE =
√

(4GMsub/c2)(Dds/(DdDs)),
and the mass of the substructure can be obtained as

Msub = Θ
2
obs

c2

4Gµ1m

DdDs

Dds
. (19)

Events 3 and 6 in Figure 1 are located in the far region but sep-
arated by only 0.15′′. At this position µ1m = 13 from our lens
model. If we assume the observed Einstein radius is half the sep-
aration between the events, from the relation above we would
obtain a mass for the possible undetected substructure along the
line of sight to these events of ∼ 1.3×108 M⊙ within the Einstein
radius of the substructure. The virial mass of the substructure
could be significantly higher if it is not concentrated enough to
contain most of its mass within its Einstein radius. From the N-
body simulations discussed in Section 10.4, we expect of order 1
satellite galaxy with this mass and overlapping with the Dragon
arc. This is a tantalizing result, but it cannot be taken too seri-
ously because it lacks statistical significance, and the two events
mentioned above could simply be a chance occurrence of two
microlensing events that happen to take place near each other.
However, if substructures in this mass range exist in the clus-
ter in the far region of the Dragon arc, they will become more
evident with future observations of this arc, since new events
will have a higher tendency to appear in positions near previous
events. Future JWST observations may also reveal the hidden
substructure that is increasing the microlensing rate at this loca-
tion, or alternatively there is an overdensity of luminous stars at
this position in the Dragon arc that can also increase the rate of
mcirolensing events there. LBV can be distinguished from gen-
uine microlensing events through their light curves, since they
have light curves that depart from the 1/

√
t − to behaviour ex-

pected for microlensing events (t is time and to is the crossing
time if the microcaustic).

10. Discussion

It is important to discuss some of the approximations in this work
and consider aspects that have not been treated in the previous
sections but affect some of our conclusions.

10.1. Duration of microlensing events

At µ = 100, a star with absolute magnitude −7 would still be
undetected within the far and near regions (apparent magnitude
31.24 for µ = 100). A few of these undetected stars will be close
enough to a microcaustic in the source plane. Approximately
half of these stars will be moving away from the microcaustic
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Fig. 12. Cusp region around a microcaustic with 1 M⊙ in a macromodel
with magnification µ = 23. The gray scale shows the logarithm of the
magnification. The region near the caustic with magnification ∼ 100 is
marked in black. The white bar in the bottom right is the distance moved
by a background star at z = 0.725 in 1 yr when the relative velocity
is 500 km s−1. The maximum magnification is 3700 at the tip of the
cusp. The pixel size is 320 R⊙, so a supergiant star with diameter 80 R⊙
would reach twice this magnification at the maximum, or µtip

max ≈ 7400.
At the fold caustics, the maximum magnification for a 80 R⊙ diameter
star would be smaller, µfold

max ≈ 1000. The straight line with dots shows
the track of a hypothetical star moving across the caustic. The size of
the dot corresponds to a star with radius 1500 R⊙.

and hence remain undetected in the near future, but the other half
will be moving closer to the microcaustic and become brighter
over time. At magnification µ = 1000, the same star with ab-
solute magnitude −7 can now be detected easily with JWST in
exposures of 1 hr. For a background star near a microcaustic, the
time it takes to move from µ = 100 to µ = 1000 depends on sev-
eral factors such as the mass of the microlens, the macromodel
magnification, the relative velocity between the background star
and the microcaustic, the direction of motion relative to the mi-
crocaustic, and the point of crossing of the microcaustic. To
get a sense of this timescale, we assume a microlens with mass
1 M⊙, the same macromodel magnification of the fiducial model
µ1m = 23, and a relative velocity of v cosα = 500 km s−1, where
α is the angle between the direction of motion and the micro-
caustic. In this situation, when the background star is at magni-
fication µ = 100, the microcaustic is ∼ 0.1 µas away as shown in
Figure 12.

At a velocity of v cosα = 500 km s−1, a star with abso-
lute magnitude −7, within a microcusp and with magnification
µ ≈ 100, would take ∼ 1 yr to reach the caustic and become
detectable. At the tip of the cusp, the magnification for a super-
giant star with diameter 80 R⊙ reaches a maximum of ∼ 7500,
and ∼ 1000 at the fold caustics. At this velocity, this maximum
magnification can be maintained for ∼ 1.5 days Miralda-Escude
(1991), after which the magnification will drop to a factor of a
few and the star will no longer be detectable. Approximately 1/3
of the background stars in the far region with absolute magnitude
−7, and near a microcaustic with magnification µ ≈ 100, will
move toward the caustic and become detectable after 0.5–1 yr of
observation (or similarly, they are detectable now and will dis-
appear behind the microcaustic after 1 yr or move away from the
caustic). The exact same reasoning applies for the more numer-
ous stars with double the magnification, or absolute magnitude
−7 + 2.5 log10(2) = −6.25, but in an area 8 times smaller in the
source plane (A/dµ ∝ µ−3) and with magnification µ > 200. But
in this case, the distance to the microcaustic is four times smaller,
so the cadence should be higher in order to detect these stars be-
fore they cross the caustic and become undetectable again.

One factor to keep in mind is the very large radius of the
most luminous RSGs, that can reach radii of ∼ 1500 R⊙ (Meynet
et al. 2015). Since the maximum magnification is lower for larger

Fig. 13. Light curve of a star moving at 500 km s−1 along the track
shown in Figure 12. The blue dotted line corresponds to a star with
the same diameter as the pixel of the simulation (320 R⊙), while the red
solid line corresponds to a much larger and more luminous star with
R = 1500 R⊙. The star crosses the entire caustic region in ∼ 9 yr, with
the first peak grazing the caustic and producing a wide peak.

stars, these very luminous RSGs would generally have smaller
magnification factors, typically a few hundred as shown in Fig-
ure 13. When addressing the detectability of these stars, care
needs to be taken to account for the smaller maximum magni-
fication of large RSGs. Interestingly, the large radii of massive
RSGs should correlate with where they are observed. If an RSG
has a radius of 1500 R⊙ and it can only be magnified by factors
of a few hundred in the far region, only those RSGs exceeding
105 L⊙ can be observed at z = 0.725 during peak magnification.
Less luminous RSGs of similar size can still be observed in the
near region since multiple microcaustics overlap and the magni-
fication can be µ > 2000 in this case (or 2.5 mag deeper). The
most luminous RSG is expected to have a maximum luminosity
close to the HD limit, Lmax ≈ 5 × 105 L⊙ or absolute magni-
tude ∼ −9.5, which at magnification 100 can still be detected
at z = 0.725 with apparent magnitude ∼ 28.7, so anywhere in
the far region provided they are close enough to a microlens or
millilens. BSGs, on the other hand, can be even more luminous
and smaller (R ≲ 25 R⊙), so during a microlensing event they
can be magnified by factors µ > 1000 in the far region, allowing
us to see the fainter (but more magnified) BSGs or the brighter
but with more moderate and more likely magnification factors
(µ < 50).

10.2. Critical magnification

The definition of the far-to-near ratio depends on the ratio of ar-
eas near to and far from the cluster CC, which in turn depends on
our choice for the critical magnification. Taking a larger µcrit by a
factor of 3 would lower the orange (and green) bands in Figure 7
and Figure 8 by a factor of 9, but it would also lower the solid
lines by the same factor of 9, leaving our conclusions unchanged.
Hence, our conclusions are independent of the particular value
of µcrit. There is, however, a relatively small dependence on µcrit
impacting our findings. The results in Figure 7 and Figure 8 are
normalized to the area in the far region, which for µcrit = 100
represents 83.4% of the area covered by the Dragon arc. Lower-
ing µcrit would reduce this fraction of area where far events from
millilenses can take place. The dependence of the fraction of area
in the near region scales almost linearly with µcrit, so we can ap-
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proximate this as Ffar ≈ 1− 16.7/µcrit, where 16.7 is the fraction
of area in the near region when µmacro = 100. For example, from
this law we find F = 66.6% and F = 91.6% for µcrit = 50
and µcrit = 200, respectively, while from the lens model we
find 69.3% and 93.2%. Hence, in the conservative case where
µcrit = 50 (this would require a very high Σcrit > 100 M⊙ pc−2),
we find that the lines in Figures 7 and 8 would be corrected by a
factor of 66.6/83.4 = 0.8, while for µcrit = 200, the same curves
would move upward by a small amount 91.6/83.4 = 1.1, leaving
our results virtually unchanged.

10.3. Slope of the lensing potential

Related to the previous point, another source of uncertainty
impacting our results is the specific properties of the cluster
lens model, in particular the slope of the lensing potential. The
macromodel magnification enters in Equation 2 quadratically. If
the macromodel magnification in the far region is 3 times larger,
this would increase the amplitude of the solid lines in Figure 7
by a factor of 9, bringing the prediction from millilenses and the
observation to better agreement. The median and mean magnifi-
cations of the WSLAP+ model in the far region of the Dragon
arc are 19.2 and 27.7, respectively. Increasing the magnification
by a factor of 3 would bring the most common values of µ1m in
Equation 2 close to the value of µcrit, resulting in a very uniform
distribution of microlensing events along the Dragon arc. Such a
lens model would require a very shallow lensing potential, pos-
sibly in conflict with lensing constraints. Comparing our lens
model magnification in the far region with the predicted mag-
nification from the lens models in the same region of Li et al.
(2024), we find that on average those models predict 24%±22%
more magnification than our lens model in the far region. Based
on this, and taking the upper limit (46% increase), we expect the
solid colored lines in Figure 7 to increase by a factor of ∼ 2.1,
still insufficient to explain the low rate of predicted events.

10.4. Number density of millilenses

N-body simulations show a tight correlation between the virial
mass of the cluster and the number of GCs, Mvir = 5×109 M⊙ ×
NGC (Burkert & Forbes 2020; Valenzuela et al. 2021). The
galaxy clusters in which transient stars have been found are all
very massive, with virial masses ∼ 1015 M⊙. Hence, we expect
∼ 2 × 105 GCs in each of these clusters. It is difficult to estimate
with precision the expected number density of GCs (detected and
nondetected) at the positions of the transients, but we can get an
order-of-magnitude estimate and see if it is in agreement with
the observed densities in nearby clusters.

If we assume that the distribution of GCs follows a cored
isothermal profile, then the number density of GCs falls with
distance to the center as ∼ (Rc + R)−1. Assuming all ∼ 2 × 105

GCs in the cluster are within a radius of 1 Mpc with this profile,
we find that the number densities at R = 50 kpc and R = 70 kpc
vary between ∼ 0.76 and ∼ 1.13 per kpc2 when the core radius
(Rc) varies between 0 and 10 kpc. This is within a factor of 2 of
what was assumed in Figure 7, and hence this higher estimate of
the number density is still insufficient to explain with millilenses
the anomalously high observed ratio of far-to-near microlensing
events. Modifying the radial profile to a steeper one with number
density scaling as (Rc +R)−2 [similar to what would be expected
if the distribution of GCs follows the profile from Navarro et al.
(1996), and for the most favorable scenario with Rc = 0, the
number density increases to ∼ 1.6 and ∼ 2.9 GCs per kpc2 at

Fig. 14. Comparison of mass functions of GCs and satellites. The red
solid line shows the total number of GCs in the area corresponding to the
Dragon arc from the GC mass function, after normalizing it to a density
of 1 GCs per kpc2. The black dashed line shows the mass function from
N-body simulations of a population of satellites in a cluster with Mvir =
1015 M⊙ and computed in a similar area at distances between 50 and
70 kpc from the center of the halo (same distance of the Dragon arc).
The dotted lines shows the dispersion in the number of satellites from
16 different realizations. In most realizations, no halos more massive
than ∼ 108 M⊙ are found within the region considered. The total mass
from the GC mass function is 4.01 × 108 M⊙ and the total mass from
the satellite mass function is 3.07 × 108 M⊙. Finally, the sum of mass
from the GC mass function up to 106 M⊙ and the mass from the satellite
mass function above 106 M⊙ is 5.01 × 108 M⊙.

70 kpc and 50 kpc (respectively) from the center of the halo. This
is still insufficient, since it would place the ratio of far-to-near
events one order of magnitude below the observed rate.

The mass function in Figure 6 excludes halos more massive
than a few times 107 M⊙. Naturally, we expect halos in this mass
range to still contribute as millilenses, but it is unclear how many
of those exist, since their potential must be shallow enough to
not contain dense concentrations of stars in their central regions,
hence evading direct detection.

Nevertheless, dwarf galaxies, or small satellites in general,
are expected to be numerous in cluster environments and intro-
duce perturbations in the magnification in the far region (and also
in the near region). From the lensing point of view, their cored
structures and relatively low mass make many of them subcriti-
cal (that is, they do not produce CCs). However, the fraction of
critical to subcritical halos remains unknown in cluster environ-
ments, so it is difficult to accurately predict their contribution to
the probability of high magnification. Even if they do not reach
criticality, at distances of ∼ 1′′ from the cluster CC, the mass
associated with a satellite may be enough to alter the inverse of
the magnification µ−1

2m = (1 − κ2m)2 − γ2
2m near the satellite, and

bring it close to the small value needed for microlensing events
to be maximized, |µ−1

2m| ≈ 10−2.
Here we rely on results from pseudo-analytical realiza-

tions based on state-of-the-art recipes calibrated using numer-
ical N-body simulations to assess the contribution from unde-
tected satellite galaxies. We employed a sample of 16 very-high-
resolution realizations using the MOKA algorithm (Giocoli et al.
2012a, 2016) assuming a mass of 1015 M⊙ at z = 0.37. The
cluster-size halo is populated by Monte Carlo sampling the sub-
halo mass function measured by (Giocoli et al. 2010a) and ex-
trapolating it to 1.5 × 105 M⊙. The halos have a triaxial model
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(Jing & Suto 2002; Despali et al. 2014) and subhalos are spa-
tially distributed as calibrated by Gao et al. (2004).

The resulting mass function from satellites is shown in Fig-
ure 14, where we compare it with the mass function of GCs used
in our main result (Model 1). For this comparison, we have com-
puted the total number of GCs in the area of the Dragon arc
(∼ 960 kpc2) and assuming the number density of GCs is 1 per
kpc2, roughly the upper limit of the vertical blue band in Fig-
ure 7. The mass function of satellites is also normalized to the
same area covered by the Dragon arc, and it corresponds to the
abundance of satellites with masses larger than 106 M⊙ found at
distances between 50 and 70 kpc from the cluster center in sim-
ulated clusters at z ≈ 0.37, and with virial mass 1015 M⊙. Rather
than repeating the calculation we did for GCs, we can estimate
the contribution from these satellites in the most favorable sit-
uation. We assume that all satellites are supercritical and com-
pact enough so they contribute to the magnification similarly to
GCs — that is, they follow the scaling of Equation 2. This is an
optimistic scenario because a fraction of these satellites will be
subcritical. In fact, it is unlikely that a large fraction of them are
supercritical since this would imply they have dense detectable
cores, and none is clearly observed as a resolved source in the
vicinity of the Dragon arc. Nevertheless, under the ideal assump-
tion above, the upper-limit contribution to the area in Equation 4
from the satellites should be proportional to their total integrated
mass. We compute this mass from the dashed-line model shown
in Figure 14 and find a total mass of 3.07 × 108 M⊙ in the area
occupied by the Dragon arc. Repeating the same calculation for
the red solid curve in Figure 14, we find that the GCs contribute
4.01 × 108 M⊙ in the same area, a factor of 4.7 more. Consider-
ing instead a combined mass function composed of the red curve
up to 106 M⊙ and the dashed black line above this mass, the total
mass is 5.01 × 108 M⊙, or 25% more than the GC contribution.
Translating these numbers into Figure 7, the red curve (Model
1) would move upward by only a factor of 1.25. Hence, even
in the most optimistic case in which satellites are very compact
and supercritical, the contribution from the undetected satellite
galaxies is relatively minor.

10.5. Substructure along the line of sight

So far we have assumed the milli-lens substructure capable of
promoting a micro-lensing event to detectability lies inside the
virial radius of the cluster. However, CDM also predictions a
sizeable population of halos along the line of sight (LOS), which
can also contribute to the lensing perturbations (e.g. Gilman
et al. 2019). On average, we expect substructures to contribute
to the surface mass density an amount similar to the contribu-
tion from the mean density of the universe, ρ̄ = Ωm × ρcrit.
In CDM, the overwhelming majority of dark matter halos on
the relevant mass scales are subcritical, and the lensing effects
of these objects drop when placed close to the observer and
source. Therefore, we consider LOS contributions from the red-
shift range 0.15 < z < 0.5, assuming the source is the Dragon
galaxy (at z = 0.725). In this interval, the critical density of
the universe is, on average, 1.41 times higher than at z = 0,
ρcrit(z = 0) = 2.77 × 1011 × h2 M⊙Mpc−3. Projecting along the
line of sight (1268 Mpc comoving), we then get an average con-
tribution of ΣLOS ∼ 242.7 M⊙ pc−2. Unlike subhalos of the clus-
ter, dark matter halos outside the cluster environment are not af-
fected by tidal forces.

To assess the contribution from halos outside the virial ra-
dius of the cluster, we calculate the expected number of dark
matter halos in the mass range 105–109 M⊙ using the mass func-

tion model presented by Sheth & Tormen (1999). In addition to
the halos drawn from the Sheth-Tormen mass function, we ac-
count for correlated structure around the cluster. The mass of the
cluster 1014–1015 M⊙ causes a local enhancement to the den-
sity field that increases the number of dark matter halos within
∼ 5 Mpc−1; these objects are effectively at the same redshift as
the cluster itself, but are not inside the virial radius or even nec-
essarily bound to the cluster potential, and thus they are typi-
cally not included in satellite mass functions. We model the lo-
cal enhancement through the two-halo term (Gilman et al. 2019),
with the additional correction proposed by (Lazar et al. 2021).
The halos along the line of sight, including those correspond-
ing to correlated structure around the cluster, contribute 100–
200 M⊙ pc−2, depending on the assumed virial mass of the clus-
ter. This constitutes a significant contribution that can potentially
impact the results discussed in previous paragraphs. From Fig-
ure 9, an increase of this magnitude in Σ would make the amount
of substructure in the far region very large, ΣTot = Σ∗ + ΣLOS ≈

150 M⊙ pc−2, which would imply a ratio of events of ∼ 1 in
the far and near regions, and in conflict with the observed ra-
tio of ∼ 2.5. Alternatively, for a fixed ratio of events ∼ 2.5, a
larger value for ΣTot would imply a large value of β ≳ 3. How-
ever, in CDM dark matter halos on these scales are predicted to
be subcritical for lensing, even when placed on top of a cluster
convergence map, and thus they contribute subdominantly to the
lensing magnification perturbations required to boost the signal
from microlenses. We will be able to revisit this topic with future
measurements of more events in the Dragon arc that will enable
measurements of β directly, and provide a better estimation of
the ratio of events in the near and far regions, resulting in a con-
straint on the contribution from microlenses and millilenses in
the lens plane and in the LOS to ΣTot.

10.6. Presence of hyperluminous stars

The events found in the Dragon galaxy by the Flashlights pro-
gram were observed in only one filter, so unfortunately we lack
color information to assess whether these events could be LBVs
at moderate magnifications or microlensing events of the much
more abundant but fainter supergiant stars.

In low-redshift arcs such as the Dragon arc, hyperluminous
stars with absolute magnitude −11 or brighter could be seen
anywhere around the arc in regions with moderate magnifica-
tion factors of µ1m > 20. Such high luminosity can be reached,
for instance, during an outburst of an LBV reaching an absolute
magnitude of −11 (Weis & Bomans 2020), or apparent magni-
tude ∼ 29 with magnification µ ≈ 20. Outbursts as luminous
as −14 mag have been recorded (Pastorello et al. 2010), or even
brighter for the so-called “supernova impostors" that can be as
luminous as supernovae (e.g., Kilpatrick et al. 2018). These su-
perluminous LBVs are exceedingly rare and can be detected any-
where at this redshift without the help of magnification, so we
do not consider them here. In the case of typical LBV outbursts,
they would be more likely detected in the far region since this
corresponds to a larger area in the source plane.

In the Dragon arc, Li et al. (2024) estimate ∼ 3 LBVs should
be present. We can independently estimate the number of LBVs
if we assume the Dragon galaxy contains a similar number of
LBVs as the number found in our neighborhood. The number of
LBVs with absolute magnitude brighter than −10 found in the
Milky Way plus LMC plus SMC is NLBV ≈ 100 (Humphreys
& Davidson 1979; Hamann et al. 2006; Crowther et al. 2010;
Hainich et al. 2014). To see one of these stars without help
from microlensing or millilensing, the magnification needs to be
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Fig. 15. Simulated magnification (in magnitudes) for a source traversing a caustic region. The lens model includes ψDM with de Broglie wave-
length 18 pc (red) or 10 pc (blue). Two macromodel magnifications are shown: µmacro ≈ 100 (red) and µmacro ≈ 50 (blue). The effects of different
lens components are marked. For this figure, the number density of microlenses was reduced to just 1 M⊙ pc−2 in order to better show the effect of
ψDM. Even at moderate values of µmacro (blue), the effects of ψDM are very different from standard CDM expectations.

µ1m ≈ 50. Only a portion of the Dragon arc has magnification
> 50. We can estimate this by multiplying the upper bound of
the orange region in Figure 7 by a factor of 4 — that is, ∼ 5 kpc2

in the Dragon arc are magnified by a factor of 50 or more. This
corresponds to a fraction of 6.3%× (Rgal/5kpc)2, where we have
adopted the estimated radius of the Dragon galaxy from our lens
model, Rgal ≈ 5 kpc. The number of expected LBVs in this area
is then N ≈ 6, close to the estimate from Li et al. (2024). Most
of these LBVs likely will be in a quiescent phase and hence not
detected as transients when comparing observations separated
by 1 yr (or ∼ 0.5 yr in the source frame), but for observations
at two epochs separated by several years, a significant fraction
of them will show measurable changes in flux and be identified
as transients. We conclude that some of the events found in the
far region of the Dragon arc may be LBVs, but without color
information we cannot confirm this hypothesis.

At higher redshifts, larger magnification factors are needed
to see outbursting LBVs, so the expectation in this case is to see
mostly genuine microlensing events in the far region. An exam-
ple (but also an exception) is Godzilla, a star which is believed to
be an outbursting LBV at z = 2.37 with at least 5 counterimages
(Diego et al. 2022), all of them (but one) undetected at macro-
model magnification µ1m ≈ 100 (the example), but interestingly
with one being detected thanks to the magnification boost pro-
vided by a millilens (µ2m ≳ 2000) (the exception). Diego et al.
(2022) estimate that at any given point ∼ 30 extremely magnified
LBVs (EMBLVs) at 1 < z < 3 and with magnification > 1000
should be detectable in the sky and with apparent magnitudes
as bright as 24. Large-scale high-cadence surveys such as LSST
can reveal them and complete a census of EMBLVs up to z ≈ 3.

10.7. Alternatives to ΛCDM

Although the combination of standard microlensing (that is, not
involving a millilenses) and LBVs offers the simplest explana-
tion for the high ratio of events found in the far region, it is inter-
esting to consider other scenarios in which dark matter physics,
or various baryonic effects (e.g. Ragagnin et al. 2024), alter the
properties of halos. For example, warm DM models predict less
substructure on subgalactic scales. Surviving halos in warm DM

have lower concentrations than their CDM counterparts, and
therefore have a suppressed lensing efficiency, lowering the con-
tribution from millilenses to the lensing probability. On the other
hand, self-interacting DM can cause halos to undergo core col-
lapse, a process that dramatically raising their central density,
potentially to a degree that causes them to become super-critical
for lensing (Gilman et al. 2021). Alternatively, wave dark matter,
(ψDM) is expected to increase the magnification in the far re-
gion. In this model, DM has density fluctuations at scales given
by the de Broglie wavelength and the halo mass (Schive et al.
2016), from the dependence on momentum:

λdB = 15
(

10−22 eV
mψ

) (
1015 M⊙
Mcluster

)1/3

pc , (20)

where mψ is the mass of the ultralight axion-like particle (ALP).
For masses mψ ≈ 10−22 eV and a 1015 M⊙ cluster, this scale
corresponds to 3 mas in the lens plane. This pervasive interfer-
ence substructure causes the CC to become corrugated on the
de Broglie scale (Chan et al. 2020; Laroche et al. 2022; Amruth
et al. 2023), and increasingly so for more massive halos, with
many detached islands where the magnification diverges at rel-
atively large offsets from the cluster CC (Amruth et al. 2023;
Laroche et al. 2022; Powell et al. 2023b).

Similarly to microlenses, ψDM fluctuations are ubiquitous
across the lens plane, and as in the case of microlenses and
millilenses, these fluctuations get amplified near the CC by the
macromodel. In Figure 15 we show the effect of ψDM over a
small region in the observer plane. For this particular case the
source is at z = 1, but the effect would be very similar for
z = 0.725. The simulation of ψDM follows Amruth et al. (2023),
and for this particular case the value of Σ∗ has been decreased to
Σ∗ = 1 M⊙ pc−2, to better appreciate the ψDM effect. Two mod-
els for ψDM are considered with λdB = 10 pc and λdB = 18 pc,
for cluster-scale lenses. We also consider two macromodel mag-
nifications. As shown in the figure, ψDM introduces perturba-
tions in the magnification pattern in the source plane at the sub-
milliarcsecond level. This scale is similar to the scale of the
caustics from the GCs considered earlier, and is consistent with
results from analyses of multiply-imaged quasars in which the
effect from ψDM is shown to be comparable to the effect of
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population of halo millilenses (Laroche et al. 2022). Interest-
ingly, smaller masses for the ALP (blue curve) result in more
pronounced effects but over a smaller region. In both cases, a
significant portion of the source plane can attain sufficiently high
magnifications so the critical magnification is reached, maximiz-
ing the probability for microlensing effects to take place.

The de Broglie wavelength (hence the mass of the ALP)
and the macromodel magnification determine the type of ob-
ject that can exhibit different magnifications. For instance, in the
λdB = 10 pc model and µ1m = 50 in Figure 15, the scale of
the object needs to be typically larger than ∼ 0.1 pc in order to
be insensitive to ψDM fluctuations, while for the λdB = 18 pc
and µ1m = 50 model the source needs to be larger than 0.5 pc
in order to not exhibit asymmetric fluxes. Future observations of
the Dragon arc will reveal additional microlensing events, which
are expected to form clusters of microlensing events around the
strongest fluctuations in the boson field.

11. Conclusions

We study the 3M-lensing effect from the combination of a
macromodel, a millilens, and microlenses. The possibility is
considered that microlensing events found at relatively large
distances from the cluster CC in the Dragon arc, or far re-
gion, are aligned with millilenses in the lens plane that increase
the probability of microlensing. We study the scaling of the
area above certain magnification (or lensing probability) near a
millilens, with the mass of the millilens and macromodel magni-
fication, with and without adding microlenses. Near the cusps of
millilenses, this probability scales with the mass of the millilens,
and microlenses play a minor role. We consider a realistic pop-
ulation of millilenses and model their mass function with a log-
normal function, then compute the total area in the far region of
the source plane associated with this population of millilenses
that has magnification greater than some critical value. We find
that the contribution to this area from millilenses is less than the
contribution from the far more numerous microlenses elsewhere
in the source plane. Hence, the addition of millilenses does not
appreciably increase the expected rate of microlensing events
far from the critical curve (which is given mostly by the more
numerous microlenses). Other factors, such as the presence of
LBVs, also contribute to the number of transient events in the
far region, especially in lensed galaxies at low redshift where
LBVs can be detected even at modest magnification factors.

We pay special attention to the spatial distribution of mi-
crolensing events and find that the number density of microlens-
ing events also depends on the exponent of the LF, ρ(µ, β) ∝
µβ−2. We make the analogy of traditional photographic-plate
imaging and identify two regimes: (i) positive-imaging regime
when β > 2 and the number density of microlensing events is
higher around massive substructures (high µ), and (ii) negative-
imaging regime when β < 2 where microlensing and microlens-
ing events have smaller number densities at the position of mas-
sive substructures (also high µ).

We discuss the intimate relationship between the abundance
of DTM stars and the number of observed microlensing events
where the second is proportional to the former. We demonstrate,
both analytically and with Monte Carlo simulations, how the
number density of DTM stars shows a strong dependence on the
LF and the macromodel magnification. Once the population of
DTM stars has been established (from the LF and the macro-
model magnification), the problem of estimating the number of
microlensing events can be reduced to studying a population of
DTM stars as they move across the web of microcaustics, where

the later depends not only on the amount of substructure (mi-
crolenses and millilenses), but also on the macromodel magni-
fication. We use the observed density of events in the far and
near regions of the Dragon arc to derive the slope of the LF,
finding that a steep LF with β = 2.55+0.72

−0.56 is consistent with the
observations. Variation of the LF along the lensed Dragon Arc
or absorption by dust are not considered in this work but they
should add an additional element of uncertainty in the results.
With future data, one can measure the slope β directly from the
observed LF and confront it with our estimate of β = 2.55+0.72

−0.56
derived from the spatial distribution of the number density of
microlensing events.

We derive a relation between the slope of the LF, β, the
amount of substructure, Σ, and the ratio of observed microlens-
ing events in the near and far regions, Nnear/Nfar. We estimate
the amount of substructure along the line of sight and, from the
relation between β, Σ, and Nnear/Nfar, we argue that most of this
substructure should be in the form of subcritical halos. Other-
wise, the inferred values of β would be very high.

Small substructures in the far region of the CC can be
mapped (imaged) by measuring this number density of mi-
crolensing events, which should correlate with the location of
millilensing substructures. The clustering may also reveal a
non-uniform distribution of the background stellar population
that can equally show clustering. Repeated observations of the
same arc may be and a detailed analysis of the photometry (or
spectra if available) may be needed in order to clearly distin-
guish between the two scenarios. We apply this technique to two
microlensing events forming a pair of local high density, and un-
der the assumption of a uniform distribution of the background
stars, find that if this peak in the density of microlensing events
is due to a substructure, its mass is ∼ 1.3 × 108 M⊙ within its
Einstein radius. This technique shall open a new window to map
the distribution of mass on scales of milliarcseconds, including
perturbations in the DM field. As an illustration, we consider the
case of ψDM and argue that this type of model can be proven
with repeated observations of low-redshift caustic-crossing arcs,
such as the Dragon arc, thereby greatly increasing the statistics
on the spatial distribution of microlensing events and revealing
the hidden nature of DM at subarcsecond scales.

At the time of submission of this paper, new JWST observa-
tions of this arc have revealed more than 40 microlensing can-
didates in the near and far regions of the Dragon arc. Most of
these events are suspected to be due to RSG stars at z = 0.725.
These events are presented in Fudamoto et al. (2024). A detailed
analysis of these new events will be the subject of a future paper.
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Appendix A: Lens Model

Details of the algorithm are provided by Diego et al. (2005a,
2007, 2016). This modelling technique has been applied suc-
cessfully to several clusters observed with HST and JWST (Diego
et al. 2005a, 2007, 2016, 2023b,a).

The model for A370 is derived using 32 lensed galaxies
with spectroscopic redshifts, and producing over 90 multiple im-
ages, or constraints. The model is derived as part of the Beyond
the Ultradeep Frontier Fields and Legacy Observations (BUF-
FALO) project (GO-15117, PIs Steinhardt & Jauzac; Steinhardt
et al. 2020), and also incorporates information from weak lens-
ing measured with HST images. Details of the dataset are given
by Niemiec et al. (2023).

This model incorporates all member galaxies detected by
HST near the Dragon arc, so it includes all relevant deflectors at
galactic scales and above. The CC predicted by our lens model
in the Dragon arc is shown in Figure 1. For this work we are
interested in the area in the source plane with magnification
µ > µcrit from millilenses that are in regions of the lens plane
where µ1m < µcrit (or far region). We are also interested in a sim-
ilar area in the source plane but from regions in the lens plane
near the cluster CC where the macromodel alone can provide
µ1m > µcrit needed for the probability of microlensing to be high
enough. More precisely, we are interested in the ratio of the two
areas, since this ratio will essentially correlate with the ratio of
events found near the CC and far from the CC. The use of a
different lens model should have a relatively small impact on
our conclusions provided these lens models include all member
galaxies near the critical region, since these member galaxies
can alter the position of the CCs. The ratio of events should then
remain more or less constant for most models, with a relatively
small dependence on the slope of the lensing potential. This dif-
ference in slopes can account for a factor of ∼ 2 in the ratio
of areas and hence on the ratio of events between different lens
models. A level of uncertainty of a factor of ∼ 2 should be kept
in mind owing to uncertainty in the macro galaxy cluster model.

The area in the image plane above a magnification µ com-
puted in the region of the Dragon arc is shown in Figure A.1.
As expected, this area scales as the canonical 1/µ scaling law.
Above µ = 100 there are 190 kpc2 in the image plane. Dividing
by µ = 100, this corresponds to 1.9 kpc2 in the source plane, and
correcting for the multiplicity factor 2 (for every counterimage
with magnification µ = 100 in the image plane, there is another
on the other side of the CC with similar magnification), we arrive
at 0.95 kpc2, setting the upper boundary of the orange region in
Figure 7.

Fig. A.1. Area above a certain magnification in the Dragon arc. The
solid line shows the area with magnification > µ computed in the image
plane and in the region occupied by the Dragon arc. The dashed line is
the simple power-law fit A(> µ) = 1.5 × 104/µ in kpc2.
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